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Abstract 35 

 36 

Volatile organic compounds (VOCs) from breath can successfully be used to diagnose disease-37 

specific pathological alterations in metabolism. However, the exact origin and underlying biochemical 38 

pathways that could be mapped to VOC signatures are mainly unknown. There is a knowledge gap 39 

regarding the contribution of tissues, organs, the gut microbiome, and exogenous factors to the “sum 40 

signal” from breath samples. Animal models for human disease such as mutant mice provide the 41 

possibility to reproduce genetic predisposition to disease, thereby allowing the in-depth analysis of 42 

metabolic and biochemical functions. We hypothesized that breath VOCs can be traced back to 43 

origins and organ-specific metabolic functions by combining breath concentrations with systemic 44 

levels detected in different organs and biological media (breath, blood, feces and urine). For this we 45 

fed C57Bl/6N mice a grain-based chow or a purified low-fat diet, thereby modifying the emission of 46 

methanol in breath whereas acetone levels were unaffected. We then measured headspace 47 

concentrations of both VOCs in ex-vivo samples of several biological media. Especially cecum 48 

content was identified as a likely source of systemic methanol, whereas liver showed highest acetone 49 

concentrations. Our findings are a first step to the systemic mapping of VOC patterns to metabolic 50 

functions in mice because differences between VOCs could be traced to different sources in the body. 51 

As a future aim, different levels of so-called omics technologies (genomics, proteomics, 52 

metabolomics, and breathomics) could be mapped to metabolic pathways in multiple tissues 53 

deepening our understanding of VOC metabolism and possibly leading to early non-invasive 54 

biomarkers for human pathologies. 55 

  56 
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1. Introduction 57 

 58 

Volatile organic compounds (VOCs) measured in exhaled breath have been shown to provide 59 

information about metabolic state and disease in humans as well as in model organisms for human 60 

diseases. Breath analysis has the potential of being used as a reliable, low cost and easy-to-use method 61 

to classify healthy and diseased subjects in a number of pathologies(Baranska et al., 2016; Fernández 62 

del Río et al., 2015; Nakhleh et al., 2016; Obermeier et al., 2017; van Vliet et al., 2017). Closer 63 

investigations revealed that breath VOCs are derived from a combination of various exogenous and 64 

endogenous sources (Lindinger et al., 1997; Pleil et al., 2013). This is a major reason why the 65 

physiological link between VOC signatures and disease metabolism is poorly understood. While 66 

uptake from the environment, or food and beverages reflect the exposome, endogenous VOCs 67 

originate from either endogenous metabolic processes or the individual microbial metabolism. Both, 68 

changes in the metabolic status and modified composition of the microbiome may reflect or interact 69 

with disease. Thus, dissection of the origin of single VOCs from different organs, tissues and 70 

metabolic pathways is important to improve the robustness of the method and its usefulness to provide 71 

early biomarkers for disease.In the field of VOC analytics, several attempts were made to better 72 

understand which processes lead to altered VOC metabolism. For such approaches, stable isotope 73 

labelled substrates were administered in mice to follow up specific VOCs (Sinues et al., 2017). In 74 

humans, enzyme functions were monitored in vivo (Ruzsanyi et al., 2014). Other studies addressed the 75 

relation between blood and breath in humans (O’Hara et al., 2009), analysed VOC emissions from 76 

single cell lines (Brunner et al., 2010; Filipiak et al., 2016), from tissue samples (Filipiak et al., 2014) 77 

or (pathogenic) microbiota (Bean et al., 2016). A complete view on organ and tissue concentrations of 78 

external or endogenous VOCs is required to better understand the origin of VOCs. This can help to 79 

map VOCs to specific metabolic functions. Evidently mammalian model organisms such as laboratory 80 

rats or the C57BL/6N mouse facilitated pilot work in this field (Aprea et al., 2012; Hüppe et al., 2016; 81 

Kistler et al., 2016; Sinues et al., 2017; Szymczak et al., 2014).  82 

We investigated systemic VOC distribution in organs, blood, feces, urine, and breath of male 83 

C57BL/6N mice that were fed a purified low fat experimental diet or standard laboratory chow. For 84 

this study, we selected methanol, a VOC modified by diet and found in breath after ingestion of fruits, 85 

vegetables, alcoholic or aspartame sweetened beverages (Lindinger et al., 1997; Španěl et al., 2015). 86 

We previously found it elevated in exhaled breath of mice in response to feeding a grain-based chow 87 

diet compared to a purified control diet (Kistler et al., 2014). Acetone, a better studied endogenous 88 

metabolite was selected as second compound. We hypothesized that breath signals of both compounds 89 

can be linked to headspace concentrations from several mouse tissues and media like urine, blood, 90 

feces, and cecum content. By using such a system-wide approach, the so far largely unexplored links 91 
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between several tissues and VOCs that finally contribute to the sum signal presented in breath can be 92 

investigated and mapped to metabolic functions. 93 

2. Material and Methods 94 

 95 

2.1. Animal housing and diet regimes 96 

Male mice (n = 34) were housed in type IIL polycarbonate cages with individual ventilation 97 

(Tecniplast, Italy) in specific pathogen-free conditions at the German Mouse Clinic (GMC) (Fuchs et 98 

al., 2009). Air humidity of 50-60% and a 12:12 light/dark cycle were maintained. Wood shavings 99 

were used for bedding (Altromin GmbH, Germany). All mice had ad libitum access to pelleted 100 

laboratory chow (no. 1314, Altromin, Lage, Germany) and drinking water from weaning on. From the 101 

age of 32 weeks on mice were randomly assigned to either continued chow diet feeding or a semi-102 

purified low fat diet (low fat: E 15000-04, Ssniff, Soest, Germany) for a period of 3 weeks until the 103 

VOC analysis measurements were conducted. All experiments were performed following animal 104 

welfare regulations supervised by the district government of Upper Bavaria (Regierung von 105 

Oberbayern).  106 

Analysis of VOCs from ad libitum fed mice was performed between 7 am and 1 pm. Mice were in a 107 

postprandial state as they typically feed in the early morning hours. Chow and LFD mice were 108 

measured in alternating order to remove potential systemic bias. Mice were weighed immediately 109 

before the VOC measurement to the nearest 0.1 g. 110 

 111 

2.2. Proton-transfer reaction time-of-flight mass spectrometry  112 

A high-sensitivity Proton Transfer Reaction Mass Spectrometer (PTR-MS, Ionicon Analytic GmbH, 113 

Innsbruck, Austria) with a resolution of m/ Δm ≤ 2000 was used. Settings and machine parameters 114 

were applied as described previously (Kistler et al., 2016). The following deviations were made: A 115 

mass range from m/z 0 to 356 was recorded and the sum spectra were stored with integration time of 1 116 

s (TOF-DAQ, Tofwerk AG, Switzerland). Calibration was performed using known peaks H3
18

O
+
 (m/z 117 

21.0221), NO
+
 (m/z 29.9971), and the 2 high mass peaks provided by the built-in PerMaSCal unit 118 

C6H5I
+
 (m/z 203.9431) and C6H5I2

+
 (m/z 330.8481). A total of 306 peaks were selected manually from 119 

the spectra using PTR-MS Viewer (Version 3.2.1.2, Ionicon analytic GmbH, Innsbruck, Austria).  120 

2.3. Real-time VOC analysis in unrestrained and anaesthesized mice  121 

A setup and protocol for real-time measurement of VOCs in unrestrained mice using respiratory 122 

chambers was again applied as described previously (Kistler et al., 2016, 2014; Szymczak et al., 123 
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2014). In brief, a polypropylene box (volume 600 mL) was connected to a proton transfer time-of-124 

flight mass spectrometer (PTR-TOF-MS) and to a gas supply of synthetic air (20% oxygen,80% 125 

nitrogen, concentration of hydrocarbons 0.1 ppm,Linde AG, Germany). After flushing with synthetic 126 

air, blank samples were drawn from the empty chamber to control for leakage (5 min, flow 60 mL 127 

min−1 controlled by PTR). During a second flushing with synthetic air, the mouse was placed into the 128 

respirometry chamber and the accumulation of exhaled VOCs was monitored. Fushing (2 min, flow 3 129 

L h−1) and accumulation of VOCs (5 min, flow 60 mL min−1 controlled by PTR) were repeated three 130 

times each. Air drawn from the chamber by the PTR was replenished from a Teflon bag reservoir 131 

filled with synthetic air (capacity of 10 L, Welch Fluorocarbon Inc., Dover, USA) connected to the 132 

chamber.  133 

In addition to VOC measurements using mice in a chamber, we aimed to verify that methanol and 134 

acetone signals were mainly breath driven. Thus, we obtained breath data using a nose mask similar to 135 

previously published studies using rats (Aprea et al., 2012). In brief, a 15 ml falcon tube was 136 

shortened to a volume of 4 ml. The end of the tube was connected to the PTR using PTFE tubing. For 137 

the replacement of withdrawn gas, a 1 mm hole was placed at the side of the tube to allow steady 138 

airflow. A subgroup of anaesthetized mice (13 per group, i.p. injection of 100 mg/kg bodyweight 139 

ketamine and 10 mg/kg bodyweight xylazine) were measured twice for more than 20s. Surrounding 140 

room air was monitored both before and after breath measurements.  141 

 142 

2.4. Organ sampling, pre-processing and head space measurement  143 

Blood from anesthetised mice was sampled from the orbital sinus. Coagulation was inhibited by 144 

sampling directly into EDTA-containing tubes, which were immediately shock-frozen in liquid 145 

nitrogen. After blood sampling, abdominal cavity was opened and the following organs and samples 146 

were taken: gastric, duodenal and cecum content; quadriceps femoris muscle, peri-renal white adipose 147 

tissue, kidney, liver, lung, heart, spleen, testis, whole brain. Urine and feces samples were collected 148 

from the respirometry box while breath samples were collected. Samples were shock-frozen in liquid 149 

nitrogen immediately after dissection. Samples were analysed within two weeks of storage at -80 °C. 150 

For analysis of VOCs emitted, samples (except blood and urine) were homogenized (Tissue Lyzer 151 

MM400, Retsch GmbH, Haan, Germany). For this, pre-cooled steel balls were added to the sample 152 

tube and tubes were placed in a holder pre-frozen in liquid nitrogen. Homogenization was performed 153 

using a shaking frequency of 30 Hz for 2.5 minutes. A targeted mass of 250 mg homogenate was 154 

transferred to a glass vial, flushed with synthetic air and incubated for 3 minutes at 37 °C. Samples of 155 

organs with physiologically low mass (e.g. heart, lung, spleen, testes) or variable availability (e.g. 156 

urine, feces, gut content) were excluded if below 50 mg. In total, headspace of 516 samples was 157 

measured using a PTR-TOF-MS; extracted gas volume was replaced by synthetic air. 158 
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2.5. Data analysis and statistics 159 

2.5.1.  Calculation of VOC source strengths and concentrations  160 

The source strength in ppb ml/min was derived by applying a compartment model on the recorded 161 

saturation curves (non-linear regression, described in (Szymczak et al., 2014)) and data pre-162 

procession was performed as described previously if not stated otherwise (Kistler et al., 2016, 2014). 163 

The concentration used for further analysis was determined using a mean of two maximal values. 164 

Outliers (defined as greater than four standard deviations from mean) were removed. Nose 165 

measurements were differentially corrected against room air background.  166 

2.5.2. Statistics and data visualization  167 

For the analysis of diet-induced effects on the VOC source strengths and concentrations, linear 168 

models were applied. Data were log-transformed to approximate a normal distribution (tested visually 169 

by qq-plotting). The variance between groups was controlled using both boxplots of source strength as 170 

well as residuals and residual versus fitted data plots. As a larger number of tests leads to summation 171 

of Type I – error, control of false discovery rate after Benjamini and Hochberg (Benjamini and 172 

Hochberg, 1995) was applied and all p-values were adjusted according to a 10% FDR. 173 

Principal component analysis of scaled and centred data was performed using R. Boxplots were 174 

created using the R package ggplot2 using means of maximal headspace concentrations and source 175 

strength data (Wickham, 2009). As a complete data-matrix is required to calculate the correlation 176 

plots, missing data was imputed using the mice R package (Buuren and Groothuis-Oudshoorn, 177 

2011), which accounted for 3.024% of data. Correlation plots were performed using the R package 178 

corrplot (pearson correlations). 179 

 180 

3. Results 181 

 182 

3.1. Elevation in systemic methanol levels might be driven by cecum methanol release 183 

 184 

Emission of methanol was increased in chow fed mice both in source strength in breath as well as in 185 

maximum headspace concentration of all organ and media samples during the measurement (Figure 186 

1A). As a next step, we followed up on whether a difference in concentrations of the selected exhaled 187 

VOCs induced by a diet change can be recovered from the respective headspace concentrations of 188 

individual organ samples. A similar increase in the chow group was present in blood and, even more 189 

pronounced, in urine (Figure 1B). When following the digestive tract, methanol levels increased 190 
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tenfold from stomach to cecum (Figure 1C). In all internal organs, higher methanol headspace 191 

concentrations could be detected in chow fed mice (Figure 1D). 192 

 193 

 194 

Figure 1: Methanol concentrations from tissue homogenate headspaces. Mice fed either chow (white, n = 17) or LFD 195 
(grey, n = 17). Methanol breath source strength, maximal concentration during mouse measurement and nose mask 196 
measurements for a subset (both n = 13) are shown in A. Headspace concentrations of blood and urine are shown in B. Diet, 197 
stomach, intestine and cecum content and feces head space concentrations are shown in C. Headspace concentrations of 198 
brain, fat, heart, kidney, liver, lung, muscle, spleen and testis are shown in D.  199 

 200 

3.2. Liver is a major site of acetone release 201 

In contrast to methanol, acetone levels were comparable between groups after the diet change both in 202 

breath source strength as well as in maximum headspace concentration (Figure 2 A). No significant 203 
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difference could be detected in body fluids (Figure 2 B). When following the digestive tract, a slight 204 

increase could be observed in the content of the intestine (Figure 2 C). No major diet effect was found 205 

in the acetone concentration detected in any internal organs. Hepatic tissue homogenates showed 206 

highest acetone concentrations in headspace, brain, heart, kidney, lung, and spleen were intermediate. 207 

Lowest values were detected in white adipose tissue, muscle and testes (Figure 2 D). 208 

 209 

 210 

Figure 2: Acetone concentrations from various tissue homogenate headspaces. Mice fed either chow (white, n = 17) or 211 
LFD (grey,  n= 17). Acetone breath source strength, maximal concentration during mouse measurement and nose mask 212 
measurements for a subset (both n = 13) are shown in A. Headspace concentrations of blood and urine are shown in B. Diet, 213 
stomach, intestine and cecum content and feces head space concentrations are shown in C. Headspace concentrations of 214 
brain, fat, heart, kidney, liver, lung, muscle, spleen and testis are shown in D. 215 

 216 
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3.3. Methanol levels of tissue samples and media cluster by diet-interventions 217 

 218 

Next we used unsupervised clustering methods to determine whether groups clustered by diet. 219 

Methanol levels in all samples were clearly separated by diet as we could show by principle 220 

component analysis (Figure 3A) and hierarchical clustering (Figure 3C). In contrast, acetone levels in 221 

different media were not separated by diet both in PCA and hierarchical clustering (Figure 3B and D). 222 

 223 
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225 

 226 

A B 
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  A 
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Figure 3: Principal component analysis (PCA) and heatmaps with hierarchical clustering of emissions from various 227 
tissues and samples. Components one and two of a PCA of main methanol signal at 33.05 (A, pk33B) or main acetone 228 
signal at 59.05 (B, pk59) are shown for stomach, intestine and cecum content, feces, liver, heart, lung, brain, muscle,  spleen, 229 
testis, fat, blood, urine and source strength in breath from mice fed either chow (white, n = 17) or LFD (grey, n = 17).  230 
Heatmaps of methanol (C) and acetone (D) data are shown with hierarchical clustering of individual mice (mean data, rows, 231 
sub-clusters colored) and tissue and media samples (columns). Data is scaled and centered. Color-coding legend shown on 232 
the left. Classification of individual mice is annotated on the right (diet = chow or low fat (lfd)). 233 

 234 

3.4. Methanol concentrations are highly correlated in internal organs and blood 235 

Methanol concentrations in the headspace of different media were highly positively correlated 236 

especially within the internal organs and blood (Figure 4 A). In contrast, acetone concentrations in the 237 

same media samples showed fewer significant and generally weaker correlations. 238 

   239 

Figure 4: Correlation matrix ordered after first principal component. Pearson correlations between headspace 240 
concentrations of main methanol signal at 33.05 (A, pk33B) or main acetone signal at 59.05 (B, pk59) are shown for 241 
stomach, intestine and cecum content, faeces, liver, heart, lung, brain, muscle, spleen, testis, fat, blood, urine and source 242 
strength in breath from mice fed either chow (white, n = 17) or LFD (grey, n = 17). Correlation strength is color-coded and 243 
shown in circle size (upper half) as well as absolute coefficients (lower half). Non-significant correlations are marked with a 244 
cross. 245 

 246 

4. Discussion 247 

 248 

In this study we compared the distributions of mostly dietary modified methanol with endogenously 249 

produced acetone through a series of gastro-intestinal contents, organ lysates and body fluids. As 250 

shown earlier, feeding mice a grain-based chow diet in comparison to a purified diet that only 251 

contains synthetic ingredients increases emitted levels of methanol (Kistler et al., 2014). Interestingly, 252 

A B 
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this did not only hold true for breath methanol but the difference can be replicated in every tissue, 253 

fluid and biomaterial investigated in this study. In addition, principal component analysis and 254 

hierarchical clustering clearly separated samples from mice fed a chow diet from LFD mice. 255 

Exemplarily, we selected acetone, a well-studied endogenous VOC where breath emission is not 256 

influenced by dietary matrix change. As expected from breath data, no diet related differences could 257 

be detected in organs selected for headspace analysis as well. Therefore, we show that systemic 258 

changes of VOCs can be detected with this approach. 259 

We hypothesized in our previous study that methanol production depends on microbial activity in the 260 

gastro-intestinal tract. This was further substantiated by the fact that upon overnight food restriction 261 

(and thus microbial substrate restriction), methanol levels are reduced (Kistler et al., 2016). When 262 

following the diet and gastro-intestinal content through the digestive system, a massive ~10 fold 263 

increase in methanol concentrations can be found beginning in cecum. It is well known that microbial 264 

density increases towards the lower digestive tract to up to 10
12

 organisms per gram (Hooper and 265 

Gordon, 2001). Methanol is a ubiquitous compound present in the breath of humans and other 266 

mammals (Eriksen et al, 1963). For a long time, it was considered to be exclusively due to exogenous 267 

production after ingestion of fruits, vegetables, alcoholic or aspartame sweetened beverages 268 

(Lindinger et al, 1997). Therefore, it is very likely that methanol release is linked to the metabolism of 269 

the gut microbiome. Interestingly, there is also literature about genuine endogenous methanol release, 270 

for example from carboxy methylated proteins, which can be freed by carboxymethylase (Diliberto 271 

and Axelrod, 1976, 1974) or under neutral or basic conditions, or from S-adenosyl methionine (SAM) 272 

(Axelrod and Daly, 1965). However, our data suggested that exogenous sources seem to dominate 273 

systemic levels. Interestingly, acetone concentrations, which are not affected by diet, tissue 274 

headspaces detected in both groups were remarkably comparable and reproducible. We assume that 275 

the tissue with the highest headspace concentration is a likely candidate for the endogenous 276 

production of acetone. Highest levels could be found in liver tissue. This is well in accordance with 277 

published work about acetone metabolism, as liver is the major site of ketogenesis. Acetone can be 278 

derived from the other ketone bodies aceto-acetate and indirectly from beta-hydroxybutyrate 279 

(Puchalska and Crawford, 2017). Thus, according to these two examples information about the origin 280 

of certain targeted VOCs can be gained by this methodology. 281 

Remarkably, using this method of sampling from various parts of the organism, interesting 282 

distributions in the two selected VOCs can be detected. In methanol, we found a high correlation of 283 

levels in the internal organs, which is reduced but still relatively high in other samples. Internal organs 284 

are linked by blood as a transfer compartment, and after gastro-intestinal uptake of methanol the 285 

blood circulation is the major route of distribution through the body. Interestingly, the solubility of 286 

methanol in blood and lean tissues is similar (Fiserova-Bergerova, 1985), which is in accordance with 287 

similar headspace concentrations in blood and lean tissues. In addition a reduction in methanol levels 288 
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could be found in fat and liver tissue. Existing pharmacokinetic models of methanol exposure via 289 

inhalation typically differentiate between liver as the metabolic clearance compartment, kidney for 290 

excretion, and richly or slowly perfused organs (Fiserova-Bergerova, 1985; Fiserova-Bergerova and 291 

Diaz, 1986; Horton et al., 1992; Paterson and Mackay, 1989; Ward et al., 1997). The perfusion of 292 

adipose tissue is significantly less compared to other organs and depends on the physical activity of 293 

the exanimated models (Fiserova-Bergerova, 1985). Moreover, the fat-gas partition coefficient and 294 

the large difference in the methanol solubility of the slowly perfused fat compared to lean tissues 295 

explain the corresponding reduced level (Paterson and Mackay, 1989).  296 

Similar to fat, reduced methanol levels were observed in the liver as well. The hepatic tissue is not 297 

only a richly blood-perfused tissue, but it is one of the most metabolically active tissues in the body. It 298 

is known that the degradation of methanol primarily occurs in the hepatic tissue (96.9 % vs. 0.6% via 299 

urine and 2.5% via breath) which might explain lower observed ex-vivo levels (Skrzydlewska, 2003).  300 

Furthermore the clearance of methanol via urine might be indicated by the increase of methanol from 301 

blood to urine samples in chow feed mice. In LFD fed mice, absolute levels in urine are reduced by 302 

tendency, which could be explained if methanol is reabsorbed (actively) from primary urine. This 303 

leads to the hypothesis that there exists a physiological set point, pointing out potential physiological 304 

roles for methanol (Dorokhov et al., 2015). In contrast to methanol, acetone urine levels are reduced 305 

compared to blood levels in both groups. As acetone contains metabolizable energy, it is reabsorbed 306 

from primary urine. This is especially true in ad libitum fed conditions, when ketone body 307 

concentrations are low in comparison to fasted or other ketogenic states where the reabsorption 308 

capacity is overcome (Puchalska and Crawford, 2017). Regarding acetone, concentrations in different 309 

samples were generally weaker correlated (Figure 4b). Since there is no dedicated intervention, ad 310 

libitum fed acetone levels vary less than methanol levels (due to the intervention), and physiological 311 

situations like fasting might be an interesting future experiment to perform in combination with this 312 

methodology. Despite the high concentrations in liver headspace there seems to be a typical pattern 313 

very similar in both feeding groups, indicating that something like an organ specific VOC-signature 314 

might exist. 315 

When studying methanol metabolism, differences in methanol degradation between rodents and 316 

primates need to be taken into account. Degradation of methanol to formaldehyde and further 317 

metabolites in rodents is primarily performed by the enzyme catalase, whereas in contrast primates 318 

use alcohol dehydrogenase and cytochrome P2E1 (Sweeting et al., 2010). Furthermore, formate 319 

detoxification in primates is limited by folate availability, leading to accumulation and intoxication to 320 

which rodents are not prone. As a consequence, methanol is cleared much faster than in humans. Still, 321 

in this study, it can be seen in mouse tissue samples after mice consumed chow food presumably 322 

hours before. Another interesting question is to what extent remaining blood in the organs could 323 

contribute to the observed levels. For other biological questions, protocols for e.g. saline perfusion to 324 
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remove blood from tissues are established. To our knowledge, no study has shown or systematically 325 

evaluated the effect of such procedures to the remaining VOC content, the effects and usefulness of 326 

perfusion need to be addressed in further studies. In addition to the question of potential saline 327 

perfusion discussed above, for several aspects of the methodology other options can be discussed. In 328 

the performed protocol, we aimed to optimize the procedure for speed, thus minimizing the time for 329 

VOC losses due to emission from organs or (bio-) chemical spontaneous or enzyme-mediated 330 

processes. As such, no perfusion was performed, since time from killing the mouse to shock freezing 331 

in liquid nitrogen would have been doubled at least. In addition, we decided to homogenize the tissue 332 

in a frozen state. By destroying tissue organisation, VOC release can be increased with reduced 333 

gradients through the sample. However, other groups have used complete tissue or complete and 334 

“chewed” food samples for headspace analysis of VOCs (Farneti et al., 2017; Filipiak et al., 2014). It 335 

might depend on the question of interest which sample preparation is feasible.   336 

 337 

5. Conclusion and perspective 338 

In the presented work we showed that by using dietary modification of a VOC and measuring breath 339 

in combination with an ex-vivo headspace of organs approach, information about volatile distribution 340 

and physiology can be gained as shown in two well-studied proof of principle VOCs. By applying this 341 

method, the origin and metabolism of unknown breath VOCs can be studied. Furthermore, 342 

understanding the contribution of single organ systems to breath levels can be instrumental for 343 

alternative diagnosis of organ pathologies in the clinics. In combination with different levels of so-344 

called omics technologies (genomics, proteomics, metabolomics, and breathomics), a multi-organ 345 

view could contribute to map metabolic pathways and origins of VOCs.  346 
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