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SUMMARY
Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predis-
posing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis
to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated
replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic
changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepato-
carcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8,
FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic
function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing
mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone
variant H2AX.
Significance

We identified persistent hepatocyte apoptosis as a universally decisive determinant of HCC development in distinct mouse
models and various human CLDs. Accordingly, levels of hepatocyte apoptosis and DNA damage predict the risk for liver
cancer, the second leading cause of cancer-related death worldwide. Finding that caspase-8 not only executes hepatocyte
apoptosis, but also has a non-apoptotic function in DNAdamage response demonstrates its opposing functions. By orches-
trating DNA damage response as part of the signaling platform, caspase-8 may protect against proliferation-associated ge-
netic instability, and therefore early stages of hepatocarcinogenesis. Whereas once tumors are established, low caspase-8
expression is associatedwith less aggressive behavior of humanHCC.Our data illustrate divergingmechanistic links of cas-
pase-8 to cancer biology.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary

malignant liver tumor, the fifthmost prevalent cancer, the second

leading cause of cancer-related death and the fastest rising

cancer worldwide (El-Serag and Kanwal, 2014). HCC arises on

the background of chronic liver diseases (CLDs) such as chronic

hepatitis B virus and hepatitis C virus (HCV) infections, alcohol,

metabolically and dietary-induced fatty liver disease, and steato-

hepatitis, autoimmune, or chronic cholestatic diseases (Forner

et al., 2012). Independent of the underlying etiology, all CLDs

exhibit persistent hepatocyte damage. To maintain liver homeo-

stasis and prevent the accumulation of mutations, damaged he-

patocytes are eliminated by programmed cell death, regulated

by key molecules, including caspase-8 and receptor-interacting

protein kinase 1 (RIPK1) (Luedde et al., 2014). Hepatocyte-spe-

cific knock out of the anti-apoptotic Bcl2-family membermyeloid

cell leukemia 1 (Mcl-1) gene in mice (Mcl-1Dhep mice) recapitu-

lates CLD pathophysiology including severe liver damage and

regeneration early in life (Vick et al., 2009) and subsequent

HCC development (Weber et al., 2010). Here we functionally

and quantitatively examine the interplay between caspase-8-

dependent hepatocyte apoptosis and regeneration-associated

replication stress, genetic instability, and hepatocarcinogenesis.

Moreover, we investigate a role for caspase-8, in conjunction

with other regulators of cell death and inflammation, during

DNA damage recognition within hepatocytes.

RESULTS

CLDs Display High Levels of Hepatocyte Apoptosis, DNA
Damage, Genetic Instability, and Risk for HCC
Hepatocyte apoptosis is an etiology-independent hallmark of

human CLDs (Figures 1A, S1A, and S1B). Increased levels of

apoptosis correlated with increased hepatocyte proliferation,
reflecting regeneration, with significantly higher numbers of cells

positive for the DNA damage marker gH2AX (Figures 1A, S1A,

and S1C–S1F), and with higher expression of DNA damage-

responsive (DDR) genes (Figures S1C and S1D). Liver tissues

from CLD patients further displayed high levels of genetic insta-

bility at chromosomal common fragile sites (CFS) (Gao and

Smith, 2014) as determined by TaqMan copy number assay (Fig-

ures 1B andS1G) and fragment length analysis (Figure 1C). Thus,

our data suggest that genetic instability is established long

before dysplastic changes are detectable. We next looked for

an association between serum transaminase levels (Figure 1D)

(as a surrogate marker for liver cell apoptosis) and subsequent

HCC development. Elevated serum alanine and aspartate trans-

aminase (ALT and AST) levels in CLDswere associated with sub-

sequent HCC development: (1) retrospective analysis of patients

with chronic HCV infection revealed that patients who developed

HCC had significantly higher ALT and AST levels (p < 0.05) during

a period of 6 years preceding HCC diagnosis compared with

HCC-free individuals of the same cohort (matched for model of

end-stage liver disease) score with similar albumin and bilirubin

levels (Figures 1E, 1F, and S1H). (2) Retrospective analysis of

liver transplant (LT) patients revealed that patients transplanted

for HCC had significantly higher ALT and AST levels 1 year prior

to LT compared with patients of the same cohort undergoing

LT for non-HCC indications (p < 0.001; Figure S1I).

Risk for HCC Development Correlates with Levels of
Hepatocyte Apoptosis and DNA Damage Also in Mice
To functionally investigate the role of apoptosis for HCC devel-

opment in vivo, we prospectively monitored Mcl-1Dhep mice for

serum transaminase levels which, similarly to CLD patients, are

characterized by chronically increased hepatocyte apoptosis

and regeneration (Vick et al., 2009). Remarkably, the same

Mcl-1Dhep mice that developed liver tumors at 1 year (50% of

this cohort) also displayed higher serum ALT (and AST, data
Cancer Cell 32, 342–359, September 11, 2017 343
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not shown) levels throughout life compared with Mcl-1Dhep mice

without tumor development (Figures 2A–2C). Parallel to a

reduced sensitivity toward tumor necrosis factor (TNF)-mediated

apoptotic signaling with age (Figure S2A), ALT levels dropped

and reached similar levels in both groups after 4 months.

Nevertheless, differences were statistically significant at 2 and

4 months, i.e., the period of high levels of liver damage and

regeneration. Livers of 2-month-old Mcl-1Dhep mice showed a

moderate to high disease activity when applying a standard

human scoring system (Batts and Ludwig, 1995) (Figure 2D). A

statistically significant positive correlation between the percent-

age of cleaved caspase-3+ hepatocytes and serum ALT levels

was also found (Figure 2E). Livers of 2-month-old Mcl-1Dhep

mice revealed increased levels of proliferating hepatocytes and

numbers of gH2AX+ hepatocytes (Figures 2F and 2G), which

positively correlated with ALT levels (Figure 2H), strongly sug-

gesting a link between hepatocyte apoptosis and DNA damage.

Next, mRNA profiling unraveled genes differentially expressed

in livers of 2-month-oldwild-type, homozygous, and hemizygous

Mcl-1Dhep mice, which were verified by qPCR (Figure S2B).

KEGG pathway analysis revealed that genes upregulated by at

least 2-fold were involved in diverse cellular functions including

apoptosis, cell cycle, differentiation, metabolism, and DDR (Fig-

ure 2I). Gene set enrichment analysis revealed that livers of

Mcl-1Dhep mice were not only significantly enriched for genes

related to apoptosis and proliferation, but also to viral infection,

wounding (not shown), alcoholic hepatitis, and, despite being

non-neoplastic, also to HCC (Figure 2J). Collectively, our find-

ings show that Mcl-1Dhep mice are appropriate for investigating

HCC development on a CLD background.

Next, we tested whether increased hepatocyte apoptosis

through tumor necrosis factor receptor 1 (TNFR1) per se deter-

mined hepatocarcinogenesis in Mcl-1Dhep mice, rather than

loss of a non-apoptotic function of Mcl-1. Mcl-1Dhep mice were

crossed with TNFR1-deficient mice (Mcl-1Dhep/TNFR1�/� mice)

to inhibit TNFR1-dependent apoptosis and downstream

signaling via TNFR-caspase-8-BID/tBID-Mcl-1. Two-month-old

Mcl-1Dhep/TNFR1�/� mice showed lower serum transaminase

activity compared with age-matchedMcl-1Dhep mice (Figure 3A),

and revealed significantly lower numbers of apoptotic and prolif-

erating hepatocytes compared with Mcl-1Dhep mice (Figure 3B).

This was paralleled by significantly increased hepatic mRNA

levels of the death receptors Tnfr1 and Fas in Mcl-1Dhep mice

compared with Mcl-1Dhep/TNFR1�/� mice, whereas Tnfr2, Trailr,

and the ligands Tnfa, Fasl, and Trail (Figure S3A), and bilirubin

and alkaline phosphatase showed no statistically significant

difference (Figure S3B). Interestingly, livers of Mcl-1Dhep mice,
Figure 1. DNA Damage and Genetic Instability CLDs Preceding Neopla
(A) Apoptosis (cl.Casp3), proliferation (Ki67), and DNA damage (gH2AX) in huma

metabolic [NASH], and autoimmune [AIH] diseases). Arrowheads indicate cells w

(B) TaqMan copy number assay for allelic imbalances (AI). Each square represen

liver (red, AI; black, no AI; NT, non-tumor CLD tissue).

(C) Fragment length analysis (loci DS31263 and DS31289) in CLD tissues. Arrow

(D) Serum ALT levels in CLDs (n = 4 HBV, n = 8 HCV, n = 4 NASH, and n = 4 AIH

(E and F) Serum ALT levels in patients with HCC versus without HCC of the same

mean of ALT values over time.

In (D), (E), and (F), data are presented as mean ± SEM. Statistical significance was

or Student’s t test (E and F). *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S
but not Mcl-1Dhep/TNFR1�/� mice, displayed substantial cas-

pase-8 cleavage (Figures S3C and S3D). Similar to LPS/DGal-

challenged wild-type mice treated with the caspase-8 inhibitor

zITED (Figure S3E), Mcl-1Dhep mice treated with zITED also dis-

played significantly decreased ALT levels (and AST, data not

shown) and significantly less hepatocyte apoptosis (Figures

S3F and S3G). In contrast, treating Mcl-1Dhep mice with the cas-

pase-1 inhibitor, YVAD-CMK, used as an off-target control for

zITED, did not affect ALT levels (Figure S3F). Thus, hepatocyte

apoptosis in Mcl-1Dhep mice was caspase-8 dependent.

Remarkably, Mcl-1Dhep/TNFR1�/� mice demonstrated a sig-

nificantly reduced tumor incidence at 1 year compared with

Mcl-1Dhep mice (28% versus 50%, p < 0.05; Figures 3C and

3D). In line with the data presented above, those Mcl-1Dhep/

TNFR1�/� mice that developed liver tumors also displayed

significantly higher transaminase levels at 2 months (Figure 3E).

Further analyses of the microenvironment of Mcl-1Dhep

livers revealed: (1) no activation of canonical nuclear factor kB

(NF-kB) signaling (Figure S3H), (2), no or only low levels of inflam-

masome activation as determined by cleaved caspase-1 and

cleaved interleukin-1b (IL-1b) levels (Figure S3I and data not

shown), and (3) a significant increase expression of several in-

flammatory cytokines IL6, IL33, and IFNg (with reduced levels

of IL6, IL33, and IFNg in Mcl-1Dhep/TNFR1�/� livers; Figure S3J).

Collectively, these findings show that the association between

high apoptotic activity of hepatocytes (in early disease stages)

with subsequent liver cancer development previously described

for CLD patients also exists in Mcl-1Dhep mice. Furthermore,

they suggest that persistently increased hepatocyte apoptosis,

resulting in regenerative proliferation and high DNA replica-

tion rate, determines hepatocarcinogenesis. This hypothesis is

underpinned by stochastic considerations (Figure S4).

Reduced DNA Damage and Genetic Instability upon
Ablation of TNFR1 and Caspase-8
To identify the source of DNA damage and to determine the

level of genetic instability in relation to hepatocyte apoptosis,

we analyzed Mcl-1Dhep mice, and, to exclude Mcl-1-specific

effects, TAK1Dhep mice characterized by increased hepatocyte

apoptosis at 6 weeks and caspase-8-dependent HCC develop-

ment at 35 weeks (100% incidence) (Bettermann et al., 2010).

Co-staining for gH2AX and cleaved caspase-3 revealed that

hepatocytes from 6- to 8-week-old Mcl-1Dhep mice as well as

TAK1Dhep mice which were positive for gH2AX were mostly

negative for cleaved caspase-3. Thus, gH2AX-positivity was

unlikely to be a consequence of apoptosis of individual hepato-

cytes (Figure 4A). Immunofluorescence (IF) staining for gH2AX
stic Lesions and HCC
n CLDs of different etiology (viral hepatitis: hepatitis B virus [HBV] and [HCV],

ith positive IHC staining. Scale bars, 100 mm.

ts one area of microdissected tissue, lines indicate different areas of the same

heads indicate changes in fragment length distribution.

).

cohort (n = 13 in both groups). (E) Time course 6 years prior to diagnosis and (F)

calculated using Fisher’s exact test (B), ANOVA with Bonferroni correction (D),

1.

Cancer Cell 32, 342–359, September 11, 2017 345



Figure 2. Risk of HCC Development Correlates with Apoptosis and DNA Damage in Mcl-1Dhep Mice

(A) Livers from 12-month-old mice. Arrowheads indicate a tumor. Scale bar, 1 cm.

(B) Serum ALT levels throughout life time of wild-type mice, Mcl-1Dhep mice that developed HCC at 12 months (n = 12), and Mcl-1Dhep mice that did not.

(C) Serum ALT levels at 2 months (n = 8 animals per group).

(D) Hepatocyte death rates (n = 20).

(E) Correlation of ALT levels with hepatocytes apoptosis (n = 15).

(F) Hepatocyte mitosis (upper square and insert), apoptosis (lower square and insert), and signs of DNA damage (gH2AX, black arrow) in livers of Mcl-1Dhep mice.

Scale bars, 50 mm.

(G) gH2AX+ hepatocytes per high-power field (HPF) in wild-type (n = 7) and Mcl-1Dhep mice (n = 12).

(H) Correlation of ALT levels with the number of gH2AX+ hepatocytes (n = 11).

(legend continued on next page)
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and Ki67 of livers from 6- to 8-week-old mice revealed virtually

no gH2AX+ hepatocytes in wild-type livers, whereas Mcl-1Dhep

and TAK1Dhep hepatocytes displayed the typical nuclear staining

pattern and substantial gH2AX/Ki67 double positivity (�10%

and 20%, respectively; Figures 4B and 4C).

To further investigate hepatocyte apoptosis, DDR, and ge-

netic instability in relation to hepatocarcinogenesis, Mcl-1Dhep/

TNFR1�/� mice and crossings of TAK1Dhep mice were analyzed:

TAK1Dhep/RIPK3�/� mice (devoid of necroptosis, HCC-prone),

and TAK1Dhep/Casp8Dhep mice (devoid of apoptosis, not HCC-

prone; Table S1) (Vucur et al., 2013). The percentage of Ki67+/

gH2AX+ hepatocytes was significantly reduced in intercrossings

with reduced apoptosis (Mcl-1Dhep/TNFR1�/� < Mcl-1Dhep mice;

and TAK1Dhep/Casp8Dhep < TAK1Dhep < TAK1Dhep/RIPK3�/�

mice, respectively; Figures 4B and 4C). Similarly, intercross-

ings with increased HCC burden also displayed an increased

percentage of Ki67+/gH2AX+ hepatocytes (Mcl-1Dhep >

Mcl-1Dhep/TNFR1�/�mice; and TAK1Dhep/RIPK3�/� > TAK1Dhep/

Casp8Dhep > TAK1Dhep mice, respectively; Figures 4B and 4C).

The activation of DNA repair pathways in regenerative murine

livers was further corroborated by western blot analysis and

expression analysis of genes related to DNA replication, DDR,

and DNA repair. Again, mRNA expression of DDR-related

genes (and associated protein modifications) were reduced in

parallel with hepatocyte apoptosis levels (Figures S5A–S5C). In

contrast to wild-type mice, livers of Mcl-1Dhep, TAK1Dhep, and

TAK1Dhep/RIPK3�/� mice showed widespread allelic imbal-

ances (AI) at CFS, demonstrating genetic instability in hyper-

apoptotic and hyper-proliferative mouse livers. Of note, although

higher compared with wild-type mice, AI rates were much

lower in Mcl-1Dhep/TNFR1�/� mice and TAK1Dhep/Casp8Dhep

mice (Figure 4D).

Since almost all gH2AX+ hepatocytes were proliferating

(Ki67+), replication stress (single-stranded DNA breaks accu-

mulation and replication fork stalling) was considered the most

likely source of DNA damage (Halazonetis et al., 2008). This

was corroborated by fluorescence-activated cell-sorting anal-

ysis showing significantly less gH2AX+/RPA+ hepatocytes in

low proliferating livers (Figure S5D). Treating Mcl-1Dhep and

TAK1Dhep mice with the antioxidants, butylated hydroxyanisole

or vitamin E, for 4 weeks revealed no evidence for reactive oxy-

gen species being a major inducer of DNA damage in these mice

(Figures S5E–S5H).

Hyper-proliferation-Associated Replicative Stress in
Regenerating Livers Causes DNA Damage
Next, to test whether proliferation by itself, i.e., independent of

hepatocyte apoptosis, was sufficient to trigger DNA damage,

we performed partial hepatectomy (PHX). Whereas low levels

of baseline proliferation in wild-type mice were not associated

with detectable levels of DNA damage, western blot analysis

and immunohistochemistry for gH2AX peaked at 48 hr post-

PHX, i.e., long after evidence for apoptosis (Speicher et al.,

2014), and parallel to the proliferative activity (Figures 5A–5G).
(I) Pie chart displaying the percentage of genes at least 2-fold upregulated in Mc

(J) Gene set enrichment analysis comparing all differentially regulated genes from

In (B) and (C), data are presented as mean ± SEM. In (G), the bar indicates the m

ANOVA with Bonferroni correction (C). *p < 0.05. See also Figure S2.
The correlation between hepatic hyper-proliferation and DNA

damage was confirmed by gH2AX/bromodeoxyuridine (BrdU)

double staining. Almost all gH2AX+ hepatocytes had incorpo-

rated BrdU, indicating that DNA damage occurred in replicating

hepatocytes. To further investigate whether gH2AX in prolifer-

ating hepatocytes was marking DNA breakage, beside replica-

tion stress per se, pulse field gel electrophoresis (PFGE) was

performed showing DNA double-strand breaks (DSB) in livers

48 hr after PHX (Figure 5F).

To test if hyper-proliferation-associated replication stress

also occurs in human livers, biopsies of patients after ALPPS

(associating liver partition and portal vein ligation for staged

hepatectomy) procedure were analyzed (Schadde et al., 2014).

Biopsies taken post-liver partition and portal vein ligation from

the patients’ highly regenerating left lobe revealed significantly

elevated numbers of Ki67+ hepatocytes and a substantial num-

ber of Ki67+/gH2AX+ hepatocytes. The latter were significantly

lower prior to ALPPS, and in the non-regenerating right liver

lobe that had been de-portalized (Figures S6A and S6B). Thus,

replication stress due to increased proliferation also occurs in

regenerating human livers.

Next, we aimed to investigate whether replication stress and

the associated DNA DSBwere determinedmainly by hepatocyte

proliferation, or also directly affected by TNFR1, caspase-8, or

RIPK3. To this end, we analyzed livers of TNFR1/2�/�, RIPK3�/�,
and Casp8Dhep mice 48 hr post-PHX. Whereas similar levels of

Ki67+/gH2AX+ hepatocytes (between 25% and 35%) were de-

tected in livers of wild-type, TNFR1/2�/�, and RIPK3�/� mice,

unexpectedly <10% of hepatocytes from livers of Casp8Dhep

mice were Ki67+/gH2AX+ (Figures 5H and 5I). Notably, at the

same time PFGE clearly demonstrated DSB in Casp8Dhep mice

(Figures 5J and 5K), suggesting that caspase-8 plays an impor-

tant role in sensing or mediating DNA replication-associated

damage in hyper-proliferating hepatocytes.

Phosphorylation of Histone H2AX Is Impaired in
Caspase-8-Deficient Hepatocytes
We then sought to determinewhether caspase-8 also plays a role

in mediating or sensing DNA DSB not related to hyper-prolifera-

tion. To this aim, wild-type and Casp8Dhep mice were treated

with non-hepatotoxic doses of the genotoxic agent doxorubicin

(Yang et al., 2014). Post-application (12 hr), wild-type mice dis-

played strong gH2AX reactivity in the liver (Figures 6A, 6B, S7A,

and S7B) and other tissues (Figure S7C). Strikingly, although

PFGEdisplayedDNADSB in livers ofCasp8Dhepmice (Figure 6B),

Casp8Dhep hepatocytes were negative for gH2AX, whereas

gH2AX+ nuclei were still detectable in Kupffer cells and several

other caspase-8-proficient cell types (Figures 6A and S7C and

datanot shown). Post-doxorubicin treatment, noapoptotic hepa-

tocytes, no cleavage of caspase-8 above baseline levels (Figures

S7D–S7G), or no elevated transaminase levels were detectable

(Figure S7H). Thus, H2AX phosphorylation under caspase-8 defi-

ciency is impaired also following doxorubicin-induced DNA

damage.
l-1Dhep mice and clustered according to KEGG pathway database analysis.

Mcl-1Dhep mice with various gene sets. NES, normalized enrichment score.

ean. Statistical significance was calculated using Student’s t test (B and G),
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Figure 3. Reduced Apoptosis, Proliferation, and Tumor Development in Mcl-1Dhep/TNFR1–/– Mice

(A) AST and ALT levels from 2-month-old Mcl-1Dhep (n = 16), Mcl-1/TNFR1�/� (n = 10), and wild-type (n = 8) mice.

(B) Staining and quantification for H&E, cl.Casp3, and Ki67 in 2-month-old wild-type, Mcl-1Dhep/TNFR1�/�, and Mcl-1Dhep mice. Arrowheads indicate cells with

positive IHC staining. Scale bars, 100 mm.

(C) Macroscopy, H&E, and collagen IV staining of livers at 12 months of age. The arrowhead indicates a tumor. Scale bars, 100 mm.

(D) Tumor development after 12 months in Mcl-1Dhep mice (n = 44) compared with Mcl-1Dhep/TNFR1�/� mice (n = 39).

(E) Retrospective analysis of tumor development and correlation to ALT levels in the serum of 2-month-old mice (n = 11 Mcl-1Dhep/TNFR1�/� mice without HCC,

n = 5 with HCC).

In (A), (B), (D), and (E), data are presented as mean ± SEM. Statistical significance was calculated using Student’s t test (A and B), ANOVA with Bonferroni

correction (E), or Fisher’s exact test (D). *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. See also Figures S3 and S4.
The Catalytic Activity of Caspase-8 Is Dispensable for
H2AX Phosphorylation
Pre-treating wild-type mice with the pan-caspase inhibitor QVD-

OPH did not abrogate H2AX phosphorylation after doxorubicin
348 Cancer Cell 32, 342–359, September 11, 2017
application (Figure 6A). In contrast, QVD-OPH strongly reduced

liver damage in mice co-treated with LPS/DGal (Figures S7F–

S7H). To exclude incomplete inhibition of caspase-8 activity us-

ing QVD-OPH, knockin mice expressing an uncleavable mutant



Figure 4. Reduced DNA Damage And Genetic Instability in Mcl-1Dhep/TNFR1–/– and TAK1/Casp8Dhep Mice and Intercrossings

(A) Staining for gH2AX (black) and cleaved Casp3 (red), double-positive hepatocytes (black/red arrows). Scale bar, 50 mm.

(B) IF staining for gH2AX and Ki67 in wild-type, Mcl-1Dhep, and Mcl-1Dhep/TNFR1�/� mice, as well as TAK1Dhep, TAK1/Casp8Dhep, and TAK1Dhep/RIPK3�/� mice.

Arrowheads indicate cells with positive IF staining. Scale bar, 10 mm.

(C) Quantification of Ki67+ and Ki67+/gH2AX+ hepatocytes (n = 4 mice per group, n = 5 for Mcl-1Dhep mice).

(D) Rate of AI in wild-type, Mcl-1Dhep, and Mcl-1Dhep/TNFR1�/� mice, TAK1Dhep, TAK1Dhep/RIPK3�/�, and TAK1/Casp8Dhep mice (TaqMan copy number assay,

each square represents one area of microdissected liver tissue, lines indicate different areas of the same liver; red, AI; black, no AI). Mcl-1Dhep mice and in-

tercrossings at 2 months; TAK1Dhep mice and intercrossings at 6 weeks of age.

In (C), data are presented asmean ± SEM. Statistical significance was calculated using ANOVAwith Bonferroni correction (C), or Fisher’s exact test (D). *p < 0.05;

**p < 0.01; ***p < 0.001. See also Figure S5.
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Figure 5. Detection of Proliferation-Associated DNA Damage after PHX Is Impaired in Casp8Dhep Mice

(A–C) Western blot analysis of whole-liver lysates (A), immunostainings (B), and quantification of gH2AX+ hepatocytes 0, 6, 24, and 48 hr post-PHX (C). Scale

bar, 50 mm.

(D and E) BrdU incorporation combined with gH2AX staining (n = 4). Scale bar, 10 mm.

(F and G) PFGE with densitometric quantification to visualize DNA DSB in livers of wild-type mice after PHX (n = 3).

(H and I) IF staining (H) and quantification of Ki67+/gH2AX+ hepatocytes in wild-type, TNFR1/2�/�, RIPK3�/�, and Casp8Dhep mice (I). Arrowheads indicate cells

with positive IF staining. Scale bar, 10 mm.

(J and K) PFGE with densitometric quantification to visualize DNA DSB in livers of Casp8Dhep mice after PHX.

In (C), bar represents mean. In (E), (G), (I), and (K) data are presented as mean ± SEM. In (G), bar indicates the mean. Statistical significance was calculated using

ANOVA with Bonferroni correction (C and I) or Student’s t test (E, G, and K). *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant. Irrelevant bands were omitted

from gels (F and J). Areas in which lanes were omitted are indicated by white space between lanes. See also Figure S6.
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of caspase-8 (D387A) were also treated with doxorubicin (Kang

et al., 2008). Similar to wild-type mice, caspase-8 D387-mutant

mice revealed gH2AX positivity in hepatocytes upon doxorubicin

treatment (Figure 6C). Consistent with results from conditional

caspase-8 knockout mice, we observed significantly reduced

gH2AX positivity in Casp8�/�/RIPK3�/� livers 12 hr post-treat-

ment (Figure 6D). In contrast, hepatocytes from RIPK3�/� litter-

mates were positive for gH2AX, consistent with hepatocytes

upon PHX of RIPK3�/� mice (Figure 5H). Collectively, these

data show that full-length caspase-8, but not its cleaved form

or catalytic activity, is required for H2AX phosphorylation.

H2AX Phosphorylation Is Impaired in Hepatocytes
Deficient of c-FLIP, FADD, or RIPK1 Kinase Activity
We next investigated whether caspase-8-interacting proteins

were involved in H2AX phosphorylation. Doxorubicin-induced

H2AX phosphorylation was not affected in TNFR1/2�/� mice,

indicating that hepatic H2AX phosphorylation activated by

low levels of DNA DSB is not executed by TNFR1/2 signaling

complexes. In contrast, c-FLIP-deficient hepatocytes lacked

gH2AX positivity post-doxorubicin treatment (Figures 6D and

6E), pointing to a crucial role of the c-FLIP/Casp8 dimer in

DDR. Pharmacological inhibition of RIPK1 by pre-treatment of

wild-type mice with necrostatin-1 (Nec1) did not prevent DNA

DSB formation, but prevented the appearance of gH2AX+ hepa-

tocytes upon doxorubicin treatment (Figures S7A and S7B).

This indicated a role of RIPK1 for H2AX phosphorylation in vivo.

Since Nec1 blocks both RIPK1 assembly and RIPK1 kinase

function, we analyzed knockin mice expressing a kinase-inacti-

vated RIPK1 mutant (RIPK1KD mice) and observed significantly

impaired H2AX phosphorylation, demonstrating that the kinase

activity of RIPK1 is required for H2AX phosphorylation (Fig-

ure 6D). In addition, mice deficient for RIPK1, RIPK3, and

FADD (R1�/�/R3�/�/FADD�/� mice), as well as RIPK1 (haplo-

deficient), RIPK3, and FADD (R1+/�/R3�/�/FADD�/� mice), also

demonstrated impaired H2AX phosphorylation. Since RIPK3

was not involved in DDR and haploinsufficiency is not reported

for RIPK1 (Dillon et al., 2014), the lack of gH2AX+ cells in

R1+/�/R3�/�/FADD�/� mice was most likely due to the dele-

tion of FADD. Of note, mice deficient for X-linked inhibitor of
Figure 6. Caspase-8, RIPK1, FADD, and c-FLIP Are Crucial for Phosph

(A) IF for gH2AX in untreated wild-type mice and wild-type, Casp8Dhep, and QV

illustrate gH2AX+ foci in nuclei. Scale bar, 10 mm.

(B) PFGE on livers of doxorubicin-treated mice.

(C) gH2AX staining of doxorubicin-treated wild-type and caspase-8 D387-mutan

(D) gH2AX IF staining 12 hr post-doxorubicin-induced DNA damage in hepatocy

(n = 9), RIPK1�/�RIPK3�/�FADD�/� (labeled as R1�/�R3�/�FADD�/�, n = 2), RIP

(n = 6), and TNFR1/2�/� mice (n = 6). Arrowheads illustrate gH2AX+ foci in nucle

(E) Quantification of IF stainings (A and D).

(F) Immunoprecipitation with anti-caspase-8 antibody (upper panel) and immun

Red box: RIPK1, FADD, and caspase-8 interaction at 1 hr; blue boxes: low-level ac

0 column, cl.PARP lane, does not originate from cl.PARP, but from a lower unspec

(G) Immunoblotting of lysates, 0–24 hr after doxorubicin (5 mM) treatment lookin

apoptosis starting at 4 hr post-treatment.

(H) Levels of LUBAC (HOIP, HOIL-1, and SHARPIN), cIAP1, cIAP2, and XIAP in U

(I) Subcellular fractionation of U2OS cells.

(J) RIPK1 and gH2AX IF staining in U2OS cells after doxorubicin treatment. The

Statistical significance was calculated using ANOVAwith Bonferroni correction (E

were omitted are indicated by white space between lanes. See also Figure S7.
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apoptosis protein (XIAP�/�) clearly showed H2AX phosphoryla-

tion upon doxorubicin treatment (Figure S7A). In summary,

RIPK1KD, Casp8�/�/RIPK3�/�, R1�/�/R3�/�/FADD�/�, R1+/�/
R3/FADD�/�, and c-FLIPDhep mice all showed a significantly

reduced percentage of gH2AX+ foci in hepatocyte nuclei.

Caspase-8 Functions within a Multi-Protein Complex to
Orchestrate H2AX Phosphorylation
To testwhether a caspase-8-containing protein complex forms in

response toDNADSB,U2OScellswere treatedwithdoxorubicin,

followed by time-course immunoprecipitation experiments with

an anti-caspase-8 antibody. Starting 30 min post-treatment

and peaking at 1 hr, RIPK1was co-immunoprecipitatedwith cas-

pase-8, FADD (Figure 6F, red box), and c-FLIP (Figure S7I, red

box). In parallel, gH2AX positivity was detectable starting 1 hr

post-doxorubicin treatment. Of note, complex formation 1 hr

post-doxorubicin treatment was independent of any apoptotic

activity, which was, however, observed between 4 hr (PARP

cleavage) and 18–24 hr (caspase-3 cleavage) post-doxorubicin

treatment (Figures 6F and 6G, blue boxes). Importantly, absolute

quantification of caspase-8, FADD, c-FLIP, and RIPK1 in cas-

pase-8 immunoprecipitates was performed 1 hr post-doxoru-

bicin treatment by a mass spectrometry-based AQUA method

(Schleich et al., 2015). This revealed a significant amount of

FADD and RIPK1 in complex with caspase-8 in doxorubicin-

treated cells (Figure S7J).

Since the linear ubiquitin chain assembly complex (LUBAC)

plays a role in preventing cell-death-inducing complex forma-

tion in various cell types including hepatocytes (Lafont et al.,

2017; Shimizu et al., 2017), it was considered a candidate

signaling event. Indeed, LUBAC components HOIP, HOIL-1,

and SHARPIN, as well as the inhibitor of apoptosis proteins

(IAP) cIAP1, cIAP2, and XIAP, known to negatively regulate for-

mation of the ripoptosome (Tenev et al., 2011), were transiently

reduced 15 to 30 min post-doxorubicin treatment of U2OS cells

(Figure 6H).

Next, we tested whether complex formation in response to

DNA damage was paralleled by a change in subcellular local-

ization. Western blot analysis after subcellular fractionation

displayed a proportion of RIPK1, caspase-8, and c-FLIP in the
orylation of H2AX in Hepatocytes upon Doxorubicin Treatment

D-OPH-treated wild-type mice following doxorubicin treatment. Arrow heads

t mice. Scale bar, 50 mm.

tes of Casp8�/�/RIPK3�/� mice (n = 5), RIPK3�/� mice (n = 4), RIPK1KD mice

K1+/�RIPK3�/�FADD�/� (labeled as R1+/�R3�/�FADD�/�, n = 2), c-FLIPDhep

i. Scale bar, 10 mm.

oblotting of lysates (lower panel), 0–24 hr after doxorubicin (5 mM) treatment.

tivation of apoptosis starting at 4 hr post-treatment. (The signal visible in the t =

ific band.) Control cells treated for 1 hr with CD95L/FasL (B, beads; L, lysates).

g at levels of total and cl.PARP, blue boxes (F and G): low-level activation of

2OS cells at 15 min (red box) post-doxorubicin stimulation (5 mM).

arrowhead indicates colocalizing signals. Scale bar, 10 mm.

). ***p < 0.001. Irrelevant bands were omitted from gels (B). Areas in which lanes



nuclear fraction under steady-state conditions, but no enrich-

ment upon doxorubicin-induced DNA damage (Figure 6I). Local-

ization studies by IF staining and confocal imaging of U2OS cells,

with and without doxorubicin, confirmed the induction of nuclear

gH2AX positivity, while a minor fraction of RIPK1 was already

detectable in the nucleus under steady state (Yoon et al.,

2016). However, no increased nuclear signal was observed after

doxorubicin treatment (Figure 6J).

JNK Is a Downstream Mediator of Caspase-8- and
RIPK1-Dependent H2AX Phosphorylation in
Hepatocytes
To identify candidate downstream signaling pathways of the

DNA damage-sensing platform in hepatocytes, livers of doxoru-

bicin-treated wild-type mice were analyzed for activation of

ATM/ATR targets CHK1 and CHK2 (Figures 7A, S8A, and S8B

and data not shown). Remarkably, no pCHK1+ or pCHK2+ hepa-

tocytes were found 12 hr following doxorubicin-induced DNA

damage, suggesting that the ATM and ATR kinase activity is

rather low at that time, and pointing to DNA damage-trans-

ducing pathways other than ATM and ATR signaling. As control,

LPS/DGal-induced cell death was associated with pCHK1+ and

pCHK2+ apoptotic hepatocytes (Figure S8B). Furthermore, wild-

type mice displayed pcJUN+ hepatocytes upon doxorubicin-

induced DSB, indicative of activated c-JUN N-terminal kinase

(JNK) signaling (Figures 7A and S8A). Of note, hepatocytes of

Casp8Dhep, RIPKKD, Nec1-treated, c-FLIPDhep, and Casp8�/�/
RIPK3�/� mice all lacked substantial pcJUN staining after doxo-

rubicin treatment, in contrast to QVD-OPH-treated wild-type,

TNFR1/2�/�, RIPK3�/�, and XIAP�/�mice (Figures S8A and

S8B). Co-IF staining for pJNK and gH2AX revealed that wild-

type hepatocytes (independent of QVD-OPH pre-treatment)

and TNFR1/2�/� hepatocytes had distinct nuclear pJNK signals

following doxorubicin treatment, which partially co-localized

with gH2AX signals, suggesting JNK as the responsible kinase

for H2AX phosphorylation. Casp8Dhep, RIPK1KD, and c-FLIPDhep

hepatocytes were mostly devoid of pJNK signals (Figure 7B),

suggesting that JNK signaling is downstream of the kinase func-

tion of RIPK1, and of caspase-8, FADD, and c-FLIP, and, as

such, is involved in H2AX phosphorylation (Picco and Pages,

2013). Furthermore, mice lacking both JNKs in hepatocytes

(JNK1/2Dhep mice) displayed DNA DSB by PFGE, but lacked

gH2AX+ hepatocytes after doxorubicin treatment (Figures 7C

and 7D). At the same time, PFGE displayed DNA DSB in livers

of JNK1/2Dhep mice (Figure S8C).

JNK Is a Downstream Mediator of Caspase-8- and
RIPK1-dependent DDR Also in Cell Types Other than
Hepatocytes
To determine whether caspase-8 and JNK were involved

in H2AX phosphorylation in non-hepatocytic cells, caspase-8

was knocked down in U2OS cells. As expected, shCASP8

lentivirus-transfected U2OS cells were less sensitive to TNF-

a-mediated apoptosis comparedwith shCTRLcells (Figure S8D).

As observed in vivo, shCTRL cells also displayed a clear increase

in gH2AX 30 min post-doxorubicin administration and a strong

pJNK signal, but no obvious ATM or ATR activation (Figure 7E).

Strikingly, upon doxorubicin treatment, knock down of cas-

pase-8 substantially decreased gH2AX, pJNK, and pcJUN in
shCASP8 cells compared with shCTRL cells (Figures 7E and

S8E). Pre-treatment of shCTRL cells with a JNK inhibitor

(JNKi), but not with an ATM inhibitor (ATMi), abolished c-JUN

activation and decreased H2AX phosphorylation similar to

shCASP8 cells (Figure 7E, red boxes). Combining ATMi and

JNKi reduced gH2AX signals in shCASP8 cells, and led to mini-

mal activation of ATR (Figure S8E). To exclude that data were

cell line-specific, HepG2 cells were analyzed, revealing a cas-

pase-8- and JNK-dependent gH2AX increase 30min post-doxo-

rubicin administration (Figure S8F, red boxes).

Next, we analyzed potential downstream targets of the

caspase-8-containing complex regulating H2AX phosphoryla-

tion. Of note, IF staining for p53-binding protein 1 (53BP1), an

important regulator of the cellular response to DNA DSB

(Panier and Boulton, 2014), revealed that, in response to doxo-

rubicin treatment, 53BP1 nuclear positivity was absent in

shCASP8 cells, similar to gH2AX 30 min following doxorubicin

treatment (Figure S8G). This indicated impaired recruitment

of 53BP1 to sites of DNA DSB under caspase-8 deficiency.

Aiming to identify further signaling pathways involved in

caspase-8-dependent H2AX phosphorylation, we analyzed

MAPK and phosphatidylinositol 3-kinase signaling pathways.

We found reduced activation of p38 and ERK1/2 under

steady-state conditions in shCASP8 cells. At the same time

total levels of ERK1/2 and also AKT2 were increased (Fig-

ure S8H, red boxes). Doxorubicin treatment induced activation

of ERK1/2 and AKT2, whereas p38 activation was impaired in

shCASP8 cells. Thus, caspase-8 interferes with or controls

MAPK signaling under steady-state and doxorubicin-chal-

lenged conditions. Looking for an interaction between JNK

and gH2AX in human livers, we found mostly overlapping sig-

nals for pJNK and gH2AX in liver tissues of patients with

chronic low-level, CLD-related liver regeneration and acute

high-level liver regeneration after ALPPS, indicating a role of

JNK in mediating DDR (Figure 8A).

Finally, we analyzed publically accessible databases to

address whether caspase-8 expression affects HCC biology.

Although different datasets yielded variable results, analysis of

the largest, most stringent cohort (n = 358 patients) from The

Cancer Genome Atlas data portal, validated by the Universal

exPression Codes method, revealed that HCC with low cas-

pase-8 expression levels were associated with a better overall

survival compared with HCC with high caspase-8 expression

(Figure 8B). Moreover, high caspase-8 expression correlated

with high PCNA and Ki67 expression (PCNA versus CASP8:

p = 2 3 10�22, Ki67 versus CASP8: p = 3 3 10�25; data not

shown), indicating high proliferative activity. Finally, HCC with

methylation of the caspase-8 gene exhibited a better overall sur-

vival compared with caspase-8-unmethylated HCC (Figure 8C).

These findings suggest that low caspase-8 expression is associ-

ated with a less aggressive behavior of HCC.

DISCUSSION

Hepatocyte apoptosis, a hallmark of CLDs, plays opposing roles

in liver homeostasis: on the one hand, it constitutes a hepato-

protective mechanism by eliminating damaged hepatocytes.

On the other hand, chronically increased hepatocyte apoptosis

is harmful.
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Figure 7. JNK Is a Downstream Mediator of Caspase-8-, c-FLIP-, and RIPK1-Dependent Phosphorylation of H2AX In Vivo and In Vitro

(A) Immunohistochemistry for pCHK1, pCHK2, and pcJUN in livers after doxorubicin treatment. Arrowheads indicate pcJUN-positive nuclei. Scale bar, 50 mm.

(B) gH2AX and pJNK co-stainings of livers 12 hr post-doxorubicin treatment. Merged: overlay of DAPI, gH2AX, and pJNK staining. Arrowheads indicate IF signals

for gH2AX (green), pJNK (red), or overlapping signals of both (yellow). Scale bar, 10 mm.

(C and D) IF stainings (C) and quantification for gH2AX in wild-type and JNK1/2-deficient hepatocytes 12 hr post-doxorubicin treatment (D). Arrowheads indicate

IF signals for gH2AX. Scale bar, 10 mm.

(E) Analysis of DDR signaling by western blotting of lysates from doxorubicin-treated caspase-8 knockdown cells, JNK inhibitor (SP600125) and ATM inhibitor

(KU-55933) pre-treated control cells (U2OS). Red boxes: differences in gH2AX and pJNK activation post-doxorubicin treatment between control cells and

lentiviral caspase-8 knockdown and JNK inhibitor treated cells. Statistical analysis was corrected for three tests using the Bonferroni method. See also Figure S8.
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Figure 8. Evidence for JNK-Dependent DDR in Human Regenerating Livers and Caspase-8 in Human HCC

(A) gH2AX and pJNK co-stainings demonstrating JNK-dependent phosphorylation of H2AX in liver tissue of CLD patients or the left lobe of patients after (right)

portal vein ligation and liver transection (PVL/LT). Arrowheads indicate IF signals for gH2AX (green), pJNK (red), or overlapping signals of both (yellow). Scale

bar, 10 mm.

(B) Overall survival of HCC patients depending on HCC caspase-8 expression level (<mean+1SD; n = 307 patients; >mean+1SD; n = 51 patients, log rank test,

statistical analysis was corrected for three tests using the Bonferroni method. The Cancer Genome Atlas [TCGA] cohort).

(C) Overall survival of HCC patients depending on HCC caspase-8 methylation status (n = 358 patients, TCGA cohort, log rank test).
Here, we show that persistently increased levels of hepatocyte

apoptosis tightly correlate with subsequent HCC development:

(1) CLDpatients who developedHCChad higher preceding trans-

aminase levels compared with case-control matched pairs. (2)

Mcl-1Dhep mice and Mcl-1Dhep/TNFR1�/� mice that developed

liver tumors had higher levels of transaminase activity early in

life compared with littermates without tumors. (3) Genetically

reducing apoptosis in Mcl-1Dhep mice, by additional deletion of

TNFR1 (here) orBAK (Hikita et al., 2012), decreased tumorigenesis

similar to TAK1Dhep mice with additional caspase-8 (apoptosis)

but not RIPK3 (necroptosis) deficiency (Vucur et al., 2013).

Collectively, these data identify chronically increased hepatocyte

apoptosis as a major risk for subsequent HCC development.

By demonstrating (1) increased gH2AX+ hepatocytes, indica-

tive of DDR, in both hyper-apoptotic, hyper-regenerating livers

of CLD patients and CLD mouse models, and (2) a significant

level of AI at CFS in these same livers, we link chronically

increased hepatocyte apoptosis with HCC development. Liver

regeneration results in DNA replication stress, making hepato-

cyte proliferation a genotoxic stimulus inducing DNA damage

and genetic instability. DNA replication is a major genotoxic
stress due to the risk of nucleotide misincorporation, the intrinsic

fragility of replicating chromosomes, and the abundance of

repetitive and unusual DNA structures in particular at CFS.

Genome stability pathways address these challenges and mini-

mize replication-associated risks, but require extra time in cell

cycle progression and are often limited in hyper-proliferative

states (Halazonetis et al., 2008).

Our findings in human CLD and murine CLD models, under-

pinned by stochastic considerations (Figure S4), argue that

persistently increased hepatocyte apoptosis resulting in regen-

erative proliferation and high DNA replication rate (independent

of etiology) is a decisive determinant of hepatocarcinogenesis.

This is in line with a recent report on the carcinogenic effect of

replication errors stochastically occurring in highly proliferative

stem cells (Tomasetti and Vogelstein, 2015). This concept also

explains most HCC epidemiological data, i.e., that CLD patients

are at risk to develop HCC, and that the risk increases with dis-

ease activity and duration.

Dissecting the role of caspase-8 for hepatocyte apoptosis,

we discovered a non-apoptotic function of caspase-8 in H2AX

phosphorylation. Firstly, by performing PHX in C57BL/6 and
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Casp8Dhep mice, we show that caspase-8 is needed for an effi-

cient DDR to replication stress. Secondly, we found that doxoru-

bicin-induced H2AX phosphorylation in mice was not deficient in

livers pretreated with the pan-caspase inhibitor (QVD-OPH), or

livers of caspase-8 D387A mutant mice (Kang et al., 2008), but

in mice that were full knockout for caspase-8. Thus, DDR was

not dependent on caspase-8 catalytic activity, but rather on a

non-apoptotic, e.g., a scaffold function of caspase-8. Aiming

to identify caspase-8-interacting molecules, we discovered a

signaling platform comprising also RIPK1, FADD, and c-FLIP.

These molecules are also central in a complex which assembles

independently of death receptor activation, referred to as the

ripoptosome (Tenev et al., 2011). It acts cooperatively in different

combinations: (1) to control cell fate upon genotoxic stress in

concert with NEMO (Biton and Ashkenazi, 2011), (2) together

with RIPK3 to control the non-canonical inflammasome acti-

vation (Kang et al., 2013), (3) together with RIPK1 to control

TNF-a expression NF-kB independently via JNK (Christofferson

et al., 2012), and together with caspase-3 to suppress necrosis

(Brown et al., 2015). Moreover, (4) a different complex, the

PIDDosome (Tinel and Tschopp, 2004), is activated by ATM

and executes apoptosis in response to DNA damage (Ando

et al., 2012). Finally, (5) it was demonstrated recently that a struc-

tural (rather than enzymatic) function of these signaling complex

is central for the production of chemotactic cytokines (Hartwig

et al., 2017; Henry and Martin, 2017). Although not providing a

direct proof of their regulatory function, the downregulation of

LUBAC components and IAPs occurring in temporal association

with the formation of the complex discovered here is remarkable.

It is reminiscent of the formation of the above-mentioned related

complexes. Collectively, findings from all these studies sug-

gest that a defined set of molecules constitutes a dynamic and

temporary signaling platform. This platform integrates various in-

puts (e.g., genotoxic stress, inflammatory signals) resulting in

different outputs (e.g., cell death, cytokine production, DDR),

thus efficiently coordinating cell fate. We consider the com-

plex found in this study to represent one possibility of these re-

sponses, most likely to DNADSB. Although we found no obvious

nuclear localization after induction of DNA damage, our observa-

tions do not preclude that under steady state a minor nuclear

fraction of the above described components remains func-

tionally activatable to form a complex, as described elsewhere

(Yoon et al., 2016).

We observed (1) impaired pJNK and pcJUN response to

doxorubicin in caspase-8-deficient cells, (2) impaired H2AX

phosphorylation after pharmacological inhibition of JNK in

various cell lines (U2OS, HepG2) in response to doxorubicin,

and (3) impaired H2AX phosphorylation in doxorubicin-treated

livers of JNK1/2Dhep mice, all implicating a possible involvement

of JNK signaling. However, performing several in vivo, ex vivo,

and in vitro experiments to investigate the downstream signaling

modes of this pathway did not give conclusive results. The

co-localization of pJNK and gH2AX in human and murine

hepatocyte nuclei suggested a link between pJNK and H2AX

phosphorylation, in line with previous reports (Picco and Pages,

2013). Moreover, activation of the ATM/ATR and JNK signaling

in human and murine CLDs suggested that all pathways

might be present. In contrast, doxorubicin-induced DNA DSB

appeared to preferably activate the JNK signaling pathway,
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whereas the ATM/ATR signaling pathway was activated less in

a model- and time-dependent fashion. This inter-experimental

variation made it challenging to clearly demonstrate whether

or not the ATM/ATR signaling was generally activated by the

caspase-8/RIPK1/c-Flip/FADD pathway. Due to the different

kinetics in in vivo and also in distinct in vitro model systems, a

uniform pattern of ATM/ATR activation was not identifiable.

Interestingly, combined use of ATM and JNK inhibitors led

to the strongest and most consistent effects in suppressing

H2AX phosphorylation upon doxorubicin in vitro. Thus, we

conclude that (1) doxorubicin might not necessarily reflect the

overall in vivo signaling behavior of the complex (e.g., kinetics,

signaling candidates), and (2) JNK signaling might be only one

of several possible downstream mediators of this complex.

Based on our findings, we cannot exclude that phosphatidylino-

sitol 3-kinase-related kinases contribute to the DNA damage

signaling pathway discovered in this study. Further studies are

needed to identify all important downstream signaling mediators

of caspase-8-dependent DDR.

Showing that the caspase-8-containing complex triggers

H2AX phosphorylation suggests that it controls DNA integrity

and thus potentially prevents malignant transformation. If this

holds true, loss of caspase-8 can be expected to be genotoxic

and generate an environment of genetic instability. In line with

these findings, caspase-8 deficiency has been shown to facili-

tate cellular transformation independently of its killing function

(Krelin et al., 2008). Loss of caspase-8 expression by either mu-

tations or epigenetic silencing has been reported in murine and

human HCC (Liedtke et al., 2005; Soung et al., 2005). Therefore,

it is conceivable that loss of caspase-8 in one and the same cell

not only confers apoptosis resistance (a hallmark of cancer), but

also promotes replication errors, and thus contributes to cancer

development. Based on our observations, caspase-8 deficiency

is thus expected to predispose to mutations in proliferating non-

neoplastic hepatocytes, whereas at the same time it should

confer a fitness disadvantage to neoplastic hepatocytes. In line

with the latter, data mining using distinct, already published

HCC cohorts revealed that low caspase-8 expression in HCC

is associated with a less aggressive behavior, reflected by a

less proliferative phenotype and a better overall survival. This

is reminiscent to the biology of mismatch repair (MMR) defi-

ciency in the colorectum. MMR deficiency on the one hand pre-

disposes to replication errors and cancer development, and on

the other hand it results in hyper-mutated tumors with a better

prognosis compared with MMR-proficient carcinomas (Gryfe

et al., 2000).

Given the here described role of caspase-8 in DDR, it is at first

glance counter-intuitive that deletion of caspase-8 rescued HCC

development in TAK1Dhep mice (Vucur et al., 2013). However,

DNA damage in a hyper-apoptotic environment such as in CLD

patients, Mcl-1Dhep, or TAK1Dhepmice, is provoked by constantly

enhanced regeneration causing replication stress. Taking into

account that caspase-8 deficiency in TAK1Dhep mice abolished

apoptosis and nearly normalized proliferative levels (Figure 4C;

Vucur et al., 2013), it is obvious that TAK1/Casp8Dhep mice are

not tumor prone.

In summary, we identified a role of caspase-8 in sensing DNA

damage, and have mechanistically linked increased hepatocyte

apoptosis with subsequent HCC development.



STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Human Material

B Mice

B Cell Lines and Drug Treatments

d METHOD DETAILS

B Human Cohort Studies

B Mouse Strains and Intercrossings

B Measurement of Serum Parameters

B RNA Isolation from Liver Tissue

B Real-time PCR

B DNA Extraction

B Taqman Copy Number Analysis

B Flow Cytometry for DNA Damage

B Partial Hepatectomy (PHX)

B BrdU Assay

B Immunoprecipitation

B Fragment Length Analysis for Allelic Imbalance

B Pulse Field Gel Electrophoresis (PFGE)

B Immunoblot Analysis

B Histology and Immuno Stainings

B RNA Microarray

B Gene Set Enrichment Analysis (GSEA)

B Immunofluorescence Stainings and Confocal Mi-

croscopy

B Subcellular Fractionation

B AQUA-Mass Spectrometry

B Analysis of Data from Human Hepatocellular Car-

cinoma

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistical Analysis

B Modelling of Mutation Rates Depending on Prolifera-

tive Activity

d DATA AND SOFTWARE AVAILABILITY
SUPPLEMENTAL INFORMATION

Supplemental Information includes eight figures and one table and can be

found with this article online at http://dx.doi.org/10.1016/j.ccell.2017.08.010.
AUTHOR CONTRIBUTIONS

Y.B., M.H., and A.W. designed the study, co-ordinated experiments, wrote the

manuscript with input from all co-authors. Y.B., M.M., M.E.H., M.V., F.B., C.K.,

R.M., J.J., L.L., S.Z., R.B., N.H., H.S.B., S.W., and L.B., developed and

analyzed the described mouse models and performed in vitro and in vivo ex-

periments. Y.B., M.E.H., A.L., F.B., D.S., H.M., M.D.V., M.H., and A.W. con-

ducted morphological analyses. Y.B., M.M., K.B., M.E.H., Y.S., A.K.A., F.B.,

C.R., T.K., M.J.W., T.S., S.P.A., R.M., K.M., E.D., M.N., M.L., H.W., L.H.,

A.B., and I.L. contributed to in vitro molecular signaling studies. Y.B. and

R.M. performed in vitro allelic imbalance analysis. Y.B., H.R., L.F., and K.U.

performed in silico analyses. Y.B., F.B., J.M., B.M., P.A.C., and A.W. identified,

collected, and provided human tissue and data. J.M.S., R.J.D., S.A.L., P.J.,

R.W., C.D., D.W., L.Z., D.R.G., and T.L. provided genetically modified cell lines

and mice for in vivo studies.
ACKNOWLEDGMENTS

We thank M. Bawohl, V. Sch€uppel, J. Tracy, R. Hillermann, D. Kull, O. Seel-

bach, M. Storz, P. Tzscheetzsch, A. Fitsche, P. Schraml, S. Dettwiler, J.F.

Glaus Garzon, T.B. Kang, M. Egger, J. Schmitt, K. Weber, S.M. Kwon,

and X.W. Wang for their excellent support, B. Seifert for statistical guidance,

M. Bertrand for helpful discussion, and T. O’Connor for critical reading.

This study was supported by Krebsliga Schweiz (Oncosuisse), Promedica

Stiftung, Stiftung zur Krebsbek€ampfung, Z€urich, Swiss National Research

Foundation (SNF; project 310030_146940/1) (to A.W.), Helmholtz Associa-

tion, ‘‘Stiftung Experimentelle Biomedizin’’ (Hofschneider Foundation),

European Research Council (ERC Consolidator Grant, HepatoMetaboPath),

Graduierten Kolleg (GRK) (482) and Sonderforschungsbereiche (SFB)

(36, 179 and 209), the European Union’s Horizon 2020 research and inno-

vation program (no. 667273) (to M.H.), Mildred-Scheel Endowed Pro-

fessorship, German Cancer Aid (Deutsche Krebshilfe, project 110043),

German Research Foundation (SFB-TRR57/P06) (to T.L.), SNF (grant

310030_132884) (to S.W.), DFG (FOR2314 and SFB685), Gottfried Wilhelm

Leibniz Program (to L.Z.), DFG (DFG-LA 2386) (to I.L.), NIH grant

DK107220 (to R.D.), and Hartmann M€uller Stiftung and PhD program of

the Cancer Network Zurich (to Y.B.). M.D.V. is a Helmholtz Young Investi-

gator (Helmholtz Association).

Received: January 23, 2016

Revised: June 30, 2017

Accepted: August 16, 2017

Published: September 11, 2017

REFERENCES

Affo, S., Dominguez, M., Lozano, J.J., Sancho-Bru, P., Rodrigo-Torres, D.,

Morales-Ibanez, O., Moreno, M., Millan, C., Loaeza-del-Castillo, A.,

Altamirano, J., et al. (2013). Transcriptome analysis identifies TNF super-

family receptors as potential therapeutic targets in alcoholic hepatitis.

Gut 62, 452–460.

Alexiades, M.R., and Cepko, C. (1996). Quantitative analysis of proliferation

and cell cycle length during development of the rat retina. Dev. Dyn. 205,

293–307.

Ando, K., Kernan, J.L., Liu, P.H., Sanda, T., Logette, E., Tschopp, J., Look,

A.T., Wang, J., Bouchier-Hayes, L., and Sidi, S. (2012). PIDD death-domain

phosphorylation by ATM controls prodeath versus prosurvival PIDDosome

signaling. Mol. Cell 47, 681–693.

Batts, K.P., and Ludwig, J. (1995). Chronic hepatitis. An update on terminology

and reporting. Am. J. Surg. Pathol. 19, 1409–1417.

Bettermann, K., Vucur, M., Haybaeck, J., Koppe, C., Janssen, J., Heymann, F.,

Weber, A., Weiskirchen, R., Liedtke, C., Gassler, N., et al. (2010). TAK1 sup-

presses a NEMO-dependent but NF-kappaB-independent pathway to liver

cancer. Cancer Cell 17, 481–496.

Biton, S., and Ashkenazi, A. (2011). NEMO and RIP1 control cell fate in

response to extensive DNA damage via TNF-alpha feedforward signaling.

Cell 145, 92–103.

Brown, M.F., Leibowitz, B.J., Chen, D., He, K., Zou, F., Sobol, R.W., Beer-

Stolz, D., Zhang, L., and Yu, J. (2015). Loss of caspase-3 sensitizes colon

cancer cells to genotoxic stress via RIP1-dependent necrosis. Cell Death

Dis. 6, e1729.

Christofferson, D.E., Li, Y., Hitomi, J., Zhou, W., Upperman, C., Zhu, H.,

Gerber, S.A., Gygi, S., and Yuan, J. (2012). A novel role for RIP1 kinase inmedi-

ating TNFalpha production. Cell Death Dis. 3, e320.

Das, M., Garlick, D.S., Greiner, D.L., and Davis, R.J. (2011). The role of

JNK in the development of hepatocellular carcinoma. Genes Dev. 25,

634–645.

Dillon, C.P., Weinlich, R., Rodriguez, D.A., Cripps, J.G., Quarato, G., Gurung,

P., Verbist, K.C., Brewer, T.L., Llambi, F., Gong, Y.N., et al. (2014). RIPK1

blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157,

1189–1202.
Cancer Cell 32, 342–359, September 11, 2017 357

http://dx.doi.org/10.1016/j.ccell.2017.08.010
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref1
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref1
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref1
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref1
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref1
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref2
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref2
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref2
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref3
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref3
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref3
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref3
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref4
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref4
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref5
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref5
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref5
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref5
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref6
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref6
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref6
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref7
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref7
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref7
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref7
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref8
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref8
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref8
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref9
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref9
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref9
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref10
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref10
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref10
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref10


El-Serag, H.B., and Kanwal, F. (2014). Epidemiology of hepatocellular carci-

noma in the United States: where are we? Where do we go? Hepatology 60,

1767–1775.

Eldridge, S.R., and Goldsworthy, S.M. (1996). Cell proliferation rates in com-

mon cancer target tissues of B6C3F1 mice and F344 rats: effects of age,

gender, and choice of marker. Fundam. Appl. Toxicol. 32, 159–167.

Forner, A., Llovet, J.M., and Bruix, J. (2012). Hepatocellular carcinoma. Lancet

379, 1245–1255.

Gao, G., and Smith, D.I. (2014). Very large common fragile site genes and their

potential role in cancer development. Cell Mol. Life Sci. 71, 4601–4615.

Gorgoulis, V.G., Vassiliou, L.V., Karakaidos, P., Zacharatos, P., Kotsinas, A.,

Liloglou, T., Venere, M., Ditullio, R.A., Jr., Kastrinakis, N.G., Levy, B., et al.

(2005). Activation of the DNA damage checkpoint and genomic instability in

human precancerous lesions. Nature 434, 907–913.

Gryfe, R., Kim, H., Hsieh, E.T., Aronson, M.D., Holowaty, E.J., Bull, S.B.,

Redston, M., and Gallinger, S. (2000). Tumor microsatellite instability and

clinical outcome in young patients with colorectal cancer. N. Engl. J. Med.

342, 69–77.

Halazonetis, T.D., Gorgoulis, V.G., and Bartek, J. (2008). An oncogene-

induced DNA damage model for cancer development. Science 319, 1352–

1355.

Hartwig, T., Montinaro, A., von Karstedt, S., Sevko, A., Surinova, S.,

Chakravarthy, A., Taraborrelli, L., Draber, P., Lafont, E., Arce Vargas, F.,

et al. (2017). The TRAIL-induced cancer secretome promotes a tumor-sup-

portive immune microenvironment via CCR2. Mol. Cell 65, 730–742.e5.

Haas, T.L., Emmerich, C.H., Gerlach, B., Schmukle, A.C., Cordier, S.M.,

Rieser, E., Feltham, R., Vince, J., Warnken, U., Wenger, T., et al. (2009).

Recruitment of the linear ubiquitin chain assembly complex stabilizes the

TNF-R1 signaling complex and is required for TNF-mediated gene induction.

Mol. Cell 36, 831–844.

Haybaeck, J., Zeller, N., Wolf, M.J., Weber, A., Wagner, U., Kurrer, M.O.,

Bremer, J., Iezzi, G., Graf, R., Clavien, P.A., et al. (2009). A lymphotoxin-driven

pathway to hepatocellular carcinoma. Cancer Cell 16, 295–308.

Henry, C.M., and Martin, S.J. (2017). Caspase-8 acts in a non-enzymatic role

as a scaffold for assembly of a pro-inflammatory ‘‘FADDosome’’ complex

upon TRAIL stimulation. Mol. Cell 65, 715–729.e5.

Hikita, H., Kodama, T., Shimizu, S., Li, W., Shigekawa, M., Tanaka, S., Hosui,

A., Miyagi, T., Tatsumi, T., Kanto, T., et al. (2012). Bak deficiency inhibits liver

carcinogenesis: a causal link between apoptosis and carcinogenesis.

J. Hepatol. 57, 92–100.

Kang, T.B., Oh, G.S., Scandella, E., Bolinger, B., Ludewig, B., Kovalenko, A.,

and Wallach, D. (2008). Mutation of a self-processing site in caspase-8 com-

promises its apoptotic but not its nonapoptotic functions in bacterial artificial

chromosome-transgenic mice. J. Immunol. 181, 2522–2532.

Kang, T.B., Yang, S.H., Toth, B., Kovalenko, A., and Wallach, D. (2013).

Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflamma-

some. Immunity 38, 27–40.

Krelin, Y., Zhang, L., Kang, T.B., Appel, E., Kovalenko, A., and Wallach, D.

(2008). Caspase-8 deficiency facilitates cellular transformation in vitro. Cell

Death Differ. 15, 1350–1355.

Lafont, E., Kantari-Mimoun, C., Draber, P., DeMiguel, D., Hartwig, T., Reichert,

M., Kupka, S., Shimizu, Y., Taraborrelli, L., Spit, M., et al. (2017). The linear

ubiquitin chain assembly complex regulates TRAIL-induced gene activation

and cell death. EMBO J. 36, 1147–1166.

Liedtke, C., Zschemisch, N.H., Cohrs, A., Roskams, T., Borlak, J., Manns,

M.P., and Trautwein, C. (2005). Silencing of caspase-8 in murine hepatocellu-

lar carcinomas is mediated via methylation of an essential promoter element.

Gastroenterology 129, 1602–1615.

Luedde, T., Kaplowitz, N., and Schwabe, R.F. (2014). Cell death and

cell death responses in liver disease: mechanisms and clinical relevance.

Gastroenterology 147, 765–783.e4.

Neelsen, K.J., Zanini, I.M., Mijic, S., Herrador, R., Zellweger, R., Ray

Chaudhuri, A., Creavin, K.D., Blow, J.J., and Lopes, M. (2013). Deregulated
358 Cancer Cell 32, 342–359, September 11, 2017
origin licensing leads to chromosomal breaks by rereplication of a gapped

DNA template. Genes Dev. 27, 2537–2542.

Olayioye, M.A., Kaufmann, H., Pakusch, M., Vaux, D.L., Lindeman, G.J., and

Visvader, J.E. (2005). XIAP-deficiency leads to delayed lobuloalveolar devel-

opment in the mammary gland. Cell Death Differ. 12, 87–90.

Panier, S., and Boulton, S.J. (2014). Double-strand break repair: 53BP1 comes

into focus. Nat. Rev. Mol. Cell Biol. 15, 7–18.

Picco, V., and Pages, G. (2013). Linking JNK activity to the DNA damage

response. Genes Cancer 4, 360–368.

Piccolo, S.R., Withers, M.R., Francis, O.E., Bild, A.H., and Johnson, W.E.

(2013). Multiplatform single-sample estimates of transcriptional activation.

Proc. Natl. Acad. Sci. USA 110, 17778–17783.

Sarasin-Filipowicz, M., Oakeley, E.J., Duong, F.H., Christen, V.,

Terracciano, L., Filipowicz, W., and Heim, M.H. (2008). Interferon signaling

and treatment outcome in chronic hepatitis C. Proc. Natl. Acad. Sci. USA

105, 7034–7039.

Schadde, E., Ardiles, V., Robles-Campos, R., Malago, M., Machado, M.,

Hernandez-Alejandro, R., Soubrane, O., Schnitzbauer, A.A., Raptis, D.,

Tschuor, C., et al. (2014). Early survival and safety of ALPPS: first report of

the international ALPPS registry. Ann. Surg. 260, 829–836, discussion

836–828.

Schleich, K., Buchbinder, J.H., Pietkiewicz, S., Kahne, T.,Warnken, U., Ozturk,

S., Schnolzer, M., Naumann, M., Krammer, P.H., and Lavrik, I.N. (2015).

Molecular architecture of the DED chains at the DISC: regulation of procas-

pase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain.

Cell Death Differ. 23, 681–694.

Shimizu, Y., Peltzer, N., Sevko, A., Lafont, E., Sarr, A., Draberova, H., and

Walczak, H. (2017). The linear ubiquitin chain assembly complex acts as a

liver tumor suppressor and inhibits hepatocyte apoptosis and hepatitis.

Hepatology 65, 1963–1978.

Soung, Y.H., Lee, J.W., Kim, S.Y., Sung, Y.J., Park, W.S., Nam, S.W., Kim,

S.H., Lee, J.Y., Yoo, N.J., and Lee, S.H. (2005). Caspase-8 gene is frequently

inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocel-

lular carcinomas. Oncogene 24, 141–147.

Speicher, T., Siegenthaler, B., Bogorad, R.L., Ruppert, R., Petzold, T.,

Padrissa-Altes, S., Bachofner, M., Anderson, D.G., Koteliansky, V., Fassler,

R., andWerner, S. (2014). Knockdown and knockout of beta1-integrin in hepa-

tocytes impairs liver regeneration through inhibition of growth factor signalling.

Nat. Commun. 5, 3862.

Tago, Y., Imai, M., Ihara, M., Atofuji, H., Nagata, Y., and Yamamoto, K.

(2005). Escherichia coli mutator (Delta)polA is defective in base mismatch

correction: the nature of in vivo DNA replication errors. J. Mol. Biol. 351,

299–308.

Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F.,

Zachariou, A., Lopez, J., MacFarlane, M., Cain, K., and Meier, P. (2011). The

Ripoptosome, a signaling platform that assembles in response to genotoxic

stress and loss of IAPs. Mol. Cell 43, 432–448.

Tinel, A., and Tschopp, J. (2004). The PIDDosome, a protein complex impli-

cated in activation of caspase-2 in response to genotoxic stress. Science

304, 843–846.

Tomasetti, C., and Vogelstein, B. (2015). Cancer etiology. Variation in cancer

risk among tissues can be explained by the number of stem cell divisions.

Science 347, 78–81.

Vick, B., Weber, A., Urbanik, T., Maass, T., Teufel, A., Krammer, P.H.,

Opferman, J.T., Schuchmann, M., Galle, P.R., and Schulze-Bergkamen, H.

(2009). Knockout of myeloid cell leukemia-1 induces liver damage and in-

creases apoptosis susceptibility of murine hepatocytes. Hepatology 49,

627–636.

Vucur, M., Reisinger, F., Gautheron, J., Janssen, J., Roderburg, C., Cardenas,

D.V., Kreggenwinkel, K., Koppe, C., Hammerich, L., Hakem, R., et al. (2013).

RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis

by controlling caspase-8- and JNK-dependent compensatory cell prolifera-

tion. Cell Rep. 4, 776–790.

http://refhub.elsevier.com/S1535-6108(17)30354-9/sref11
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref11
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref11
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref12
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref12
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref12
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref13
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref13
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref14
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref14
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref15
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref15
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref15
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref15
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref16
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref16
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref16
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref16
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref17
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref17
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref17
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref18
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref18
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref18
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref18
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref19
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref19
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref19
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref19
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref19
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref20
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref20
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref20
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref21
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref21
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref21
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref21
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref21
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref22
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref22
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref22
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref22
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref23
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref23
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref23
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref23
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref24
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref24
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref24
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref25
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref25
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref25
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref26
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref26
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref26
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref26
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref27
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref27
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref27
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref27
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref28
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref28
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref28
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref29
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref29
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref29
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref29
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref30
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref30
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref30
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref31
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref31
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref32
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref32
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref33
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref33
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref33
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref34
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref34
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref34
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref34
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref35
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref35
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref35
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref35
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref35
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref36
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref36
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref36
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref36
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref36
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref37
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref37
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref37
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref37
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref38
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref38
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref38
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref38
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref39
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref39
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref39
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref39
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref39
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref40
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref40
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref40
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref40
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref41
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref41
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref41
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref41
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref42
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref42
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref42
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref43
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref43
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref43
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref44
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref44
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref44
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref44
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref44
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref45
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref45
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref45
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref45
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref45


Weber, A., Boger, R., Vick, B., Urbanik, T., Haybaeck, J., Zoller, S., Teufel, A.,

Krammer, P.H., Opferman, J.T., Galle, P.R., et al. (2010). Hepatocyte-specific

deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers prolifera-

tion and hepatocarcinogenesis in mice. Hepatology 51, 1226–1236.

Wolf, M.J., Adili, A., Piotrowitz, K., Abdullah, Z., Boege, Y., Stemmer, K.,

Ringelhan, M., Simonavicius, N., Egger, M., Wohlleber, D., et al. (2014).

Metabolic activation of intrahepatic CD8(+) T cells andNKT cells causes nonal-
coholic steatohepatitis and liver cancer via cross-talk with hepatocytes.

Cancer Cell 26, 549–564.

Yang, F., Teves, S.S., Kemp, C.J., and Henikoff, S. (2014). Doxorubicin, DNA

torsion, and chromatin dynamics. Biochim. Biophys. Acta 1845, 84–89.

Yoon, S., Bogdanov, K., Kovalenko, A., and Wallach, D. (2016). Necroptosis is

preceded by nuclear translocation of the signaling proteins that induce it. Cell

Death Differ. 23, 253–260.
Cancer Cell 32, 342–359, September 11, 2017 359

http://refhub.elsevier.com/S1535-6108(17)30354-9/sref46
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref46
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref46
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref46
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref47
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref47
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref47
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref47
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref47
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref48
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref48
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref49
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref49
http://refhub.elsevier.com/S1535-6108(17)30354-9/sref49


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-RIP3 (phospho S227) antibody Abcam Cat# ab209384

Anti-c-Jun Rabbit polyclonal Antibody Abcam Cat# ab31367; RRID: AB_731606

Purified Mouse Anti-RIP Antibody (38/RIP)

(Immunofluorescent imaging)

BD Biosciences Cat# 610459; RRID: AB_397832

Phospho Histone H2A.X (ser139) (20E3) Rabbit mAb Cell Signaling Technologies Cat# 9718; RRID: AB_2118009

RIP (D94C12) XP Rabbit Mab Cell Signaling Technology Cat# 3493; RRID: AB_2305314

Anti-Caspase-3 antibody Cell Signaling Technology Cat# 9662; RRID: AB_331439

Phospho-p53 (Ser15) (D4S1H) Rabbit mAb Cell Signaling Technology Cat# 12571

GAPDH (D16H11) XP Rabbit mAb Cell Signaling Technology Cat# 5174; RRID: AB_10622025

PCNA (PC10) Mouse mAb Cell Signaling Technology Cat# 2586; RRID: AB_2160343

Phospho-ATM (Ser1981) (D6H9) Rabbit mAb Cell Signaling Technology Cat# 5883; RRID: AB_10835213

Phospho-Chk1 (Ser345) (133D3) Rabbit mAb Cell Signaling Technology Cat# 2348; RRID: AB_331212

Phospho-SAPK/JNK (Thr183/Tyr185) Antibody Cell Signaling Technology Cat# 9251; RRID: AB_331659

Phospho-Chk2 (Thr68) Antibody Cell Signaling Technology Cat# 2661; RRID: AB_331479

Phospho-ATR (Ser428) Antibody Cell Signaling Technology Cat# 2853; RRID: AB_2290281

Phospho-BRCA1 (Ser1524) Antibody Cell Signaling Technology Cat# 9009; RRID: AB_491003

Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb Cell Signaling Technology Cat# 9664; RRID: AB_2070042

Cleaved Caspase-8 (Asp387) (D5B2) XP Rabbit mAb Cell Signaling Technology Cat# 8592

RIP (D94C12) XP Rabbit mAb Cell Signaling Technology Cat# 3493; RRID: AB_2305314

Cleaved Caspase-1 (Asp296) Antibody Cell Signaling Technology Cat# 67314

Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP

Rabbit mAb

Cell Signaling Technology Cat# 4511; RRID: AB_2139682

p38 MAPK (D13E1) XP Rabbit mAb Cell Signaling Technology Cat# 8690; RRID: AB_10999090

c-IAP1 Rabbit polyclonal Antibody Cell Signaling Technology Cat# 4952; RRID: AB_2063660

c-IAP2 (58C7) Rabbit mAb Cell Signaling Technology Cat# 3130; RRID: AB_10693298

XIAP Rabbit polyclonal Antibody Cell Signaling Technology Cat# 2042; RRID: AB_2214870

PARP Rabbit polyclonal Antibody Cell Signaling Technology Cat# 9542; RRID: AB_2160739

Caspase-8 Rabbit polyclonal Antibody Cell Signaling Technology Cat# 4927; RRID: AB_2068301

Alexa Fluor 488 Goat anti-Rat IgG

(Immunofluorescent imaging)

Life Technologies Cat# A11006; RRID: AB_141373

Alexa Fluor 546 Goat anti-Rabbit

(Immunofluorescent imaging)

Life Technologies Cat# A11010; RRID: AB_143156

Goat anti-Mouse IgG Alexa Fluor 488

(Immunofluorescent imaging)

Life Technologies Cat# A11029; RRID: AB_138404

NA19L Anti-replication Protein A (Ab-3) Mouse mAb

(RPA34-20)

Merck (Calbiochem) Cat# NA19L; RRID: AB_565123

Ki-67 (SP6) Rabbit mAb Neomarkers / Lab vision Corporation Cat# RM9106; RRID: AB_2335745

Cleaved caspase-8 Rabbit polyclonal Antibody Novus Biologicals Cat# NB100-56116; RRID:

AB_837874

Chk1 [p Ser317] Rabbit polyclonal Antibody Novus Biologicals Cat# NB100-92499; RRID:

AB_1216466

p-Chk2 [p Thr68] Rabbit polyclonal Antibody Novus Biologicals Cat# NB100-92502; RRID:

AB_1216474

gamma H2AX [p Ser139] Rabbit polyclonal Antibody

(Immunofluorescent imaging)

Novus Biologicals Cat# NB100-2280; RRID:

AB_10000580

gamma H2AX (p Ser139) Rabbit polyclonal Antibody Novus Biologicals Cat# NB100-384; RRID: AB_350295
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SHARPIN Rabbit polyclonal Antibody Proteintech Cat# 14626-1-AP; RRID: AB_2187734

Caspase-8 p18 Antibody (H-134) Santa Cruz Biotechnology Cat# sc-7890; RRID: AB_2068330

p-c-Jun Goat polyclonal Antibody (Ser 63/73) Santa Cruz Biotechnology Cat# sc-16312; RRID: AB_2129883

p-Akt1/2/3 Rabbit polyclonal Antibody (Ser 473) Santa Cruz Biotechnology Cat# sc-7985-R; RRID: AB_667741

Akt1/2 Goat polyclonal Antibody (N-19) Santa Cruz Biotechnology Cat# sc-1619; RRID: AB_671713

53BP1 Rabbit polyclonal Antibody (H-300)

(Immunofluorescent imaging)

Santa Cruz Biotechnology Cat# sc-22760; RRID: AB_2256326

Human HOIP/RNF31 Antibody R&D Systems Cat# AF8039

Anti-BrdU antibody, Mouse Monoclonal (clone BU-33) Sigma-Aldrich Cat# B8434; RRID: AB_476811

Anti-actin N terminal antibody Sigma Aldrich Cat# A2103; RRID: AB_476694

Anti-ATM Mouse mAb Sigma-Aldrich Cat# A1106; RRID: AB_796190

C15 (anti-caspase 8) Prof. Peter H Krammer (DKFZ, Heidelberg) N/A

1C4 (anti-FADD) Prof. Peter H Krammer (DKFZ, Heidelberg) N/A

Human HOIL-1 Antibody Prepared in house Haas et al., 2009

Bacterial and Virus Strains

lentiviral particles for caspase-8 Santa Cruz Cat# sc-29930-V

lentiviral particles for control Santa Cruz Cat# sc-108080

Biological Samples

Liver tissue from mice after Vitamin E diet This paper N/A

Liver tissue from mice after BHA diet This paper N/A

Liver tissue from mice after two-third partial hepatectomy Speicher et al., 2014 N/A

Liver Tissue from mice after LPS/D-Gal treatment This paper N/A

Liver tissue from mice after Doxorubicin treatment This paper N/A

Liver tissue from various mutant mice and intercrossings Vick et al., 2009, Vucur et al., 2013,

Olayioye et al., 2005, Kang et al., 2008,

Das et al., 2011, Dillon et al., 2014,

this paper

N/A

Chemicals, Peptides, and Recombinant Proteins

Doxorubicin Sigma-Aldrich Cat# D1515

DMSO Sigma-Aldrich Cat# 276855

Q-VD-OPH Sigma-Aldrich Cat# SML0063

Necrostatin1 Sigma-Aldrich Cat# N9037

D-(+)-Galactosamine Sigma-Aldrich Cat# G0500

Lipopolysaccharide Sigma-Aldrich Cat# F3665

Buprenorphine MSD Sharp & Dohme GmbH NDC 12496-0757-5

DAPI Life

Technologies

Cat# D1306

Puromycin (CAS 53-79-2) Santa Cruz Cat# sc-205821

Caspase 8 inhibitor (Z-IETD-FMK) Selleckchem Cat# S7314

ATM kinase inhibitor Ku-55933 Selleckchem Cat# S1092

JNK inhibitor SP600125 Selleckchem Cat# S1460

Caspase 1 inhibitor (YVAD-CMK) Merck (Calbiochem) Cat# 400012

Critical Commercial Assays

LIVE/DEAD Fixable Dead Cell Stain Kit Invitrogen Cat# L23102

RNeasy Mini Kit Qiagen Cat# 74106

Quantitect Reverse

Transcription Kit

Qiagen Cat# 205313

Fast Start SYBR Green Master Rox Roche Cat# 04913850001

TaqMan� Copy Number Assays Thermo Fisher Cat# 4400291

Human Wwox Thermo Fisher Cat# 4400291

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human Spata22 Thermo Fisher Cat# 4400291

Human Fhit Thermo Fisher Cat# 4400291

Human Fgfr1 Thermo Fisher Cat# 4400291

Human Fgr Thermo Fisher Cat# 4400291

Murine Wwox Thermo Fisher Cat# 4400291

Murine Spata22 Thermo Fisher Cat# 4400291

Murine Fhit Thermo Fisher Cat# 4400291

Murine Fgfr1 Thermo Fisher Cat# 4400291

Murine Fgr Thermo Fisher Cat# 4400291

Mouse DNA

Microarray 4x 44K

Agilent Cat# G4122F

Deposited Data

Mouse RNA expression data This paper The accession number for the data

reported in this paper is:

GSE75730

Datasets for Gene Set Enrichment Analysis (GSEA) Molecular Signatures Database http://www.broadinstitute.org

Clinical and RNA sequencing data from human HCC The Cancer Genome Atlas (TCGA) https://tcga-data.nci.nih.gov/

Methylation data from human HCC TCGA, via cBioPortal http://www.cbioportal.org/

Experimental Models: Cell Lines

U2OS Massimo Lopes N/A

p19-/- MEFs Emmanuel Dejardin N/A

Experimental Models: Organisms/Strains

JNK1/2flox/flox Roger J. Davis N/A

Mcl-1flox/flox Joseph T. Opferman N/A

Tak1Dhep Tom Luedde N/A

Casp8Dhep Tom Luedde N/A

Tak1/Casp8Dhep Tom Luedde N/A

Tak1Dhep/RIPK3-/- Tom Luedde N/A

Xiap�/� Philip Jost N/A

caspase 8 D387 David Wallach N/A

cFLIPDhep Jörn M Schattenberg

TNFR1-/- Mathias Heikenw€alder N/A

TNFR1/2-/- Jackson JAX: 003243

Ripk1-/-/Ripk3�/�/Casp8�/� Douglas Green N/A

Ripk1-/-/Ripk3�/�FADD�/� Douglas Green N/A

Ripk3�/�/Casp8�/� Douglas Green N/A

Ripk3�/� Douglas Green/ Tom Luedde N/A

RIPK1KD Douglas Green N/A

Oligonucleotides

Murine Mcl-1

Fwd TCAAAGATGGCGTAACAAACTGG

Rev CCCGTTTCGTCCTTACAAGAAC

This paper N/A

Murine Tnf-a

Fwd CATCTTCTCAAAATTCGAGTGACAA

Rev TGG GAGTAGACAAGGTACAACCC

This paper N/A

Murine Trail

Fwd CGGGCAGATCACTACACCC

Rev TGTTACTGGAACAAAGACAGCC

This paper N/A

Murine TrailR

Fwd AGTAGTGCTGCTGATTGGAG

Rev CCTGTTTTCTGAGTCTTGCC

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Murine Fas

Fwd TGCACCCTGACCCAGAATAC

Rev GCCAGGAGAATCGCAGTAGAA

This paper N/A

Murine FasL

Fwd GCAAATAGCCAACCCCAGTACAC

Rev GCCACCTTTCTTATACTTCACTCCAG

This paper N/A

Murine Tnfr1

Fwd CACCGTGACAATCCCCTGTAA

Rev TTTGCAAGCGGAGGAGGTAG

This paper N/A

Murine Tnfr2

Fwd ACAAAGTACCAAGGGTGGCA

Rev GGGCTTCTTTTTCCTCTGCAC

This paper N/A

Murine IL-6

Fwd TAGTCCTTCCTACCCCAATTTCC

Rev TTGGTCCTTAGCCACTCCTTC

This paper N/A

Murine IL-1a

Fwd CGA AGC TCT CCG TAC ATT CC

Rev TAA GGA CGG GAG GGA GAA AG

This paper N/A

Murine IL-1b

Fwd TAA GGA CGG GAG GGA GAA AG

Rev GAT CCA CAC TCT CCA GCT GCA

This paper N/A

Murine IL-18

Fwd GAC TCT TGC GTC AAC TTC AAG G

Rev CAG GCT GTC TTT TGT CAA CGA

This paper N/A

Murine Ifn-g

Fwd GCA TCC AAA AGA GTG TGG AG

Rev GCA GGC AGG ACA ACC ATT AC

This paper N/A

Murine Gadd45a

Fwd AGC ACG CAA AAG GTC ACA TTG

Rev GGG AAA GCA CTG CAC GAA CT

This paper N/A

Murine Actin

Fwd GTGGGCCGCCCTAGGCACCA

Rev CTCTTTGATGTCACGCACGATTTC

This paper N/A

Murine GAPDH

Fwd CCACCCCAGCAAGGAGACT

Rev GAAATTGTGAGGGAGATGCT

This paper N/A

Murine Rad51

Fwd CGGGAGTTGGTGGGTTATCC

Rev CCGGCACATCTTGGTTTATTTGT

This paper N/A

Murine Exo1

Fwd ATGGGGATTCAAGGGTTACTTCA

Rev AGCCAACAGTAGGTATCCACAG

This paper N/A

Murine Ddit3

Fwd CTCGCTCTCCAGATTCCAGTC

Rev CTTCATGCGTTGCTTCCCA

This paper N/A

Murine PolE2

Fwd TCCTCGAACATGATCGAACGA

Rev ACGTGGAATATCAAAAGCTCCAA

This paper N/A

Murine PolQ

Fwd GCTTGGTCACGTCTTGGAAG

Rev GGGCAAAATAAACAACGCTTTCT

This paper N/A

Murine Ddb1

Fwd ATGTCGTACAACTACGTCGTAAC

Rev CTGAAGTAAAGTGTCCGGTCAC

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Murine Chek2

Fwd CTGAAGTAAAGTGTCCGGTCAC

Rev CACCACCCGGTCAAATAGTTC

This paper N/A

Murine Lig1

Fwd CCAGCTCATAGTCCCCTCTGA

Rev GTCTTGGCACCTCTAGCAGG

This paper N/A

Human Actin

Fwd ATGGCCCTGTGCCTTAGTAG

Rev GGTCTCAAACATGATCTGGG

This paper N/A

Human GAPDH

Fwd CCT GGT CAC CAG GGC TGC

Rev CCG TTC TCA GCC TTG ACG G

This paper N/A

Human Rad51

Fwd TTTGGTGAGTTTCCCGCTGTC

Rev AACTTCTTTGCTAAGCTCGGAG

This paper N/A

Human Exo1

Fwd CCTCGTGGCTCCCTATGAAG

Rev AGGAGATCCGAGTCCTCTGTAA

This paper N/A

Human Ddit3

Fwd GGAAACAGAGTGGTCATTCCC

Rev CTGCTTGAGCCGTTCATTCTC

This paper N/A

Human PolE2

Fwd TGAGAAGCAACCCTTGTCATC

Rev TCATCAACAGACTGACTGCATTC

This paper N/A

Human PolQ

Fwd ACCTCTCCATCAAGGCATTTCT

Rev GCAAAAGTTCCAGCAGATACC

This paper N/A

Human Ddb1

Fwd ACCGGACACTTTACTTCGGC

Rev TCGGCGGTGACCACATAGA

This paper N/A

Human Chek2

Fwd TGAGAACCTTATGTGGAACCCC

Rev ACAGCACGGTTATACCCAGC

This paper N/A

Human Lig1

Fwd ACAGTTCCCCATCAGGGATTC

Rev CTCTGTGAGGCTTTCTTTCGG

This paper N/A

Human Gpnmb

Fwd AAGTGAAAGATGTGTACGTGGTAACAG

Rev TCGGATGAATTTCGATCGTTCT

This paper N/A

Human Tinag

Fwd CGAAAGCTTCAGACACATGC

Rev TTTCTTTCTGCCCTTGTGCT

This paper N/A

Human Plk1

Fwd GCTTAATGACGAGTTCTTTACTTC

Rev TCGAAAACCTTGGTGGAATG

This paper N/A

Human Bcl2a1b

Fwd ACGACAGCAAATTGCCCCGGAT

Rev AAGCCATTTTCCCAGCCTCCGT

This paper N/A

Human Tpx2

Fwd CGAAAGCATCCTTCATCTCC

Rev TCCTTGGGACAGGTTGAAAG

This paper N/A

Human CD44

Fwd CCGCTATGTCCAGAAAGGA

Rev CTGTCTGTGCTGTCGGTGAT

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human Glypican3

Fwd CCTTTGAAATTGTTGTTCGCCA

Rev CCTGGGTTCATTAGCTGGGTA

This paper N/A

Human Epcam

Fwd AATCGTCAATGCCAGTGTAC

Rev TCTCATCGCAGTCAGGATCATAA

This paper N/A

Human Afp

Fwd AACTATTGGCCTGTGGCGAG

Rev TCATCCACCACCAAGCTG

This paper N/A

D3S1263-Fwd (FAM labeled)

CTG TTG ACC CAT TGA TAC CC

Thermo Fisher N/A

D3S1263-Rev (HEX labeled)

TAA AAT CAC AGC AGG GGT TC

Thermo Fisher N/A

D3S1289-Fwd (HEX labeled)

AAA GCA ACT TGT AAG AGA GCA

Thermo Fisher N/A

D3S1289-Rev (FAM labeled)

CTC CTA GAT ATA ATC ACT GGC A

Thermo Fisher N/A

Software and Algorithms

Copy Caller Software Life Technologies https://www.thermofisher.com

FlowJo sofware TreeStar https://www.flowjo.com

Summit software v4.3 Beckman Coulter https://www.beckman.com

GeneMapper software Applied Biosystems https://www.thermofisher.com

NDP Viewer v1.2.36 NDP View https://www.hamamatsu.com

Tissue IA image 2.0 Leica Biosystems www.leicabiosystems.com

GeneSpring GX Agilent http://www.genomics.agilent.com

GESA Molecular Signatures Database http://www.broadinstitute.org

Xcalibur software 2.2 Thermo Fisher Scientific https://www.thermofisher.com

R statistical programming language 3.2.2 R Foundation for Statistical Computing https://www.R-project.org/

cgdsr R package (R-Based API for Accessing the

MSKCC Cancer Genomics Data Server (CGDS))

CRAN repository https://CRAN.R-project.org/

package=cgdsr

SCAN.UPC R package Bioconductor project https://bioconductor.org/packages/

SCAN.UPC

Other

ABI 3130XL Genetic Analyzer Applied Biosystems https://www.thermofisher.com

Stella 3200 imaging system Raytest https://www.raytest.com/

Nano Zoomer C9600 Virtual Slide Light microscope

scanner

Hamamatsu https://www.hamamatsu.com
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Achim

Weber (achim.weber@usz.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Material
Snap-frozen and formalin-fixed, paraffin-embedded (FFPE) human liver tissue samples were retrieved from the archives and the bio-

bank of the Department of Pathology andMolecular Pathology, University Hospital Zurich, formorphological andmolecular analyses.

The study was and approved by the local ethics committee (‘‘Kantonale Ethikkommission Z€urich’’, application numbers StV26/2005

and KEK-ZH-Nr. 2013-0382).

Mice
All animal experiments conformed to the relvant regulatory standards and were approved by the Swiss Veterinary Office (134/2014,

217/2012, 63/2011 Zurich). Animals were maintained under pathogen-free conditions and experiments were performed in
Cancer Cell 32, 342–359.e1–e10, September 11, 2017 e6

mailto:achim.weber@usz.ch
https://www.thermofisher.com
https://www.flowjo.com
https://www.beckman.com
https://www.thermofisher.com
https://www.hamamatsu.com
http://www.leicabiosystems.com
http://www.genomics.agilent.com
http://www.broadinstitute.org
https://www.thermofisher.com
https://www.R-project.org/
https://CRAN.R-project.org/package=cgdsr
https://CRAN.R-project.org/package=cgdsr
https://bioconductor.org/packages/SCAN.UPC
https://bioconductor.org/packages/SCAN.UPC
https://www.thermofisher.com
https://www.raytest.com/
https://www.hamamatsu.com


accordance to the guidelines of the Swiss Animal Protection Law, Veterinary Office, Canton Zurich. Generation of mice with hepa-

tocyte-specific Mcl-1 knock-out (homozygous: AlbCretg/+/Mcl-1flox/flox (Mcl-1Dhep), heterozygous AlbCretg/+/Mcl-1flox/wt) (Vick et al.,

2009), with hepatocyte-specific c-Flip knockout and Tak1Dhep, Casp8Dhep, Tak1/Casp8Dhep and Tak1Dhep/RIPK3-/- mice (Vucur et al.,

2013), Xiap�/� mice (Olayioye et al., 2005), and caspase 8 D387-mutant mice (Kang et al., 2008), was as described (see also Table

S1). TNFR1-/- and TNFR1/2-/- mice were purchased from Jackson Laboratories and TNFR1-/- mice intercrossed to Mcl-1Dhep mice

and bred in JNK1/2Dhep mice were generated by crossing with JNK1/2loxP/loxP mice (Das et al., 2011). Alb-Cre mice were bred

in house (Haybaeck et al., 2009). Ripk1-/-/Ripk3�/�/Casp8�/�, Ripk3�/�/Casp8�/� and Ripk3�/� mice were previously described

(Dillon et al., 2014).

Cell Lines and Drug Treatments
U2OS and HepG2 were grown in DMEM containing 10% FBS and 1% penicillin/streptomycin. Cells were transfected with lentiviral

particles for caspase-8 (Santa Cruz, sc-29930-V) or control particles (Santa Cruz, sc-108080) according to the manufacturer’s pro-

tocol and cells stably expressing the shRNA were isolated by puromycin selection (Santa Cruz). Cells were treated as indicated with

Doxorubicin (Sigma) and for inhibition experiments, cells were pretreated for 4h with 10mM of the ATM inhibitor KU-55933

(Selleckchem) or pretreated with the JNK inhibitor (SP600125, Selleckchem) at 25mM and Doxorubicin added and cells incubated

for indicated time. Cells 2h post irradiation with 10Gy were used as controls.

METHOD DETAILS

Human Cohort Studies
For evaluation of liver function tests as potential predictors of HCC development, HCV patients with confirmed diagnosis of HCC and

HCV patients without HCC were selected from the patient database as matched pairs according to MELD score for the given time

point before the HCC diagnosis. TheMELD score was chosen as the current international standard for assessment of severity of liver

disease e.g. in liver transplant organ allocation and is based on laboratory values bilirubin, creatinine and INR. HCV patients who un-

derwent liver transplantation (Swiss Hepato-Pancreato-Biliary Center, University-Hospital Zurich) due to liver tumorswere chosen for

the transplantation study, and compared to HCV patients which underwent liver transplantation, but did not develop liver tumors.

Mouse Strains and Intercrossings
Live damage of mice at the indicated age and tumor incidence analyzed at 12 months of age for Mcl-1Dhep and Mcl-1Dhep/TNFR1-/-

mice and 33-35 weeks of age for TAK1Dhep mice and intercrossings. For overview, please also see Table S1.

Measurement of Serum Parameters
The analysis of aminotransferases (ALT/AST) and bilirubin was performed with mouse serum on a Roche Modular System (Roche

Diagnostics) with a commercially available automated colorimetric system at the Institute of Clinical Chemistry, University Hospital

Zurich, using a Hitachi P-Modul (Roche).

RNA Isolation from Liver Tissue
Total RNA from snap-frozen human liver biopsies or mouse livers was isolated using RNeasy Mini Kit (Qiagen) according to the man-

ufacturer’s protocol. The quantity and quality of the RNA was determined spectroscopically using a Nanodrop (Thermo Scientific).

Real-time PCR
Total RNA (1 mg) was reversely transcribed into cDNA using Quantitect Reverse Transcription Kit (Qiagen) according to the manufac-

turer’s protocol. FormRNA expression analysis real-time PCR was performed (reactions in duplicates) using Fast Start SYBR Green

Master Rox (Roche). Real-time PCR was performed on an ABI PRISM 7900 HT and VIIA7 Fast Real-Time PCR System (AB). Data

were generated and analyzed using SDS 2.4 and RQmanager 1.2 software.mRNA expression levels were normalized to the house-

keeping genes Hprt for human samples, and Gapdh for murine samples.

DNA Extraction
Genomic DNA was isolated from 2 mm sections of murine or human FFPE slides by scrapings and tissue digested with Proteinase K

overnight. After Proteinase K inactivation for 10min at 95�CDNA concentration was determined spectroscopically using a Nanodrop

(Thermo Scientific) and appropriate genomic DNA was directly used for PCR reactions in duplicates.

Taqman Copy Number Analysis
Taqman copy number analysis was carried out as multiplex PCR in duplicates with 20 ng DNA per reaction and Ttert as internal refer-

ence according to the manufacturer’s protocol.Wwox, Spata22, Fhitwere selected as described markers from common fragile sites

in humans and Fgfr1 and Fgrwere selected as genes of interest in previously published areas of genetic instability in Tak1Dhep-/- mice

(Bettermann et al., 2010). Data analysis was performed using Copy Caller Software (Life Technologies).
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Flow Cytometry for DNA Damage
Primary murine hepatocytes were isolated by the two-step collagenase perfusion method, purified by Percoll gradient and finally

collected in RPMI 1640 medium for flow cytometry procedures. Next, hepatcytes were fixed and permeabilized, followed by

incubation with antibodies against gH2AX (#9718; Cell Signaling Technology) and RPA (NA19L, Calbiochem) and suitable secondary

antibodies. DNA was stained with 1 mg/ml DAPI. Samples were measured on a Cyan ADP flow cytometer (Beckman Coulter) and

analyzed with Summit software v4.3 (Beckman Coulter).

Partial Hepatectomy (PHX)
Eight- to twelve-week-old male mice with indicated genotype received food and water ad libitum before surgery. Mice were anaes-

thetized by inhalation of isoflurane (2%). PHX was performed between 8 and 12 a.m..Three liver lobes, including the previously

emptied gall bladder, were removed. After surgery, mice were injected with buprenorphine for analgesia (Temgesic; Essex Chemie

AG, Luzern, Switzerland; 0.1 mg/kg of body weight). Mice were euthanized by CO2 inhalation, and the remaining liver was harvested

at different time points after PHX for further analysis (Speicher et al., 2014).

BrdU Assay
Proliferating cells were identified by 5-bromo-20-deoxyuridine (BrdU) labelling. For this purpose, BrdU (Sigma, Buchs, Switzerland;

250 mg/g body weight) was injected i.p. prior to PHX. Two hours later, PHXwas performed andmice were sacrificed at indicated time

points. Detection of BrdU-positive cells was performed by immunofluorescence stainings using a peroxidase-coupled antibody

against BrdU (1:30; Roche, Switzerland) (Speicher et al., 2014).

Immunoprecipitation
Cells were lysed in 1 ml lysis buffer (20 mM Tris HCl, pH 7.4, 137 mM NaCl, 2 mM EDTA, 10% glycerine, 1% Triton X-100, 1 mM

PMSF, Protease Inhibitor mix (Roche)) for 30 min on ice. Afterwards, the samples were centrifuged at 14.000 rpm for 15 min at

4�C. 50 ml supernatant was used as lysate control. The remaining supernatant was immunoprecipitated by mixing with 30 ml protein

A-Sepharose and 2 mg of C15 antibodies. Immunoprecipitations were performed for at least 2h at 4 �C and washed four times

with PBS. Samples were subjected to SDS PAGE (Biorad) and transferred to Hybond nitrocellulose membrane using the Western

Blot system (Biorad). Membranes were blocked with 5% nonfat dry milk in PBS-T (PBS + 0.05% Tween 20) for 1 h, washed with

PBS-T 3x for 10 min and incubated with the primary antibody in PBS/Tween for 1h at room temperature. C15 (anti-caspase 8)

and 1C4 (anti-FADD) antibodies were a kind gift of Prof. Peter H. Krammer (DKFZ, Heidelberg). The following antibodies were

used: anti-RIPK1 (D94C12), Cell Signaling, anti-Casp3 (9662), Cell Signaling and anti-Actin (A2103), Sigma.

Fragment Length Analysis for Allelic Imbalance
For analysis of AI the markers D3S1263 and D3S1289 at known common fragile sites (Gorgoulis et al., 2005) were selected. Four

distinct regions (non-inflamed) of interest per liver-needle biopsy were identified by pathologists and gDNA isolated from 2 mm

unstained consecutive FFPE sections. PCR products were separated by capillary electrophoresis using the ABI 3130XL Genetic

Analyzer (Applied Biosystems) and results were analyzed with the help of GeneMapper software (Applied Biosystems). AI was iden-

tified by calculating the fluorescence ratios of heterozygous (informative) markers for each biopsy. The following primers were used:

D3S1263-FwdCTG TTGACCCAT TGA TACCC (FAM labeled),D3S1263-Rev TAA AATCACAGCAGGGGT TC,D3S1289-Fwd AAA

GCA ACT TGT AAG AGA GCA (HEX labeled), D3S1289-Rev CTC CTA GAT ATA ATC ACT GGC A.

Pulse Field Gel Electrophoresis (PFGE)
PFGE was performed as published previously (Neelsen et al., 2013). Briefly, snap-frozen liver tissue was directly put into 4% form-

aldehyde without thawing and incubated for 10min at 37�C. Tissue wasmechanically dissociated (gentleMACS Dissociator, Miltenyi

Biotec), filtered through a 70 mmcell strainer (Falcon) and 2.5x105 cell were embedded in a 0.8% agarose plus, digested in lysis buffer

(100mMEDTA, 1% (wt/vol) sodium lauryl sarcosyne, 0.2% (wt/vol) sodium deoxycholate, and 1mg/ml proteinase K) at 37�C for 48 h,

and washed in 10 mM Tris-HCl, pH 8.0, and 100 mM EDTA. Electrophoresis was performed at 14�C in 0.9% (wt/vol) Pulsed Field

Certified Agarose (Bio-Rad Laboratories) containing Tris-borate/EDTA buffer in a CHEF DR III apparatus (9 h, 120�, 5.5 V/cm,

30-18 s switch time; 6 h, 117�, 4.5 V/cm, 18-9 s switch time; 6 h, 112�, 4 V/cm, 9-5 s switch time; Bio-Rad Laboratories). The gel

was stained with ethidium bromide and imaged on an Alpha Innotech Imager.

Immunoblot Analysis
Snap-frozen liver tissue was dissociated (gentle MACS Dissociator, Miltenyi Biotec) and homogenates (10%) were prepared in RIPA

buffer (50 mM Tris; 1% NP40; 0.25% Deoxycholic acid sodium salt; 150 mM NaCl; 1 mM EGTA) containing Halt Protease and

Phosphatase Inhibitor Cocktail (Thermo Scientific). Quantification with a BCA protein assay kit (Thermo Scientific) according to the

manufacturer’s manual was followed by denaturation of 80 mg protein in Laemmli buffer containing 5% b-mercaptoethanol and

separated by gel electrophoresis (Mini Protean Gels, Bio Rad) and blotted by semi-dry blotting (Trans-Blot Turbo Transfer, Bio Rad)

onto nitrocellulose membranes (Bio Rad) and stained with Ponceau Red. Membranes were blocked in 5% milk/PBS-T for at least

1 hr at RT. Primary antibodies against gH2AX, p-p53, GAPDH, PCNA, pATM, pCHK1, pJNK1/2, pCHK2, pATR, pBRCA1, cleaved-

Casp1, cleaved-Casp3, cleaved-Casp8, RIPK1, RIPK3, total-JNK1/2, p-p38, p38, cIAP1, cIAP2, XIAP (all Cell Signaling Technology),
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total-Casp8, p-cJUN, pAKT1/2/3, total AKT (SantaCruz), total-ATM (Sigma), total-cJUN (BD Bioscience), HOIP (R&D), SHARPIN (Pro-

teintech), HOIL-1 (Walczak lab) and Casp8 C15 (provided by Dr. P. Krammer, Heidelberg), were incubated at 4�C overnight under

shaking conditions. Incubationwith the secondary antibody (HRP-anti rabbit IgG, 1:5000; Promega) was performed under shaking con-

ditions for 1 hr. Detection was achieved with Clarity Western ECL Substrate (Bio Rad) using Stella 3200 imaging system Raytest.

Histology and Immuno Stainings
Sections (2 mm) of livers (fixed in 4% paraformaldehyde and paraffin-embedded) were stained with Hematoxylin/Eosin or various an-

tibodies. Incubation in Ventana buffer and staining was performed on a NEXES immunohistochemistry robot (Ventana Instruments)

using an IVIEW DAB Detection Kit (Ventana) or on a Bond MAX (Leica). Immunostainings were performed as described before (Wolf

et al., 2014) with antibodies against the following proteins: Ki67, 1:200 dilution (SP6, NeoMarkers / Lab Vision Corporation); gH2AX,

1:300 dilution (Novus Biologicals); p-cJUN, 1:100 (Abcam); cleaved-Caspase8, 1:500; p-CHK1, 1:50 and p-CHK2, 1:500 (Novus

Biologicals). For virtual microscopy and archiving, histological and immunohistochemical images were digitalized using a Nano

Zoomer C9600 Virtual Slide Light microscope scanner by Hamamatsu using NDP, View Software, version 1.2.36. Alternatively, for

quantification of stainings, slides were scanned using a SCN 400 slide scanner (Leica) and analyzed using Tissue IA image analysis

software (Slidepath, Leica).

RNA Microarray
An Agilent one-color microarray-based gene expression analysis (mouse DNA Microarray 4x44K) was performed according to the

manufacturer’s protocol. Two- and twelve-months-old mice were analyzed. For 12 months, HCC and corresponding non-tumor tis-

sue (n=3) from the same animal (n=5) as well as livers from Cre-negative littermates as controls (n=3) were analyzed. For 2 months,

Mcl-1Dhep (AlbCretg/+Mcl-1flox/flox), hemizygous Mcl-1Dhep (AlbCretg/+/Mcl-1flox/wt) and Cre-negative controls were analyzed. Gene

expression was quantified using Agilent Feature Extraction Software Version 9.5.3.1. Gene Ontology microarray data analysis: Lists

of significantly differentially expressed genes were investigated in respect to enrichment of GeneOntology categories using theGene

Ontology Browser as implemented in GeneSpring 7.3. Fisher’s exact test was used to showwhethermore genes belonging to aGene

Ontology category are found in the list under investigation than in a randomized gene list of the same size.

Gene Set Enrichment Analysis (GSEA)
Gene sets from the biological process gene ontology for GSEA analysis http://www.broadinstitute.org were downloaded from the

Molecular Signatures Database or integrated manually into the GSEA for human HCV-induced hepatitis gene expression sets (Sar-

asin-Filipowicz et al., 2008) or alcohol-induced hepatitis (Affo et al., 2013). GSEA tests whether genes sets were overrepresented in

microarray expression data were performed with standard settings.

Immunofluorescence Stainings and Confocal Microscopy
U2OS cells were seeded on cover slips and grown to 50-80% confluence for 24 h. Cells were incubated with medium or 1 mM doxo-

rubicin for 30 min and fixed with 4% fomaldehyde for 1 h. Cells were washed with PBS and Tris buffer (100 mM Tris, pH=7.4, 50 mM

NaCl), permeabilized with 0.5% Triton X-100 in PBS for 10 min, incubated in blocking solution (PBS, pH=7.4, 1% BSA, 2% FCS) for

20 min, incubated with primary antibody in blocking solution for 12 h at 4�C, washed twice with PBS, incubated with secondary anti-

body in blocking solution for 3 h, washed with PBS, incubated with 1 mg/ml DAPI (life technologies) for 5-15 min, washed 4 times with

PBS and mounted using Vectashield (Vector Laboratories). Primary antibodies and concentrations used for immunofluorescence

were gH2AX (Abcam, ab26350, 1:200), gH2AX (Novus Biologicals, NB100-2280, 1:200), RIP1 (BD Biosciences, 610459, 1:50), Cas-

pase 8-C15 and 53BP1 (Santa-Cruz, sc-22760, 1:50). Secondary, Alexa-488 or Alexa-546 labelled antibodies were all from life tech-

nologies and used at a 1:500 dilution. Imaging was performed on a Leica SP8 confocal microscope equipped with 405, 488, 552, and

638 nm diode lasers and a 63x oil objective (HC PL APO CS2 / 1.40 oil) using LAS software (Leica Microsystems, Wetzlar Germany)

and processed using ImageJ.

Subcellular Fractionation
Cells grown on dishes were washed twice with ice-cold PBS and carefully scraped in PBS, centrifuged at 1000 x g for 2 min at 4�C
and resuspended in 300 ml buffer A (20 mM Tris/HCl pH 7.9, 10 mM NaCl, 1.5 mM MgCl2, 10 % Glycerol, 0.5 mM DTT, 0.5 mM

AEBSF, 1 mM Na3VO4, 1 mM Na2MoO4, 10 mM NaF, 10 mM K2HPO4, 20 mM glycerol-2-phosphate, phosphatase inhibitor tablet

(Roche)). After incubation on ice for 10 min, swelling of cells was monitored by microscopy using 0.4% trypan blue staining. For

disruption of the cytoplasm membrane cells were treated with 0.125% NP-40 and incubated on ice for 5 min. After centrifugation

at 2000 x g for 10 min at 4�C the supernatant was kept as cytosolic fraction (additional centrifugation at 13000 x g for 10 min at

4�C freed the lysate from cell debris). Nuclear fractions were resuspended in 100 ml buffer C (20 mM Tris/HCl pH 7.9, 420 mM

NaCl, 1.5 mM MgCl2, 10% gycerol, 0.5 mM DTT, 0.2 mM EDTA, 0.5 mM AEBSF, 1 mM Na3VO4, 1 mM Na2MoO4, 10 mM NaF,

10 mM K2HPO4, 20 mM glycerol-2-phosphate, phosphatase inhibitor tablet (Roche)). After incubation for 15 min on ice with occa-

sional vortexing N1 fractions were collected by centrifugation at 13000 x g for 10 min at 4�C. Pellets were resuspended in 50 ml buffer

E (20mMTris/HCl pH 7.9, 150mMNaCl, 1.5mMMgCl2, 10%glycerol, 0.5mMAEBSF, 1mMNa3VO4, 1mMNa2MoO4, 10mMNaF,

20 mM glycerol-2-phosphate, phosphatase inhibitor tablet (Roche), 1 ml Benzonase Nuclease (25 U/ml, Novagen) and 2%SDS). After

incubation for 30 min at 4�C with shaking N2 fractions were collected by centrifugation at 13000 x g for 10 min at 4�C.
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AQUA-Mass Spectrometry
Immunoprecipitates (sepharose beads) were suspended in 50 mM NH4HCO3 and cysteins were ß-thiomethylated by dithiothreitol

reduction (1 mM DTT, 56�C, 45 min) and subsequent S-Methyl methanethiosulphonate (MMTS) treatment (5 mM MMTS, 30 min).

Tryptic digestion was performed by addition of 0.5 mg Trypsin (Trypsin Gold, Promega) and incubated at 37�C for 24 h. AQUA pep-

tides for caspase 8, FADD, c-Flip and RIPK1 were spiked into the digestion solution in an absolute amount of 50 fmol of each peptide

as described previously (Schleich et al., 2015). Sequences of AQUA peptides could be received upon request. After digestion, the

supernatant was collected and dried down in a vacuum centrifuge. The peptides were redissolved in 5 ml 0.1 % trifluoroacetic

acid (TFA) and purified on ZIP-TIP, C18-nanocolumns (Millipore, Billerica, USA). Peptides were eluted in 7 ml 70% (v/v) acetonitrile

(ACN) and subsequently dried in a vacuum centrifuge. Dried samples were dissolved in 10 ml 2% ACN/0.1% TFA and separated

on a 75 mm I.D., 25 cm PepMap C18-column (Dionex, Sunnyvale, USA) applying a gradient from 2% to 45% ACN in 0.1% formic

acid over 120 min at 300 nl/min using an Ultimate 3000 Nano-HPLC (Thermo Scientific, San Jose, USA). Mass spectrometry was

performed on a hybrid dual-pressure linear ion trap/orbitrap mass spectrometer (LTQ Orbitrap Velos Pro, Thermo Scientific, San

Jose, USA) in exclusive orbitrap full MS mode (FTMS; resolution 60,000; m/z range 400-2000). Instrument control, data acquisition

and peak integration were performed using the Xcalibur software 2.2 (Thermo Fisher Scientific). Extracted ion chromatograms

derived from Orbitrap mass scans from each AQUA/target peptide pair were generated and the peak areas of the light and heavy

peptide were obtained by manual integration, respectively. The heavy to light ratio of each AQUA peptide pair was calculated and

the resulting absolute amount of the endogenous (light) peptide was determined.

Analysis of Data from Human Hepatocellular Carcinoma
Data mining was performed to assess the relevance of caspase 8 in HCC. All analyses were performed using the R statistical pro-

gramming environment, version 3.2.2. Publicly available data from the Cancer Genome Atlas (TCGA) project were used. Clinical data

and Level 3 RNA sequencing data were downloaded from the TCGA website (https://tcga-data.nci.nih.gov/ – files nationwidechil-

drens.org_LIHC.bio.Level_2.0.54.0 and unc.edu_LIHC.IlluminaHiSeq_RNASeqV2.Level_3.1.14.0, respectively). Methylation data

were downloaded via cBioPortal (http://www.cbioportal.org/) using the cgdsr R package on 11th November 2015. Patients with fi-

brolamellar hepatocellular carcinoma and combined hepatocellular and cholangiocarcinoma were excluded. The UPC (Universal

exPression Codes) method, as implemented by the SCAN.UPC R/Bioconductor package (Piccolo et al., 2013), was used to evaluate

whether genes within the TCGA dataset should be considered to be expressed in individual patients (UPC values > 0.5 indicating

expression of the gene). Count data from RNA sequencing were transformed using the formula log2 (x + 1) to better approximate

a normal distribution. Methylation data from cBioPortal were dichotomized using a percentage of methylation (b) cutoff of 0.3

(< 0.3 unmethylated, > 0.3 methylated). The log rank test was used to assess association with survival. For RNA expression, the me-

dian, the mean + 1 standard deviation (shown in the final figure), and the mean - 1 standard deviation were initially used as cutoffs to

separate patients into two groups according to the level of CASP8 expression; the p value shown in the final figure was corrected for

3 tests using the Bonferroni method. Spearman’s rank correlation coefficient was used to assess the correlation between genes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis
Statistical analysis was performed using GraphPad Prism software (version 5.0) or SPSS. All data are presented as mean ± SEM

and were analyzed by ANOVA with Bonferroni correction. Analysis of two samples was performed with Student t test, statistics

for HCC incidence were calculated using Fisher’s Exact test. Statistical significance is indicated as follows: ****p < 0.0001;

***p < 0.001; **p < 0.01; *p < 0.05; n.s. not significant.

Modelling of Mutation Rates Depending on Proliferative Activity
A rough calculation of the replication error rates depending on the replication rate inwild typemice andMcl-1Dhepmicewith low trans-

aminase levels and corresponding low proliferative activity or Mcl-1Dhep mice with high transaminase levels and corresponding high

proliferative activity. Modelling was based on proliferation rates determined by Ki67+ hepatocytes at 2 months of age revealing that

Mcl-1Dhep mice have about 10- to 25-fold higher Ki67 rates (see Figure 2). Calculation is based on the following assumptions: A wild

typemouse liver weighting 2 g consists of�2x108 hepatocytes, and assuming a proliferation index of 0.2 (Eldridge and Goldsworthy,

1996), 4x105 proliferating hepatocytes. Further, assuming an replication error rate of 10-8 per cell per generation (Tago et al., 2005),

and 24 h cycle duration (Alexiades and Cepko, 1996), taking Poisson distribution as basis, the expected number of replications errors

after 1 year of is 1.46 for wild typemice, 14.6 for Mcl-1Dhep mice with low hepatocyte proliferative activity, and 36.8 for Mcl-1Dhep mice

with high hepatocyte proliferative activity.

DATA AND SOFTWARE AVAILABILITY

Gene expression microarray data are deposited in the GEO database under accession number GSE75730.
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