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Sarah M. Hücker1,2, Zachary Ardern1,2, Tatyana Goldberg3, Andrea Schafferhans3,

Michael Bernhofer3, Gisle Vestergaard4, Chase W. Nelson5, Michael Schloter4,

Burkhard Rost3, Siegfried Scherer1,2, Klaus Neuhaus1,6*

1 Chair for Microbial Ecology, Technische Universität München, Freising, Germany, 2 ZIEL - Institute for

Food & Health, Technische Universität München, Freising, Germany, 3 Department of Informatics—

Bioinformatics & TUM-IAS, Technische Universität München, Garching, Germany, 4 Research Unit

Environmental Genomics, Helmholtz Zentrum München, Neuherberg, Germany, 5 Sackler Institute for

Comparative Genomics, American Museum of Natural History New York, New York, United States of

America, 6 Core Facility Microbiome/NGS, ZIEL - Institute for Food & Health, Technische Universität

München, Freising, Germany

* neuhaus@tum.de

Abstract

In the past, short protein-coding genes were often disregarded by genome annotation pipe-

lines. Transcriptome sequencing (RNAseq) signals outside of annotated genes have usually

been interpreted to indicate either ncRNA or pervasive transcription. Therefore, in addition to

the transcriptome, the translatome (RIBOseq) of the enteric pathogen Escherichia coli O157:

H7 strain Sakai was determined at two optimal growth conditions and a severe stress condi-

tion combining low temperature and high osmotic pressure. All intergenic open reading

frames potentially encoding a protein of� 30 amino acids were investigated with regard to

coverage by transcription and translation signals and their translatability expressed by the

ribosomal coverage value. This led to discovery of 465 unique, putative novel genes not yet

annotated in this E. coli strain, which are evenly distributed over both DNA strands of the

genome. For 255 of the novel genes, annotated homologs in other bacteria were found, and

a machine-learning algorithm, trained on small protein-coding E. coli genes, predicted that

89% of these translated open reading frames represent bona fide genes. The remaining 210

putative novel genes without annotated homologs were compared to the 255 novel genes

with homologs and to 250 short annotated genes of this E. coli strain. All three groups turned

out to be similar with respect to their translatability distribution, fractions of differentially regu-

lated genes, secondary structure composition, and the distribution of evolutionary constraint,

suggesting that both novel groups represent legitimate genes. However, the machine-learn-

ing algorithm only recognized a small fraction of the 210 genes without annotated homologs.

It is possible that these genes represent a novel group of genes, which have unusual features

dissimilar to the genes of the machine-learning algorithm training set.
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Introduction

The pathogenic E. coli strain O157:H7 Sakai (EHEC) was first isolated in 1996 from an out-

break in Japan [1]. When contaminated food is consumed, EHEC can cause bloody diarrhea

and the disease may progress to the life-threatening hemolytic uremic syndrome [2]. In addi-

tion to humans [3] and contaminated food, EHEC persists in many environments, such as soil

[4], plants [5], invertebrates [6], and cattle [7]. These environments represent various chal-

lenges requiring expression of a different set of bacterial genes [8]. Since there is no vaccina-

tion or targeted therapy available [9], it is important to better understand the biology of this

enteric pathogen in order to prevent infections.

In contrast to eukaryotic genomes, bacterial genomes are densely covered with annotated

protein-coding genes, e.g., 88.1% of the EHEC Sakai genome consists of protein-coding genes

according to the most recent genome annotation [1]. Nevertheless, it is still possible that inter-

genic regions harbor overlooked short genes [10, 11]. After sequencing a bacterial genome,

bioinformatics tools, such as GLIMMER [12] or RAST [13] are used for gene prediction and

annotation. Especially for short genes, these tools are biased in that open reading frames

(ORFs) shorter than 150 bp are often rejected [14] and in some cases are not even permitted

for database entry [15]. Thus, the sensitivity of automated annotation processes in predicting

short genes is quite low [16]. Additionally, the experimental detection of small proteins in pro-

teome studies is difficult: Many small proteins are lost during proteome purification and many

more are not detectable by classic mass spectrometry, because they do not produce enough

tryptic peptides of the proper size [17]. Therefore, small proteins have been largely ignored in

the past and our knowledge of their structures and functions is very limited [15]. Although

small proteins have recently come more into focus [18, 19], the majority of them still belong

to the ‘dark proteome’ lacking known folds or domains, thus rendering putative functional

assignments using bioinformatics tools impossible [20, 21].

The rise of next-generation sequencing technologies allows high-throughput investigation of

the expression status of genomes without any restriction to gene length. RNAseq strand-specifi-

cally determines the global transcriptome and widespread transcription outside of annotated

genes has become increasingly obvious [22–25]. In the past, these transcription signals were

generally interpreted as ncRNAs [26, 27] or just pervasive transcription without any biological

significance [28–30]. However, ribosomal footprinting (RIBOseq) can be used to determine the

coverage of RNA with ribosomes, indicating translation into a peptide of the associated RNA,

thus, facilitating the global investigation of the translatome [31, 32]. Even more, RIBOseq reads

usually show a triplet periodicity reflecting the codon-wise movement of the ribosome during

the translation process [31, 33]. Combining ribosomal footprinting with RNAseq allows estima-

tion of the translatability of an ORF, expressed by the ribosomal coverage value (RCV), which is

the ratio of the reads per kilobase (of gene) per million sequenced reads (RPKM) value for the

translatome over the RPKM value for the transcriptome. The RCV can be used to distinguish

ncRNA from translated mRNA, and RIBOseq allows the discovery of many non-annotated

short translated ORFs [33–39]. In bacteria, RIBOseq is less frequently applied. However, Baek

et al. [40] recently reported 130 novel short genes in Salmonella, the smallest gene encoding a

peptide of only 7 amino acids (AA). The translatome of EHEC strain EDL933 under a single

growth condition yielded 72 novel genes encoded in intergenic regions, 95% of them encoding

proteins smaller than 100 AA [11].

In this study, RIBOseq and RNAseq analysis of E. coli O157:H7 Sakai was compared at

three different growth conditions to identify translated ORFs in the intergenic regions. The

resulting candidates for novel genes were further characterized using bioinformatics analysis.
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Results

Translatome signals of putative novel genes

The transcriptome and the translatome of EHEC Sakai were determined at three different

growth conditions. Two standard lab conditions (lysogeny broth (LB) at 37˚C; Brain-heart-

infusion (BHI) at 37˚C) and combined cold and osmotic stress (COS; BHI supplemented with

4% NaCl at 14˚C) in two biological replicates each. Details about total read number and

amount of rRNA, tRNA, and mRNA are listed in S1 Table. All intergenic ORFs of at least 30

AA length were considered as potentially encoding a protein if significant RIBOseq signals

were found. A RIBOseq signal was assumed significant at a threshold of at least 1 RPKM, at

least 50% ORF coverage, and an RCV of at least 0.25. This analysis resulted in 1271 potentially

translated intergenic ORFs, which were manually examined for the following additional crite-

ria before consideration as candidate genes. First, ORFs with identical sequences to others

were removed. Next, every ORF with its mapped RIBOseq reads was visualized in the Artemis

viewer [41]. False positives were assumed if the signal could have been caused by neighboring

annotated genes and not by the putative ORF of interest and, as such were excluded. In the

case of same-strand overlapping ORFs in different reading frames, the ORF with the better fit

to the RIBOseq signal was selected. After individual inspection in which 806 candidates were

excluded, we arrived at a conservative estimate of 465 intergenic ORFs, which were considered

to show convincing evidence of translation in the RIBOseq experiments. The novel putative

genes were consecutively numbered in the order they appear in the EHEC genome (XECs001-

XECs465). The novel genes were approximately uniformly distributed within the whole

genome, occurring on both strands of the chromosome (Fig 1). Details about position on the

genome, length, RPKM value, coverage, and RCV of all novel genes are found in S2 Table.

Two-hundred-eleven (211) novel genes show translation at both optimal growth conditions

(LB and BHI at 37˚C), 210 novel genes are detected in LB only, and four are detected in BHI

control only. RIBOseq signals of 32 novel genes are shared under all three conditions but no

gene fulfills the criteria for candidate gene inclusion in BHI COS only (Fig 2 and S2 Table).

One example of a translated intergenic ORF for each growth condition is visualized in Fig 3.

The three novel gene candidates depicted are clearly covered by RIBOseq reads over their

entire length and it is considered highly unlikely that the translation signals are caused by

neighboring annotated genes. Additionally, the novel genes show sufficient RCVs of 0.51

(XECs135), 0.58 (XECs029) and 0.29 (XECs459), confirming translation.

Annotated homologs of novel genes

The amino acid sequences of the novel genes were used as a query to find annotated homolo-

gous proteins in other bacteria with blastp using default parameters against the RefSeq data-

base. With an e-value threshold of� 10−3, 55% of the putative proteins encoded in the novel

genes match an annotated homolog (Table 1). When a more stringent e-value threshold

of� 10−10 was applied, 42% of novel genes still possess annotated homologs. The hits with the

lowest e-value for each novel gene are listed in S3 Table. Interestingly, 34 of the novel genes

are annotated in other E. coli O157:H7 strains, of which twelve were found in the EHEC strain

EDL933 [42], which is the closest relative to strain Sakai used in this study. Additionally, eleven

of the novel genes detected in the intergenic regions of EHEC EDL933 in a previous study [11]

were confirmed for EHEC Sakai, as well.

Based on the blastp analysis with an e-value threshold of� 10−3, the 465 novel genes were

divided into two groups: one group of 255 ORFs, which have annotated homologs in other

bacteria (‘with annotated homolog’), and a second group of 210 ORFs for which no annotated
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homologs were found in the database (‘without annotated homolog’). Furthermore, the 250

shortest annotated genes of EHEC Sakai with an RCV of at least 0.25 in LB (S2 Table and S4

Table) were compared to the two groups of novel genes (see also below; S3 Table). Even

though the shortest annotated genes were used, they are on average longer (mean 192 bp) than

the novel genes (mean 172 bp). The novel genes without annotated homologs being the

Fig 1. Distribution of 465 small novel genes within the EHEC genome. The circles from outside to inside show: annotated genes on the plus

strand, annotated genes on the minus strand, novel genes on the plus strand and novel genes on minus strand. Novel genes with annotated

homologs are colored in blue and novel genes without annotated homologs are colored in orange.

https://doi.org/10.1371/journal.pone.0184119.g001
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shortest, with a mean length of 127 bp (Table 1). More than 50% of the latter group would

encode a protein of just 30–39 AA (Fig 4A). However, the largest novel gene would encode a

protein of 425 AA. For the three groups, the RCV distribution is shown for LB in Fig 4B. All

Fig 2. Growth conditions where the novel genes reach or exceed translation thresholds. The Venn-Diagram shows how many ORFs are

translated under the three growth conditions investigated. The majority of novel genes are translated at optimal growth conditions leading to a large

overlap between LB and BHI control. Blue: LB at 37˚C, green: BHI at 37˚C, red: BHI + 4% NaCl at 14˚C.

https://doi.org/10.1371/journal.pone.0184119.g002
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groups show a comparable pattern: the majority of genes have a moderate translatability and a

subset of genes is translated with high efficiency. Growth in BHI control and in BHI COS also

yield RCV distributions which are similar among the three gene groups (S1 Fig). Overall,

translatability is somewhat decreased under BHI control, but there is a massive decline of

translatability under BHI COS condition (Table 1). However, the decline is in a similar range

for all three groups and attributable to the stress condition.

Sequence conservation

A tblastn search for non-annotated homologs of the novel genes in other organisms, using the

RefSeq genomic database, shows high conservation levels within the Escherichia genus and

often more widely (Fig 5). Six novel genes with annotated homologs (blastp) and three putative

novel genes without annotated homologs did not have tblastn hits. Thus, 249 and 207 genes

with unique sequences are shown in Fig 5A and 5B, respectively. The novel genes with anno-

tated homologs (blastp) show more unannotated homologs (tblastn) with greater average evo-

lutionary distance and AA similarity compared to those novel genes without annotated

homologs (blastp). A two-tailed t-test comparing the maximum distance of intact homologs

(tblastn) for the novel genes with and without annotated homologs (blastp) gives a p-value of

p = 0.002. Thus, the maximum evolutionary distance of the homologs found using tblastn is

significantly different for both groups (i.e., genes with and without annotated homologs using

blastp).

Fig 3. Three novel genes with RIBOseq signals as examples. In the lower part, the corresponding section of the genome is shown with the novel gene

highlighted in pink. In the upper part, the strand-specifically mapped RIBOseq reads are displayed, whereby each black line represents a sequenced read.

https://doi.org/10.1371/journal.pone.0184119.g003
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There is some evidence for horizontal gene transfer of some ORFs, with highly similar

sequences found in distant bacterial genera, and even eukaryotes, for instance multiple

matches between XECs029 and Drosophila genomes. The sequences in the RefSeq database

might be misidentified. However, the phenomenon of transfer of bacterial genome regions to

arthropods has been described [43].

Intergenic sequences upstream and downstream of the novel genes were analyzed as above.

As expected, sequence similarity is less preserved in the upstream and downstream regions

when compared to the ORF-sequence of the novel genes (S2 Fig). For intact homologs (i.e., no

stop codon) of the novel genes, the average sequence similarity for intact tblastn hits outside of

the Escherichia/Shigella genera is 69% (S5 Table). Average sequence similarity for all homologs

of the sequences upstream and downstream of the novel genes is lower, at 47% (S2 Fig).

Triplet periodicity of the RIBOseq signal

A characteristic of RIBOseq data, at least from eukaryotes, is that the reads show a triplet peri-

odicity reflecting the codon-wise translation by the ribosome [31]. Thus, the codon positions

of 5’ ends of all RIBOseq reads with read length 20 bp were determined in the sum signal of all

annotated genes and of the novel genes with and without annotated homologs. Indeed, the

annotated genes and the novel genes with annotated homologs show a reading frame signal at

codon position two for all investigated growth conditions (Fig 6). However, the signal is weak

and the novel genes without annotated homologs only show a reading frame at codon position

two when grown in BHI COS.

Table 1. Summary of the properties of the short annotated genes, novel genes with annotated homologs and novel genes without annotated

homologs.

(i) Short annotated genes (control

group)

(ii) Translated

ORFs with

annotated

homologs

(iii) Translated

ORFs without annotated

homologs

Number of ORFs analyzed 250 255 210

Mean length [bp] 192 172 127

Mean RCV LB 1.55 2.04 1.74

Mean RCV BHI control 0.55 0.44 0.5

Mean RCV BHI COS 0.12 0.11 0.1

Regulated genes (BHI control versus LB) 82 (32.8%) 103 (40.4%) 76 (36.2%)

Regulated genes (BHI control versus BHI COS) 90 (36%) 210 (82.4%) 170 (81%)

Promoter predicted 242 (96.8%) 242 (94.9%) 210 (100%)

Mean promoter localization (bp upstream start) 187 137 128

Mean promoter strength (LDF score) 3.43 3.44 3.86

Terminator predicted 55 (22%) 53 (20.8%) 32 (15.2%)

Mean terminator localization (bp downstream

stop)

68 107 127

Mean terminator score -16.86 -16.72 -15.87

Shine-Dalgarno (SD) motif predicted 200 (80%) 114 (44.7%) 74 (35.2%)

Mean ΔG˚ of the SD motifs -5.17 -4.61 -4.47

Mean SD localization (bp upstream start) 7 8 11

Machine-learning algorithm prediction “real“ 248 (99.2%) 226 (88.6%) 5 (2.4%)

Machine-learning algorithm prediction “pseudo” 2 (0.8%) 29 (11.4%) 205 (97.6%)

KA>KS 7 (2.8%) 0 0

KA<KS 5 (2%) 12 (4.7%) 5 (2.4%)

https://doi.org/10.1371/journal.pone.0184119.t001
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Differential regulation of the novel genes

Differential expression at transcriptional and translational levels between growth conditions

indicates regulation of gene expression, which implies functionality. Therefore, we investigated

the novel genes for significantly changed transcription and translation using BHI control as

the reference condition in comparison to LB and BHI COS. In addition, the 250 shortest anno-

tated genes were analyzed as a control group. Comparing growth in BHI and LB medium at

37˚C showed that about one third of the genes in each group is differentially expressed

Fig 4. Length and RCV distribution of short annotated genes, novel genes with annotated homologs,

and novel genes without annotated homologs. (A) The ORF length in AA was binned into eight categories

and the number of ORFs for each gene group belonging to every category was determined. On average, the

annotated genes are longer than the novel genes. The novel genes without annotated homologs have the

shortest length. (B) The translatability expressed by the ribosomal coverage value (RCV) when growing in LB.

The RCV was binned into ten groups. All three gene categories show a similar RCV distribution.

https://doi.org/10.1371/journal.pone.0184119.g004
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(Table 1). XECs170 is an example of a transcriptionally and translationally upregulated novel

gene (Fig 7A): the transcription in LB is 2.7-fold increased and the translation is even 9.8-fold

higher. For all groups, downregulation in LB is more frequent than upregulation. Downregula-

tion occurs more often at the transcriptional level, whereas for upregulation translational

changes are more frequent (Fig 7B). Fold changes, p-values and false discovery rates deter-

mined with edgeR [44] for all significantly regulated genes are listed in S6 Table.

When the two BHI conditions are compared, even more genes show differential regulation.

For example, the novel gene XECs197 is clearly expressed at the control condition, but tran-

scription and translation are almost switched off at BHI COS (Fig 7C). For the short annotated

genes, 40% are regulated, but for the novel genes without annotated homologs and the novel

genes with annotated homologs 81% and 82.4% are differentially expressed, respectively

(Table 1, S7 Table). Although the absolute number of regulated genes is higher for the novel

genes, all three gene groups show the same trend (Fig 7D): the majority are downregulated at

BHI COS, where translational regulation clearly dominates.

Bioinformatics analyses

Predicted protein characteristics. The software PredictProtein [45, 46] predicts many

parameters of an amino acid sequence including composition, secondary structure, protein

localization, disordered regions, as well as the number of DNA/RNA binding sites, disulfide

bonds and transmembrane helices. Prediction of secondary structures is very similar for the

three groups (Fig 8A). The proteins mainly fold into α-helices and loops, β-sheet-like struc-

tures are less common. Concerning disordered regions, the three groups contain a similar

average portion of disorder of about 20% regarding the UCON prediction [47] (S8 Table and

S9 Table). Forty-four (9.5%) novel genes show evidence of transmembrane helices (Fig 8B).

The proportion of short annotated genes with predicted transmembrane helices is higher

(18%). Novel genes with annotated homologs also more often contain a transmembrane helix

than do novel genes without annotated homologs (12.9% compared to 5.2%, respectively). For

the number of predicted disulfide bonds an opposite picture was obtained. The novel genes

without annotated homologs more often have one or more disulfide bonds predicted, followed

by the novel genes with annotated homologs, but 90% of the short annotated genes seem not

to contain any disulfide bond (Fig 8C). The localization of the putative proteins was also pre-

dicted: 34 putative novel proteins should localize in the inner or outer membrane, while sur-

prisingly, 85% are predicted to be secreted (Fig 8D). Whereas the localization prediction of the

novel genes with and without annotated homologs is similar, the result for the short annotated

genes is slightly different: Many of them should still be secreted (45%), but the number pre-

dicted to be cytoplasmic and inner membrane proteins is higher. Further details and addi-

tional properties of the novel genes and the short annotated genes are listed in S8 Table and S9

Table.

Machine learning trained on known EHEC proteins confirms blastp hits. The above-

mentioned parameters were also predicted for a number of short annotated proteins of

Fig 5. Conservation of novel genes with and without annotated homologs. Average AA sequence similarity (according

to the color scale) for all target sequences from a tblastn search of the RefSeq genomic database, for each ORF is shown.

Each dot represents a hit in the database for a given novel gene, with points combined and similarity averaged by genus.

Novel genes are spread across the X-axis ordered by their length; the Y-axis shows the taxonomic distance of each genus,

using the SILVA database 16S rRNA alignment guide tree. (A) Novel genes with at least one annotated homologous protein

sequence. (B) Novel genes without annotated homologs. Those with annotated homologs tend to be found across more

genera. Note that the number of homologs found in each genus is not indicated, with the vast majority being in Escherichia

and Shigella. Data overview is provided in S5 Table.

https://doi.org/10.1371/journal.pone.0184119.g005
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Fig 6. Reading frame in the sum signal of annotated genes, novel genes with annotated homologs,

and without annotated homologs. The 5’ ends of RIBOseq reads of length 20 bp were investigated with

regard to their codon position. The bar diagrams show the percentage of 5’ ends on every codon position for

the three investigated growth conditions. Annotated genes and novel genes with annotated homologs have

the majority of 5’ ends at position two for every condition. The novel genes without annotated homologs only

show a reading frame at codon position two at the condition BHI + 4% NaCl at 14˚C.

https://doi.org/10.1371/journal.pone.0184119.g006
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Escherichia coli O157:H7 EDL933 to obtain a positive control set. As a negative control set,

these natural proteins were scrambled (for each positive control sequence, 100 randomly

scrambled sequences were used) and submitted for PredictProtein analysis. A machine-learn-

ing algorithm was trained on the positive and negative control sets to distinguish between

‘real’ protein sequences and scrambled ones (‘pseudo’) [11]. This algorithm was used to inves-

tigate the 465 translated ORFs found in this study (S3 Table) and the 250 short annotated

genes of EHEC Sakai (S4 Table). Again, every amino acid sequence was scrambled 10-times as

a negative control. As expected, the algorithm recognized 99.4% of the scrambled proteins as

‘pseudo’ and 99.2% of the short annotated genes as ‘real’ based on predicted parameters of

those sequences. Overall, 50% of the novel genes were recognized as ‘real’. However, the pres-

ence of an annotated homolog (found via blastp) correlates well with being predicted as ‘real’

by the machine-learning algorithm and vice versa (Table 1, S10 Table). Only five novel genes

Fig 7. Differentially regulated genes under different growth conditions. (A) Example of a transcriptionally and translationally upregulated

gene in LB compared to BHI control. The novel gene XECs170 is highlighted in pink. The transcription of XECs170 is increased 2.7-fold and

translation 9.8-fold. (B) Summary of differentially regulated genes in LB compared to BHI control. For all three gene categories, downregulation

dominates. (C) Example of a transcriptionally and translationally downregulated gene in BHI COS compared to BHI control. Transcription of

XECs197 is 5.5-fold and translation is 129-fold reduced at the stress condition. (D) Summary of differentially regulated genes in BHI COS

compared to BHI control. Downregulation at the translational level clearly dominates for all gene categories.

https://doi.org/10.1371/journal.pone.0184119.g007
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without annotated homologs were recognized by machine-learning algorithm as ‘real’ pro-

teins. Conversely, 29 novel genes with annotated homologs were predicted as ‘pseudo’ proteins

(Table 1 and S3 Table).

Promoter and terminator prediction. A promoter is required to initiate transcription of

an ORF and is recognized by the σ-factor of the RNA polymerase holoenzyme. The housekeep-

ing σ-factor in E. coli is σ70 (reviewed in [48]). Therefore, σ70 promoter sequences were

searched in the regions 300 bp upstream of putative start codons of the novel genes using

BPROM. Interestingly, all novel genes without annotated homologs have a predicted promoter

in their upstream region and in the upstream regions for the novel genes with annotated

homologs a promoter sequence appears to be present in 95% of the cases (Table 1 and S3

Table). On average, the predicted promoter sequence localizes 187 bp upstream of the start

codon for the annotated genes. In the case of the novel genes, the distance to the start codon is

slightly shorter. The LDF score is a measure of the promoter strength and a promoter is con-

sidered active with an LDF score of at least 0.2. The average LDF score of the predicted

Fig 8. Selected results of PredictProtein for the short annotated genes, and the novel genes with and without annotated homologs. (A) Average

secondary structure composition. (B) Number of predicted transmembrane helices. (C) Number of predicted disulfide bonds. (D) Predicted localization of the

proteins within the E. coli cell. Percentage values for every gene separately can be found in S8 Table and S9 Table.

https://doi.org/10.1371/journal.pone.0184119.g008
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promoters for the three gene groups is similar: 3.43 for the short annotated genes, 3.44 for the

novel genes with annotated homologs and 3.86 for the novel genes without annotated homo-

logs, respectively (Table 1).

Transcription termination mediated by ρ-independent terminators [49] in the region 300

bp downstream of the stop codon was investigated using FindTerm. For 20.8% of the novel

genes with annotated homologs a terminator was predicted. For those without annotated

homologs, the fraction was slightly lower (Table 1).

Shine-Dalgarno sequence and start codons. The presence of a Shine-Dalgarno (SD)

sequence upstream of the start codon promotes efficient translation initiation [50]. The con-

sensus SD motif for E. coli is uaAGGAGGu and base pairing of this sequence with the anti-SD

of the 16S rRNA results in a free energy of ΔG˚ -9.6 [51]. Within the region 30 bp upstream of

the start codons 41% of the novel genes with annotated homologs and 35.2% without anno-

tated homologs have a SD sequence (Table 1). A high proportion of the annotated genes have

a SD sequence (80%). Additionally, the average free energy of the SD is lower for the annotated

genes (-5.17 compared to -4.61 and -4.47, respectively). The upstream regions of XECs059

(novel gene with annotated homolog) and XECs428 (novel gene without annotated homolog)

contain a perfect SD sequence (S3 Table).

ATG is the most common start codon, but also GTG, TTG, and the rare start codons CTG,

ATT, ATA, and ATC can initiate translation in E. coli [52]. Genome annotation algorithms

only search for the three most common start codons (ATG, GTG, and TTG, respectively) [12]

and in accordance with this, the group of the annotated genes shows for 90% of genes an ATG

start codon, for 7.2% a GTG start codon, and for 2.8% a TTG start codon, whereas rare start

codons are not present at all. In case of the novel genes, the real start codon is unknown.

Because of that the potential start codon farthest upstream of the coding region, but within the

transcriptome signal, was chosen no matter whether it was a frequent or rare start codon.

Therefore, only 42% of the novel genes with annotated homologs and 32.8% of the novel genes

without annotated homologs start with either ATG, GTG, or TTG. All other genes, putatively,

have rare start codons. However, it cannot be excluded that some of these genes possess an

ATG, GTG, or TTG start codon further downstream of the open reading frame.

Evolutionary sequence analysis of novel genes. The rates of non-synonymous (amino

acid changing) and synonymous (not amino acid changing) substitutions per site, kA and kS

respectively, reflect the evolutionary processes underlying the divergence of related genes. In

the absence of selection, it is expected that kA� kS, indicating neutrality. On the other hand,

when purifying selection acts to eliminate disadvantageous mutations, the fact that most fit-

ness-altering mutations are nonsynonymous implies that selection will disproportionately

slow the rate of divergence at nonsynonymous sites, leading to kA < kS. On the other hand,

when positive selection acts to promote advantageous mutations, this will disproportionately

increase the rate of divergence at non-synonymous sites, leading to kA > kS. Although inter-

genic junk sequences are expected to evolve neutrally, functional genes can also exhibit kA�

kS because of near-neutrality or a balance between positive and purifying selective forces. We

reasoned that only functional protein-coding sequences would show significant signs of posi-

tive or negative selection and, based on the hypothesis that our novel genes are functional, we

predicted that the proportion of genes exhibiting significant signatures of selection should be

similar between novel candidate genes and annotated genes.

To test this hypothesis, the most distant homologous sequences matching the genes, with

100% coverage and no gaps, were identified using tblastn. Due to the short size of most of the

genes, many sequences were too similar for a kA/kS comparison, leaving 175 of 250 annotated

genes, 153 of 255 novel genes with annotated homologs, and 116 of 210 novel genes without

annotated homologs available for analysis (S3 Table and S4 Table). Of these remaining genes,
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12 (4.8%), 12 (4.7%), and 5 (2.4%) genes showed significant selection in the three respective

classes using a Holm-Bonferroni multiple comparisons procedure, which was not a significant

difference between classes (p = 0.335, Fisher’s Exact Test). However, only annotated genes

exhibited any genes under significant positive selection (5 genes), which was a significant dif-

ference among classes (p = 0.001, Fisher’s Exact Test; Table 1).

Discussion

RIBOseq is a powerful tool to detect translated mRNA

Ribosomal footprinting has been used to detect translation of non-annotated ORFs previously.

In eukaryotes, hundreds of non-annotated ORFs show evidence of translation, e.g., in yeast

[53], in Drosophila [54], in zebrafish [34], in Arabidopsis [37], and even in humans [55]. Addi-

tionally, the translation of previously annotated ncRNAs was reported frequently [36, 39, 56].

In bacteria, 130 novel genes were detected in Salmonella [40] and 72 novel genes were detected

in EHEC strain EDL933 [11]. For the latter strain, translation is also reported for a number of

RNAs that were previously classified as ncRNA. For instance, the ncRNA ryhB encodes a non-

amer peptide RyhP [39]. Although it was not the focus of their study, Jeong et al. [57] report

translation signals for 31 annotated ncRNAs in Streptomyces coelicolor. Even the well-studied λ
phage with a very small genome of 48.5 kB shows translation of 50 non-annotated ORFs [58].

RIBOseq experiments with eukaryotes allow reading frame determination for individual

genes [33, 37, 38]. The reading frame resolution of prokaryotic RIBOseq data is lower such

that we cannot determine a reading frame in the RIBOseq signal of single ORFs. This may be

caused by bacterial ribosomes being more flexible and incorporating changing numbers of

mRNA nucleotides [59]. In addition, the RIBOseq method, formerly developed for eukaryotes,

has been adapted for bacteria and footprints of more variable read length are obtained [60].

Furthermore, the composition of ribosomal proteins and rRNAs can be heterogeneous depen-

dent on the growth condition; especially at stress conditions, specialized ribosomes are respon-

sible for the translation of a subset of mRNAs [61, 62]. Putatively, the specialized ribosomes

protect an mRNA stretch of deviating length. Recent findings indicate that the usage of a trans-

lational inhibitor influences ribosome conformation, which weakens the reading frame signal

[63]. For instance chloramphenicol, as used in this study, preferentially arrests translation at

positions encoding alanine, serine, or threonine [64] which dilutes the triplet signal. Also, the

choice of the ribonuclease used for digestion of mRNA not protected by ribosomes influences

RIBOseq results [65]. To minimize the influence of any sequence specificity for a single RNase,

we applied a mixture of five RNases (RNase I, MNase, XRN-1, RNase R, and RNase T). Here,

we show a reading frame in the sum signal for all genes for the first time in bacteria using con-

ventional RIBOseq. Very recently, the addition of the endonuclease RelE to the ribosome prep-

aration has been reported to improve reading frame determination. The RelE toxin cuts the

mRNA within the ribosome very precisely at a specific position in the codon [66]. However, as

shown in Fig 6, under our three conditions a reading frame in the sum signal can be extracted

from the data, at least for the group of novel genes that have annotated homologs in other bac-

terial strains or species.

RIBOseq based evidence for translation of 465 intergenic ORFs

In this study, 465 intergenic ORFs have been detected, which show a clear RIBOseq signal (S2

Table). The average size of the novel-gene encoded proteins is only 50 AA. Standard genome

annotation algorithms do usually not predict such very short genes or proteins [14, 16]. In this

study, an arbitrary size minimum of 30 AA was applied to restrict the number of ORFs to be

investigated and to reduce the possibility of false positives, but even smaller peptides can be
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functional [39, 40]. Knowledge about the functions of small proteins in bacteria is limited, but

small proteins have recently achieved attention (reviewed in [15, 18]). For instance, Baumgart-

ner et al. [67] confirmed five small proteins in Synechocystis by Western blot. Neuhaus et al.

[11] detected 72 novel small genes in the intergenic regions of the E. coli strain EDL933 by

evaluating RNAseq and RIBOseq data of a single growth condition (LB, 37˚C). Compared to

their work, this study on a different EHEC strain achieves a higher sequencing depth and two

additional growth conditions including severe stress were investigated. Moreover, translated

ORFs were not only selected by an RPKM-value threshold, but further conservative thresholds

for coverage and RCV were applied. Translation of eleven novel small genes found in EHEC

EDL933 by Neuhaus et al. [11] is present in EHEC Sakai and twelve translated ORFs of EHEC

Sakai are annotated proteins in EDL933. Vice versa, 28 of the 72 novel EDL933 genes are

annotated proteins in strain Sakai.

The 255 translated ORFs with annotated homologs most likely represent

protein-coding genes

Blastp analysis revealed that a group of 255 out of the 465 novel ORFs with a clear RIBOseq

signal found in this work, have annotated homologs in other bacteria. In addition, many of

these 255 genes display predicted protein structures (Fig 8), as well as σ70 promoters, and in

some cases ρ-independent terminators and SD sites, like annotated short proteins. Even ORFs

without these predicted extra features can encode proteins, because those genes could be part

of an operon, the promoter could be recognized by an alternative σ-factor [68], termination

could be ρ-dependent [69], and translation of leaderless mRNAs occurs [70]. Overall, these

novel genes behave similarly in all parameters investigated when compared to 250 short anno-

tated genes of EHEC Sakai. Both gene groups are transcribed and translated at the same mag-

nitude and the RCV distributions of all growth conditions are comparable. A similar fraction

of genes is differentially transcribed and/or translated, when BHI control is compared to BHI

COS or LB. Even the directions of up/down regulation compare well (Fig 7). Additionally,

active translation is supported by the presence of a reading frame on codon position two for

every growth condition in the sum signal caused by codon-wise progression of the ribosome.

Furthermore, a machine-learning algorithm trained with short annotated proteins of EHEC

EDL933 predicted 88.6% of these genes with annotated homologs as being ‘real’ proteins.

Finally, there is no significant difference between the number of genes under selection in this

class as compared to either annotated genes or novel genes without annotated homologs.

However, unlike annotated genes, for which the majority of selected genes showed evidence of

positive selection, all selected genes in this class were under purifying selection. This is not

unexpected under the hypothesis of functionality, because purifying selection is the most com-

mon form of selection in nature [52], and because this result was obtained despite choosing

the most distant homolog. However, it is also likely that ascertainment bias plays a role in this

result, as it is probable that more emphasis has historically been placed on the annotation of

genes which are shared by more distantly related organisms. This would especially be true if

many of the novel genes we identified are orphan genes, since such genes lack distantly related

homologs by definition. Therefore, we conclude that these 255 translated intergenic ORFs

indeed represent novel small protein-coding genes of EHEC strain Sakai.

Unusual features of the 210 novel genes without annotated homologs

A second group, 210 out of 465 novel genes, had no annotated homologs when using blastp.

However, homologs in other bacteria may be present but were missed during annotation of

these genomes due to their unusual features. Indeed, a tblastn search confirmed that many
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non-annotated homologs in the Escherichia genus and, in some cases, in farther related species

as well, exist (Fig 5B). The majority of these ORFs were not classified by the machine-learning

algorithm to encode ‘real’ proteins. This appears to be more significant and raises the question

whether these ORFs indeed code for proteins. The following analysis is based on a comparison

between three groups: (i) 250 annotated small genes, (ii) 255 novel small genes with annotated

homologs and (iii) the group of 210 ORFs without annotated homologs, which may or may

not code for proteins (Table 1). Several arguments support the hypothesis that these ORFs are

functional and not residues due to pervasive transcription [29]: first, their expression obviously

does not lead to a fitness disadvantage, as in misfolded proteins, which are cytotoxic [71]. Sec-

ond, a promoter is present upstream of all 210 ORFs, and thirdly, the same fraction of these

ORFs is differentially transcribed, compared to both control groups (i) and (ii) (Fig 7). How-

ever, these data would fit the hypothesis either that these ORFs represent ncRNA or that they

are protein-coding genes. The following observations are in favor of the hypothesis that these

novel ORFs are protein-coding genes and not ncRNAs: most significantly, RIBOseq signals,

and hence significant RCVs, are in the same order of magnitude as those of short annotated

genes, many ORFs without homologs are differentially regulated at the translational level, SD

sequences are present upstream of one third of the ORFs, and the number of predicted protein

structures is very similar to that of annotated protein-coding genes. Finally, a similar propor-

tion of genes appear to be under selection as among the annotated genes and novel genes with

annotated homologs, with the caveat that ascertainment bias has likely favored the detection of

genes under purifying selection.

Why, then, does the machine-learning algorithm not recognize these ORFs as protein-cod-

ing genes? A first explanation is that the algorithm will only predict sequences as ‘real’, which

are within the known parameter space of the training set. Proteins of unknown structure and

folds may reside outside the parameter space of ‘established’ proteins and, thus, will fail to be

classified as ‘real’ and inevitability binned as ‘pseudo’. The majority of all established proteins

belong to a protein family with known secondary structure or which contains characterized

domains. But 25% of all protein sequences do not match to any family and, therefore, belong

to the ‘dark proteome’ [72]. In prokaryotes, 13% of all proteins are ‘dark’ [20]. Their properties

are different when compared to known proteins: They are shorter, they are often secreted, con-

tain more disulfide bonds, have a lower evolutionary reuse [20], are more disordered, have a

different hydrophobic amino acid topology, and have a higher energy [21]. Many of these

properties fit well with the PredictProtein data of the proteins encoded by the novel genes

without annotated homologs: accordingly, the majority of putative proteins without annotated

homologs are very short, are predicted to be secreted, and more often contain disulfide bonds.

Thus, these properties render it unlikely that the machine-learning algorithm will predict these

unusual proteins correctly.

A second possibility is that the novel genes without annotated homologs may represent

very young taxonomically restricted or ‘orphan’ genes. Yomtovian et al. [73] reported that

orphan genes of EHEC show an amino acid composition more comparable to random

sequences than to annotated genes, since they may not yet have a fully adapted function,

which makes it difficult for any annotation program, including our machine-learning algo-

rithm, to distinguish them from scrambled proteins. Also, young genes without annotated

homologs are shorter [74], which is true for our data set. Additionally, evolutionary young

genes often use uncommon start codons [75], which is also true for our data set. This hypothe-

sis is further supported by the evolutionary distances of the non-annotated homologs detected

using tblastn, when comparing the novel genes without annotated homologs to the novel

genes with annotated homologs (Fig 5). The genes with annotated homologs show intact
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tblastn hits (i.e., ORFs without stop codons) with a significantly greater evolutionary distance

compared to the genes without annotated homologs.

In summary, we believe that our data provide evidence supporting the hypothesis that most

of these 210 ORFs are evolutionarily young genes coding for proteins with unusual features.

The data set may contain some false positives, since in a few cases, ribosome binding of the

RNA may exert a regulatory function, comparable to a translation regulating riboswitch

instead of translation into protein [76, 77]; however, this will not invalidate our general

findings.

Conclusion

This study supports the fact, that, in contrast to earlier beliefs, bacterial genomes are probably

under-annotated due to small genes having been overlooked. In E. coli O157:H7 Sakai, at least

465 non-annotated short ORFs are covered with significant RIBOseq reads indicating active

translation and the majority of these ORFs show features of protein-coding genes. Since the

EHEC Sakai genome harbors about 5200 annotated protein-coding genes, these additional

genes would significantly increase the number of protein-coding genes in this bacterium.

Obviously, much further work is required for functional characterization of the novel genes. It

would not be surprising if other bacterial genomes also harbor many overlooked short genes

in their intergenic regions, which could be investigated by combined RNAseq and RIBOseq.

In addition, the high-throughput discovery of small proteins in proteome analysis requires

modified or improved methods since these proteins likely escape attention with most currently

available methods [17, 78, 79]. Our study supports the notion that it is advisable to improve

genome annotation algorithms in order to reduce bias against annotation of short genes [16,

75].

Material and methods

Transcriptome and translatome sequencing

Strand-specific RNAseq and RIBOseq of Escherichia coli O157:H7 Sakai (GenBank accession

number BA000007.2 and RefSeq accession NC_002695.1, version from February 2014) [1]

were performed at three different growth conditions in two biological replicates each. An over-

night culture of EHEC was inoculated 1:100 in lysogeny broth (LB medium) and incubated at

37˚C and 150 rpm until an OD600 of 0.4 was reached. Additionally, two conditions using

brain-heart infusion broth (BHI; Merck KGaA) were investigated. For the BHI control condi-

tion, an overnight culture of EHEC was inoculated 1:100 and incubated at 37˚C and 150 rpm

until an OD600 of 0.1 was reached. For the stress condition of combined cold and osmotic

stress (COS), 4% NaCl were added to the BHI medium and incubation was performed at 14˚C

until an OD600 of 0.1 was reached.

RNAseq was performed as described by Landstorfer et al. [8] for the Illumina system. For

ribosomal footprinting, the method published by Ingolia et al. [31] was adapted to bacteria as

described [11] with the following further modifications: mRNA not protected by ribosomes

was digested with a mixture of five RNases to exclude sequence specificity. Buffer NEB 4 plus 1

mM CaCl2 was added to 1 ml cell extract and the solution was incubated for 1 h at RT with 250

U MNase (Roche), 5 U XRN-1 (NEB), 250 U RNase I (Thermo Fisher Scientific), 50 U RNase

R (Biozym) and 12 U RNase T (NEB). The monosome fraction was harvested by sucrose den-

sity gradient centrifugation and unprotected mRNA digestion was repeated once. For the LB

condition, rRNA was depleted using the MICROBExpress kit (Thermo Fisher Scientific) and

for the BHI conditions rRNA depletion was performed using the RiboZero kit for Gram-nega-

tive bacteria (Illumina). All libraries were prepared using the TruSeq Small RNA Sample
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Preparation Kit (Illumina) and sequenced on a HiSeq 2500 machine according to the manu-

facturer. The sequencing raw data is available at the Sequence Read Archive (SRA, NCBI)

under the accession SRP113660.

Read mapping and RCV calculation

For processing and mapping of the sequencing raw data, the Galaxy platform was used [80] as

described [11]. The data were visualized using BamView [81] implemented in Artemis 16.0

[41]. The RPKM values for all intergenic non-annotated ORFs in EHEC which would encode

a peptide of� 30 AA (~12,000 ORFs) were calculated in R, whereas reads mapping to rRNA

or tRNA were excluded [82]. Besides the canonical DTG start codons, the rare start codons

CTG, ATT, ATA and ATC were allowed according to genetic code table 11 (https://www.ncbi.

nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi). The ratio of RPKM translatome over RPKM tran-

scriptome gives the ribosomal coverage value (RCV), which is a measure for the translatability

of a certain ORF [39]. Novel gene candidates had to fulfill the following criteria for at least one

growth condition in both biological replicates to be considered translated: RPKM translatome

at least 1 read per million mapped reads, coverage translatome� 0.5 and RCV� 0.25. To

exclude false positives, all novel gene candidates were manually inspected in Artemis.

Reading frame determination

Adapter removal and quality trimming were performed using AdapterRemoval v2.1.7 [83] and

non-rRNA reads longer than 18 bp were extracted using sortMeRNA v2.0 [84]. Extracted

reads were mapped to previously annotated genes, novel genes with annotated homologs and

novel genes without annotated homologs, in Escherichia coli O157:H7 Sakai using Vsearch

v2.1.2 [85]. The reading frame of the 5’ end of each mapped read of length 20 bp (maximum of

read length distribution) was determined using a custom script (S1 File), which counts the

number of 5’ ends for the three codon positions and sums the values for the three gene groups

(annotated genes, novel genes with annotated homologs, and novel genes without annotated

homologs).

Differential gene expression

The condition ‘BHI at 37˚C’ was used as the reference data set and for the LB and BHI COS

conditions significant changes on transcriptional and translational level were determined.

Read counts were normalized to the smallest library and differential expression was analyzed

by an exact test implemented in the Bioconductor package edgeR (version 3.2.4) [44]. A p-

value� 0.05 and a false discovery rate (FDR)� 0.1 were used to delineate significant expres-

sion changes.

Prediction of σ70 promoters

The region 300 bp upstream of the start codon was searched for the presence and strength of a

σ70 promoter with the program BPROM (Softberry [86]). It searches for the -35 and -10 con-

sensus motif and recognition sequences for transcription factors. With this data, an LDF score

(linear discriminant function) is calculated, whereupon increasing values indicate growing

promoter strength. An LDF score of 0.2 gives the threshold for promoter prediction with 80%

accuracy and specificity.
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Prediction of ρ-independent terminators

The region 300 bp downstream of the stop codon was searched for the presence and strength

of a ρ-independent terminator using FindTerm (Softberry [86]). This program searches thymi-

dine-rich regions, and calculates the energy of possible terminator structures. Low energy val-

ues indicate strong terminators.

Prediction of Shine-Dalgarno sequence

The region 30 bp upstream of the start codon was examined for the presence of a Shine-Dal-

garno sequence (optimum uaAGGAGGu). ΔG˚ was calculated according to Ma et al. [51] with

a threshold of� -2.9 kcal/mol.

Calculation of kA/kS

The most distantly related homologs of the short annotated genes and the novel genes were

determined with tblastn by selecting the hit with the highest e-value which still has 100% cov-

erage and no gaps. In case the sequence pairs were too similar, meaningful kA/kS calculation

was not possible. The ratio of synonymous to non-synonymous substitutions between those

gene pairs was computed using the KaKs_Calculator 2.0 [87]. The “bacterial and plant plastid

code” was selected and the method model selection (MS) was used. The ORF is assumed to be

under positive selection when kA/kS is significantly greater than 1 and under purifying selec-

tion when kA/kS is significantly less than 1. Significance was determined using a Holm-Bonfer-

roni multiple comparisons procedure with respect to the family, an error rate of 0.05. A

Fisher’s Exact Test was performed in R version 3.3.2. Unless otherwise noted, all p-values refer

to two-sided tests.

Detection of annotated homologs

Novel gene sequences were translated into the corresponding proteins sequences, which were

used to query the GenBank database using blastp with default parameters [88]. An e-value cut-

off of 10-3 was applied.

Sequence conservation

Sequences of the novel genes were aligned against the full RefSeq genomic database down-

loaded on 5 April 2017, using a tblastn search in the local BLAST utilities 2.6.0+ from the

NCBI [89] with a maximum e-value of 0.001. The putative homologues were extracted from

the database and those without stop codons were retained as ‘intact’. The amino acid similarity

of each intact subject sequence with the query ORF was calculated using the Needle-Wunsch

algorithm “Needleall” from EMBOSS [90]. The Achromobacter sp. ATCC35328 sequences

with names beginning NZ_CYUC010 were removed from the analysis, due to abnormally

high similarity with E. coli for a very large number of genes. Thus, we assumed this species to

be mislabeled. To map the results gained using NCBI databases to the SILVA taxonomy, hits

were conflated to genus level, which allowed inclusion of over 90% of genera with hits in each

case. To obtain approximate relative evolutionary distances, the average distance from EHEC

Sakai to the last common ancestor with each genus was calculated from the 16S rRNA SILVA

reference NR99 guide tree [91], release 128, using Newick Utilities [92]. A custom shell script

for these tasks, ORFage, was used (S2 File). A similar pipeline was used to check the conserva-

tion of intergenic sequences upstream and downstream of the novel genes. For the upstream

regions, the sequences between the stop codon of the nearest annotated gene upstream of the

start codon of the novel gene was taken. Similarly, for downstream regions, the sequence
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between the stop codon of the novel gene and the start codon of the next annotated gene

downstream was taken. Some of the regions were too short to obtain (meaningful) tblastn hits

and were excluded. Further regions were excluded, when containing another of the novel

genes before an annotated gene was reached. One downstream sequence was abnormally long

and could not be processed (tblastn search > 1 day), hence, this region was also excluded.

Within the upstream and downstream sequences, stop codons were allowed. The shell script

used for preparation of the intergenic sequences including the use of ENTREZ DIRECT [93] is

included in S3 File.

Predicted protein characteristics

The amino acid sequences encoded in the 250 short annotated genes and the 465 novel genes

were submitted to PredictProtein [46] using default parameters. This software predicts struc-

tural and functional features of the putative proteins. The results of PROFphd (secondary

structure) [94], TMSEG (transmembrane helices) [95], DISULFIND (disulfide bonds) [96],

UCON (disordered regions) [47] and LocTree3 (subcellular localization) [97] were analyzed in

further detail.

Machine learning based protein recognition

A machine-learning algorithm, as described by Neuhaus et al. [11], was used to classify the

novel proteins based on predicted protein parameters. Briefly, about 279 short annotated pro-

teins were picked from EHEC EDL933 and these sequences shuffled 100-times. All sequences,

natural and shuffled, were submitted to a PredictProtein analysis [45, 46]. The machine-learn-

ing algorithm was trained using the predicted parameters for the annotated proteins (positive

control) and their shuffled counterparts (negative control). Both strains, EDL933 and Sakai are

very closely related to each other [98] and, thus, the trained algorithm was used here, as well.

We not only examined the protein sequences of the novel genes in Sakai, but also shuffled

those 10-times to detect false positives.

Localization of novel genes

Visualization of the gene’s localization was created using Circos [99].

Supporting information

S1 Fig. Distribution of RCV for the short annotated genes, novel genes with and without

annotated homologs. (A) RCV distribution at BHI control. (B) RCV distribution at BHI COS.

(PPTX)

S2 Fig. Conservation of intergenic sequences. A similar process as used for Fig 5 was repeated

on unannotated sequences upstream and downstream of the novel genes, but without remov-

ing sequences with stop codons. Many of the sequences had no tblastn hits (too short) and

some others were excluded as more than one novel gene was situated between two annotated

genes; one was excluded as abnormally long. Thus, 136 sequence remained for upstream and

122 for downstream. Most homologs have low similarity. The custom shell script used is pro-

vided in S3 File. (A) Analysis of the sequences upstream of the novel genes without annotated

homologs. (B) Analysis of the sequences downstream of the novel genes without annotated

homologs.

The average evolutionary distance to the tblastn hits (of at least 80% similarity) of the novel

proteins without annotated homologs (blastp) is 0.643. Average distance for their downstream

sequences is 0.535, which is significantly lower (p = 0.0024, two-tailed t-test). Average in
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evolutionary distance for upstream regions is 0.596, not significantly different compared to

distances for genes (p = 0.1421). The upstream region may be more conserved (e.g., due to reg-

ulatory sequences contained).

(PPTX)

S1 Table. Summary of NGS results. The total number of reads, the number of reads mapping

to the E. coli O157:H7 Sakai genome and the distribution of mapped reads to rRNA, tRNA and

mRNA are shown. Only the reads mapping to mRNA were used for further analysis. Every

library contains between 1.5–9.7 m. mRNA reads.

(DOCX)

S2 Table. RNAseq and RIBOseq results of three different growth conditions for the 465

novel genes and the 250 short annotated genes. The novel genes are consecutively numbered

after their appearance in the EHEC Sakai genome. The RPKM transcriptome, RPKM transla-

tome, RCV, and coverage values represent mean values of the two biological replicates.

(DOCX)

S3 Table. Properties of the novel genes. Annotated homologs in other strains/species were

searched using blastp. Only the best hit is listed. The fourth column illustrates annotated

homologs in other E. coli O157:H7 strains or duplications of annotated genes in EHEC Sakai.

With bioinformatics methods the presence of a σ70 promoter, a ρ-independent terminator, a

Shine-Dalgarno sequence, and selection pressure (kA/kS) were predicted or estimated. The last

column gives the classification of the putative novel protein by the machine-learning algorithm

trained with short annotated E. coli O157:H7 EDL933 genes.

(DOCX)

S4 Table. Properties of the 250 short annotated genes. With bioinformatics methods the

presence of a σ70 promoter, a ρ-independent terminator, a Shine-Dalgarno sequence and selec-

tion pressure (kA/kS) were predicted or estimated. The last column gives the classification of

the short genes by the machine-learning algorithm.

(DOCX)

S5 Table. Conservation of the novel genes. Summary of ORF conservation as represented in

Fig 5.

(XLSX)

S6 Table. Significant transcriptional and translational regulation in LB compared to BHI

control of the novel genes and the short annotated genes. The mean value of the two biologi-

cal replicates of transcriptome and translatome counts of the BHI control and the LB condition

are shown. The log-fold change was calculated and differential gene expression was deter-

mined using edgeR. Transcriptional or translational changes are considered significant, when

they show a p-value of� 0.05 and a false discovery rate (FDR) of� 0.1. Significant changes in

LB compared to BHI control are highlighted in gray. Only genes with significant changes on

transcriptional and/or translational level are listed.

(DOCX)

S7 Table. Transcriptional and translational regulation at BHI COS compared to BHI con-

trol of the novel genes and the short annotated genes. The mean value of the two biological

replicates of transcriptome and translatome counts of the BHI control and the stress condition

COS are shown. The log-fold change was calculated and differential gene expression was deter-

mined using the software edgeR. Transcriptional or translational changes are considered sig-

nificant, when they show a p-value of� 0.05 and an FDR of� 0.1. Significant changes in BHI
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COS compared to control are highlighted in gray. Only genes with significant changes on tran-

scriptional and/or translational level are listed.

(DOCX)

S8 Table. Summary of the Predict Protein results for the putative proteins encoded by the

novel genes. The first columns show the AA composition, followed by predicted cellular local-

ization, number of transmembrane helices, disulfide bonds and binding motives. Additionally,

secondary structures, disordered regions and domains are predicted.

(XLSX)

S9 Table. Summary of the Predict Protein results for the short annotated genes. The first

columns show the AA composition, followed by predicted cellular localization, number of

transmembrane helices, disulfide bonds and binding motives. Additionally, secondary struc-

tures, disordered regions and domains are predicted.

(XLSX)

S10 Table. Classification into ’real’ and ’pseudo’ proteins by the machine-learning algo-

rithm. The upper part of the table shows the results for the novel genes and the lower part for

the scrambled sequences.

(XLSX)

S1 File. Custom script used for reading frame determination in the sum signal of gene

groups.

(TXT)

S2 File. Custom script used for detecting sequence conservation.

(BASH)

S3 File. Custom script used for extracting intergenic sequences—for comparative conser-

vation analysis.

(BASH)
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