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Summary 

Root exudates shape microbial communities at the plant soil interface. Here we compared 

bacterial communities that utilise plant-derived carbon in the rhizosphere of wheat in different 

soil depths, including topsoil, as well as two subsoil layers up to 1 m depth. The experiment 

was performed in a green house using soil monoliths with intact soil structure taken from an 

agricultural field. To identify bacteria utilizing plant derived carbon, 
13

C-CO2 labelling of 

plants was performed for two weeks at the EC50 stage, followed by stable isotope probing of 

extracted DNA from the rhizosphere combined with 16S rRNA gene-based amplicon 

sequencing.  

Our findings suggest substantially different bacterial key players and interaction mechanisms 

between plants and bacteria utilising plant-derived carbon in the rhizosphere of subsoils and 

topsoil. Among the three soil depths, clear differences were found in 
13

C enrichment pattern 

across abundant operational taxonomic units (OTUs). Whereas OTUs linked to Proteobacteria 

were enriched in 
13

C mainly in the topsoil, in both subsoil layers OTUs related to Cohnella, 

Paenibacillus, Flavobacterium showed a clear 
13

C signal, indicating an important, so far 

overseen role of Firmicutes and Bacteriodetes in the subsoil rhizosphere.  
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Introduction 

The microbiome of the rhizosphere has been considered as an important driver of functions 

contributing to plant health- -growth and yield (Berg et al., 2014). Thus, microbes in this 

compartment have been intensively studied in the last decades and enormous efforts have 

been made to unravel the complex processes taking place (Berendsen et al., 2012; Philippot et 

al., 2013; Lareen et al., 2016). Today it is well accepted that bacteria promote plant growth 

mainly  via nutrient mobilisation from the soil, phytohormone production, stimulation of the 

plant immune system or biocontrol of phyto-pathogens (Berg, 2009; Hartmann et al., 2009). 

Studies on defined bacterial components have emphasised the special relevance of 

Proteobacteria (Pseudomonas, Rhizobium, Burkholderia, Lysobacter), Actinobacteria 

(Streptomyces), Bacteroidetes (Flavobacterium, Cytophaga), and Firmicutes (Bacillus, 

Paenibacillus) in the rhizosphere of diverse plant species (Haichar et al., 2008, 2012; Buée et 

al., 2009). Also other microbes colonizing the rhizosphere, mainly fungi, are considered to 

influence plant health (Malik et al., 2015), although their plant growth promoting abilities in 

non-mycorrhizal interactions is far less investigated.  

Today it is obvious, that the microbial community composition of the rhizosphere is mainly 

driven by the plant species, the plant development stage and the soil type (Marschner et al., 

2001; Berg and Smalla, 2009). A major mechanism how plants select for their specific 

microbiomes belowground is the specific composition of root exudates, which are used by 

microbes  as an easily available carbon source (Haichar et al., 2008). The quality and quantity 

of exudates varies with changes in soil physical and chemical parameters, plant developmental 

status and at different root zones (Jones et al., 2004; Haichar et al., 2008, 2014; Chaparro et 

al., 2014). Highest root exudation rates were measured close to the root tip and during plant 

growth until flowering (Lynch and Whipps, 1990; Haichar et al., 2014; Neumann et al., 

2014).  

However, although previous studies have investigated the nature and composition of 
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rhizosphere microbes in detail, the transferability of findings to natural plant-microbe-soil 

systems may not always be straightforward due to the following considerations: (i) 

experiments are often conducted with disturbed or sieved soils, where the soil structure and 

compartments have been homogenised thus neglecting the influence of small-scale soil 

heterogeneity on root development (Luster et al., 2009; Han et al., 2015), (ii) studies are often 

limited to nutrient rich topsoil, although roots of agricultural crops can easily grow down to 

2 m (Kautz et al., 2013; Perkons et al., 2014) and soil depth is recognised as a further 

important driver of soil microbial community composition (Berg and Smalla, 2009; Scharroba 

et al., 2012), and (iii) rhizosphere microbiomes are often investigated at the level of presence 

or the relative abundance of taxa, but not their direct involvement in rhizosphere carbon 

flows. 

In this study, we investigated bacteria utilizing plant derived carbon  in the rhizosphere of 

Triticum aestivum in different soil depths. To reach our goals, we investigated intact soil 

columns planted with wheat over a soil depth of 1 m. Thus, the natural covariation of soil 

structure, pore network and root developmental stage over depth was conserved. We applied 

13
C-CO2 fumigation to the plant shortly before sampling and used DNA-based stable isotope 

probing (SIP) combined with barcoding of the 16S rRNA gene amplicons by high throughput 

sequencing to reveal a high resolution of key rhizosphere bacteria utilising plant-derived 

carbon (Haichar et al., 2016).  

Based on recent measurements of hydrolytic enzyme activities in the rhizosphere of wheat 

using samples from the same field (Uksa et al., 2015b), we hypothesise that the degree of 

substrate assimilation and microbial activity in the subsoil rhizosphere is comparable to that 

of the topsoil rhizosphere. However, as a pre-study with soil from the same field trial 

demonstrated a substantial change of abundant bacterial phyla from topsoil to subsoil with a 

decrease of Proteobacteria and an increase of Firmicutes (Uksa et al., 2015a), we postulate, 

that rhizosphere bacteria, which utilise the plant-derived carbon, will differ in the different 
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soil depths under investigation. As most microbes colonizing the rhizosphere are acquired 

from the soil microbiome, we expect a dominance of Firmicutes in the subsoil utilising plant-

derived carbon in the subsoil rhizosphere, whereas in topsoil a dominance of Proteobacteria 

occurs.  

 

Results 

13
C distribution pattern in the different soil and plant compartments  

At the end of the experimental period (90 days) Triticum aestivum formed a dense rooting 

network in all three analysed soil depths. However, a sharp decrease of root biomass with soil 

depth (ANOVA; P < 0.001) was clearly visible (supplementary Figure S1). The labelling of 

the plant with 
13

C-CO2 resulted in a significant (P < 0.001) 
13

C enrichment in the plant shoot 

biomass (46.4 atom-%) as well as in the rhizosphere (6.1 atom-%) and bulk soil (1.3 atom-%) 

independently of the soil depth (Figure S1). 

 

Bacterial community composition and 
13

C enrichment of OTUs in the rhizosphere at 

different soil depths 

Seven consecutive fractions of each DNA gradient known to span the range of buoyant 

densities (BDs) typical for light and heavy DNA were selected for downstream analyses. 

16S rRNA gene-targeted qPCR indicated elevated gene counts in heavy fractions of 
13

C-

labelled treatments compared to the controls, i.e. at BDs of 1.715 g·ml
-1

 CsCl or higher 

(Figure 1). This was a first indication of the successful incorporation of 
13

C-label into the 

DNA of rhizosphere microbiomes in our experiment. 

The selected fractions were subjected to sequencing of bacterial 16S rRNA gene amplicons. 

After quality filtering 2,541,504 reads were obtained from all fractions, resulting in 29,188 

OTUs at a level of 95% similarity. For further analysis, reads from all samples were rarefied 

to 30,256 reads per sample.  
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In a first analysis, sequencing data from the 7 fractions per sample were combined by 

weighing the relative abundance of each OTU according to the proportion of 16S rRNA gene 

abundance in each fraction. With this, we first compared overall depth-resolved rhizosphere 

communities, without differentiation between OTUs of labelled and control samples. Richness 

and Shannon diversity (H) were significantly higher in rhizosphere samples of the topsoil 

(ANOVA; P < 0.001; H = 7.47) as compared with subsoil U (H = 6.36) and subsoil L 

(H = 6.31). Clustering of the samples and relative abundance of the 100 most abundant OTUs 

is displayed in Figure 2. The relative abundance of bacterial phyla is provided in 

supplementary Table S2 and Figure S3. As expected the following phyla were major parts of 

the bacterial community: Actinobacteria (18-44%), Proteobacteria (15-27% [42-63% Beta-, 

12-23% Gamma-, 11-21% Deltaproteobacteria]), Acidobacteria (8-21%), Firmicutes (3-16%), 

Bacteroidetes (3-14%), Nitrospirae (1-3%), and Gemmatimonadetes (1-2%). Already at the 

phylum level, significant differences were found between the soil depths: a significantly 

higher abundance was observed for Acidobacteria in topsoil (ANOVA; P = 0.001), for 

Actinobacteria in subsoil U (P = 0.004), and for Nitrospirae in subsoil L (P = 0.020). In 

addition, the overall relative abundance of Proteobacteria was reduced in the rhizosphere of 

the upper subsoil  (subsoil U; P = 0.001). As expected, Firmicutes were generally more 

abundant in the of the lower subsoil rhizosphere. Similar to the T-RFLP fingerprints 

(supplementary results and Figure S4), variations between the 4 soil columns increased with 

soil depth. Whereas topsoil and subsoil U samples formed condensed clusters, the subsoil L 

bacterial community exhibited considerable variability mainly due to the occurrence of single, 

highly abundant OTUs in only one or two samples, e.g. Nocardiaceae, Achromobacter, 

Microbacterium, Flavobacterium, Pedobacter, Janthinobacterium or Steroidobacter (Figure 

2). 

In a second step, 
13

C enrichment was estimated for bacterial OTUs as an indication of their 

direct involvement carbon flow at the plant – soil interface of different soil depths, (Figure 

This article is protected by copyright. All rights reserved.



 8 

3A-C). Labelling was inferred via taxon-specific buoyant density shifts and interpreted as 
13

C 

atom-% enrichment (Hungate et al., 2015). Up to 35 
13

C atom-% enrichment were observed 

for specific OTUs, while the uncertainty thresholds increased with soil depth (topsoil – 1.0; 

subsoil U – 5.2; subsoil L – 16.0 
13

C atom-%). 
13

C enrichment values were lower in average 

in the upper subsoil U compared to topsoil or subsoil L. However, overall relative abundance 

of 
13

C-enriched OTUs was found to be highest in subsoil U and subsoil L rhizosphere. Among 

the three soil depths, clear differences were found in the 
13

C enrichment pattern across 

abundant OTUs. Enrichment of 
13

C was highly pronounced for OTUs related to Cohnella, 

Paenibacillus, Flavobacterium, and Chitinophagaceae in subsoil U and especially subsoil L. 

These OTUs also were of high relative abundance compared with the topsoil. For OTUs 

classified as Actinobacteria, e.g. Agromyces, Arthrobacter, Glycomyces, Kitatospora, Lentzea, 

and Promicromonospora, both, their relative abundance and 
13

C-labelling were highest in the 

upper subsoil. In turn, reads which could be assigned to Streptomyces sppwere 
13

C-enriched 

and highly abundant in all depths. Interestingly, different OTUs related to Streptomyces were 

contributing to this observation in different soil depths (Figure 2, 3). 

In contrast to Actinobacteria, proteobacterial OTUs were generally less abundant and had a 

lower 
13

C-atom fraction excess in the subsoil U rhizosphere compared with the other soil 

depths. The most important proteobacterial OTU was closely related to Duganella, which 

appeared very important in rhizosphere of subsoil L. Other 
13

C-enriched Proteobacteria were 

identified as Ideonella, Lysobacter, Massilia, Polaromonas, Pseudoxanthomonas, 

Steroidobacter, and Variovorax showing varying abundance and 
13

C enrichment in 

dependency to soil depth. 

Labelling of Acidobacteria was apparent only in topsoil. Here, the Gp4 class exhibited 

considerable 
13

C enrichment in one OTU. The phyla Nitrospirae and Gemmatimonadetes, as 

well as most unclassified OTUs, showed no relevant 
13

C enrichment and their relative 

contribution to the microbial community was rather low. 
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Discussion 

 

Unravelling soil-microbe-plant interactions in undisturbed subsoil 

Soil depth is a factor which is still rarely considered despite the fact that roots grow deep into 

subsoil. As with depth soil properties change and the bulk soil microbial community 

composition changes drastically towards oligotrophic, slow-growing microbes (Eilers et al., 

2012; Uksa et al., 2015a), mechanisms of interactions between the plant root and the 

surrounding microbes and soil will be affected as well. There are still methodological 

limitations that impede direct 
13

C labelling in the field and sampling down to subsoil. The use 

of undisturbed subsoil columns incubated under greenhouse conditions may be a good 

compromise. With undisturbed subsoil – overlaid by homogenised topsoil which mimics a 

ploughing event – we could preserve the naturally developed soil profile and its spatial 

heterogeneity including bulk density, soil structure, soil pore network, earthworm burrows, 

biogeochemical gradients as well as microbial community distribution patterns and niche-

separation. Root growth, root development and deposition of root exudates were therefore as 

close to natural conditions as possible. The separation or co-localisation of microbes and 

substrates has been shown to be critical for carbon turnover on a small scale (Pinheiro et al., 

2015) and is a so far underestimated factor in studies using homogenised soil solely. 

 

 

Detection of carbon utilising microbial pools via quantitative DNA-SIP 

In this study, we investigated the bacterial communities utilising plant-derived carbon in the 

rhizosphere of top- and subsoil of wheat. For this aim, DNA-SIP was used as a powerful 

method to detect and quantify microbes that directly or indirectly take up 
13

C-labelled carbon 

provided by plants (Haichar et al., 2016).  

This article is protected by copyright. All rights reserved.
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The relatively long time span of our labelling experiment, which was needed to obtain 

sufficient amounts of 
13

C labelled carbon, needed for subsequent SIP analysis, in the 

microbial DNA pool (15 d), made it difficult to differentiate between primary exudate 

consumers or secondary metabolite or biomass consumers in the investigated soils. Cross-

feeding in natural food-webs can complicate the interpretation of SIP data and time-resolved 

SIP analyses can help to overcome this caveat (Coyotzi et al., 2016). In our present analyses, 

microbes with a higher 
13

C enrichment were considered more likely to be primary consumers 

of root exudates, however the simultaneous presence of slow-growing primary consumers can 

also not be excluded (Haichar et al., 2008; Rettedal and Brözel, 2015). 

Previous studies have emphasised the importance of sufficient 
13

C-labelling for successful 

separation of heavy and light DNA and to resolve labelling from GC-effects (Neufeld et al., 

2007a; Uhlik et al., 2009). Due to the simultaneous contribution of 
13

C enrichment and GC 

content to the buoyant density of DNA, unlabeled genomes with high GC content may be 

found in the same gradient fractions as low-GC DNA with a high 
13

C enrichment (Buckley et 

al., 2007). In our present approach, this potential caveat was circumvented by high 

throughput-sequencing of 16S rRNA genes across all relevant gradient fractions, including 

13
C treatments and unlabeled controls. Thus, we could (i) achieve a high phylogenetic 

resolution of labelled microbial taxa, (ii) define taxon-specific buoyant density shifts, and (iii) 

infer from that the degree of 
13

C-labelling for single OTUs (Hungate et al., 2015). At the same 

time, we are aware that the use of only one 
12

C-control column vs. triplicate 
13

C-labelled 

treatment columns per depth compromises a strictly quantitative and statistical evaluation of 

labelling effects. 

 

The key players – rhizosphere bacteria growing on plant-derived carbon in different soil 

depths and their putative plant growth promotion abilities 

As proposed, results indicated that both on phylum and genus level, utilisation patterns of 
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plant-derived carbon were highly dependent on soil depth. However, for all soil depths the 

dominance of 
13

C-enriched genera attributed to Proteobacteria, Actinobacteria, Bacteroidetes, 

or Firmicutes pointed towards an import role of fast growing root-exudate metabolising 

bacteria. Particularly within the aforementioned phyla, bacteria have been isolated from 

diverse rhizosphere soils and characterised as fast growing microbes in the presence of labile 

carbon sources (Fierer et al., 2007, 2012; Ramirez et al., 2012). Nevertheless, the spectrum of 

physiological traits and lifestyles within a defined phylum can still be rather diverse (Goldfarb 

et al., 2011). Arthrobacter for example was originally reported to be oligotrophic (Thompson 

et al., 1992) but has been repeatedly identified in SIP studies to consume labile sugars in soils 

(Mau et al., 2014; Kramer et al., 2016). Also in our study, this taxon was highly 
13

C-enriched 

in the subsoil U. In contrast, reads from e.g. Nitrosospira showed almost no atom fraction 

excess in all depths, not surprising, as this genus is known as an autotrophic nitrifier (Xia et 

al., 2011). Also Acidobacteria and Gemmatimonadetes were almost not 
13

C-labelled and 

therefore less involved in the turnover of plant-derived carbon. This result is in accordance 

with the expectation that most bacteria of those phyla are oligotrophic (Zhang et al., 2003; 

Jones et al., 2009; Foesel et al., 2014). Generally, atom fraction excess variation within phyla 

and even within OTUs affiliated to the same genus was still high. Especially for the genus 

Streptomyces, different OTUs showed not only different relative abundances over depth, but 

also a high variation in 
13

C-labelling indicating distinct growth rates and substrate usage 

spectra.  

Actinobacteria and Streptomyces as well as Duganella and Janthinobacterium, all observed in 

our study in different soil depths with differing 
13

C labelling intensity, are known for their 

ability to produce secondary metabolites with antimicrobial activities (Basilio et al., 2003; 

Choi et al., 2015; Viaene et al., 2016). Many of these taxa are discussed in the context of 

biocontrol (Haesler et al., 2014). Labelling intensities of these taxa varied strongly over depth, 

suggesting that key players involved in plant protection from phytopathogens in the 
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rhizosphere significantly differed over depth in our study. Donn et al. (2015) also observed a 

shift from Proteobacteria to Actinobacteria during wheat development, but at a larger 

temporal scale not focusing on roots of the same plant. They found Oxalobacteraceae and 

Pseudomonadaceae to be abundant at younger parts of roots, whereas at older parts or at 

senescent roots Micromonospora species and other Actinobacteria were enriched. 

Also other microbes possibly related to plant growth promoting functions showed similar 

variability over depth. For example, strains of Massilia, Duganella, Variovorax, and 

Pseudoxanthomonas are known to produce siderophores (Aranda et al., 2011; Ofek et al., 

2012; Madhaiyan et al., 2013; Lampis et al., 2015). These taxa were especially 
13

C-labelled in 

the subsoil L rhizosphere, possibly providing an additional positive effect on deeper wheat 

roots in terms of iron and phosphorous supply (Sharma et al., 2013). This is consistent with 

our previous report of highest phosphatase activities in deeper rhizosphere from the same site 

(Uksa et al., 2015b).  

In the above mentioned study (Uksa et al., 2015b) also glycoside hydrolase activities were 

measured in the wheat rhizosphere from topsoil, subsoil U as well as subsoil L and were 

generally lower in the upper subsoil as compared to topsoil and the lower subsoil. Possibly, 

hydrolase activities in the lower subsoil are induced by easy available hydrocarbons released 

from young roots to increase further carbon mobilisation from the surrounding bulk soil. A 

putative producer of glycoside hydrolases in the subsoil L rhizosphere may be 

Flavobacterium. Bacteria of this genus are copiotrophs, living on easy available substrates, 

and were found to induce hydrolase activities in the wheat rhizosphere in former studies 

(Thompson et al., 1992; Mawdsley and Burns, 1994; Heijnen et al., 1995). Furthermore, at 

the early plant vegetative growth phase – as in our study – Flavobacterium is more abundant 

whereas Sphingobacteria take over at later plant developmental stages (Donn et al., 2015). 

This may explain, why this family did not show up in our study, although other studies of the 

wheat rhizosphere found them in higher abundance (Haichar et al., 2008; Stroobants et al., 
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2014). 

Similarly, members of the genera Paenibacillus, Bacillus, and Cohnella spp. (all Firmicutes) 

are known as free-living diazotrophs (Mavingui et al., 1992; Rosado et al., 1996; Behrendt et 

al., 2010; Wang et al., 2012). In our studies these genera were of highest abundance and 

showed highest 
13

C enrichment not only in subsoil rhizosphere (this study) but generally in 

subsoils (Uksa et al., 2015a). In contrast, an apparent lack of labelled Firmicutes with possible 

nitrogen fixing abilities in topsoil may indicate sufficient nitrogen supply or functional 

redundancy by other lineages there. 

Finally also the production of phytohormones such as indol acetic acid might play a role for 

plant growth promotion in the deeper subsoil L, where roots are predominantly young. For 

Massilia, Janthinobacterium, Arthrobacter (Kuffner et al., 2010), Paenibacillus (Hanak et al., 

2014), and even an acidobacterial strain (Kielak et al., 2016) IAA production was 

documented. Different mechanisms of plant growth promotion might fall together in single 

species and other bacteria in turn benefit from those mutualistic relationships. 

 

Lack of 
13

C enrichment in bacterial DNA in the upper subsoil 

Interestingly, OTUs in the upper soil depth (subsoil U) showed a lower atom fraction excess 

on average when compared with the deeper subsoil L, although the overall 
13

C content of the 

soil was not lower in the rhizosphere of subsoil U. In addition, total carbon content increased 

in the rhizosphere with soil depth (data not shown). The following scenario – based on the 

depth and age-differential release of root exudates preferably in young roots (Haichar et al., 

2014) – could explain this observation: During labelling, root exudation could have been 

highest in the subsoil L, because average root age is expected to be lowest in the deepest soil 

and root exudation is expected to be highest in the early root developmental stage (Neumann 

et al., 2014). In the upper subsoil U, root exudation could already have been gradually 

reduced as a result of increased average root age when labelling with 
13

C-CO2 occurred. These 
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assumptions are supported by a previous study on the same soil and soil depths in the field 

(Uksa et al., 2015b), where potential hydrolytic enzyme activities in the rhizosphere showed a 

similar decrease in the upper subsoil U. The limitation of readily available carbon sources 

such as root exudates in this soil depth at this explicit time point of sampling can explain the 

gap and is supported by the high abundance of Actinobacteria, e.g. Arthrobacter, which can 

compete at nutrient limiting conditions. 

 

Conclusion 

 

We were able to show that, dependent on soil depth, distinct patterns of bacteria utilising 

plant-derived carbon occur that indicate shifts in plant growth promoting bacteria already at 

the phylum level. The composition of root exudates, the surrounding indigenous microbial 

community or other soil properties at specific soil depths are major drivers of the observed 

patterns, while their specific contributions remain unclear. 

As postulated, the degree of assimilation of plant-derived carbon by single bacterial taxa in 

the rhizosphere of subsoil L is similar to the topsoil. Furthermore, the so far underestimated 

role of Firmicutes and Bacteroidetes as important bacteria, which utilise plant-derived carbon 

in the subsoil, is an outstanding result adding to other related findings from the wheat 

rhizosphere and residues (Bernard et al., 2007; Ai et al., 2015). This first investigation of the 

microbial communities, which utilise plant-derived carbon in an undisturbed subsoil via 

DNA-SIP shows that it is worth to take a ‘deeper’ look into the rhizosphere, otherwise carbon 

turnover processes and key players might be overlooked or underestimated. As most of the 

studies in the past, also here the focus has been put on the analysis of the bacterial part of the 

microbiome. As also indicated in the introduction, also other microbes than bacteria strongly 

contribute to plant health. Thus we propose to implement mainly fungi into future studies on 

the role of plant derived carbon to understand how this important group of microbes is 
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influenced by root exudates.  

 

Experimental procedures 

Soil properties and soil core excavation 

The soil used for this study originated from an arable field at Campus Klein-Altendorf near 

Bonn (Germany, 50°37´21´´ N, 6°59´29´´ E) and has been classified as Haplic Luvisol. The 

Ap horizon (topsoil, 0-20 cm) has been classified as a silt loam with a pH 6.5 and was 

influenced by conventional tillage. Subsoil horizons Bt1 (upper subsoil U, 45-75 cm) and Bt2 

(lower subsoil L, 75-105 cm) are characterised by a high bulk density and clay accumulation 

(silty clay loam) with pH values of 6.9;  total carbon and nitrogen decreased with depth. The 

intermediate E/B horizon (20-45 cm) varies highly in the field and is therefore excluded from 

this study. For further details about soil properties consult Gaiser et al. (2012) and Kautz et al. 

(2014). In April 2012 before soil management and cultivation started, twelve undisturbed 

subsoil monoliths from 45-105 cm soil depth and 20 cm in diameter were obtained with a 

lysimeter excavation technology (Meißner et al., 2007). The distance between the monoliths 

taken at the field was set to 1 m. The soil columns were deposited in a covered polystyrene 

box (60×180×100 cm) on a copper plate. The plate was set to 14°C for cooling the soil from 

the bottom continuously. To simulate the disturbed plough horizon, the undisturbed subsoil 

cores were covered with a 20 cm thick layer of homogenised, sieved topsoil (Ap horizon) 

from the same field. As the soil depth between 20 and 45 cm were  excluded from this study, 

subsoil U and L (45-75 and 75-105 cm) refer to the root depths 20-50 and 50-80 cm, 

respectively. 

 

Wheat cultivation, 
13

C-CO2 labelling and sampling 

11 germinated seeds of Triticum aestivum L. (cultivar Scirocco) were sown in the topsoil 

which is equivalent to a seeding density of 350 seeds per m
2
 typically used in the area of the 
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sampled soil. 75 days after sowing plants had reached the developmental stage EC50 

providing the highest root exudation rates (Haichar et al., 2014) and were labelled with 
13

C-

CO2 (for details see the Supplemental Material).   

After labelling, the soil columns were vertically dissected into three blocks using an electric 

saw: topsoil (0-20 cm), upper subsoil (U, 20-50 cm), and lower subsoil (L, 50-80 cm). The 

subsoil from 20-80 cm corresponded to the field soil depth of 45-105 cm. Each block was cut 

longitudinally into two halves. For the determination of the root biomass a representative 

cylinder segment was cut along the whole height of each block half from the midpoint to the 

edge. The roots for the determination of the root biomass were washed with deionised water. 

From the second half of each block, roots with adhering soil within max 2 mm distance to the 

root surface were sampled with sterile tweezers and designated as root-rhizosphere-complex. 

Bulk soil was sampled with a sterile spoon with highest possible distance to the roots which 

increased from topsoil to subsoil. Therefore the effect of root exudation on designated bulk 

soil samples from topsoil cannot be totally excluded. For DNA extraction, the root-

rhizosphere complex and bulk soil material was stored at -80°C until further analysis. For dry 

weight and carbon measurement of the shoot and roots, rhizosphere and bulk soil, the sample 

material was dried at 40°C.  

 

Microbial analysis 

Details on the described experimental procedures can be found in the Supplemental Material. 

The analyses were limited to one control and three treatment soil columns resulting in 24 

samples (4 soil columns  3 soil depth  2 compartments (root-rhizosphere complex and bulk 

soil)). DNA was extracted from samples using a modified nucleic acid extraction method 

according to Lueders et al. (2004). Since roots were intact after homogenisation for simplified 

reading, we further designated the DNA, which was extracted from the root-rhizosphere 

complex, as ‘rhizosphere DNA’.  

This article is protected by copyright. All rights reserved.



 17 

In order to verify that the 4 soil columns used for DNA-SIP and 16S rRNA sequencing are 

comparable regarding their overall bacterial community composition, terminal restriction 

fragment length polymorphism (T-RFLP) was performed as a pre-analysis. A detailed 

description and results can be found in the supplementary material and Figure S4.  

DNA-SIP was performed on the basis of density gradient centrifugation and fractionation 

according to Lueders et al. (2004) and Neufeld et al. (2007b). Due to insufficient 
13

C 

enrichment in the bulk soil (Figure S1), density gradient centrifugation was limited to 

rhizosphere DNA. 

For sequencing of bacterial 16S rRNA genes, 7 consecutive fractions that contained sufficient 

DNA amounts for downstream molecular analyses were chosen from each CsCl-gradient 

resulting in 84 samples (4 columns  3 soil depth  1 compartment (rhizosphere)  7 

fractions). Bacterial 16S rRNA gene abundance was determined in each of the fractions by 

quantitative real-time PCR using the 7300 Real-Time PCR System and the Power SYBR
®

 

Green PCR Master Mix (Applied Biosystems, Darmstadt, Germany) following the protocol 

described by Töwe et al. (2010). Barcoded amplicon sequencing was performed using the 

Illumina MiSeq platform (Illumina Inc., USA). A total of 11,618,658 reads were obtained 

which is equivalent to 59,528 and 285,456 reads per sample. 

Fastq files were processed and the sequencing reads filtered using mothur software (release 

v.1.33.0; Schloss et al. (2009)) according to the SOP by (Schloss et al., 2011). For the 

alignment and removal of chimeras and plant-derived 16S rRNA gene sequences from 

chloroplasts and mitochondria, the SILVA reference file (release 119; Quast et al. (2013)) was 

used. The RDP database (release 10; Cole et al. (2014)) was the reference for classification of 

OTUs, which were found at 95% similarity clustering of the reads using the furthest 

neighbouring method. Raw read sequences can be found at GenBank’s Short Read Archive 

(SRA) under the accession number SRP101445 (BioProject PRJNA378229). 

The 
13

C enrichment for each OTU was determined on the basis of the publication by Hungate 
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et al. (2015), where a detailed description and formulas can be found. First, the weighted 

average mean density was calculated for each OTU across the 7 fractions in each gradient. In 

this study, an intrinsic correlation of the GC content to the density has been performed. OTUs 

from the control samples, which could be classified at the genus level, were summed up and 

the weighted average density was calculated from the 7 fractions accordingly for each genus 

in each depth. If available, the corresponding genomic GC content from the NCBI database 

(ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz; 19.03.2016) was assigned to each 

genus taxon found in the unlabelled control datasets, which resulted in 234 data points. 

Multiple GC content entries for single genera in the NCBI database were averaged in advance. 

The correlation between average mean density and GC content was expressed in a linear 

model (Figure S5), which was used to determine the GC content for each OTU in the control 

samples. 

To calculate the increase of 
13

C content for each OTU, the density shift between the control 

and the 
13

C-labelled sample in the corresponding soil depth was determined as the difference 

of the weighted mean average densities. The GC content of each OTU served as a basis to 

calculate the increase in molecular weight of the DNA by the density shift and thus the 
13

C 

enrichment, which is expressed as atom fraction excess. The extension of atom fraction excess 

values below ‘0’ was taken as uncertainty range also for the positive measurements. Above 

this threshold, 
13

C enrichments were considered as confident. 

Significant differences for single variables – root biomass, 
13

C content, Shannon diversity, 

and relative abundance of bacterial phyla – were calculated with univariate analysis of 

variance (ANOVA, R package ‘stats’, R Core Team (2013)). Square root transformed relative 

abundance data from 16S rRNA gene sequencing and T-RFLP were used to compute 

permutational multivariate analysis of variance (PERMANOVA, R package ‘vegan’, Oksanen 

et al. (2015)). Heatmaps are based on the same data (R package ‘gplots’, Warnes et al. 

(2016)). For clustering of the dendrograms, the complete linkage method was applied on the 
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euclidean distance matrix. 
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Legends 

 

Figure 1: 16S rRNA gene abundance in CsCl-gradient fractions. 7 consecutive fractions are 

displayed, which were selected for barcoded 16S rRNA gene amplicon sequencing. Topsoil 

(0-20 cm); Subsoil U (upper subsoil, 20-50 cm); Subsoil L (lower subsoil, 50-80 cm). 

 

Figure 2: Bacterial community composition in control and 
13

C-labelled rhizosphere samples. 

Sequencing reads in gradient fractions were combined on the basis of weighted relative 

abundances. The 100 most abundant OTUs were selected for clustering and ordered from top 

to bottom first by their phylum affiliation and secondly, by the mean relative abundance 

across all samples. PERMANOVA revealed significant differences between soil depths 

(P = 0.001). Top – Topsoil (0-20 cm); Sub U – upper subsoil (20-50 cm); Sub L – lower 

subsoil (50-80 cm); 
13

C-lab – plants were labelled with 
13

C-CO2; control – no labelling; u – 

unclassified at 80% cutoff. 

This article is protected by copyright. All rights reserved.



 29 

 

Figure 3: 
13

C enrichment of bacterial OTUs in different soil depths. The mean density shift – 

expressed as 
13

C atom fraction excess – for each OTU between the 3 labelled samples and the 

control (n = 3) was plotted according to its phylogenetic affiliation. OTUs with a minimum 

relative abundance of 0.1% in at least one sample were selected. Spot sizes represent the OTU 

mean relative abundance in the control and the three labelled samples (n = 4). The threshold 

of uncertainty (continuous line) was set according to negative values of OTUs with a relative 

abundance >0.1%. Dashed circles include important OTUs above the threshold of uncertainty 

for easier recognition. (A) – Topsoil (0-20 cm); (B) – Subsoil U (upper subsoil, 20-50 cm); 

(C) – Subsoil L (lower subsoil, 50-80 cm). 
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