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ABSTRACT 

Inorganic nanomaterials have become one of the new areas of modern knowledge and technology 

and have already found an increasing number of applications. However, some nanoparticles show 

toxicity to living organisms, and can potentially have a negative influence on environmental 

ecosystems. While toxicity can be determined experimentally, such studies are time consuming and 

costly. Computational toxicology can provide an alternative approach and there is a need to develop 

methods to reliably assess Quantitative Structure–Property Relationships for nanomaterials (nano-

QSPRs). Importantly, development of such models requires carefully collection and curation of 

data. This article overviews freely available nano-QSPR models, which were developed using the 

Online Chemical Modeling Environment (OCHEM). Multiple data on toxicity of nanoparticles to 

different living organisms were collected from the literature and uploaded in the OCHEM database. 

The main characteristics of nanoparticles such as chemical composition of nanoparticles, average 

particle size, shape, surface charge and information about the biological test species were used as 

descriptors for developing QSPR models. QSPR methodologies used Random Forests (WEKA-RF), 

k-Nearest Neighbors and Associative Neural Networks. The predictive ability of the models was 

tested through cross-validation, giving cross-validated coefficients q2=0.58-0.80 for regression 

models and balanced accuracies of 65-88% for classification models. These results matched the 

predictions for the test sets used to develop the models. The proposed nano-QSPR models and 

uploaded data are freely available online at http://ochem.eu/article/103451 and can be used for 

estimation of toxicity of new and emerging nanoparticles at the early stages of nanomaterial 

development. 
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1. Introduction 

The market of nanomaterials is developing very fast with Ag, Au, Pd, Ni, Fe, metal oxide NPs 

(TiO2, SiO2, Al2O3, ZnO, ZrO2, SnO2, mixed compositions) and quantum dots (Si, CdSe, GaAs) 

finding multiple applications in different industries. However, their toxicity and impact on the 

environment are not known and need to be carefully estimated (Buzea et al., 2007; Gajewicz et al., 

2012). Assessing toxicity by performing in vivo experiments is very expensive and time consuming 

and is not feasible for all possible nanoparticle types. A cheaper and more efficient alternative to 

such tests is using predictive computational models, e.g., Quantitative Structure-Property 

Relationship (QSPR) models (Toropova et al., 2015). Combined with powerful data-mining tools, 

QSPR computational models offer a rapid way of filling data gaps due to the lack or limited 

availability of experimental data on new substances. The in silico models are now routinely used by 

researchers and industry to estimate physicochemical properties, biological activity or toxicological 

effects of a wide range of chemical substances. Apparently, in the case of substances such as NPs 

with an unclear molecular structure, the standard QSPR approach cannot be used. There are some 

good examples describing the behavior of nanomaterials by QSPR (Fourches et al., 2010; Oksel et 

al., 2015). The authors recommend distinguishing between the data for the different classes of 

nanomaterials and considering them separately (Fourches et al., 2011). However, whereas in silico 

modelling approaches have been well developed for ordinary chemical substances, a relationship 

between the various physicochemical properties and toxicological effects of NPs that can allow a 

creation of reliable models has not yet been established. Frequently a few parameters, such as the 

particle size, surface area, and surface characteristics have so far been envisaged to be important in 

relation to risk assessment of NPs (Chaudhry et al., 2010). There are most likely other parameters 

that play an equally important role in driving the properties and effects of NPs. For example, NPs of 

the small nm size are able to cross biological membrane barriers and may reach different body 

organs, which are otherwise protected against the entry of larger materials (Chaudhry et al., 2010). 

However, NPs are not always more detrimental compared to their corresponding larger forms. It is 

also known that two nanoparticles of the same source, chemical composition, and size may exert 

very different effects (Park et al., 2009). This points out that there are properties, other than size and 

surface area, which play an important role in determining the effects and interactions of 

nanoparticles in the biological systems. For example, surface coatings are probably very important 

in this respect (Oksel et al., 2015). In this regard, QSPR modeling approaches can answer the 

question of which properties of NPs determine toxicity, and these approaches can therefore help to 
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elucidate the main key parameters that control toxic effects of NPs. In such cases, the QSPR models 

can be built up using some additional information, for example, available physicochemical 

parameters, solubility, partition coefficients between different solvents, technological conditions 

and parameters selected for manufacturing various nanomaterials, etc. (Toropova et al., 2015). 

Thus, there is a need to develop publicly and freely available models, which can do such 

estimations. The development of such models is, however, not feasible without literature mining 

and manual curation of data (Marvin et al., 2013; Melagraki and Afantitis, 2014; Melagraki and 

Afantitis, 2016). Therefore, in this study, we collected and curated literature data relating the 

ecotoxic and human health effects of NP of metals and metal oxides to their intrinsic properties 

(electronic state, coordination, chemical composition, shape and morphology of NPs and their size 

characteristics). The development of models was done using the Online CHEmical Modeling 

environment (OCHEM) database (Sushko et al., 2011). Nowadays, there are some promising web-

services for QSPR modeling of nanoparticles (Marvin et al., 2013; Melagraki and Afantitis, 2014; 

Melagraki and Afantitis, 2016), however, they do not allow an easy data manipulation, introducing 

of new NP properties and NP modeling using different sets of descriptors and machine learning 

tools. OCHEM allows seamless integration of traditional descriptors and nanoparticle properties as 

well as publishing of data and models on-line. Thus, it perfectly fits the purpose of development 

and public dissemination of data and models for prediction of toxicity of nanomaterials. 

 

2. Materials and methods 

2.1. OCHEM database 

OCHEM is a platform for storing experimentally measured properties and activities of chemical 

compounds and for development of QSAR/QSPR models (Sushko et al., 2011). OCHEM is a 

collaborative, user-friendly resource: any user on the Web can register, introduce new data, and 

create models. Moreover, the users can also assess published data and models introduced by other 

users. The latter functionality does not require any registration. 

The database module stores data in the original units, tracks users and any modifications they 

perform to the data, and allows the introduction of new units and properties. The database 

automatically checks for duplicates, allows the editing of single or several records simultaneously, 
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and performs a batch upload of data as Microsoft Excel and/or SDF files. Furthermore, it permits 

export of data as Excel, CSV, or SDF files. Each entry requires a literature reference, which allows 

tracing of the original source to enable a quality check. 

The experimental data uploaded in the database can be easily manipulated to create data sets that 

are suited to build predictive QSAR models using a variety of machine learning techniques (e.g., 

neural networks, multivariate linear regressions, k-nearest neighbor method, random forest, etc.). 

The recent overview of OCHEM functionality as well as other web-tools for development of on-

line can be found elsewhere (Tetko et al., 2017). 

 

2.2. Preparing nanotoxicity databaseThe first step in modeling NPs toxicity is identifying 

toxicity-related properties that can be used as potential factors of unfavorable effects of NPs. While 

clear toxicological differences may be illustrated for different materials in in vitro cell systems, 

these same responses are not always seen when administering the same material in vivo. The 

Working Group on Manufactured Nanomaterials (WPMN) of the Organization for Economic 

Cooperation and Development (OECD) proposed a list of physicochemical properties potentially 

relevant to the (eco)toxicity of nanomaterials (OECD, 2010). 

The size of NPs is one of the most important characteristics that affects the properties and 

behavior of NPs and therefore it was included in the list of obligatory properties. However, as 

mentioned by other researchers, the prediction of the toxicity of nanoparticles depends not only on 

their median size, but also on the shape, agglomeration state, crystal structure, chemical 

composition, surface area, surface chemistry, surface charge, as well as porosity, purity, solubility, 

and hydrophobicity (Buzea et al., 2007; OECD, 2010; Oksel et al., 2015). 

A data set of 964 data points was collected from 128 publications and stored in the OCHEM 

database (Sushko et al., 2011). The analyzed data included both toxicological/ecotoxicological 
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properties such as EC50, LC50, minimum inhibitory concentration (MIC) and Mortality Rate (MR) 

derived from various tests and physico-chemical properties described (see Table 1) for metal and 

metal oxide nanoparticles of different sizes ranging from 1 to 90000 nm. 

Ecotoxicological data included information for commonly tested bacteria such as Staphylococcus 

aureus, Escherichia coli, etc. as well as for aquatic organisms such as Zebra fish embryos, Daphnia 

magna, etc. 

 

Table 1. List of endpoints used in the prepared database of nanoparticles. 

Endpoint Abbreviation Description 
Physico-chemical endpoints 
  Material of nanoparticles 
 APS Average particle size 
  Zeta potential 
  Surface area 
  Surface coating 
  Shape of nanoparticles 
  Specific surface area 
  Crystal structure of NPs 
  Hydrodynamic diameter 
  Composition of NPs 
  Nano-purity 
Toxicity endpoints 
  Test duration 
  Exposure concentration 
 LC50 Lethal concentration is the concentration of a 

toxicant that kills 50% of a test population 
 EC50 Median effective concentration to 50% of a test 

population 
 MIC Minimum inhibitory concentration is the lowest 

concentration of the toxicant needed to produce 
an inhibitory effect 

 MR Mortality rate (%) is a measure of the number of 
deaths (in general, or due to a specific cause) in 
a population 
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The full list of species, references and endpoints can be found on the OCHEM website at 

http://ochem.eu/article/103451. The collected data were obtained using the same or similar 

experimental protocols. Therefore, according to evaluation criteria proposed by (Klimisch et al., 

1997) collected data could be classified as good quality but without all necessary details being. 

Such data can be used (with restrictions) for nano-QSPR modeling (Lubinski et al., 2013).  

 

2.3. Representation of nanotoxicity data in OCHEM 

Special attention should be paid to the most critical parameters of experiment such as test media, 

temperature, and time for proper characterization of NPs. These parameters are important for the 

toxicity of NP against biological species but at the same time the properties of NPs can significantly 

change under different experimental conditions. Thus, comprehensive descriptions of the test 

procedures (time, pH and etc.) were included in the database and available published characteristics 

of NPs were collected. 

 

Table 2. List of experimental conditions and measured properties of NPs  

N Basic characteristics Toxicity end point 

LC50 EC50 MIC Mortality rate Default 
value num.a 

rangeb num. range num. range num. range 

1 species 380c 
- 221c 

- - - 262 - - 

2 target - - - - 101c 
- - - - 

3 test duration (h) 380c 
1-120 221c 

0.5-112 8 8-72 262c 
24-120 24 

4 material nanoparticles 
of elements 

380c 
- 221c 

- 101 - 262c 
- - 

5 average particle size 
(nm) 

380c 
1.0-
90000 

221c 
1.0-
10000 

101c 
1.0-
100 

262c 
1.0-4000 1 

6 surface coating 117 - 37 - 101c 
- 88 - N/A 

7 exposure concentration 
(mg/L) 

10 0.64-
1000 

23 31.6-
1000 

93 108 262c 
0-1000 1 

8 shape of nano particles 118 - 45 - 85 - 180 - N/A 

9 specific surface area 48 14.53- 50 0-288.0 0 - 43 9.284- 0 
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(m2/g) 90.0 600.0 

10 crystal structure of 
nanoparticles 

49 - 30 - 0 - 59 - N/A 

11 zeta potential (mV) 74 -46.0-
53.33 

32 -58.4-0 0 - 3 -19.6 -  

-10.0 
0 
 

12 hydrodynamic 
diameter (n m) 

32 25.7-
763.0 

16 25.7-
1261 

0 - 10 - 1 

13 composition 6 - 0 - 0 - 0 - N/A 

14 nano-purity 0 - 30 - 0 - 0 - N/A 
anum. - number of NPs with current basic characteristic; brange – min - max range of values; 

cproperties marked in bold are obligatory properties for the corresponding toxicity endpoint; N/A - 

not available. 

 

In addition to aforementioned properties, the basic characteristics of nanoparticles such as 

chemical composition of the nanoparticles, average particle size (APS), test duration, shape, surface 

coating, specific surface area, zeta potential, hydrodynamic diameter and information about 

experimental species were also collected (see Fig.1). Several properties, i.e. species, test duration, 

APS, target, material nanoparticles of elements, were obligatory. Thus, each record was required to 

incorporate information about these very important nanoparticle parameters. Unfortunately, not all 

necessary properties of NPs were specified in all publications, e.g., crystal structure of NPs was 

frequently missing. In case if no values for some of properties were available, we used default ones 

as summarized in Table 2. This, of course, may decreased accuracies of the developed models but 

allowed us to use all available data to provide the widest applicability of the models.  

The collected conditions of experiments and/or measured properties of nanomaterials were used 

as one sets of descriptors for modeling in OCHEM.  

To describe the toxic properties of the nanoparticles, the abbreviation “Nano” was used in order 

to easily identify data points for nanoparticles in OCHEM (Sushko et al., 2011).  
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Figure 1. Example of “Nano” records in OCHEM. The experimental conditions and measured 

properties of nanomaterials are shown in green color at the right top corner for each nanomaterial.  

 

2.4. Data sets 

The main priorities were given to collection of data on the toxicity of metallic NPs (Ag, 

spherical; Pt2+; Au3+; Zn2+; Ni, quasi-spherical; Co; Cu, Au spherical, Fe spherical) and metal oxide 

NPs (TiO2, anatase, rutile, P25 Degussa; ZnO; CuO, spherical; ZnO, rhomboid, spherical and short-

rod shape; AgNO3; Al2O3; CeO2, Fe3O4, ZrO2, GdO2, Dy2O3, Ho2O3, Sm2O3, Er2O3). 

As aforementioned, the toxicity of NPs was measured as LC50, EC50, MR and MIC, which were 

used to create four different datasets corresponding to the respective toxicity endpoints. The LC50 

(lethal concentration) is the concentration of a toxicant that kills 50% of a test population for a 

given exposure duration. EC50 (effective concentration) is the concentration of a given NP that 

reduces the specified effect to half of that of the original response. MR (mortality rate, %) is a 

measure of the number of deaths (in general, or due to a specific cause) in a population, whereas 

MIC (minimum inhibitory concentration) is the lowest concentration of the toxicant needed to 
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produce an inhibitory effect. The biological data obtained as the lethal concentration (LC50, i.e. the 

concentration causing 50% lethality), the 50% effect concentration (EC50) and MIC were converted 

into log(LC50), log(EC50) and log(MIC) values. 

All four datasets were used for the development of classification models. Datasets I-III were 

also applied to develop regression models to provide quantitative predictions of NP toxicity.  

Dataset I included 380 nanoparticles. The LC50 values of the 380 NPs (198 metals and 182 metal 

oxide NPs) ranged from 0.001 to 20000 mg/L. The nanoparticles were divided into two classes: 

high toxicity NPs (171 with LC50 ≤ 2.0 mg/L) and low toxicity NPs (194 with LC50 > 2.0 mg/L). In 

total 15 NPs were excluded from the data set for classification purposes as duplicates because they 

possess the same composition and obligatory conditions as some other nanoparticles in the dataset. 

Dataset II was composed of 221 nanoparticles (48 metal NPs and 173 metal oxide NPs). The 

EC50 values for these NPs ranged from 0.001 to 20000 mg/L. These NPs were also split into two 

classes: high toxicity NPs (92 with EC50 ≤ 2.0 mg/L) and low toxicity NPs (111 with EC50 > 2.0 

mg/L). Finally, 18 duplicated NPs were excluded from the data set for classification purposes. 

The data on MIC values formed dataset III, which consisted of 101 nanoparticles (95 metal NPs 

and 6 metal oxide NPs) with MIC values ranging from 0.84 to 20000 mg/L. The nanoparticles were 

divided into two classes: 48 high toxicity NPs (with MIC ≤ 4.0 mg/L) and 46 low toxicity NPs 

(with MIC > 4.0 mg/L). Six NPs were excluded from the data set for classification purposes as 

duplicates. 

The last dataset IV included data on mortality rate (MR, %) (153 metal NPs and 109 metal oxide 

NPs). The NPs were split into two classes: low toxicity NPs (134 with MR ≤ 30%) and high toxicity 

NPs (127 with MR > 30%). 

For all data sets, about 25-30% of the NPs were randomly selected using OCHEM to form 

external independent test sets, while the remaining NPs were used as training sets. 
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The structures and the corresponding toxicity data of the nanoparticles used in the training and 

test sets and the full list of publications are publicly accessible at http://ochem.eu/article/103451. 

These data are also provided as supplementary materials. 

  

2.5. Machine learning methods 

Models for predicting the toxicity of nanoparticles were developed using OCHEM. Three 

machine-learning methods were selected to build classification and regression QSPR models using 

basic characteristics of nanoparticles and different descriptor sets. 

Associative Neural Network (ASNN). Associative Neural Networks unite an ensemble of feed-

forward backpropagation neural networks which build a global model, and the k-nearest neighbors 

method (kNN), which provides a local correction of the global model (Tetko, 2008). Such approach 

and delivers models with higher accuracy (Tetko, 2011). The individual neural network models 

contained five neurons in the hidden layer and were trained by SuperSAB (Tollenaere, 1990). The 

input neurons corresponded to the analyzed descriptors. Neural network weight coefficients were 

initialized with random values. A bias neuron was also included in both the input and hidden layer 

of nodes. The ASNN ensemble included 100 networks.  

k-Nearest Neighbor Method (kNN). The nearest neighbor method predicts activity or class of 

the target pattern by a majority vote of the k neighbors that are the closest to the target sample in the 

multidimensional space of attributes (Dasarathy, 1991). Here k is a positive integer, selected by a 

cross-validation method. If k = 1, then the object is assigned to a class of its nearest neighbor. The 

neighbors are taken from training set samples for which the class (or, in the case of regression, the 

values of the property) are known. The optimal value of k in the range of 1 to 100 is automatically 

detected by OCHEM for each model (Sushko et al., 2011). 
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WEKA-RF (Random Forest). This method is a WEKA (Hall et al., 2009) implementation of a 

random decision tree (Breiman, 2001). Random Forest (RF), a recursive partition ensemble method, 

consists of many individual trees, each of which is built using bootstrap replica of the training set 

and randomly selected subsets of descriptors. RFs calculate predictions by using a majority vote of 

the individual trees. This is a high-dimensional nonparametric method that works well on large 

numbers of variables (Breiman, 2001). 

 

2.6. Descriptor calculation 

In traditional QSPR analysis, molecular descriptors, which are selected to be related to the 

investigated activity or property, are used to characterize and quantify the physicochemical 

properties of chemicals. Theoretical descriptors can be calculated with different approaches, which 

are implemented in software packages. Although thousands of descriptors were proposed and are 

used for representation of molecular structures, most of them are either inapplicable to NPs or need 

adaptation to be used for characterization of NPs. On the other hand, the important properties, such 

as size, shape, surface charge and others can be measured by various experimental techniques and 

can also be used as descriptors for developing QSPR models. Therefore, in our work, we developed 

QSPR models using both the theoretical descriptors and collected experimental properties that may 

potentially modify the toxicity of NPs. 

The NMs are represented in OCHEM as respective chemical elements of materials, i.e., metals 

or metal oxides. In a preprocessing step using the ChemAxon Standardizer (ChemAxon, 2016), all 

structures were standardized and optimized with Corina (Corina, 2016).  

The descriptors available in the OCHEM are grouped by the software name that contributes 

them: E-State indices (Hall and Kier, 1995), ChemAxon descriptors (ChemAxon, 2016), etc. Here 

we briefly described the types of used descriptors. 
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E-State indices. E-state refers to electro-topological state indices that are based on chemical 

graph theory (Hall and Kier, 1995), which were extended as proposed at (Huuskonen et al., 1999). 

These are 2D descriptors that combine the electronic and the topological properties of atoms. 

ChemAxon descriptors. The ChemAxon Calculator Plugins calculates a variety of descriptors. 

Only properties encoded by numerical or Boolean values were used as descriptors. They were 

subdivided into seven groups, ranging from 0D to 3D: elemental analysis, charge, geometry, 

partitioning, protonation and others.  

Unsupervised filtering of descriptors was applied to each descriptor set before using it as a 

machine learning input. Descriptors with fewer than two unique variables or with a variance less 

than 0.01 were eliminated. Further, descriptors with a pair-wise Pearson’s correlation coefficient 

R>0.95 were grouped. Since only metals or metal oxides were used, only few descriptors were left 

after the filtering (see supplementary materials). Detailed information about these descriptors can be 

found on the OCHEM website (OCHEM, 2017) and previous publications (Sushko et al., 2011). 

 

2.7. Validation of QSPR Models 

The accuracy of models was estimated using five-fold cross-validation (Tetko et al., 2008b) and 

by prediction of the test sets.  

The validation of models in QSAR studies is commonly performed after variable selection. Such 

approach can result in erroneous estimation of the predictive power of QSPR models since the 

descriptor selection can introduce оverfitting (Tetko et al., 2008a; Tetko et al., 2008b). The 

OCHEM platform uses the so-called correct validation procedure and for each cross-validation 

folds develops a new model by repeating all steps of model development (Tetko et al., 2008b). In 

addition, to confirm this result for nano-QSPR models, we also used the aforementioned test sets, 

which were predicted once the final models were developed. 
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In this work, the root mean square error (RMSE), the mean absolute error (MAE), the squared 

correlation coefficient R2 (Press et al., 2002) and the cross-validated coefficient q2 (Cramer et al., 

1988) were calculated for evaluation of the predictive efficiency of the regression models 

developed. OCHEM (Sushko et al., 2011) calculates these statistical parameters for all analyzed 

sets. To assess the classification ability and to separately control the classification performance of 

the two classes, sensitivity (Sn), specificity (Sp), precision (Pr) and balanced accuracy (AC) were 

calculated. Notice that sensitivity is also called true positive rate or positive class accuracy, while 

specificity is also called true negative rate or negative class accuracy. 

Sn = TP / (TP + FN)         (1) 

Sp = TN / (TN + FP)         (2) 

where TP, FP, TN and FN denote true positives, false positives, true negatives and false 

negatives, respectively. 

OCHEM calculates the balanced accuracy (also sometimes referred to as correct classification 

rate) as a measure of the classification quality of the models as: 

AC = 0.5 * (Sn + Sp)          (3) 

The balanced accuracy is complemented with a confusion matrix that shows the number of 

compounds classified correctly for every class as well as details of misclassified compounds, e.g. 

number of false positive and false negative predictions. Detailed information about additional 

statistical coefficients can be found on the OCHEM website (OCHEM, 2017). 

 

2.8. Assessment of descriptor importance 

The exhaustive search method is the most straightforward but also most computationally time-

consuming to identify sets of descriptors providing the highest prediction ability of models. It 

consists in the generation of all possible combinations of N variables, from size 1 to N, where N is 
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the total number of descriptors. The amount of all possible descriptor combinations grows 

exponentially with the number of variables. We used a step-wise algorithm of exhaustive search 

(pruning) based on sifting of obviously non-optimal combinations of descriptors, which is 

frequently used in linear regression studies. The method starts with a model that is developed with 

the full set of descriptors, N. At the next stage, an algorithm generates models with all possible 

combinations of the N-1 variables and selects the best QSPR model (as defined by the minimal 

RSME value) from N models. Thus, this procedure decreases (prunes) the number of descriptors by 

one. The calculations are repeated until only one descriptor remains and set of descriptors providing 

the lowest RMSE is detected. 

2.9 Applicability domain 

QSPR model should have an applicability domain (AD) since the model could only cover a 

limited range of the entire chemical space and provide non-reliable predictions for compounds 

outside of AD (Sushko et al., 2010). AD was defined for each model to avoid incorrect predictions. 

A unique feature of the OCHEM is the automatic assessment of the prediction accuracy. The 

estimation of the accuracy is based on the concept of “distance to a model” (DM) (Tetko et al., 

2008b), i.e., a numeric value estimated solely from NP structures and experimental conditions, 

which correlates with the average model performance. In the current study, we used the standard 

deviation of predictions of the ensemble of models (Tetko et al., 2008b) as a measure to differ 

reliable and unreliable predictions. These values are calculated using OCHEM for all ASNN 

models (Sushko et al., 2011).  

 

3. Results and discussion 

3.1. Classification models 

3.1.1. Calculated model accuracy 
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Classification QSAR models were built by different machine learning techniques (MLT) using 

the experimentally measured base characteristic of NPs, calculated E-State indices and ChemAxon 

descriptors. Before creating QSAR models, the numerical values were discretized as described in 

section 2.3. As a result, we investigated the influence of different types and combination of 

descriptors on the QSPR model quality. For this reason, the QSPR models were built by using 1) 

only basic characteristics (BC) of NPs; 2) BC and E-State indices; 3) BC, E-State indices and 

ChemAxon descriptors; 4) only theoretical descriptors: E-State indices and ChemAxon descriptors.  

The unsupervised filtering of descriptors was done for each descriptor set before using it for 

model building as described above. Totally 48 classification QSPR models were built. The results 

are summarized in Fig.2 and in Table 1S in the Supplementary materials.  
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Dataset II 
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Dataset IV 

Figure 2. Calculated accuracy (AC, %) for the training and test sets for datasets. Abbreviation 

“M1” means that current model was built by using basic characteristics of NPs; “M2” - BC and E-

State indices; “M3”- BC, E-State Indices and ChemAxon descriptors; “M4” - E-State Indices and 

ChemAxon descriptors. 

 

The obtained results demonstrated that the majority of QSPR models for dataset I (see Fig. 2, 

Dataset I) with the highest performance were developed by all MLT using only experimental 

characteristics of nanoparticles. Whereas for dataset II, the QSPR models with the greatest 

predictive power were built by using basic characteristic of NPs, E-State Indices (see Fig. 2, Dataset 

II, model kNN M2), and ChemAxon descriptors (see Fig. 2, Dataset II, models ASNN M3 and 

WEKA-RF M3). For dataset III, the QSPR models with the highest performance were created by 

using basic characteristic of NPs and E-State Indices (see Fig. 2, Dataset III, models WEKA-RF 

M2, and kNN M2) and NPs in combination with ChemAxon descriptors (see Fig. 2, Dataset III, 

model ASNN M3). Two QSPR models for dataset IV (see Fig. 2, Dataset IV) with the highest 
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performance were developed by ASNN and WEKA-RF using only experimental characteristics of 

nanoparticles and one model was created by the kNN method using all types of descriptors (see Fig. 

2, Dataset IV, model kNN M3). The accuracy of models created by using only theoretical 

descriptors (i.e., without the base characteristics) was lower. 

The full list of selected theoretical descriptors is summarized in Tables 10S (E-State indices) and 

12S (ChemAxon descriptors) in the Supplementary materials. 

 

3.1.2. Influence of the selected basic characteristics on prediction of NP toxicity 

For the estimation of the importance of basic characteristics, we applied the procedure of 

exhaustive search of most important descriptors (see Materials and Methods) by using the ASNN 

method. The results are shown in Fig. 3 and in Tables 2S-5S of the Supplementary materials. 
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Dataset IV 

Figure 3. Dependence of prediction accuracy (AC, %) for the training and test sets of dataset from 

the number of used BC in the dataset. The first columns correspond to the accuracy calculated using 

all descriptors. The change in the accuracy of models after step-wise elimination of descriptors 

indicated on axis X (descriptors, which resulted in the smallest decrease of the accuracy of the 

model were eliminated first) is provided. 

 

As we can see in Fig. 3, Dataset I, the balanced accuracy of the ASNNs model slightly increased 

after the pruning of nine descriptors from the initial descriptor set (see also Table 2S, step 10 in the 

Supplementary materials). Each one-color column on the graph (except the first column) reflects 

the level of importance of the pruned descriptor, i.e. the most important descriptors are located on 

the right side of Fig. 3. The remaining two base characteristics, Species and Material of the NPs are 

the most important descriptors. The pruning of any of these descriptors resulted in a large decrease 

in the predictive accuracy of ASNNs (see Fig. 3, Dataset I, columns 12, 13).  
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Figure 3, Dataset II (see also Table 3S in Supplementary Materials), demonstrates that the best 

ASNN model for dataset II was received by using only one basic property such as Species. 

For dataset III, Average particle size is the most important (see Fig. 3, Dataset III; Table 4S). 

Removing this descriptor dramatically decreased the AC of the QSPR model set. 

As we can see in Fig. 3, Dataset IV, the balanced accuracy of ASNNs slightly increased after the 

pruning of nine descriptors from the initial descriptor set of dataset IV (see also Table 5S). So the 

Exposure concentration and Material of the NPs were determined as the most important descriptors 

for the dataset IV. 

Four most important BC for each dataset include Species and Material of NP (2 times), Average 

particle size and Exposure concentration (1 time each). 

Knowledge of nanoparticle properties is vital for understanding their biological behavior and 

toxicity in a complex in vivo environment. Characterization data is important to assist comparison 

of toxicity results of a given nanoparticle and their physicochemical properties. 

Toxicity of nanoparticles is significantly influenced by their physicochemical properties such as 

size, shape, surface charge, charge density, composition, density of structure, presence of pores, and 

surface activating sites. Hence documenting the characteristics of the nanoparticle under evaluation 

for toxicity becomes crucial in order to correlate the observed biological effects. An important note 

of caution while characterizing nanomaterials is to evaluate these properties under physiologically 

relevant conditions. 

The chemical composition of NPs is, of course, the most critical factor of their behavior in 

environment as well as of toxicity of NPs. Toxicity of different nanomaterials sufficiently depends 

on the toxic element content. For instance, TiO2 and Au NPs (George et al., 2011a; Tsoli et al., 

2005; Zhu et al., 2008) demonstrate a comparatively low toxicity (Zhu et al., 2008)  whereas silver 

and copper NPs exhibit high toxicity (George et al., 2011b). 
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The size of NPs plays an essential role into cell uptake, distribution and adsorption into 

biological organisms. Many researches evaluated toxicity of different sized NPs, in particularly, 

silver NPs (Bar-Ilan et al., 2009; Jiang et al., 2008; Lee et al., 2012), gold NPs (Bar-Ilan et al., 

2009), nikel NPs (Ispas et al., 2009) and silicon NPs (Tenzer et al., 2011) NPs with smaller size 

usually more toxic and have high intracellular uptake (Bar-Ilan et al., 2009; Ivask et al., 2014). 

While assessing toxicity, it is critical to evaluate the purity of NPs so that any nonspecific 

toxicity attributed to material impurities can be excluded. 

Thus, these measured properties and experimental conditions provided the largest contribution to 

the prediction of toxicity of NP. The best QSPR models developed by each machine learning 

technique are summarized in Table 32. 

 

Table 3. Statistical coefficients calculated for classification models by different MLT. 

M.a Set NPs Descr.b MLТc Prec.e (low) Prec. (high) AC (%) 
          Dataset I (LC50) 

1 Training set 1 255 2d ASNN 0.78 0.81 80 ± 2.0 
Test set 1 110 0.76 0.80 78 ± 4.0 

2 Training set 1 255 12d WEKA-RF 0.82 0.82 81 ± 2.0 
Test set 1 110 0.77 0.79 78 ± 4.0 

3 Training set 1 255 12d kNN 0.76 0.77 76 ± 3.0 
Test set 1 110 0.64 0.75 69 ± 4.0 

          Dataset II (EC50) 

4 Training set 2 142 20 ASNN 0.84 0.85 84 ± 3.0 
Test set 2 61 0.88 0.81 83 ± 5.0 

5 Training set 2 141 39 WEKA-RF 0.89 0.88 88 ± 3.0 
Test set 2 59 0.83 0.87 85 ± 5.0 

6 Training set 2 142 20 kNN 0.80 0.80 79 ± 4.0 
Test set 2 61 0.88 0.81 83 ± 5.0 

          Dataset III (MIC) 

7 Training set 3  66 15 ASNN 

 

0.74 0.74 74±6.0 
Test set 3 28 0.93 0.60 81 ± 7.0 

8 Training set 3  66 8 WEKA-RF 

 

0.74 0.87 81 ± 5.0 
Test set 3 28 0.83 0.7 77 ± 9.0 
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9 Training set 3  66 8 kNN 0.76 0.85 81 ± 5.0 
 Test set 3 28 0.8 0.60 71 ± 10.0 
          Dataset IV (Mortality rate) 

10 Training set 4 183 2d ASNN 0.69 0.70 70 ± 3.0 
Test set 4 78 0.71 0.62 67 ± 5.0 

11 Training set 4 183 11d WEKA-RF 0.84 0.86 85 ± 2.0 
Test set 4 78 0.76 0.78 76 ± 5.0 

12 Training set 4 183 19 kNN 0.67 0.62 65 ± 3.0 
Test set 4 78  0.78 0.79 78 ± 5.0 

aM. – QSPR model number; bDesc. – number of descriptors used; cMLT – machine learning 

technique; dQSPR models were built by using only basic characteristics of nanoparticles; ePrecision 

for class with low (high) toxicity. 

 

The overall best performance for the various training sets was achieved by the WEKA-RF 

method. Models 1-3 and 10, 11 were developed using only basic characteristics of nanoparticles. 

The balanced accuracies for the training sets were in the range of 65-88 % (see Table 3). The 

compounds in the test sets were predicted with similar accuracies: AC = 67-88%. 

 

3.2. Regression models 

3.2.1 Calculated model accuracy 

Thirty-two regression QSPR models were developed similarly to the classification studies. The 

results obtained are summarized in Fig. 4 and in Table 6S of the Supplementary materials. Based on 

previously suggested recommendations, QSPR models with q2 > 0.5 were considered to have an 

acceptable predictive power (Tropsha, 2010). The performances of the individual models for the 

validation sets were used to compare the predictive ability of the developed models.  

Unfortunately, all QSPR models for dataset IV had an accuracy that was lower than the 

threshold for the model acceptance, i.e., q2 > 0.5 (see Fig. 3, Dataset IV). In Table 6S of the 

Supplementary materials we provide the performance of some regression models in terms of the 
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classification accuracy (i.e. we used predicted values and applied the same threshold used to 

identify classes for the classification task). The results show that AC values were practically the 

same as the accuracy of the respective classification models (see Table 2S in the Supplementary 

materials). This means that regression models with q2<0.5 can also be useful for evaluation of 

toxicity of NPs. 

The obtained statistical coefficients demonstrated that the QSPR models with the best 

performance were created by using experimental basic characteristics of nanoparticles and E-State 

indices (Fig. 3). The QSPR models built by using only theoretical descriptors (i.e. without base 

characteristics) for all datasets also do not demonstrate acceptable predictive power (i.e. q2<0.5). 

The full list of selected theoretical descriptors is summarized in Tables 11S and 13S in the 

Supplementary Materials. 
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Figure 4. Values of the cross-validation coefficient, q2, for the training and test sets of the four 

datasets used. Abbreviation “M1” means that the current model was built by using basic 

characteristics of NPs; “M2” - BC and E-State indices; “M3”- BC, E-State Indices and ChemAxon 

descriptors; “M4” - E-State Indices and ChemAxon descriptors. 

 

3.2.2 The estimation of the importance of the basic characteristics 

For the estimation of the importance of the basic characteristics, we applied the procedure of 

exhaustive search of descriptors for datasets I- III by using the ASNN method. The results are 

shown in Fig. 5 and in Tables 7S-9S of the Supplementary materials. 
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Figure 5. Dependence of the predicted value of q2 for the training and test sets of the datasets used, 

on the basic characteristics of the dataset used. The first columns correspond to the q2 coefficients 

calculated using all descriptors. The change in the accuracy of models after step-wise elimination of 

descriptors indicated on the X-axis (descriptors, which provided the smallest decrease of the q2 

coefficient of the model were eliminated first) is provided. 

 

As we can see in Fig. 5, only two basic characteristics are the most important for the datasets I 

and II (see also Tables 7S, 8S in the Supplementary materials): Species and Material of the NPs. 

Indeed, pruning any of these descriptors resulted in the largest decrease in the predictive ability of 

ASNNs (see Fig. 5, Datasets I and II). 

For dataset III, Target and Surface coating are the two most important descriptors (see Fig. 5, 

Dataset III; Table 9S), since removing any of these descriptors dramatically decreased the q2 

coefficients of the QSPR models. 

In summary, the four most important BC for each dataset include Species and Material of NP (2 

times), Target and Surface coating (1 time each). Thus, these measured properties and experimental 

conditions provided the largest contribution to the prediction of NP toxicity. 

The best QSPR models developed by each MLT are summarized in Table 3. The predictive 

ability of the models was tested through cross-validation, giving q2=0.58-0.80 for regression 

models. The compounds in the external test sets were predicted with the accuracy, q2 = 0.49-0.78 

(Table 3).  

 

Table 4. Statistical coefficients of the regression models obtained. 

M.a Set NPs Descr.b MLTc R2 q2 RMSEd AC(%)e 

          Dataset I (LC50) 
1 Training set 1 266 32 ASNN 0.59 ± 0.04 0.59 ± 0.04

 0.4 ± 

0.1 

1.36 ± 0.09 79.2 
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 Test set 1 114 0.49 ± 0.09 0.40 ± 0.10 1.40 ± 0.20 78.0 
        Dataset II (EC50) 

2 Training set 2  166 21 ASNN 0.70 ± 0.04 0.69 ± 0.05 0.78± 0.06 87.3 
Test set 2 55 0.60 ± 0.10 0.60 ± 0.10 0.90 ± 0.10 80.0 

       Dataset III (MIC) 
3 Training set 3  76 8 ASNN 0.77 ± 0.07 0.76 ± 0.09 0.43 ± 0.07 84.2 

Test set 3 25 0.81 ± 0.06 0.77 ± 0.09 0.30 ± 0.03 84.0 
4 Training set 3  76 8 kNN 0.80 ± 0.07 0.79 ± 0.07 0.40 ± 0.03 84.2 

Test set 3 25  0.80 ± 0.06 0.79 ± 0.07 0.29 ± 0.02 76.0 
aM. – QSPR model number; bDesc. – number of selected descriptors; cMLТ – machine learning 

technique; dRMSE- Root mean square error; eAC - accuracy in terms of classification models. 

 

In the last column of Table 4, we provided the performance of regression models in terms of the 

classification accuracy: we used predicted values and applied the same threshold used to identify 

classes for the classification task. The results showed that AC values are practically the same as the 

accuracy of the respective classification models (see Fig. 2). Considering that regression models 

also provide quantitative estimation, we can conclude that they could provide advantages for the 

analysis of nanomaterials as compared to the classification models. 

Finally, the model performance of the best regression and classification models developed 

(Table 3 and 4) is shown in Fig. 2S of the Supplementary Materials as a comparison of 

experimental and calculated effect values. 

 

In summary, the proposed methodology exhibited both “advantages” and some “limitations”:  

The advantages include: 

1) OCHEM is a user-friendly database containing experimental physico-chemical and 

biological properties of nanoparticles as well as integrating tools and computational methods to 

develop and publish in silico models of these properties. The best regression models tat were 
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developed, are publicly available on the web site at http://ochem.eu/article/103451 and can 

be applied to predict properties of new nanomaterials. 

2)  OCHEM allows combinations of experimentally measured properties and theoretical 

descriptors within one model. 

3)  The MLTs on the basis of OCHEM are fast and efficient and are typically characterized by 

the same or better statistics compared to the currently known machine learning methods. 

 

A limitation of the proposed models, as is for all QSPR models in general, is that the models 

work well for the NPs classes represented in the training and validation sets, but may fail for other 

classes. Also, additional errors may appear because biological data used as a training set are 

obtained from different sources and may contain considerable experimental errors (noisy data). The 

next limitation of the proposed QSPR models is that the absence of information on some of the 

conditions (see Table 1) for newly tested nanoparticles can lead to incorrect predictions of their 

toxicity. 

 

4. Conclusion 

In this study, a large set of data on the toxicity of nanomaterials was collected and was made 

publicly available. The data were used to develop new quantitative structure-property relationship 

models. The OCHEM web site was used to calculate the molecular descriptors and for model 

development. The original data sets were split into training and test sets randomly. The proposed 

nano-QSPR models have good stability, robustness and predictive power as verified by cross-

validation and prediction of randomly assigned test sets. Comparative analysis of classification and 

regression QSPR models showed the advantage of regression models for the analysis of toxicity of 

nanoparticles in comparison with the classification models. This is due to the fact that regression 
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models allow providing a qualitative as well as a quantitative assessment of the studied 

nanomaterials. Unfortunately, the presence of a high level of noise in the data and the lack of a 

detailed description of the nanoparticles properties in the primary literature sources is a major 

limitation of the proposed QSPR models. We suppose that these factors explain why the statistical 

coefficients of some regression models are low (i.e. q2 <0.5). Application of the step-wise pruning 

method was able to detect subsets of relevant input descriptors determining the toxicity of NPs. A 

detailed analysis of all datasets by the pruning algorithm showed that the most informative basic 

characteristics of NPs are the Target Species, the chemical composition of the NP (Material), the 

average particle size, Surface coating and Exposure concentration. The QSPR studies presented in 

this contribution emphasize that both basic characteristics of nanoparticles and computational 

descriptors are needed for evaluation of the toxicity of nanomaterials. The developed and publicly 

available QSPR models could be used for estimation of toxicity of new nanoparticles as biocides, 

coating and cosmetic ingredients, whereas the models may also form the base for the benchmarking 

of new algorithms to predict toxicity of nanomaterials. Last but not least, all data used in this study 

are publicly and freely downloadable and are provided as supplementary materials of this article. 
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