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Epidemiological studies often utilize stratified data in which rare outcomes or exposures are artificially enriched. This design can
increase precision in association tests but distorts predictions when applying classifiers on nonstratified data. Several methods
correct for this so-called sample selection bias, but their performance remains unclear especially for machine learning classifiers.
With an emphasis on two-phase case-control studies, we aim to assess which corrections to perform in which setting and to obtain
methods suitable formachine learning techniques, especially the random forest.We propose two new resampling-basedmethods to
resemble the original data and covariance structure: stochastic inverse-probability oversampling and parametric inverse-probability
bagging. We compare all techniques for the random forest and other classifiers, both theoretically and on simulated and real data.
Empirical results show that the random forest profits from only the parametric inverse-probability bagging proposed by us. For
other classifiers, correction is mostly advantageous, and methods perform uniformly. We discuss consequences of inappropriate
distribution assumptions and reason for different behaviors between the random forest and other classifiers. In conclusion, we
provide guidance for choosing correction methods when training classifiers on biased samples. For random forests, our method
outperforms state-of-the-art procedures if distribution assumptions are roughly fulfilled. We provide our implementation in the R
package sambia.

1. Introduction

Statistics is an art of inferring information about large popu-
lations from comparably small random samples. This is
necessary because in practice it is most often impossible to
receive measurements from all individuals in a population
(e.g., due to organizational or cost reasons). In the clinical
context, for example, one might aim to predict the risk for
a certain disease based on clinical features for an entire
population.The risk model will be derived from information
from a much smaller random subsample of the population.
When building such models, a common assumption is that
the subsample follows the same distribution as the population
the sample was taken from.This assumption, however, is not
valid if the sample is not taken at random. In the epidemiolog-
ical context, for example, this case occurs in the well-known
case-control studies [1]. Here, one is interested in finding

associations between features and rare disease outcomes.
In order to increase precision and achieve higher statistical
power for finding significant associations, cases are enriched
such that cases and controls are equally represented in the
sample. When a case-control study is used for risk prediction
on an unbiased population (e.g., via logistic regression),
certain adjustments have to be made which have been elabo-
rated in [2–5].

An even more complex sample design appears in two-
phase case-control studies [6, 7]. Here, one enriches not only
a rare disease outcome but also a rare covariate (e.g., an
exposure).Thismeasure prevents the sample from containing
only few individuals that fall into both rare categories. From
such a sample, one would hardly be able to draw conclusions
about the rare combination. Figure 1(a) illustrates how the
sampling procedure is performed in practice. Figure 1(b)
shows an exemplary table of numbers of cases/controls and
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(a) Stratified random selection process of a two-phase case-control study. Feature
characteristics known about a whole finite population are typically features which are
inexpensive to measure and called characteristics recorded in Phase 1. The expensive
characteristics are recorded only in Phase 2—in the final sample
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(b) Exemplary cross table for data before (left) and after (right) the selection process of a
two-phase case-control study. There is a clear dependency between exposure and disease in
the population. After the sampling process, this dependency vanishes completely for the final
sample

Figure 1

exposed/nonexposed individuals in the population and the
sample. This and other complex survey designs (e.g., cohort
sampling designs [8]) have been used in order to obtain
subpopulations with rare characteristics of features of interest
[9–11]. The efficiency and analysis of the design are described
in [6].

In the situations described above, the sample follows a
different distribution than the population. This can affect
statistical analysis. In the general context, this issue is known
as sample selection bias [12–14]. It generally occurs when not
all individuals from the population have the same probability
of getting selected for the sample. If a statistical estimate is
affected by sample selection bias, one should correct for it.
The question of whether correction is necessary depends on
the type of sample selection bias, the considered classifier, and
the research question to be answered. For example, no adjust-
ment is required if only the outcome variable is enriched
and logistic regression is applied for prediction purposes,

because the slope coefficients of the linear predictor remain
asymptotically unaffected by sample selection bias for this
case (if the functional form and the explanatory features for
the model are correct) [15]. In general, however, correction
is required, and there are several solutions to encounter this
problem in complex survey designs [16, 17]. These existing
approaches mainly focus on classical prediction methods or
simple survey designs. Strategies applicable also for machine
learning approaches have been suggested in the general
sample selection bias context [12, 18, 19]. These methods
reconstruct the population data or its covariance structure
and typically involve nonparametric resampling techniques
like bootstrapping. However, they neglect complex survey
designs. Thus, while correcting for sample selection bias in
logistic regression is well investigated, its consideration is
unclear for most machine learning approaches.

This paper assesses, proposes, and compares approaches
to correct for sample selection bias in complex surveys,
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Figure 2: Scheme of learning on biased learning data and predicting
on unbiased test data. The classifier learns on four equally sized
strata (complete biased learning data set) but predicts on a data set
(unbiased population) of different sizes of the four strata.

especially in two-phase case-control studies. Therefore, we
focus on the binary outcome. Figure 2 illustrates the issue
to be addressed. The emphasis is on a widely used machine
learning approach: the random forest. We correct for the
covariance structure of the sample by incorporating knowl-
edge about the sample selection procedure into nonparamet-
ric and parametric resampling techniques. As the random
forest is based on resampling anyway (in terms of bagging;
see Section 3.2), we incorporate the correction step into the
inherent resampling procedure. We compare our correction
approaches to analogous state-of-the-art approaches, both for
the random forest and for other common classifiers, namely,
logistic regression, logistic regression including interaction
terms, and the naive Bayes classifier. We especially address
the question of whether correction is necessary in random
forests, and if so, whether current correction approaches can
successfully be transferred to the random forest and whether
improvement is possible through alternative approaches.
We assess and compare the prediction performance of the
correction techniques in a synthetic simulation study and in
a real data application. We provide the R package sambia so
that readers can easily apply the methods presented here to
their data.

This paper is structured as follows. We formalize sample
selection bias and address the necessity of correction in
Section 2. Section 3 explains current approaches for cor-
rected learning on biased samples, and we propose two new
methods based on drawing observations from theoretical
distributions assumed for the given data. We furthermore
analyze properties of the various approaches in the context of
sample selection bias. Section 4 presents a simulation study
which compares all approaches regarding performance on
new unbiased test data. Section 5 shows a similar analysis on
real data. We discuss and conclude our work in Section 6.

2. Preliminaries

This section introduces general definitions and background
information: a formal description of sample selection bias
(Section 2.1), the special case of two-phase case-control
studies (Section 2.2), and properties of biased samples
(Section 2.3).

2.1. Sample Selection Bias. The following setup is similar
to that of Zadrozny [12] and distinguishes sample selection
bias into three types. We assume a set of observations{(x𝑖, 𝑦𝑖)}𝑖=1,...,𝑛 which are drawn independently from a dis-
tribution 𝐷. The domain of 𝐷 is X × Y with X being the
feature space and Y being a measurable space. Here, Y is a
discrete binary label space since we focus on binary classifiers
in this work. Throughout the paper, we will denote random
variables by capital letters and realizations (i.e., observations
in the sample) by lowercased letters.

For the setup of the sample selection bias issue, let in
addition S be a binary space. 𝑆 ∈ S is the variable that
controls the selection of observations: For 𝑠𝑖 = 1, the 𝑖th
observation is selected; for 𝑠𝑖 = 0, the observation is not
selected. Thus, observations (x𝑖, 𝑦𝑖, 𝑠𝑖) are drawn from a
distributionL with domainX ×Y ×S.

In general, a sample {(x𝑖, 𝑦𝑖, 𝑠𝑖)}𝑖=1,...,𝑛 can be biased in
three different ways. These types of sample selection bias can
be described as follows [12, 19]:

(i) Label bias: biasedness depends on 𝑌 only, so 𝑃(𝑆 |
X, 𝑌) = 𝑃(𝑆 | 𝑌) but 𝑃(𝑆 | 𝑌) ̸= 𝑃(𝑆).

(ii) Feature bias: biasedness depends on X only, so 𝑃(𝑆 |
X, 𝑌) = 𝑃(𝑆 | X) but 𝑃(𝑆 | X) ̸= 𝑃(𝑆).

(iii) Complete bias: biasedness depends on X and 𝑌; that
is, there is no independence between 𝑆 and X, 𝑌, so𝑃(𝑆 | X, 𝑌) ̸= 𝑃(𝑆 | 𝑌) and 𝑃(𝑆 | X, 𝑌) ̸= 𝑃(𝑆 | X).

Under label bias, 𝑆 is not necessarily independent of X ([19];
for details, see also Appendix A), and for feature bias 𝑆 is not
necessarily independent of 𝑌.

Whenever there is sample selection bias, there are selec-
tion probabilities 𝑃(𝑆 = 1 | 𝑌,X) (in particular 𝑃(𝑆 = 1 | 𝑌)
for label bias and 𝑃(𝑆 = 1 | X) for feature bias). In practice,
these probabilities can often be estimated if they are
unknown.Throughout this paper, we assume them to be pro-
vided. All approaches proposed in this paper will incorporate
these selection probabilities in terms of weights correspond-
ing to the inverse probabilities 𝑃(𝑆 = 1 | X, 𝑌)−1.
2.2. Sample Selection Bias in Two-Phase Case-Control Studies.
In this paper, we will discuss the special case of two-phase
case-control studies and hence put them into the context of
sample selection bias in this subsection.

The case-control study is an example for sample selection
bias in the clinical context: Some diseases under investigation
are very rare in the entire population. A random sample of
study participantswould contain very few cases of the disease.
Statistical analysis would suffer from low precision and thus
low power. In order to increase precision and power, the
number of cases is enriched such that the proportion of cases
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and controls in the sample is identical. In particular, 𝑃(𝑌 =1 | 𝑆) = 0.5 whereas the prevalence rate 𝑃(𝑌 = 1) is much
smaller, so 𝑃(𝑌 = 1 | 𝑆) ̸= 𝑃(𝑌 = 1). This by Bayes’ theorem
implies 𝑃(𝑆 | 𝑌 = 1) ̸= 𝑃(𝑆), and thus there is label bias.

Case-control studies are mostly used for investigating
associations between disease and features. The underlying
label bias does not alter the effect estimates in hypothe-
sis testing for associations between disease and features.
However, this is true only asymptotically, and there may be
consequences in small sample scenarios. If one focuses on
prediction, for example, via logistic regression, as we do in
this paper, the intercept estimate can simply be adjusted as
described in Rose and van der Laan [4] or Steyerberg et al.
[2]. Elkan [20] offers a solution for arbitrary classifiers.

In two-phase case-control studies, on the other hand, the
selection is additionally controlled by a categorical feature
variable. Such studies suffer from label and feature bias, so
there is complete bias. We focus on this case (i.e., complex
survey designs which involve complete bias).

2.3. Stratified Random Samples. When data is sampled as
in one-phase or two-phase case-control studies, there are
groups within which the selection probabilities are equal.
These groups are called strata. In this paper, we focus on two-
phase case-control studies where the strata are determined by
a categorical stratum feature (often an exposure) 𝑋𝑒 and the
outcome 𝑌. The remaining features of X are X̃ fl X \ 𝑋𝑒.

For a population of size 𝑁 and sample size 𝑛, let ℎ ∈{1, . . . , 𝐻} be the index of the stratum. Realizations falling
into stratum ℎ are denoted by x̃ℎ, 𝑥𝑒ℎ, and 𝑦ℎ or combined
as (xℎ, 𝑦ℎ) = (x̃ℎ, 𝑥𝑒ℎ, 𝑦ℎ). We denote by 𝑛ℎ the size of the
stratum ℎ in the sample and by𝑁ℎ its size in the population.
Then, clearly, 𝑃(𝑆 = 1) = 𝑛/𝑁 and

𝑃 (𝑆 = 1 | x, 𝑦) = 𝑃 (𝑆 = 1 | 𝑥𝑒, 𝑦)
= 𝑃 (𝑆 = 1 | ℎ (𝑥𝑒, 𝑦)) = 𝑛ℎ(𝑥𝑒 ,𝑦)𝑁ℎ(𝑥𝑒,𝑦) ,

(1)

where ℎ(𝑥𝑒, 𝑦) denotes the stratum determined by 𝑥𝑒 and 𝑦.
Throughout the paper, we will simply abbreviate this by ℎ.

If the features determining the selection probabilities are
categorical, the data set can be partitioned into corresponding
strata with equal selection probabilities. This is not the case
if, for example, the feature causing the selection bias is
continuous. In the categorical case, selection probabilities can
be used for adjusting the distribution of the sample to the
original distribution of the population.

Consider the selection probability 𝑃(𝑆 = 1 | ℎ) for an
observation of stratum ℎ. We define

𝑤ℎ fl [maxℎ𝑃 (𝑆 = 1 | ℎ)𝑃 (𝑆 = 1 | ℎ) ] (2)

as the inverse-probability (IP) weight for stratum ℎ. The
squared brackets denote rounding to the closest integer. The
term IP weight is sometimes used in the literature for the
simple inverse selection probability 𝑃(𝑆 = 1 | ℎ)−1. In this
work, we use 𝑤ℎ rather than 𝑃(𝑆 = 1 | ℎ)−1 to keep the
number of newly generated observations minimal.

In our correction approaches, we will use

𝑛 fl 𝐻∑
ℎ=1

𝑛ℎ𝑤ℎ, (3)

which can be seen as the number of reweighted observations
(i.e., the sum of all observations multiplied by their weights).
As stated above, we are interested in adjustment methods
which can be applied to arbitrary classifiers. In the next
section, after stating a typical setup of a statistical learning
procedure, we will describe several sample selection bias
correction approaches proposed in the literature.

3. Methods

In this section, we describe, modify, and analyze IP weight-
incorporating classifiers which are designed for learning on
an unbiased data set, when only a biased data set for learning
is given.

3.1. Correction Approaches. All approaches adjust the given
data set to correct for sample selection bias by reconstructing
the original (unbiased) data structure before orwhile learning
the classifier. We consider the classifier

𝜑 : {{{
(X ×Y)×𝑛 ×X →Y

((x, 𝑦) ,X) → 𝜑 ((x, 𝑦) ;X) , (4)

where the given learning data set (x, 𝑦) = ((x1, 𝑦1), . . . ,(x𝑛, 𝑦𝑛)) is mapped to the prediction (in our case classifica-
tion) rule and applied to the random variable X.

3.1.1. State of the Art. The methods in this section were
proposed in the literature and are partly modified for our
purposes.

No Correction. The naive approach for learning on a biased
sample is to simply ignore the bias. No IP weights are used,
and the classifier is trained on the given sample as it is. As
shown by Zadrozny [12], this approach is valid for some cases
of sample selection bias, namely, for feature bias for a specific
type of classifiers.

Inverse-Probability Oversampling. An intuitive method for
correcting for sample selection bias is the plain replication
of each observation in the sample according to its IP weight
(i.e., in a stratified random sample, one replicates an obser-
vation of stratum ℎ by the factor 𝑤ℎ). Then, the number of
observations in the reconstructed sample is 𝑛. This sample is
used for learning. In maximum likelihood-based approaches
like generalized regression models, this method is equal to
weighting the single likelihoods per observation. The proce-
dure, sometimes simply called inverse-probability weighting,
has been used early [21], with applications both in regression
[22] and in general statistical learning [20]. We refer to
this technique as IP oversampling: Since in the stratification
process some observations were oversampled, this method
is a way of reoversampling underrepresented observations
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in the stratified sample. Since IP oversampling is applicable
to arbitrary classifiers, we take it into account for further
comparisons. A drawback is that it changes the covariance
structure per stratum ℎ. In Section 3.1.2, we propose amethod
that corrects for this issue.

Inverse-Probability Bagging. Another correction method uses
bootstrap aggregation and averaging, commonly abbreviated
to the acronym bagging. The procedure averages several
predictions trained on an ensemble of bootstrap samples
and thus makes learners more robust [23]. Nonparametric
bootstrap samples arise by randomly drawing 𝑛 times from
the original data set of size 𝑛 with replacement. Bagging
procedures fit a learner on each of these bootstrap samples
and combine the learners by averaging predictions or by
majority vote. When building bootstrap samples from biased
data sets, as in our case, resampling can take into account IP
weights: Instead of drawing observations randomly, selection
probabilities are set proportional to 𝑤ℎ for the respective
strata ℎ. This procedure is proposed by Nahorniak et al. [24]
and labeled as IP bagging here.

Costing.Zadrozny et al. [18] argue that samplingwith replace-
ment as done in IP bagging is inappropriate since sets of
independent observations from continuous distributions
contain two identical elements only with zero probability,
whereas nonparametric bootstrap samples generally contain
observations repeatedly. Zadrozny et al. [18] propose an
approach called costing, which is similar to IP bagging in
terms of resampling from the learning data and aggregation
of learned algorithms on 𝑚 new samples. It differs in the
implementation of resampling the 𝑚 learning sets: Here, an
observation from the original learning set enters a resampled
data set only once at most. It is selected with probability𝑤ℎ/maxℎ𝑤ℎ according to the corresponding stratum ℎ.
Consequently, the size of the new samples is smaller than𝑛 and generally varies among the 𝑚 learning sets. The
latter aspect indicates the difference of this approach to
subsampling without replacement. A detailed description of
the aspects of the algorithm can be found in Zadrozny et al.
[18], Sections 2.3.2 to 2.3.4.

A drawback of costing in case of strata with a low number
of observations is the following: There may be subsamples
which do not contain observations from all strata, which
implies that no classification rule can be learnt for themissing
strata from those subsamples. For the purposes of this
paper, we adjusted the costing algorithm by not taking into
account such incomplete samples. This modification causes
bias which we consider negligible.

Modified SMOTE. So far, all correction approaches replicated
given observations. In contrast, [25] proposed a synthetic
minority oversampling technique (SMOTE) to generate new,
synthetic data. The strategy is designed as a solution for the
imbalanced class problem, where rare cases (the minority
class) are hardly represented in the (nonstratified) sample,
which mainly consist of common cases from the majority
class. In this situation, several classifiers perform poorly
because of the imbalanced proportion of outcome categories
in the data.

In its original form, SMOTE generates synthetic obser-
vations for the minority class as follows: For fixed 𝑘 ∈ N,
one determines the 𝑘 nearest neighbors of the minority class.
Depending on the desired number of new observations, one
then randomly selects a corresponding amount of instances
from this neighborhood. New observations arise as weighted
averages between original feature vectors and selected nearest
neighbors. To that end, weights are randomly sampled from
the unit interval.

We adapt SMOTE to the context of stratified random
samples: Rather than enlarging only the minority class, we
generate synthetic observations for all strata with 𝑤ℎ > 1.
Thus, we apply SMOTE up to 𝐻 − 1 times, once for each
stratum which requires more observations. We refer to this
algorithm asmodified SMOTE hereafter.

3.1.2. Correcting Covariance Structures. The approaches
above aim to reconstruct the original data distribution in
order to then learn a classifier on an unbiased sample.
However, several aspects are not incorporated so far: IP
oversampling replicates observations and by this biases the
covariance structure within the strata. A correction for this
biasedness should be provided. Similarly, modified SMOTE
biases the data, especially for large weights 𝑤ℎ, where the
same observations are used several times for synthetic
data generation and lack contributing sufficient variation. IP
bagging and costing are both exclusively based on resampling
observed data. This may become problematic especially for
small sample sizes or only small stratum sizes (which can
occur in the resampled data sets for these two approaches):
The fine structure in the given data can be spurious due to the
deficit of observations. Also, due to small sample sizes and
hence too few values in the sample only covering a restricted
range, one may underestimate variance and covariance of
the data.

In this section, we propose two procedures which aim to
conquer the problem of small strata by increasing the number
of observations per stratum and at the same time estimate the
covariance of the population appropriately. The idea behind
both approaches is to exploit the fact that within each stratumℎ all observations are assigned the same weight 𝑤ℎ. This
enables parametric resampling within each stratum.

Let L̃ℎ be the distribution which X̃ℎ follows. We aim
to approximate L̃ℎ by theoretical distributions and estimate
their parameters for each stratum ℎ. In practice, determining
the multivariate distribution of the features is difficult and
relies on assumptions. One might, for example, assume
normally distributed features,

X̃ℎ ∼N (𝜇ℎ, Σℎ) , (5)

and would then have to estimate 𝜇ℎ and Σ̂ℎ for all ℎ,
which is typically done by their empirical pendants. Even
though we focus on the normal distribution in our empirical
investigations, we propose the following approaches such that
they can be applied to arbitrary distribution assumptions.

Stochastic Inverse-Probability Oversampling. Our first
approach builds upon the re- or oversampling techniques
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Table 1: Properties and performance of correction approaches for logistic regression and random forest. The properties are as follows: (i) a
correction attempt is made at all; (ii) the covariance structure of the learning data is attempted to be unbiased; (iii) learning is based on a data
set containing a larger number 𝑛 of observations than the original stratified data set (see (3)). Criteria are fulfilled (“✓”), not clearly fulfilled
(“(✓)”), or not fulfilled (“×”).
Correction approach Properties according to Section 3.1.3 Sufficient performance

(i) (ii) (iii) Logistic regression Random forest
No correction × × × × ×
IP oversampling ✓ × ✓ ✓ ×
IP bagging ✓ ✓ × ✓ ×
Costing ✓ ✓ × (✓) ×
Modified SMOTE ✓ (✓) ✓ (✓) ×
Stochastic IP oversampling ✓ ✓ ✓ ✓ ×
Parametric IP bagging ✓ ✓ ✓ ✓ ✓

described in Section 3.1.1. However, the repeated occurrence
of observations of continuous features falsifies the covariance
structure of the reconstructed samples. Hence, we add noise
to those data sets obtained via IP oversampling and thus call
our proceeding stochastic IP oversampling.

When adding this noise, we want to retain important
distribution characteristics of the respective stratum. As
stated above, the stratified sample contains features X̃ℎ ∼ L̃ℎ.
After performing IP oversampling, the reconstructed features
X̃ℎ do not follow L̃ℎ anymore. We aim to adjust X̃ℎ by
adding noise terms �̃�ℎ such that X̃ℎ+ �̃�ℎ approximately follows
the original distribution L̃ℎ in the sense that it agrees in
expectation and covariance. In the following, we derive a
respective distribution L̃

adj
ℎ

for �̃�ℎ.
We seek two conditions to hold:

E (X̃ℎ + �̃�ℎ) = E (X̃ℎ) , (6)

cov (𝑋(𝑘)ℎ + 𝜀(𝑘)ℎ , 𝑋(𝑗)ℎ + 𝜀(𝑗)ℎ ) = cov (𝑋(𝑘)ℎ , 𝑋(𝑗)ℎ ) = Σℎ (7)

for all 𝑘, 𝑗 ∈ {1, . . . , 𝑝} denoting the index of the features.
Because of (6) and since E(X̃ℎ) = E(X̃ℎ), we obtain

E (�̃�ℎ) = 0. (8)

In the Appendix (Appendix A, (B.3)), we derive the adjusted
noise covariance matrix Σadj

ℎ
fl cov(𝜀(𝑘)

ℎ
, 𝜀(𝑗)
ℎ
), which leads to

Σadj
ℎ
= 𝑤ℎ − 1𝑤ℎ𝑛ℎ − 1Σℎ. (9)

For instance, when assuming a multivariate normal distribu-
tion X̃ℎ ∼ L̃ℎ =N(𝜇ℎ, Σℎ), the noise term

�̃�ℎ ∼ L̃
adj
ℎ
=N(0, 𝑤ℎ − 1𝑤ℎ𝑛ℎ − 1Σℎ) (10)

would retain the stratum expectation and covariance (and
thus in the Gaussian case the entire distribution).

In order to make a corresponding correction method
more robust, we repeat the noise-adding procedure and
average over the models fitted on each of those repetitions.

Algorithm 1 displays the single steps of stochastic IP oversam-
pling.

Parametric Inverse-Probability Bagging. Stochastic IP over-
sampling above consisted of a deterministic replication of
observations followed by a stochastic alteration by adding
noise. Now, we propose a completely parametric approach
which we call parametric IP bagging. As in IP bagging, we
draw bootstrap samples from the original stratified data
set. This time, however, we employ parametric instead of
nonparametric bootstrap and set the bootstrap sample size
to 𝑛. As in stochastic IP oversampling, we assume a multi-
variate distribution underlying the original data and estimate
the parameters stratum-wise. The procedure is defined by
Algorithm 2.

3.1.3. Properties of Correction Approaches. So far, we de-
scribed seven ways to deal with sample selection bias: no
correction, IP oversampling, IP bagging, costing, modified
SMOTE, stochastic IP oversampling, and parametric IP
bagging.This subsection compares their characteristics.They
are summarized in the left part of Table 1.

(i) Incorporation of Weights. Except for the noncorrection
approach, all correction methods incorporate weights. As
mentioned in Section 3.1.1, there are cases of sample selection
bias where the bias does not affect the classifier so that
correction in terms of weighting is not necessary. However,
as we will elaborate in this paper on two-phase case-control
studies, correction is necessary in the context of complete
bias.

(ii) Correcting Covariance Structure of Learning Data. Sample
selection bias can cause a biased covariance structure in
the data. Some but not all correction approaches correct
for this bias: The noncorrection approach clearly uses the
biased covariance structure. Also, IP oversampling does
not correct for it; the replication of observations generally
leads to underestimating the covariance (cf. (B.2) in the
Appendix). For modified SMOTE, the resulting covariance
structure depends on the magnitude of the weights 𝑤ℎ and
the degree of separation of the features into distinct clusters.
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Input: Observed sample (x̃, 𝑥𝑒, 𝑦) of size 𝑛, IP weights 𝑤ℎ
Output: Unbiased prediction 𝑦 for new unbiased data (X, 𝑌) ∼ 𝐷
(1) Perform IP oversampling, resulting in reconstructed sample (x̃, 𝑥𝑒, 𝑦) of size 𝑛
(2) for 𝑏 = 1 to 𝐵 do

for ℎ = 1 to 𝐻 do
(a) Estimate Σadj

ℎ
of distribution L̃ℎ

(b) Draw noise vector �̃�𝑏ℎ from
̂̃
L

adj

ℎ of length 𝑛ℎ𝑤ℎ
(c) Rebuild original stratum as (x̃ℎ + �̃�𝑏ℎ, 𝑥𝑒ℎ, 𝑦ℎ)

end
(a) Combine strata to sample:(x̃ + �̃�𝑏, 𝑥𝑒, 𝑦) = ((x̃1 + �̃�𝑏1, 𝑥𝑒1, 𝑦1), . . . , (x̃𝐻 + �̃�𝑏𝐻, 𝑥𝑒𝐻, 𝑦𝐻))
(b) Fit classifier 𝑦𝑏 = 𝜑((x̃ + �̃�𝑏, 𝑥𝑒, 𝑦);X)

end
(3) Output the ensemble of learners {𝑦𝑏}𝑏=1,...,𝐵
(4) Aggregate predictions on new data set by averaging: 𝑦 = ∑𝐵𝑏=1 𝑦𝑏

Algorithm 1: Stochastic inverse-probability oversampling.

Input: Observed sample (x̃, 𝑥𝑒, 𝑦) of size 𝑛, IP weights 𝑤ℎ
Output: Unbiased prediction 𝑦 for new unbiased data (X, 𝑌) ∼ 𝐷
(1) for 𝑏 = 1 to 𝐵 do

for ℎ = 1 to 𝐻 do
(a) Estimate parameters of distribution L̃ℎ

(b) Draw parametric bootstrap sample x̃𝑏ℎ from
̂̃
Lℎ of size 𝑛ℎ𝑤ℎ

(c) Rebuild stratum as (x̃𝑏ℎ, 𝑥𝑒×𝑤ℎℎ , 𝑦×𝑤ℎℎ ), where “×𝑤ℎ” denotes 𝑤ℎ-fold concatenation
end

(a) Combine strata to sample:(x̃𝑏, 𝑥𝑒×𝑤, 𝑦×𝑤) = ((x̃𝑏1, 𝑥𝑒×𝑤11 , 𝑦×𝑤11 ), . . . , (x̃𝑏𝐻, 𝑥𝑒×𝑤𝐻𝐻 , 𝑦×𝑤𝐻𝐻 ))
with 𝑤 = ∑𝐻ℎ=1 𝑤ℎ

(b) Fit classifier 𝑦𝑏 = 𝜑((x̃𝑏, 𝑥𝑒×𝑤, 𝑦×𝑤);X)
end

(2) Output the ensemble of learners {𝑦𝑏}𝑏=1,...,𝐵
(3) Aggregate predictions on new data set by averaging: 𝑦 = ∑𝐵𝑏=1 𝑦𝑏

Algorithm 2: Parametric inverse-probability bagging.

For instance, a stratumwith large weight𝑤ℎ will cause a large
number of newly generated observations as compared to the
original number of observations. The same neighbors will
be selected several times such that sufficient variation of the
new observations cannot be guaranteed. This may result in a
similar issue as for IP oversampling described above.All other
approaches aim to obtain the right covariance structure per
stratum and in the entire reconstructed sample.

(iii) Size of Reconstructed Samples. As a well-known fact in
statistical learning, the bias of a classifier increases when
the learning sample size decreases. IP bagging is based on
reconstructed samples of the same size 𝑛 as the original
stratified data set. Sample sizes in costing are even smaller and
vary between bootstrap samples. Particularly, the small strata
contain a small number of observations for these two ways of
reconstructing the sample. Consequently, a certain structure
of the data may get lost for learning (e.g., the appropriate
variability within small strata may not be given anymore).

IP oversampling, modified SMOTE, and our own methods,
stochastic IP oversampling and parametric IP bagging, on the
other hand, employ reconstructed samples of larger sizes 𝑛 as
defined in (3). By this, we intend to have sufficient numbers
of observations in each stratum for possibly improving the
learning of the classifier as compared to the use of smaller
samples. In the nonparametric IP oversampling, the larger
sample size induces a large number of perfectly repeated
observations. This, again, biases the covariance structure. In
our parametric approaches, stochastic IP oversampling and
parametric IP bagging, this drawback does not occur.

3.2. Classifiers. In Sections 3.1.1 and 3.1.2, several approaches
adjusting for sample selection bias have been presented and
proposed. We implemented all approaches for the following
classifiers: classical logistic regression based on maximum
likelihood estimation as a classifier serving as reference since
correction approaches are well established for it, the tree-
based random forest as our main object of interest, and
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logistic regression including interaction terms and the naive
Bayes classifier as further algorithms for comparison.

As described by Zadrozny [12], a classifiers’ output can
depend either on 𝑃(𝑌 | x) only or on both 𝑃(𝑌 | x) and𝑃(X). The first type of classifiers per definition is not affected
by feature bias whereas the second type is affected. Thus, one
has to consider that the two types behave differently under
complete bias, as well.

Logistic Regression. We employ logistic regression [26] as a
common classical binary classification method. The model
assumes 𝑌 | X to be Bernoulli distributed with success
probability

𝑃 (𝑌 = 1 | X) = (1 + exp {− (𝛽0 + X𝛽)})−1 , (11)

where 𝛽0 and 𝛽 = (𝛽1, . . . , 𝛽𝑝) are unknown parameters
representing the effects of the features X on the outcome
variable 𝑌.

We investigate two variants of this model: Once, all
features enter themodel just linearly. In a refinement, features
are additionally included as all possible two-way interaction
term combinations, not only in order to detect possible
interaction effects but also to obtain more complex decision
boundaries.

Random Forest. Random forests are ensembles of decision
trees and a modification of bagging [27].The basic procedure
of the learning algorithm is the following:

(1) A bootstrap sample is drawn from the given learning
data set.

(2) A decision tree is grown by constructing recursive
binary splits to the given data based on the features.

(3) At each node only a subset of features is selected at
random.

(4) Steps (1) to (3) are repeated and all trees are averaged;
class probabilities can be estimated as the relative
frequency of the class of interest for a terminal node.

An essential step which is different from common bag-
ging (cf. Section 3.1.1) is Step (3). The random selection
of features decorrelates the trees and makes the bagging
procedure more efficient. For all approaches in Sections 3.1.1
and 3.1.2 which are based on aggregating after resampling,
namely, IP bagging, costing, stochastic IP oversampling, and
parametric IP bagging, we incorporate these approaches into
the random forest correspondingly. That means, instead of
performing bagging within another bagging, we combine the
two procedures. Note that IP oversampling incorporated in
a random forest turns the approach to a bagging method.
In fact, IP oversampling is exactly the same method as IP
bagging when using samples of size 𝑛 instead of 𝑛. Thus, for
the implementation of our approaches into the random forest,
we implicitly take both versions of IP bagging into account.

Naive Bayes. The naive Bayes classifier is another common
machine learning algorithm for classification (see, e.g., Hastie
et al. [28]). It assumes independence between the 𝑝 features

and simply calculates for each class 𝑗 that can be attained by𝑌 the marginal classifier

𝜑(𝑗) (X) = 𝑝∏
𝑘=1

𝜑(𝑗,𝑘) (X(𝑘)) (12)

by estimating feature-wise classifiers 𝜑(𝑗,𝑘) via one-dimen-
sional kernel-density estimation. That means the impact of
each feature X(𝑘) is estimated separately and combined to an
overall classifier.

4. Simulation Study

So far, we have presented and developed strategies for fitting
classifiers under complete bias. In this section, we investigate
their performance when a sample from a two-phase case-
control study is given as learning data set but the test data
is unbiased (i.e., it is a random sample from the population).
We do this in a simulation study. After stating the setup in
Section 4.1, we compare performances for the introduced cor-
rection approaches (Section 3.1) and classifiers (Section 3.2)
and report the results in Section 4.2.

4.1. Design. For evaluating the performance of correction
approaches on training samples from two-phase case-control
studies and unbiased validation data sets, we need three kinds
of data sets: first, a biased learning data set stemming from
a two-phase case-control study; second, an unbiased large
reference learning data set for comparison purposes (we refer
to this data as population; it is not available in practice);
third, an unbiased test data set distributed like the population.
We artificially simulated such data sets as described in the
following.

We started by generating the large unbiased population
data set. To that end, we randomly sampled 105 feature
vectors consisting of one binary exposure variable𝑋𝑒 and𝑝 =5 continuous other features𝑋(𝑗), 𝑗 ∈ {1, . . . , 5}. The exposure𝑋𝑒 was meant to serve as a stratum feature with a low pro-
portion (10%) of exposed (𝑋𝑒 = 1) individuals and amajority
of nonexposed (𝑋𝑒 = 0) individuals.The 𝑝 = 5 other features
were generated independently of 𝑥𝑒 and of each other. We
investigated the following four distribution families:

(i) Normal distribution: 𝑋(𝑗) ∼ N(𝜇(𝑗), 𝜎(𝑗)2) for all 𝑗 =1, . . . , 𝑝
(ii) Student’s t-distribution: 𝑋(𝑗) ∼ t(V𝑗) for all 𝑗 =1, . . . , 𝑝
(iii) Poisson distribution:𝑋(𝑗) ∼ Po(𝜆𝑗) for all 𝑗 = 1, . . . , 𝑝
(iv) Bernoulli distribution: 𝑋(𝑗) ∼ Ber(𝜋𝑗) for all 𝑗 =1, . . . , 𝑝

The distribution parameters were uniformly drawn from the
following sets for 𝑗 = 1, . . . , 𝑝: 𝜇(𝑗) ∈ [1, 10], 𝜎(𝑗) ∈ [1, 5],
V𝑗 ∈ {10, 11, 12, . . . , 98, 99, 100}, 𝜆𝑗 ∈ {1, 2, 3, 4, 5}, and 𝜋𝑗 ∈[0.4, 0.6].

In order to also investigatemore realistic distribution sce-
narios, we additionally generated and analyzed data sets with
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dependent features and features from different distributions.
These studies yield similar results as the setting above and
are described in the Supplementary Material of this paper
(available online at https://doi.org/10.1155/2017/7847531).

Given the covariates X = (𝑋𝑒, X̃), the outcome 𝑌 was
generated according to a logistic regression model: 𝑌 | X ∼
Ber(𝜃(X)), where 𝜃(X) = (1 + exp{−(𝛽0 + X𝛽)})−1. We
chose the effects in terms of regression coefficients 𝛽 =(𝛽𝑒, 𝛽1, . . . , 𝛽5) as follows: The exposure has a negative effect
on the outcome with 𝛽𝑒 fl log 0.5. The effects 𝛽1, . . . , 𝛽5 for
the main features are varied at random, namely, uniformly
on the interval [−0.15, 0.15] in order to gain an intermediate
performance of a classifier applied on an independent data
set. 𝛽0 was chosen such that 𝑃(𝑌 = 1) = 0.1. By this setup,
the population with a rare exposure, 𝑃(𝑋𝑒 = 1) = 0.1, and
rare cases, 𝑃(𝑌 = 1) = 0.1, is fully generated.

In order to obtain a biased stratified sample, we simulated
a two-phase random selection process from the population
(Figure 1(a)) such that𝑃(𝑌 = 1 | 𝑆) = 0.5 and𝑃(𝑋𝑒 = 1 | 𝑆) =0.5. In a first step, an equal number of observations were
randomly taken with 𝑥𝑒 = 1 and with 𝑥𝑒 = 0. In a second
step, in each of these two strata from the first step, an equal
number of observations with 𝑦 = 1 and 𝑦 = 0 were selected.
By this, we partitioned the population into four equally sized
strata corresponding to (𝑦, 𝑥𝑒) ∈ {(1, 1), (1, 0), (0, 1), (0, 0)}.

Test data sets of size 104 were created in exactly the same
way as the population. For our simulation study, we generated
the population data set, the stratified data set, and the test set
1000 times for each feature distribution assumption.Thisway,
we could empirically assess the variability of the performance
of the correction and classification methods.

Application of Classifiers. We apply the seven correction
approaches (Section 3.1) combined with the four considered
classifiers (Section 3.2) to the synthetic data. To that end,
stochastic IP oversampling and parametric IP bagging, pro-
posed by us (Section 3.1.2), require a distribution assumption
for the main features X̃. We always assume them to be
normally distributed, even if the features in fact follow a
Student’s t-, Poisson, or Bernoulli distribution.We aim to find
out how the algorithms get affectedwhen assumptions are not
met.

In fact, the four different distribution scenarios meet
the Gaussian assumption in decreasing order: The normal
distribution trivially fulfills it. The t-distribution is still con-
tinuous and symmetric so that the violation of the normality
assumption may not get too severe. The Poisson distribution
is discrete but approximately normal for 𝜆 ≥ 30; however, in
order to guarantee the normality assumption to be violated,
we let 𝜆𝑖 ∈ {1, 2, 3, 4, 5}. The Bernoulli distribution cannot be
seen as continuous and violates the normality assumption the
most.

Evaluation. We measure the performance of the different
classifiers combined with the various correction approaches
by the Area-under-the-Receiver-Operating-Characteristic
curve (AUC) [29]. The AUC is appropriate especially in the
context of sample selection bias since it does not require
binary prediction (i.e., discretizing continuous risks by

choosing a cut-off) and is unaffected by linear transforma-
tions of the predictions as only ranks are considered. Thus,
differences in performance should not be influenced by good
or bad calibration of the prediction.

The goal of the comparison is to see whether correction
approaches perform significantly better than not correcting.
For each classifier, we fit a linear regression model with
the AUC as target variable and the correction approach
as covariate. The latter variable is dummy-coded with “no
correction” as reference category. An approach is determined
to differ significantly from the noncorrection approach if its
coefficient’s 𝑡-test confidence interval does not contain zero.
For all comparisons, we use a level of significance of 𝛼 = 5%.

Software. We used the statistical software R for all analyses
[30]. More specifically, for building logistic regression mod-
els, we used the R package stats [30], for random forest the R
package ranger [31], and for naive Bayes the R package e1071
[32]. The modified implementation of the SMOTE algorithm
is based on the R package smotefamily [33]. We validated our
results via ROC analysis, using the R packages pROC [34] and
ROCR [35].

4.2. Results. The simulation study yielded the following
results (see also Figures 3–6): As expected, for every distribu-
tion scenario (see previous subsection) and all classifiers, the
performance of learning on the entire population was signifi-
cantly better than learning without correction on the smaller
biased learning data set. Also, for all classifiers and in all
distribution scenarios, there was at least one correction tech-
nique that outperformed the noncorrection approach (with
two exceptions: logistic regressionwith additional interaction
terms and naive Bayes, both in case of normally distributed
main features).

However, there were differences between classifiers con-
cerning the success of correction approaches.We start by con-
trasting logistic regression and the random forest as this
comparison is of our primary interest.

The overall result for logistic regression (Figure 3) is that
all correction approaches perform significantly better than
noncorrection. Exceptions are costing and modified SMOTE
in the normal distribution scenario which on average per-
forms better than noncorrecting, but not significantly. For
t-distributed and Poisson distributed features, the difference
between the performance of noncorrection and the other
approaches is more prominent than for the normal distri-
bution scenario. In the Bernoulli case, this difference is the
highest. Within each distribution scenario, the correction
approaches perform similarly to each other.

For the random forest, the picture is rather different
(Figure 4): Only one correction approach performs signifi-
cantly better than noncorrecting: the parametric IP bagging
proposed in this paper. In fact, for normally and t-distributed
features, all other correction methods perform even worse
than noncorrecting. In the Poisson scenario, they perform
either worse than noncorrection or equally fine (IP bagging
and costing). Only in the scenario in which the assumption of
having continuousmain features (required by the approaches

https://doi.org/10.1155/2017/7847531
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Figure 3: Performance of correction approaches in logistic regression, measured by AUC.We fit a linear model for the AUC as influenced by
the correction method (dummy-coded, no correction as reference category). The graphic depicts 95% confidence intervals for the respective
coefficients. The dashed line shows the intercept of the model (i.e., the mean AUC for no correction). The blue colored methods are newly
proposed in this paper.

proposed by us) is not met at all (i.e., for the Bernoulli
distribution) do almost all correction approaches perform
better than not correcting. An exception is stochastic IP
oversampling proposed by us. This approach failed in all
distribution scenarios for the random forest.

Table 1 summarizes the properties of the correction
approaches (Section 3.1.3) together with the just described
results. We label the performance of an approach to be
sufficient if it results in a significant increase of the AUC
as compared to the noncorrection approach for the normal
distribution scenario. Costing and modified SMOTE do
not yield unambiguous improvements for logistic regression
since their confidence intervals slightly overlap with the

value under the null hypothesis. However, as we will see in
Section 5, both approaches perform significantly better than
noncorrection on real data.

In order to obtain a more comprehensive picture of the
benefit of correcting for sample selection bias, we applied the
correctionmethods in combinationwith twomore classifiers,
logistic regression with additional two-way interaction terms
in addition to the linear terms and naive Bayes, leading to the
following results.

Logistic regression with interaction terms yields a similar
picture as standard logistic regression (Figure 5): All cor-
rection approaches perform similarly to each other. In the
t- and Bernoulli scenario, again all correction approaches
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Figure 4: Performance of correction approaches in the random forest, measured by AUC.We fit a linear model for the AUC as influenced by
the correction method (dummy-coded, no correction as reference category). The graphic depicts 95% confidence intervals for the respective
coefficients. The dashed line shows the intercept of the model (i.e., the mean AUC for no correction). The blue colored methods are newly
proposed in this paper.

outperform the noncorrection approach, except for costing
for t-distributed features, which performs similarly to non-
correcting. For both the normal and the Poisson distribution,
all correction approaches perform significantly worse than
not correcting. An exception is parametric IP bagging:
Similar to the random forest case, only this method performs
significantly better than no correction for the Poisson distri-
bution scenario. For the normal distribution, the approach is
the only one which does not perform significantly worse than
the noncorrecting approach.

For naive Bayes (Figure 6), again all correction
approaches behave similarly as in logistic regression.
Depending on the data distribution, correction approaches
perform worse or better than noncorrection. Especially in
the normal distribution scenario, the correction approaches
are not successful.

5. Real Data Application

This section investigates the performance of the correction
methods in a real data example. Other than in the synthetic
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Logistic regression with two-way interaction terms
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Figure 5: Performance of correction approaches in logistic regression with additional two-way interaction terms, measured by AUC. We
fit a linear model for the AUC as influenced by the correction method (dummy-coded, no correction as reference category). The graphic
depicts 95% confidence intervals for the respective coefficients. The dashed line shows the intercept of the model (i.e., the mean AUC for no
correction). The blue colored methods are newly proposed in this paper.

data situation in the previous section, we do not know the
true distribution of the entire population here. In order to
still be able to evaluate the predictions appropriately, we chose
a very large real data set from which we could extract a
small stratified learning set and a large unbiased test set as
described in the following.

5.1. Design

Data. We evaluate the various prediction methods on the
example of the hepatitis data set (data ID: 269, exact name:

“BNG (hepatitis),” version: 1) fromOpenML [36]. It contains106 observations of a binary outcome 𝑌 and 20 features. 𝑌
captures whether a hepatitis patient stayed alive and hence
takes the categories live and die. We chose the binary variable
sex as stratum feature 𝑋𝑒. From the remaining variables,
we took into account the four continuous features albumin,
alkaline phosphatase, prothrombin time, and age, denoted by
X̃. These features were approximately normally distributed
(partly after transformation; see the quantile-quantile plots
in Figure 7) and strongly associated with the outcome.
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Figure 6: Performance of correction approaches in the naive Bayes classifier, measured by AUC. We fit a linear model for the AUC as
influenced by the correction method (dummy-coded, no correction as reference category). The graphic depicts 95% confidence intervals for
the respective coefficients.The dashed line shows the intercept of themodel (i.e., the mean AUC for no correction).The blue coloredmethods
are newly proposed in this paper.

Stratification Process. We aimed to evaluate the prediction
methods on data sets which underwent sample selection bias.
We hence constructed a learning data set by performing a
two-phase stratified random selection process on the hepatitis
data set. To that end, we selected 𝑛 = 2000 out of the 106
observations, enriching the outcome 𝑌 and the feature vari-
able sex, denoted by 𝑋𝑒. Figure 8 shows the sizes of the four
strata in analogy to Figure 1(b). As test data set, we chose
a subset of 10,000 observations from the hepatitis data
set, disjoint to the learning data. We defined the first 106
observations (without the test data) as the population which

served as reference learning data set as in the previous sec-
tion.

5.2. Results. We trained all methods on the biased learning
data and evaluated them on the unbiased test data. The
resulting AUCs are compared by seven pairwise hypothesis
tests according to [37]. We corrected for multiple testing via
Bonferroni correction (i.e., set the threshold for 𝑝 values to𝛼∗ = 0.05/7 = 0.0071).

The real data results confirm the findings from the simu-
lation study. For logistic regression, all weighting approaches
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of 10,000 observations instead of the full data set of size 106.
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Figure 8: Cross table for the hepatitis data set before (a) and after (b) the selection process of a two-phase case-control study.

perform very similarly, which was significantly better than
the nonweighting approach and even comparable to learning
on a large population (Figure 9(a)).

For random forest, we obtain similar results as in the sim-
ulation study (Figure 9(b)): Only parametric IP bagging per-
forms significantly better than the nonweighting approach.
Costing and IP bagging perform insignificantly better; IP
oversampling, modified SMOTE, and stochastic IP over-
sampling perform significantly worse.

Also, for logistic regression with interaction terms and
naive Bayes, we obtain results matching with the simulation
study: The assumptions for normality are met only roughly
for the real data, in which case the correction approaches
all perform similarly and better than no correction
(Figure 9(d)).

6. Discussion and Conclusion

We investigated how to learn classifiers on stratified random
samples as resulting from two-phase case-control studies.
Here, our emphasis was on random forest classification since
previous bias correction methods did not pay special atten-
tion to resampling-based classifiers. However, we studied a
broad range of classification techniques. This work hence
guides the choice of such approaches also for other classifiers.

The methods are immediately applicable due to the imple-
mentations provided in our R package sambia.

Both our simulation study and the real data application
show that for classifiers trained on biased data sets prediction
on unbiased data sets can be improved if the stratification
process is taken into account and corrected for. However,
state-of-the-art correction approaches from classical statis-
tics (IP oversampling, IP bagging, costing, and modified
SMOTE) do not yield the desired improvement for random
forests. In fact, they can even lead to worse AUC values than
those obtained when not performing any correction. From
our two proposed approaches (stochastic IP oversampling
and parametric IP bagging), on the other hand, the latter
could always outperform the noncorrection approach.

We were also interested in all correction approaches’
success when employed in the context of logistic regression.
It turned out that any method improves prediction on an
independent data set as compared to no correction, and all
correction techniques perform similarly.

Table 1 helps to explain the different behaviors of the
two classifiers: Correction approaches are based on one or
several of the principles (i) IP weighting, (ii) rebuilding the
original covariance structure, and (iii) increasing the number
of learning observations as compared to the stratified sample.
Obviously, weighting (Property (i)) should be applied in
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(a) Performance of logistic regression on real data. The graphic depicts
95% confidence intervals for the respective AUC value calculated and
on the basis of [37]. All correction approaches perform similarly and
significantly better than no correction (test by [37], 𝛼∗ = 0.0071)
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(b) Performance of random forest on real data.The graphic depicts 95%
confidence intervals for the respective AUC value calculated and on the
basis of [37]. Only one correction approach, our novel parametric IP
bagging, performs significantly better than no correction (test by [37],
𝛼∗ = 0.0071)
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on real data. The graphic depicts 95% confidence intervals for the
respective AUC value calculated and on the basis of [37]. All correction
approaches perform significantly better than no correction (test by [37],
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(d) Performance of naive Bayes on real data. The graphic depicts 95%
confidence intervals for the respective AUC value calculated and on the
basis of [37]. All correction approaches perform significantly better than
no correction (test by [37], 𝛼∗ = 0.0071)

Figure 9

order to obtain any improvement in performance. Moreover,
the covariance structure should be corrected for (Property
(ii)) when applying a random forest. IP oversampling and
partly modified SMOTE failed to fulfill this criterion. For
logistic regression, in contrast, the covariance structure does
not matter since point estimates of regression coefficients are
not affected when the variance in the data is underestimated.
Last, sample sizes (Property (iii)) seem to matter more for
random forests than for logistic regression.This is reasonable
since too small sample sizes can restrict the range of the values
of a feature and thus underestimate their variance leading to
the same issue as for Property (ii). This made IP bagging and
costing perform poorly for the random forest. This leaves us

with stochastic IP oversampling and parametric IP bagging,
both proposed in this paper. However, although stochastic IP
oversampling was designed to fulfill Properties (i), (ii), and
(iii), we could not yield successful results for random forests.

Having compared correction methods in random forests
and in logistic regression, onemay conclude that the choice of
parametric IP bagging is advisable whenever the distribution
assumptions for this approach are met. In order to once
more revise this conclusion, we investigated the behaviors of
all correction approaches in two more classifiers, a logistic
regression model with additional interaction terms and the
naive Bayes classifier. For the logistic regression model with
interaction terms, once again only the parametric IP bagging
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consistently outperformed the noncorrection approach. For
naive Bayes, all approaches performed similarly among each
other, confirming the above stated rule.

Against our expectations, naive Bayes failed in the sim-
ulation study for the normal distribution scenario but did
well for all other distributions. A generally unexpected result
was the poor accomplishment of stochastic IP oversampling.
It performed worse than noncorrection in several scenarios
and was successful only in those situations where all other
correction approaches were successful as well.

For a random forest, parametric IP bagging is an effective
technique for prediction on an unbiased data set and can
also be preferred for other classifiers. However, in this paper,
we restricted our simulations and real data example to the
case where the main features could be assumed to be roughly
normally distributed (after transformation, if necessary) so
that the assumption of amultivariate normal distributionwas
appropriate. The success of parametric IP bagging generally
depends on meeting the assumptions about the distributions
of the features. Hence, the method should be chosen with
care. On the other hand, our simulations show that, even in
scenarios where assumptions are barely met (e.g., for Poisson
distributed features), the approach still works. Clearly, one
could also adjust the distribution family for the parametric
bootstrap in parametric IP bagging. Even mixture distribu-
tions are conceivable (e.g., for bimodal feature distributions).

So far, parametric IP bagging has not been designed
for binary or categorical main features or combinations
of different types. This could be done by subgrouping the
corresponding categories (or combining categories in the case
of several categorical features) and estimating parameters in
each of the subgroups for the assumed distribution family
analogously to what we did for the different strata. Again,
one would draw parametric bootstrap samples within all
subgroups and construct a new unbiased sample within the
scope of parametric IP bagging.

Even though our new approaches were developed for the
random forest, they are generally tailored towards learning
by any classifier and can be incorporated in other machine
learning algorithms. Parametric IP bagging has been shown
to perform well even if theoretical assumptions are not met.
It can be applied on any stratified random sample and is not
restricted to two-phase case-control studies. More generally,
it is suited for any sample suffering from sample selection
bias where the stratum features are categorical and the
remaining features roughly follow a multivariate distribution
from which parametric bootstrap samples can be drawn. For
general classifiers, its performance is mostly comparable to
that of other correction methods. Parametric IP bagging is
the first correction method designed for the random forest
and in that context clearly outperforms all other approaches.

Appendix

A. Dependence of 𝑆 on X and 𝑌 for Label
and Feature Bias

Label bias does not imply that 𝑆 is independent of X; that is,
𝑃 (𝑆 | X, 𝑌) = 𝑃 (𝑆 | 𝑌) ∧ 𝑃 (𝑆 | 𝑌) ̸= 𝑃 (𝑆) 
𝑃 (𝑆 | X) = 𝑃 (𝑆) . (A.1)

Proof. Let x fl 𝑡(𝑦), where 𝑡 is a function mapping to {0, 1}.
Then, 𝑃(𝑆 | x) = 𝑃(𝑆 | 𝑡(𝑦)) = 𝑃(𝑆 | 𝑦) ̸= 𝑃(𝑆).

Analogously, one can show that feature bias does not
imply that 𝑆 is independent of 𝑌.
B. Covariance Matrix of Noise in

Stochastic IP Oversampling

Here, we derive an appropriate noise covariance matrix to be
added to the features X̃ℎ resulting from IP oversampling.

For one stratum ℎ, we look at the covariance of the pair of
features 𝑋(𝑘)

ℎ
, 𝑋(𝑗)
ℎ

for 𝑘, 𝑗 ∈ {1, . . . , 𝑝}. For sample size 𝑛, we
get per stratum a sample covariance per pair 𝑥(𝑘)

ℎ
, 𝑥(𝑗)
ℎ
, given

by

𝑠
𝑥(𝑘)
ℎ
,𝑥
(𝑗)

ℎ

= 1𝑛ℎ − 1
𝑛ℎ∑
𝑖=1

(𝑥(𝑘)ℎ𝑖 − 𝑥(𝑘)ℎ ) (𝑥(𝑗)ℎ𝑖 − 𝑥(𝑗)ℎ ) , (B.1)

where 𝑥(𝑙)
ℎ

fl (1/𝑛ℎ) ∑𝑛ℎ𝑖=1 𝑥(𝑙)ℎ𝑖 for any 𝑙 ∈ {1, . . . , 𝑝}.
For IP oversampling, we replicate the data points by the

factor 𝑤ℎ, which varies per stratum. Thus, the covariance of
the modified sample is

𝑠
𝑥(𝑘)
ℎ
,𝑥
(𝑗)

ℎ

= 1𝑤ℎ𝑛ℎ − 1
𝑛ℎ∑
𝑖=1

𝑤ℎ (𝑥(𝑘)ℎ𝑖 − 𝑥(𝑘)ℎ ) (𝑥(𝑗)ℎ𝑖 − 𝑥(𝑗)ℎ )

= 𝑤ℎ (𝑛ℎ − 1)𝑤ℎ𝑛ℎ − 1 𝑠𝑥(𝑘)ℎ ,𝑥(𝑗)ℎ .
(B.2)

In addition to simple IP oversampling, stochastic IP oversam-
pling incorporates the summation of some noise (matrix) �̃�.
Wewant the following to hold for a pair of the randomvectors
�̃�(𝑘), �̃�(𝑗) of size 𝑛ℎ:

cov (𝑋(𝑘)ℎ + �̃�(𝑘)ℎ , 𝑋(𝑗)ℎ + �̃�(𝑗)ℎ ) = cov (𝑋(𝑘)ℎ , 𝑋(𝑗)ℎ ) , (B.3)

where 𝑋(𝑘)
ℎ

, 𝑋(𝑗)
ℎ

are the random variables resulting from
replication by a factor 𝑤ℎ (oversampling).

We can simplify

cov (𝑋(𝑘)ℎ + �̃�(𝑘)ℎ , 𝑋(𝑗)ℎ + �̃�(𝑗)ℎ )
= cov (𝑋(𝑘)ℎ , 𝑋(𝑗)ℎ ) + cov (𝑋(𝑘)ℎ , �̃�(𝑗)ℎ )
+ cov (𝑋(𝑗)

ℎ
, �̃�(𝑘)ℎ ) + cov (�̃�(𝑘)ℎ , �̃�(𝑗)ℎ )

= cov (𝑋(𝑘)ℎ , 𝑋(𝑗)ℎ ) + cov (�̃�(𝑘)ℎ , �̃�(𝑗)ℎ ) ,

(B.4)

since the noise component �̃�(𝑗)
ℎ

should not correlate with the
feature random vector X𝑘 (neither �̃�

(𝑘)
ℎ

with 𝑋(𝑗)
ℎ
, resp.). This

also holds for 𝑗 = 𝑘.
We can estimate the components of the covariancematrix

cov(𝑋(𝑘)
ℎ
, 𝑋(𝑗)
ℎ
) by 𝑠
𝑥(𝑘)
ℎ
,𝑥
(𝑗)

ℎ

= (𝑤ℎ(𝑛ℎ − 1)/(𝑤ℎ𝑛ℎ − 1))𝑠𝑥(𝑘)
ℎ
,𝑥
(𝑗)

ℎ

.
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Substituting this into (B.3) yields, for the entries of our noise
covariance matrix,

𝑠
�̃�
(𝑘)
ℎ
,�̃�
(𝑗)

ℎ

= 𝑠
𝑥(𝑘)
ℎ
,𝑥
(𝑗)

ℎ

− 𝑤ℎ (𝑛ℎ − 1)𝑤ℎ𝑛ℎ − 1 𝑠𝑥(𝑘)ℎ ,𝑥(𝑗)ℎ
= 𝑤ℎ − 1𝑤ℎ𝑛ℎ − 1𝑠𝑥(𝑘)ℎ ,𝑥(𝑗)ℎ .

(B.5)

In terms of random variables, the empirical covariance
matrix combining all entries 𝑠

�̃�
(𝑘)
ℎ
,�̃�
(𝑗)

ℎ

for all 𝑘, 𝑗 ∈ {1, . . . , 𝑝}
would be replaced by Σadj

ℎ
and the empirical covariance

matrix combining all entries 𝑠
𝑥(𝑘)
ℎ
,𝑥
(𝑗)

ℎ

for all 𝑘, 𝑗 ∈ {1, . . . , 𝑝} byΣℎ.
Additional Points

Supplementary Material. Additional figures, code, and data
are available at https://www.helmholtz-muenchen.de/index
.php?id=47085.
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