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Key Points

• The conserved proline-rich
region is essential for HOXB4
to amplify long-term
hematopoietic stem cells
without loss of homeostasis.

• Loss of this region increases
leukemogenicity of HOXB4,

There is high interest in understanding the mechanisms that drive self-renewal of stem

cells. HOXB4 is one of the few transcription factors that can amplify long-term repopulating

hematopoietic stemcells in acontrolledway.Hereweshow inmice that this characteristic of

HOXB4 depends on a proline-rich sequence near the N terminus, which is unique among

HOX genes and highly conserved in higher mammals. Deletion of this domain substantially

enhanced the oncogenicity of HOXB4, inducing acute leukemia in mice. Conversely,

insertion of the domain intoHoxa9 impaired leukemogenicity of this homeobox gene. These

results indicate that proline-rich stretches attenuate the potential of stem cell active

homeobox genes to acquire oncogenic properties. (Blood. 2017;129(3):319-323)

altering its DNA-binding
properties.

Introduction

The ability to augment hematopoietic stem cell (HSC) numbers in vitro
is critically dependent on our understanding of the molecular determi-
nants of HSC self-renewal. One of the best studied transcriptional
regulators of HSC self-renewal is HOXB4, which has been shown to
induce a significant increase in the frequency of HSCs in human and
murine systems by retrovirally engineered overexpression or protein
delivery.1-6 Despite being among themost potent known stimulators of
HSC expansion, sustained overexpression of Hoxb4 in vivo does not
result in regeneration of HSC numbers above those in unmanipulated
normal mice, suggesting that it does not override homeostatic control
mechanisms regulating HSC numbers.1,4,7 This observation is in line
with data demonstrating that constitutive expression of Hoxb4 is not
overtly leukemogenic in the absence of cooperating genes such as
Meis1 in contrast to otherHoxb genes or Hox genes of the A cluster in
mice.8,9 The critical functional domains of Hoxb4 that distinguish its
overt effects on hematopoiesis from other Hox proteins are not fully

elucidated. We now demonstrate that the proline-rich domain near the
N terminus in the HOXB4 gene plays a key role in determining the
largely nonleukemogenic stem cell amplificatory characteristics of
HOXB4.

Methods

Retroviral constructs

The human HOXB4 wild-type (wt; NM_024015.4) and the HOXB4-DPRD
complementary DNA (cDNA) were cloned at the HpaI site of the murine stem
cell vector (MSCV) upstream of the internal ribosomal entry site (IRES) and the
green fluorescent protein (GFP). A FLAG epitope was cloned in frame 59of the
HOXB4 gene. TheHOXB4-DPRD cDNAmissing the nucleotides from position
229 to 360 of the coding DNA sequence (corresponding to amino acids 77-120)
was synthesized and validated by Sanger sequencing. As a control, the MSCV
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Figure 1. Deletion of the highly conserved proline-rich region of HOXB4 induces acute myeloid leukemia (AML) in mice.Multiple sequences alignments of (A) HOX paralog group 4

proteins (reference sequences: HOXA4: gi|133778294, HOXD4: gi|23397672, HOXB4: gi|12007115, HOXC4: gi|11993919). (B) Multiple sequence alignment of HOXB4 proteins from different

species: Homo sapiens NP_076920.1, Pan troglodytes XP_001173043.1, Canis lupus XP_003639319, Bos taurus NP_001071582.1, Mus musculus NP_034589.3, Rattus norvegicus

XP_573184.1, Gallus gallus NP_990624.1, and Danio rerio NP_571193.1. The different colors correspond to the different amino acid classes. In the bottom box, the dendrogram shows the

relationship distances (bar indicates genetic distances). (C) Survival curves of transplanted mice. P values of comparisons to HOXB4-DPRD229-360 are indicated. (D) Histologic examinations of

multiple organs infiltrated by leukemic blasts from a representative HOXB4-DPRD229-360 diseased mouse. (E) Immunohistochemical examination of multiple organs infiltrated by leukemic blasts

from a representative HOXB4-DPRD229-360 diseased mouse that received a second transplant. H&E, hematoxylin and eosin; MPO, myeloperoxidase.
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harboring only the IRES-enhanced GFP cassette was used. Point mutations in
PBX interacting domain and homeodomain were introduced by polymerase
chain reaction (PCR) following standard procedures. HOXB4 mutants with a
partially reintroduced proline-rich domain (PRD) region were obtained by
synthesis fromGenScript.Hoxa9-wt cDNA(NM_152739.3)was subcloned into
MSCV enhanced green fluorescent protein, whereas Hoxa9-Pro-in423, Hoxa9-
Pro-in813, Hoxa9-scramble (scr; random amino acid [aa] sequence), andHoxa9-
Pro-infalse (same amino acids in random order) mutants were obtained by gene
synthesis from GenScript and subcloned into the same vector. For Meis1,
overexpression of theMSCV/YFPvectorwas used. Transcription profiling from
HOXB4-transduced bone marrow (BM) was performed 48 hours after trans-
duction after sorting for GFP. Chromatin immunoprecipitation (ChIP) analyses
and transcription profiling on HOXB4-32D cells were performed on freshly
transduced cells after sorting and after 2 to 3 weeks of liquid culture expansion.

Results and discussion

HOXB4 carries a 15-proline stretch, which is unique in the entire

HOX gene cluster

To identify gene domains that are responsible for the stem cell
amplificatory properties of HOXB4, we performed sequence
alignments between HOXB4 and its paralogs and between
HOXB4 and known leukemogenic Hox proteins. Intriguingly, a
proline-rich region encoded by the nucleotides spanning posi-
tions 229 to 360 and corresponding to the amino acids 77 to 120
(HOXB4-DPRD229-360), and in particular the 15-proline stretch
present in this region, were unique among the paralog group 4 and
Hox B cluster members and absent in leukemogenic HOX proteins
(Figure 1A; supplemental Figure 1A-B, available on the Blood
Web site). There was a high conservation of the proline-rich region
of HOXB4 among mice, humans, and higher mammals, but not
among all vertebrate species (Figure 1B-C). On the basis of these
results, we aimed to test the functional relevance of this unique
HOXB4 domain by using a HOXB4 mutant lacking the proline-
rich stretch (HOXB4-DPRD229-360).

Deletion of the HOXB4-PRD229-360 domain causes acute myeloid

leukemia in mice

First, equal protein expression levels compared with HOXB4-wt
and nuclear localization of the HOXB4-DPRD229-360 mutant were
documented (supplemental Figure 2A-C). Expression of HOXB4-
DPRD229-360 resulted in a significant increase in secondary colony
formation compared with HOXB4-wt and the GFP control and aug-
mented stem cell amplification compared with HOXB4-wt (supple-
mental Figure 3A-B; supplemental Table 1). Importantly, all mice
transplanted with HOXB4-DPRD229-360 overexpressing cells de-
veloped a significant shift toward myeloid engraftment and retrans-
plantable AML without maturation according to the World Health
Organization classification (n 5 10) in contrast to the HOXB4-wt
and GFP control mice (P , .001) (Figure 1C-E; supplemental
Figure 3C-E; supplemental Table 2).10 Sequencing of integration
sites showed no recurrent integrations in diseased animals besides 1
CD68 integration in both the wt and the mutant experimental group
(supplemental Table 3A-B).

The transforming activity of HOXB4-ΔPRD229-360 was still depen-
dent on DNA binding, but not on Pbx interaction, as shown by
transplantation experiments of thedouble-mutantHOXB4-ΔPRD229-360

harboring the homeodomain-inactivating mutation N211S (HOXB4-
ΔPRD229-360-HD) and the double-mutant HOXB4-ΔPRD229-360

harboring a point mutation inactivating the interaction with the Pbx

cofactor (W144A; HOXB4-ΔPRD-PBX interacting domain [PID])
(Figure 1C; supplemental Figure 2A; supplemental Table 2).
Reinsertion of the 15-proline stretch present on the first half of the
PRD alone or the second part of this domain enriched in SH3 domains
into HOXB4-ΔPRD229-360 (HOXB4-ΔPRD229-360-Pro-inaa77-86 and
HOXB4-ΔPRD229-360-SH3-inaa88-120) reduced secondary colony for-
mation to the level of the wt HOXB4 (supplemental Figure 4A-B).

Insertion of the proline-rich region into Hoxa9 impairs its

Hoxa9/Meis1-associated leukemogenicity

On the basis of these observations,wehypothesized that insertion of the
proline-rich region of HOXB4 into a leukemogenic Hox gene such as
Hoxa9 will reduce its potential to induce AML.8,11,12 We added the
proline-encoding region at two positions of the Hoxa9 wt sequence:
first at the C-terminal end (Hoxa9 Pro-in813 mutant) and second
between aa.141 and aa.142, resembling its natural position in the
HOXB4 wt protein (Hoxa9 Pro-in423 mutant)(supplemental
Figure 5A). Neither insertion inducedmajor alterations in the predicted
structure of the homeodomain (http://iupred.enzim.hu), decreased
expression levels compared with Hoxa9-wt, or changed in vitro
phenotypes (supplemental Figure 5B-E). In collaboration with Meis1,
the Hoxa9-Pro-in423 and to a lesser extent the Hoxa9-Pro-in813
significantly impaired colony formation compared with the Hoxa9-
scr control (supplemental Figure 5F). Hoxa9-Pro-in813 moderately
delayed leukemia onset by 11 days compared with Hoxa9-wt using
c-kit1 BM cells. Hoxa9-Pro-in423 delayed leukemogenesis for
more than 30 days by using Hoxa9-scr as a control in 5-fluorouracil
treated BM cells (supplemental Table 4). Of note, Hoxa9-Pro-in423
downregulated transcription of c-myc by 47% compared with the
Hoxa9-scr control in cells derived from primary colony-forming
cells, in line with our observation before the deletion of the proline-
rich region in HOXB4 upregulated the c-myc signature. In addition,
Hoxa9-Pro-in423 downregulated other known Hoxa9 targets such as
Runx1, C/ebpa, and Pu.1 in comparison with the control (data not
shown).13,14 To validate the effect ofHoxa9-Pro-in423,we performed
limited dilution transplantations: expression ofHoxa9 Pro-in423 induced
a significant and 12-fold decrease in leukemic stem cell frequency
comparedwith theHoxa9-scr control (P, .05; supplemental Table 5).

Deletion of the proline-rich region induces gene expression

associated with stemness and leukemic phenotype and grossly

changes HOXB4 DNA-binding properties

HOXB4-ΔPRD229-360 overexpression in BM progenitor cells induced
significant gene expression changes (Figure 2A; supplemental Table 6A).
Most of the genes differentially expressed in comparison with the
GFP control did not overlap between HOXB4-wt and HOXB4-
ΔPRD229-360, indicating that HOXB4-ΔPRD229-360 generates primar-
ily its own gene signature (Figure 2B-D; supplemental Table 6B).
Within the set of uniquely deregulated genes, several genes were
implicated in chromatinmodification, kinase activity, gene expression
control, undifferentiated cell stages, or kras- or myc-driven oncogenic
signatures15-20 (supplemental Figure 6). This was also observed in 32D
myeloid cells (supplemental Figure 6B-D; supplemental Table 6C).

Deletion of PRD229-360 grossly changedDNAbinding ofHOXB4-
wt compared with HOXB4-ΔPRD229-360 as assessed by ChIP
sequencing with only 100 genes commonly bound by both proteins.
Direct target genes (also affected in their expression levels) such as
Lmo2 and Stat5 or genes such asGart,Nup85, andEif2b3, enriched
in leukemic human subpopulations were uniquely bound byHOXB4-
ΔPRD229-360 (https://gexc.stanford.edu) (Figure 2E-G; supplemental
Figures 6A-B and 7; supplemental Tables 7-9). In line with our
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Figure 2. HOXB4-ΔPRD229-360 induces different DNA-binding and transcription program than HOXB4-wt. (A) Volcano plot representing differentially expressed genes in

BM progenitor cells overexpressing HOXB4-DPRD229-360 in comparison with BM cells overexpressing HOXB4-wt. Log ratios of expression values for each gene for HOXB4-

DPRD229-360 mutant vs HOXB4-wt are plotted against –log10 of P values. (B) Venn diagrams showing the overlap between genes commonly upregulated and downregulated

in BM progenitor cells upon overexpression of HOXB4-DPRD229-360 and HOXB4-wt in comparison with the GFP control. (C) Heat maps of genes differentially expressed

between HOXB4-DPRD229-360 and HOXB4-wt in comparison with the GFP control BM cells. (D) Heat map of genes differentially expressed between HOXB4-DPRD229-360 and

HOXB4-wt BM progenitor cells. (E) ChIP-sequencing analysis. Genomic distribution of binding sites for HOXB4-wt and HOXB4-DPRD229-360 over the gene body, focused on

the 2000 bp’s upstream of the transcription start site and downstream of transcription end site. The intragenic distance between the transcription start site and transcription

end site in the x-axis is indicated as percent of total gene body length. (F) Venn diagram showing genes bound by HOXB4 and HOXB4-DPRD229-360 and differentially

expressed in 32D cells. Genes bound and differentially expressed are indicated as overlap (direct targets). (G) Venn diagrams showing overlap between genes affected in

their expression and genes bound by (left) HOXB4-wt and by (right) HOXB4-DPRD229-360 in 32D cell line (supplemental Tables 7 and 8).
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observation of an induction of a more primitive gene expression
signature by HOXB4-ΔPRD229-360, there was a substantially higher
overlap between HOXB4-ΔPRD229-360 targets and HOXB4 targets
described previously in primitive cells compared with HOXB4-wt
(supplemental Figure 7B-C).21-23 Direct targets were confirmed by
quantitative PCR from independent ChIP experiments performed with a
monoclonal anti-FLAG antibody (supplemental Figure 7E). Motif en-
richment analysis of theChIP targets indicated thatHOXB4-ΔPRD229-360

loses binding to known cofactors such as YY1 and USF1 (supplemental
Figure 8).24,25 Deletion of the proline-rich stretch also changed protein
bindingas assessedbyFLAG-co-immunoprecipitation followedbymass
spectrometry (supplemental Figure 9A-D; supplemental Table 10A-B).
Twenty-one proteins were uniquely bound by the mutant and 152
proteins were uniquely bound by HOXB4-wt, the latter significantly
enriched for proteins involved in chromatin modification (supplemental
Figure 9E-G). Binding was confirmed for representative proteins by
FLAG-co-immunoprecipitation (supplemental Figure 9H).

In summary, these data shed new light on the potential of evolu-
tionary conserved proline-rich domains to control HSC population size
within the HOX gene cluster.
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