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Abstract
Aims/hypothesis Circulating metabolites have been shown
to reflect metabolic changes during the development of
type 2 diabetes. In this study we examined the association
of metabolite levels and pairwise metabolite ratios with
insulin responses after glucose, glucagon-like peptide-1
(GLP-1) and arginine stimulation. We then investigated if

the identified metabolite ratios were associated with mea-
sures of OGTT-derived beta cell function and with preva-
lent and incident type 2 diabetes.
Methods We measured the levels of 188 metabolites in
plasma samples from 130 healthy members of twin fam-
ilies (from the Netherlands Twin Register) at five time
points during a modified 3 h hyperglycaemic clamp with
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glucose, GLP-1 and arginine stimulation. We validated
our results in cohorts with OGTT data (n = 340) and
epidemiological case–control studies of prevalent
(n = 4925) and incident (n = 4277) diabetes. The data
were analysed using regression models with adjustment
for potential confounders.
Results There were dynamic changes in metabolite levels in
response to the different secretagogues. Furthermore, several
fasting pairwise metabolite ratios were associated with one or
multiple clamp-derived measures of insulin secretion (all
p < 9.2 × 10−7). These associations were significantly stronger
compared with the individual metabolite components. One of
the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC
ae C32:2), in addition showed a directionally consistent pos-
itive association with OGTT-derived measures of insulin se-
cretion and resistance (p ≤ 5.4 × 10−3) and prevalent type 2
diabetes (ORVal_PC ae C32:2 2.64 [β 0.97 ± 0.09],
p = 1.0 × 10−27). Furthermore, Val_PC ae C32:2 predicted
incident diabetes independent of established risk factors in
two epidemiological cohort studies (HRVal_PC ae C32:2 1.57
[β 0.45 ± 0.06]; p = 1.3 × 10−15), leading to modest improve-
ments in the receiver operating characteristics when added to a
model containing a set of established risk factors in both co-
horts (increases from 0.780 to 0.801 and from 0.862 to 0.865
respectively, when added to the model containing traditional
risk factors + glucose).
Conclusions/interpretation In this study we have shown that
the Val_PC ae C32:2 metabolite ratio is associated with an

increased risk of type 2 diabetes and measures of insulin se-
cretion and resistance. The observed effects were stronger
than that of the individual metabolites and independent of
known risk factors.
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Introduction

Recent technological advances allow simultaneous detection
of a wide range of metabolites in blood samples from healthy
and diabetic individuals [1]. Studies on type 2 diabetes have
provided strong evidence for the association of several blood
metabolites with both prevalent and incident type 2 diabetes.
In particular, the branched-chain amino acids (BCAAs; valine,
leucine and isoleucine) and several phospholipids have con-
sistently been shown to associate with disease progression
[1–4]. Furthermore, there is evidence from OGTTs that these
metabolites also associate with insulin secretion and/or insulin
sensitivity [5–7]. However, OGTT-derived measures do not
allow detailed analysis of insulin secretion, for example the
response to various non-glucose insulin secretagogues such as
glucagon-like peptide-1 (GLP-1) and arginine. GLP-1 is a gut
hormone that stimulates insulin secretion from the pancreas,
and arginine can be used as a measure of (near maximal)
functional beta cell mass [8]. Alterations in the ratios between
two single metabolites may point at perturbations in pathways
relevant for a certain disease or phenotype and metabolite
ratios are indeed known to associate with specific phenotypes

[9–12]. The analysis of metabolite profiles and ratios in re-
sponse to different insulin secretagogues are thus relevant for
further elucidating the underlying biology of the development
of type 2 diabetes. Furthermore, they may be useful for early
identification of individuals with an increased risk of type 2
diabetes beyond what can be achieved with currently known
risk factors.

To the best of our knowledge, this is the first study to
analyse metabolite ratios in relation to insulin secretion phe-
notypes and type 2 diabetes risk.

Methods

Study design

A schematic outline of the study and the rationale for selecting
the cohorts is provided in Fig. 1 and in the electronic supple-
mentary material (ESM) Methods. All studies were approved
by the appropriate local institutional review boards and par-
ticipants provided written informed consent before participat-
ing in the study.

(ESM Fig. 3)(Table 1)

(Table 2)

(Table 5)(Table 4)

n=130 non-diabetic individuals

(100 MZ/DZ twins; 30 non-twin sibs)

a

(Table 3)

Metabolite dynamics after glucose, GLP-1 and arginine

The levels of 138 of the 143 metabolites measured 

changed during the hyperglycaemic clamp

Fasting metabolite levels and insulin secretion

Fasting levels of three metabolites associated with  

2nd
 
phase glucose or GLP-1 SIS

Eighteen metabolite ratios showed stronger associations 

than single metabolites

Fasting pairwise metabolite ratios 

and insulin secretion (OGTT)

Meta-analysis of linear 

regression results:

LLS; POGO

n=340 non-diabetic individuals

Three ratios were significantly 

associated with one or more of the 

six OGTT-derived measures

Fasting pairwise metabolite ratios 

and prevalent type 2 diabetes

Meta-analysis of logistic 

regression results:

LLS; NTR; KORA F4

306 cases; 4619 controls

Nine ratios were significantly 

associated with prevalent diabetes

One also had a significant p
gain

Fasting pairwise metabolite ratios 

and incident type 2 diabetes

Meta-analysis of Cox 

regression results: 

KORA S4_to_F4; EPIC-Potsdam

910 cases; 3367 controls

Eight ratios were significantly 

associated with incident diabetes

One also had a significant p
gain

D
is

c
o
v
e
r
y
 p

h
a
s
e

V
a
li
d
a
ti
o
n
 p

h
a
s
e

Hyperglycaemic clamp study

Fig. 1 Schematic overview of the design used in the discovery (blue) and validation (green) phases of the study. MZ, monozygotic; DZ, dizygotic; sibs,
siblings. Further details on the study samples can be found in ESM Methods. aMost replication cohorts had only ten of the 18 ratios available
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Discovery hyperglycaemic clamp study sample

Metabolite profiles and their responses to glucose, GLP-1 and
arginine stimulation were studied using a modified 3 h
hyperglycaemic clamp in 130 participants of the Netherlands
Twin Register (NTR) [13]. Of the 130 participants, 100 were
twins and 30 were non-twin siblings from 54 families. Six of
the participants had impaired glucose tolerance, while the re-
maining individuals had normal glucose tolerance as deter-
mined by OGTT. The clinical characteristics of the study
group and details of the procedure are described in ESM
Methods, ESM Table 1 and schematically presented in Figs
1, 2.

Validation OGTT study samples

Next we validated our results in two independent cohorts with
OGTT data: the Leiden Longevity Study (LLS) [14] and the
POGO (Postpartum Outcomes in mothers with Gestational
diabetes and their Offspring) study [15] (see ESM Methods
for further details). Clinical characteristics of the study partic-
ipants can be found in ESMTables 2 and 3. From these studies
we included a total of 340 non-diabetic participants who all
underwent a standardised OGTT. We calculated six surrogate
measures of insulin secretion and insulin resistance (ESM
Table 4).

Validation type 2 diabetes study sample

The metabolites that demonstrated significant associations in
the clamp phase of the study were further investigated in four
independent epidemiological studies where we studied

associations with prevalent (LLS [14, 16], NTR [17, 18]; the
cooperative health research in the region of Augsburg,
Germany [KORA F4] study [19, 20]) or incident (KORA
S4_to_F4 prospective follow-up [19, 20] and the European
Prospective Investigation into Cancer and Nutrition-Potsdam
[EPIC-Potsdam] study [21]) type 2 diabetes. Both the KORA
S4_to_F4 and the EPIC-Potsdam studies have an average of
7 years follow-up. Further details of the studies, sampling
methods and data collection can be found in references
[17–21] and ESM Methods, ESM Tables 2, 5–8 and ESM
Figs 1, 2. In the analysis for prevalent diabetes we included
a total of 306 individuals with prevalent type 2 diabetes and
4619 non-diabetic volunteers. For the analysis of incident di-
abetes, we included 910 participants who were free of diabetes
at baseline when blood was drawn but who developed type 2
diabetes during follow-up, and 3367 non-diabetic volunteers.

Metabolomic measurements

Plasma concentrations of metabolites in the hyperglycaemic
clamp cohort were determined with a commercial assay
(AbsoluteIDQ p180 Kit; Biocrates Life Sciences, Innsbruck,
Austria). The assay allows the quantification of 188 metabo-
lites. The metabolite abbreviations are provided in ESM
Table 9, metabolite naming was as described in Römisch-
Margl et al [22]. Fasting and samples at four subsequent time
points during the clamp (Fig. 2) were analysed according to
the manufacturer’s protocol. A detailed description of the
method can be found in the ESM Methods [23]. After quality
control, 143 metabolites (135 metabolites and eight calculated
compositions) remained for analysis. In the LLS, NTR,
KORA F4 and EPIC-Potsdam cohorts, the AbsoluteIDQ
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Fig. 2 (a) Insulin responses.
First- and second-phase GSIS
(red and green, respectively),
GLP-1-SIS (orange) and arginine-
SIS (blue). Blood samples for
metabolomics measurements
were drawn at t = 0, 30, 120, 180
and 190 min as indicated by the
black arrows. (b) Glucose levels.
Hyperglycaemia was established
and maintained at 10 mmol/l
glucose via variable infusion of
glucose. After 2 h, insulin
secretion was further stimulated
using i.v. GLP-1 infusion
(1.5 pmol/kg bolus for 1 min at
t = 120 followed by a continuous
infusion of 0.5 pmol kg−1 min−1

for 1 h). The near maximal insulin
response was assessed by
injecting a bolus of 5 g arginine
hydrochloride at t = 180 min
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p150 Kit was used, according to the methods and quality
control procedures as described previously [17, 22]. ESM
Table 9 describes all metabolites measured with either the
p180 or p150 kits including metabolites that failed quality
control in the discovery sample.

Statistics

Discovery phase In order to account for the family relation-
ships in the hyperglycaemic clamp study we fitted generalised
estimating equations (GEEs) using the R package GEEpack,
v1.2-0.1 [24] (https://cran.r-project.org/web/packages/
geepack/index.html). To analyse dynamic changes in
metabolite levels between the different time points the linear
regression models were adjusted for age, sex and BMI. In
order to reduce the chance of false positives we applied
stringent Bonferroni correction to correct for multiple testing
(p ≤ 3.5 × 10−4; using α = 0.05 and 143 metabolites/tests). All
six clamp-derived phenotypes were quantile normalised be-
fore analysis. To study the associations of fasting metabolites
or their ratios we applied linear regression models (GEE) un-
adjusted, age and sex adjusted or adjusted for age, sex, BMI,
glucose tolerance status, insulin sensitivity index (if relevant)
as potential confounders. TheBonferroni corrected threshold
was p ≤ 5.8 × 10−5 (i.e. 858 tests, 143 metabolites × six phe-
notypes). All possible pairwisemetabolite ratios were calcu-
lated (log[metab1/metab2]) [12] and analysed as described
above for single metabolites. The Bonferroni corrected
threshold for the metabolite ratios was p ≤ 9.2 × 10−7

(54,270 tests, 9045 ratios × six phenotypes). In addition,
the pgain for each of the metabolite ratios and pgain threshold
was calculated (see ESM Methods for details) [12]. A pgain
above the threshold value suggests that the association of the
metabolite ratio is stronger than that of the two individual
metabolites alone.

Validation phase To allow comparisons across cohorts and to
facilitate meta-analysis, metabolite level data were log-
transformed followed by z-scaling before analysis.
Associations between OGTT-derived measures, prevalent di-
abetes and metabolite ratios were investigated using either
linear or logistic regression models with adjustment for age,
sex, BMI, use of lipid lowering medication, study-specific
covariates and fasting status (where appropriate) as covariates.
Only complete cases with no missing data were analysed. A
fixed-effects meta-analysis was performed using the R pack-
age Meta v4.3-2 [25] (https://cran.r-project.org/web/
packages/meta/index.html).

For the associations between the metabolite ratios and in-
cident diabetes, we performed a Cox proportional hazards
regression analysis with covariates as described by Wang-
Sattler et al [26] and Floegel et al [7]. See ESM Table 10 for
details on the covariates included. The above described base

models, to which the ratio of valine and phosphatidylcholine
acyl-alkyl (PC ae) C32:2 was added, reflect established pre-
diction models which have been validated in several indepen-
dent cohort studies [27–29]. We used several procedures to
evaluate the accuracy of the models as described in the ESM
Methods.

Results

Discovery phase

Metabolite dynamics after glucose, GLP-1 and arginine
stimulation There were many significant dynamic metabolite
responses observed during the hyperglycaemic clamp proce-
dure. Within group responses were, in general, very similar
(i.e. the acylcarnitines, amino acids, etc.; ESM Fig. 3). After
glucose stimulation (t = 30 or 120 min vs t = 0), we noted
significant reductions (p ≤ 3.5 × 10−4) in the levels of most of
the acylcarnitines (10/12), amino acids (21/21), phosphatidyl-
cholines (68/69; except PC ae C42:0), biogenic amines (8/8)
and sphingolipids (13/13). However, only a few of the
lysophosphatidylcholines (4/11) changed significantly. About
one-third of the metabolites that had reduced levels upon stim-
ulationwith glucose showed a further reduction after stimulation
withGLP-1 (t = 180 vs t = 120). Thesemetabolites belong to the
acylcarnitines (10/12), amino acids (21/21), biogenic amines
(5/8) and phosphatidylcholines (9/69). Of the metabolites that
were unaffected by glucose stimulation only the acylcarnitine
C0 decreased significantly after GLP-1 stimulation. After addi-
tional stimulation with arginine (t = 190 vs t = 180) about half of
the metabolites showed a further significant change. These in-
clude acylcarnitines (4/12), amino acids (16/21), phosphatidyl-
cholines (37/69), lysophosphatidylcholines (8/11), biogenic
amines (2/8) and sphingolipids (11/13). Only four metabolites,
the lysophosphatidylcholines containing myristic acid (C14:0),
palmitic acid (16:0), palmitoleic acid (C16:1) and arachidonic
acid (C20:4), responded exclusively to arginine stimulation,
suggesting that they are specific to arginine. Remarkably, we
also observed a large significant increase of phosphatidylcholine
acyl-acyl (PC aa) C42:1 after arginine stimulation.

Fasting metabolite levels and insulin secretion
(hyperglycaemic clamp) In the remainder of the discovery
study we focused on associations of baseline fasting metabo-
lite levels and pairwise metabolite ratios with the insulin re-
sponses after stimulation with the various stimuli. Three base-
line metabolites, PC aa C32:1, PC aa C34:4 and PC aa C38:5,
showed a significant negative association with second-phase
glucose-stimulated insulin secretion (GSIS) or GLP-1-
stimulated insulin secretion (SIS) after correction for multiple
testing (p < 5.8 × 10−5; Table 1). PC aa C34:4 was associated
with both second-phase GSIS and GLP-1-SIS (Table 1).
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These associations were independent of the effects of age, sex,
BMI, glucose tolerance status and insulin sensitivity. PC aa
C34:4 and several other metabolites showed suggestive evi-
dence for an association with the other phenotypes as well
(p < 1.0 × 10−3; ESM Table 11).

Eighteen fasting pairwise metabolite ratios showed associ-
ations that were significantly stronger than the individual me-
tabolites (Table 2), i.e. having a pgain above the threshold. The
ratio between alanine and glycine showed the strongest asso-
ciation (with the insulin sensitivity index; β − 0.970 (0.145),
p = 2.0 × 10−11, pgain = 2.8 × 108). PC aa C34:4 was the only
metabolite that was significant in the single metabolite and the
pairwise metabolite ratio analyses (Tables 1, 2; the results
from the crude models are shown in ESM Tables 12, 13).

Validation phase

Since it was not possible to replicate our findings in cohorts
with similar hyperglycaemic clamp data, we use existing
metabolomics data from OGTTs to validate our findings.
OGTTs are used to study insulin sensitivity and beta cell
responses after stimulation with glucose. Since our main
associations were with second-phase GSIS we assumed that
similar associations could be found between fasting metabo-
lite levels and insulin secretion measures as derived from
OGTTs. We attempted to further validate the observed asso-
ciations in various epidemiological cohort studies with type 2

Table 2 Significant metabolite
ratios (p < 9.2 × 10−7 and
pgain > 1350) for insulin secretion
measured using hyperglycaemic
clamps

Phenotype Metabolite ratio β (SE) p pgain

First-phase GSIS None

Second-phase GSIS Ile_PC aa C34:3 0.793 (0.133) 2.71 × 10−9 8.5 × 104

Ile_PC aa C34:4 0.532 (0.093) 8.75 × 10−9 2811

Val_PC aa C34:4 0.550 (0.096) 1.06 × 10−8 2321

Leu_PC aa C34:3 0.785 (0.140) 2.33 × 10−8 9836

Ile_PC aa C32:3 0.783 (0.141) 2.58 × 10−8 1.8 × 104

Ile_PC aa C36:4 0.817 (0.148) 3.34 × 10−8 1772

Val_PC aa C34:3 0.804 (0.150) 8.95 × 10−8 2561

Ser_PC ae C32:2 0.929 (0.179) 2.02 × 10−7 4918

Val_PC ae C32:2 0.999 (0.194) 2.50 × 10−7 3974

Val_PC ae C36:0 1.074 (0.210) 3.07 × 10−7 1.1 × 104

Gln_PC ae C32:2 0.913 (0.181) 4.20 × 10−7 2365

Ile_PC ae C36:0 0.955 (0.189) 4.62 × 10−7 7541

GLP-1-SIS PC aa C34:4_PC aa C38:1 −0.458 (0.080) 1.02 × 10−8 2078

Arginine-SIS None

Disposition index PC ae C36:5_PC ae C38:4 1.569 (0.308) 3.44 × 10−7 3.0 × 104

Insulin sensitivity index Ala_Gly −0.970 (0.145) 2.04 × 10−11 2.8 × 108

PC aa C32:3_PC ae C34:3 −1.334 (0.219) 1.07 × 10−9 5.4 × 106

Ala_lysoPC a C18:1 −1.102 (0.208) 1.13 × 10−7 1.8 × 104

Val_lysoPC a C18:1 −1.248 (0.247) 4.13 × 10−7 5060

β (SE) and p value were obtained from linear regressions (GEE)

Model: hyperglycaemic clamp phenotype ~ standardised metabolite ratio + age + sex + BMI + glucose tolerance
status + insulin sensitivity (if relevant)

pgainwas calculated by dividing the lowest p value of the single metabolites by the p value of the ratio as described
by Petersen et al [12]

lysoPC a, lysophosphatidylcholine acyl

Table 1 Metabolites significantly (p < 5.8 × 10−5) associated with
insulin secretion measured using hyperglycaemic clamps

Phenotype Metabolite β (SE) p

First-phase GSIS None

Second-phase GSIS PC aa C34:4 −0.308 (0.073) 2.46 × 10−5

PC aa C38.5 −0.023 (0.006) 3.23 × 10−5

PC aa C32:1 −0.027 (0.007) 3.34 × 10−5

GLP-1-SIS PC aa C34:4 −0.254 (0.060) 2.12 × 10−5

Arginine-SIS None

Disposition index None

Insulin sensitivity index None

β (SE) and p value were obtained from linear regressions (GEE)

Model: hyperglycaemic clamp phenotype ~ standardised metabolite level
+ age + sex + BMI + glucose tolerance status + insulin sensitivity (if
relevant)
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diabetes as the endpoint. Most of these existing cohorts used
the Biocrates AbsoluteIDQ p150 Kit measuring fewer metab-
olites. Therefore, a maximum of ten out of the 18 ratios could
be used in the meta-analyses (ESM Table 9).

Fasting pairwise metabolite ratios and insulin secretion
(OGTT) In two studies, the LLS and POGO, a total of 340
participants underwent an OGTT.We focused our analyses on
six commonly used OGTT-derived measures of insulin secre-
tion and insulin resistance that were available. Analysis of the
previously identified fasting metabolite ratios that could also
be calculated in these cohorts showed several significant as-
sociations (ESM Tables 14, 15). After meta-analysis of the
data from both OGTTstudies the most significant associations
were observed with the ratios of valine to PC ae C32:2, PC aa
C32:3 to PC ae C34:3 and valine to lysophosphatidylcholine
acyl C18:1 and target variables AUCglucose, AUCinsulin,

AUCglucose/AUCinsulin and/or HOMA-IR (all p < 5.4 × 10−3;
Table 3), but no associations were found with the
insulinogenic index or corrected insulin response. These find-
ings were independent of potential confounders (results from
the crude models are shown in ESM Table 16). Additional
adjustment for insulin sensitivity, as calculated by HOMA-
IR, led to slightly weaker associations with some of the vari-
ables (ESMTable 17). However, further adjustment for fasting
glucose levels did not essentially affect our results.

Fasting pairwise metabolite ratios and prevalent type 2
diabetes Next we tested if the pairwise metabolite ratios were
associated with prevalent diabetes in three independent epide-
miological studies (306 diabetic and 4619 control partici-
pants). In a fixed-effects meta-analysis of fully adjusted
models, we showed that nine out of the ten tested ratios were
significantly associated with prevalent type 2 diabetes
(Table 4, all p ≤ 6.4 × 10−5; the results for crude models are
shown in ESM Table 18). Only the ratio of valine to PC ae
C32:2, showing the strongest association with prevalent type
2 diabetes (ORVal_PC ae C32:2 2.64 [β 0.97 ± 0.09],
p = 1.0 × 10−27), showed a pgain above the threshold, i.e. the
effect was much stronger than that of the two individual me-
tabolites (Table 4, ESM Table 19; both p ≥ 2.2 × 10−16,
pgain = 2.2 × 1011).

Fasting pairwise metabolite ratios at baseline and incident
type 2 diabetesMeta-analysis of the Cox regression results in
two independent prospective studies (910 individuals with
incident type 2 diabetes and 3367 control participants), with
adjustment as shown in ESM Table 10, shows a highly signif-
icant association between the ratio of valine to PC ae C32:2
and type 2 diabetes susceptibility (Table 5; HRVal_PC ae C32:2

1.57 [β 0.45 ± 0.06], p = 1.3 × 10−15; the results for the crude
models are shown in ESM Table 20). Again, this association
was significantly stronger than that observed for the individual

metabolites (Table 5, ESM Table 21; both p ≥ 9.2 × 10−9,
pgain = 1.3 × 106). Adding glucose levels at baseline to the
model only marginally affected the results and the association
remained highly significant (HRVal_PC ae C32:2 1.45 [β
0.37 ± 0.06], p = 1.4 × 10−9).

When the valine to PC ae C32:2 ratio was added to the
existing baseline prediction model comprising all established
traditional risk factors (TRF+glucose) as shown in ESM
Table 10, the AUC estimated from the time-dependent receiv-
er operating characteristics improved from 0.780 to 0.801 in
the KORA S4_to_F4 study (p = 3.2 × 10−2 for the ratio, ESM
Table 22), which was larger than the effect of adding the two
single metabolites to the model (AUC 0.793). This is also in
line with the results of the net reclassification index.

In the EPIC-Potsdam study we obtained similar results for
models with TRF+glucose and TRF+glucose+Val_PC ae
C32:2 (0.862 and 0.865, respectively, p = 1.20 × 10−8 for
the metabolite ratio). The results were largely similar for the
cross-validated performance, suggesting little overfitting in
the present situation with a large sample size and few added
covariates (ESM Table 22).

Discussion

In the discovery phase, we used the hyperglycaemic clamp,
the gold standard for the measurement of insulin secretion
[30], to study the association between baseline fasting metab-
olite levels, pairwise metabolite ratios and insulin response
after consecutive stimulation with three different insulin se-
cretagogues [8]. In the validation phase, we tested whether
metabolite ratios identified in our clamp study were associated
with insulin responses measured using OGTT data from two
independent cohorts. Finally, we investigated the associations
of the metabolite ratios with prevalent and incident type 2
diabetes in four independent cohorts from the Netherlands
and Germany. We observed numerous dynamic metabolite
responses during the clamp study reflecting the switch from
beta oxidation of fatty acids and gluconeogenesis from amino
acids during the overnight fast to a state of glucose oxidation
during the hyperglycaemic clamp. We have shown that the
ratio of valine to PC ae C32:2 is significantly positively asso-
ciated with second-phase GSIS, OGTT-derived measures in-
cluding HOMA-IR, and both prevalent and incident type 2
diabetes.

One limitation of this study is the relatively small sample
size in the hyperglycaemic clamp part of the discovery phase,
which impacts on power and reproducibility. However, we
applied stringent statistical significance criteria in order to
correct for multiple testing and have therefore compromised
statistical power but enhanced reproducibility. Furthermore,
our discovery results are corroborated in the validation phase
for which we used at least two independent cohorts per
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phenotype studied. As described in ESM Methods the
Biocrates kit used to detect the metabolites does not allow a
detailed analysis of the exact lipid composition of metabolites
such as PC ae C32:2. This is a limitation to the interpretation
of our results (see ESM Methods for further details). Another
limitation is the use of different covariates for adjusting the
Cox proportional hazards regression models in the KORA
S4_to_F4 and EPIC-Potsdam studies (ESM Table 10).
However, both were established sets of risk factors used pre-
viously in similar metabolomic studies [7, 26] that have also
been validated in external cohorts [27–29]. Furthermore, it
was the aim of this study to test if metabolite ratios have an
added value to these established risk factors and not to find the
optimal set of predictors. Since not all covariates are available
in both studies the possibilities for harmonisation of the
models were limited. Despite these differences both studies
yield highly comparable results, which shows the reliability
of the findings. In addition, we used a cross-validation ap-
proach, which enabled us to assess the accuracy of the predic-
tive model.

It has been shown that metabolite ratios can reveal pertur-
bations in pathways relevant for a certain phenotype and may
thus reveal stronger and more meaningful associations [31,

32], even if the mechanism is not clear. Therefore, pairwise
ratios may serve as good biomarkers with predictive ability
beyond that of the single constituents because noise can be
reduced, increasing statistical power [12]. Valine is a BCAA,
which are among the most commonly observed metabolites to
be increased in type 2 diabetes and are not only responsive to
glucose stimulation but also to the glucose-lowering drugs
glipizide and metformin [3, 33]. Furthermore, BCAAs are
associated with insulin sensitivity [34, 35] and the develop-
ment of diabetes [4]. A recent Mendelian randomisation study
suggested that a causal relationship exists between increased
BCAA levels and type 2 diabetes risk [36]; however, it re-
mains to be shown that PC ae C32:2 or the ratio of valine to
PC ae C32:2 are also causally related to the disease, but at
present there are no genetic instruments available for the latter
(see ‘GWAS look-up’ in ESM Methods).

Phosphatidylcholine species, including PC ae C32:2, have
been found to be associated with type 2 diabetes. However,
since the phosphatidylcholines are not detected on all metabo-
lomics platforms, replication is less frequent compared with
the BCAAs [4, 6, 7, 26]. PC ae C32:2 has been shown to be
associated with prevalent [6] and incident type 2 diabetes [7]
and to respond to glucose stimulation during OGTT and

Table 5 Cox regression of metabolite ratios with incident type 2 diabetes

Metabolite ratio KORA-S4_to_F4 EPIC-Potsdam Meta-analysis

β (SE) p β (SE) p β (SE) p pgain

Ile_PC aa C34:3 0.309 (0.121) 1.07 × 10−2 na 3a

Ile_PC aa C34:4 0.175 (0.118) 0.14 na 0a

Val_PC aa C34:4 0.085 (0.114) 0.46 0.147 (0.058) 1.05 × 10−2 0.135 (0.051) 8.85 × 10−3 0

Leu_PC aa C34:3 0.211 (0.116) 7.01 × 10−2 na 3a

Ile_PC aa C32:3 0.406 (0.130) 1.80 × 10−3 na 19a

Ile_PC aa C36:4 0.210 (0.114) 6.61 × 10−2 na 1a

Val_PC aa C34:3 0.202 (0.113) 7.36 × 10−2 0.152 (0.054) 4.99 × 10−3 0.161 (0.049) 9.32 × 10−4 0

Ser_PC ae C32:2 −0.042 (0.108) 0.70 0.182 (0.055) 8.48 × 10−4 0.137 (0.049) 5.01 × 10−3 0

Val_PC ae C32:2 0.403 (0.132) 2.26 × 10−3 0.463 (0.065) 9.41 × 10−13 0.451 (0.058) 7.10 × 10−15 1.3 × 106

Val_PC ae C36:0 0.184 (0.117) 0.11 0.204 (0.057) 3.77 × 10−4 0.151 (0.052) 3.40 × 10−3 0

Gln_PC ae C32:2 0.050 (0.109) 0.65 0.090 (0.044) 3.95 × 10−2 0.084 (0.041) 3.77 × 10−2 0

Ile_PC ae C36:0 0.285 (0.122) 1.92 × 10−2 na 2a

PC aa C34:4_PC aa C38:1 0.080 (0.100) 0.43 na 1a

Ala_Gly 0.541 (0.111) 1.11 × 10−6 na 378a

PC aa C32:3_PC ae C34:3 0.146 (0.105) 0.17 0.293 (0.054) 7.59 × 10−8 0.262 (0.048) 5.73 × 10−8 0

Ala_lysoPC a C18:1 0.395 (0.1183) 7.97 × 10−4 na 11a

Val_lysoPC a C18:1 0.271 (0.119) 2.27 × 10−2 0.317 (0.055) 8.24 × 10−9 0.309 (0.050) 5.52 × 10−10 65

PC ae C36:5_PC ae C38:4 0.157 (0.102) 0.13 −0.076 (0.055) 0.17 −0.023 (0.048) 0.63 0

aOnly calculated for the KORA data

Model: Type 2 diabetes ~ standardised metabolite ratio + study-specific covariates as shown in ESM Table 10

pgain was calculated by dividing the lowest p value of the single metabolites by the p value of the ratio [12]

A fixed-effect meta-analysis was applied to calculate the common effect size and p value

na, not available
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IVGTT [37]. It is clear from our observations that the oppos-
ing effects of valine and PC ae C32:2 on insulin secretion are
not simply additive, as reflected by the much stronger associ-
ation of the metabolite ratio compared with the individual
metabolites. According to the Human Metabolome database,
PC ae C32:2 is composed of either the fatty acids C16:1/
C16:1, C18:1/C14:1 or C18:2/C14:0 (www.HMDB.ca,
accessed 1 October 2016) [38]. Recently, it has been shown
that BCAA catabolism and lipogenesis are linked in adipose
tissue [39–41]. These studies have shown that catabolism of
the BCAAs (leucine, isoleucine and valine) contributes to the
synthesis of odd-chain and even-chain fatty acids, such as
C14, C16 and C18 chains (i.e. the constituents of PC ae
C32:2). It was also shown that BCAA-derived metabolites
up or downstream of the branched-chain-alpha-ketoacid de-
hydrogenase (BCKD) complex, being a rate-limiting step in
BCAA catabolism, were associated oppositely with the risk of
type 2 diabetes [36]. Further research is necessary to investi-
gate possible functional relationships between valine and PC
ae C32:2, and whether or not there is a direct causal relation-
ship with the observed associations with GSIS and the risk of
developing diabetes.

In addition to the ratio of valine to PC ae C32:2, we also
note several other significant associations in our
hyperglycaemic clamp experiments. For example PC aa
C32:1 was associated with reduced second-phase GSIS. In
previous studies by Floegel et al and Wang-Sattler et al this
metabolite has been associated with an increased risk of im-
paired glucose tolerance and incident type 2 diabetes [7, 26].
Thus, reduced second-phase GSIS provides a potential mech-
anism for these previous observations. Furthermore, two other
phosphatidylcholines, PC aa C34:4 and PC aa C38:5, were
previously identified to be reduced in individuals with type
2 diabetes [42] or pregnant women with gestational diabetes
mellitus [43]. Interestingly, these metabolites were also found
to be influenced by the obesity associated variant in the FTO
gene during OGTTs [37]. As such, our data substantiate these
previous findings. We also note a significant increase in PC
aa C42:1 after arginine stimulation (ESM Fig. 3). This metab-
olite was previously found to be decreased in individuals with
type 2 diabetes [6]. Since the samples from different individ-
uals and time points were randomised and the effect was not
caused by a few individuals or outliers this seems to be a
genuine observation requiring further investigation.

Next to the single metabolite associations and the valine to
PC ae C32:2 ratio, the ratio of alanine and glycine strongly
associated with insulin sensitivity measured using the
hyperglycaemic clamp and incident diabetes in the KORA
S4_to_F4 cohort. It is of interest that both amino acids have
previously been identified in metabolomics studies in diabetes,
indeed displaying opposing effects (reviewed in [4]).
Unfortunately, alanine is not measured with the AbsoluteIDQ
p150 Kit and thus the ratio could not be calculated in the other

studies and as such findings could not be further validated. If
validated in other studies this ratio could be of use in prediction
of insulin resistance and diabetes risk.

Here we have shown that the addition of the valine to PC ae
C32:2 metabolite ratio improved the accuracy of prediction of
incident type 2 diabetes in a model containing known risk
factors in both the KORA S4_to_F4 and EPIC-Potsdam co-
horts, corroborating results from previous studies that only
investigated associations with individual metabolites [7, 26].
We have also shown associations with augmented second-
phase GSIS and AUCinsulin independent of measures of insulin
resistance and other covariates (ESM Table 23). In addition,
we found a positive correlation with HOMA-IR. Therefore,
we speculate that the increased diabetes risk is attributable to
increases in insulin resistance rather than insulin secretion, as
has been suggested previously for valine and other BCAAs
[34, 35]. Furthermore, our insulin secretion studies are mainly
from healthy individuals and it may be that associations with
augmented insulin secretion are dependent on the level of
glycaemia as we have previously shown for a genetic variant
of G6PC2 [44].

It is important to note that in all of our analyses the effect of
the ratio is larger than that observed with the individual me-
tabolites suggesting that the use of ratios may improve predic-
tion above that of the single metabolites. Large prospective
studies aiming to identify the best set of predictors (including
traditional risk factors and metabolites) are needed to fully
elucidate the clinical applicability of using metabolite ratios
in the identification of individuals at risk of developing type 2
diabetes. Since metabolomics measurements are simple and
relatively non-invasive and alterations in metabolite profiles
can be detected years before overt disease develops, the anal-
ysis of metabolite ratiosmay prove to be a useful instrument in
personalising prevention and treatment strategies for type 2
diabetes.

In conclusion, we have shown that the ratio of valine to PC
ae C32:2 in blood is positively associated with insulin secre-
tion, HOMA-IR and prevalent type 2 diabetes. Furthermore, it
predicts incident type 2 diabetes independent of known risk
factors, suggesting that it could be useful as an early biomark-
er for identification of individuals at increased risk for type 2
diabetes.
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