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Omega-3 fatty acids correlate 
with gut microbiome 
diversity and production of 
N-carbamylglutamate in middle 
aged and elderly women
Cristina Menni1, Jonas Zierer  1,2, Tess Pallister1, Matthew A. Jackson  1, Tao Long  3, 
Robert P. Mohney  4, Claire J. Steves1, Tim D. Spector1 & Ana M. Valdes1,5,6

Omega-3 fatty acids may influence human physiological parameters in part by affecting the gut 
microbiome. The aim of this study was to investigate the links between omega-3 fatty acids, gut 
microbiome diversity and composition and faecal metabolomic profiles in middle aged and elderly 
women. We analysed data from 876 twins with 16S microbiome data and DHA, total omega-3, 
and other circulating fatty acids. Estimated food intake of omega-3 fatty acids were obtained 
from food frequency questionnaires. Both total omega-3and DHA serum levels were significantly 
correlated with microbiome alpha diversity (Shannon index) after adjusting for confounders 
(DHA Beta(SE) = 0.13(0.04), P = 0.0006 total omega-3: 0.13(0.04), P = 0.001). These associations 
remained significant after adjusting for dietary fibre intake. We found even stronger associations 
between DHA and 38 operational taxonomic units (OTUs), the strongest ones being with OTUs 
from the Lachnospiraceae family (Beta(SE) = 0.13(0.03), P = 8 × 10−7). Some of the associations 
with gut bacterial OTUs appear to be mediated by the abundance of the faecal metabolite 
N-carbamylglutamate. Our data indicate a link between omega-3 circulating levels/intake and 
microbiome composition independent of dietary fibre intake, particularly with bacteria of the 
Lachnospiraceae family. These data suggest the potential use of omega-3 supplementation to improve 
the microbiome composition.

There is evidence indicating that dietary supplementation with omega-3 polyunsaturated fatty acids (PUFA) may 
improves some health parameters in humans1. Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is a 
main structural component of the human brain, cerebral cortex, skin, sperm, testicles and retina2. Higher circu-
lating levels of DHA are associated with lower risk of future cardiovascular events in three prospective popula-
tion based cohorts3. The other main omega-3 fatty acid is eicosapentaenoic acid or EPA, and omega-3 levels in 
humans are estimated by the sum of EPA + DHA with docosapentaenoic acid (DPA) being present at much lower 
concentrations4. Positive effects on health from omega-3 fatty acids have been observed for insulin resistance, 
adult-onset diabetes mellitus5–7, hypertension8, 9 arthritis10, 11, atherosclerosis12, 13, depression14, 15, thrombosis16, 
some cancers17 and cognitive decline18, 19.

These fatty acids can only be synthesized in mammals from the dietary precursor and essential fatty acid, 
α-linolenic acid1. However, the synthesis pathway requires a number of elongation and desaturation steps, mak-
ing direct uptake from the diet a more effective route of assimilation. EPA and DHA in the human diet are derived 
primarily from marine algae (higher plants lack the enzymes for the biosynthesis of these lipids), which is con-
centrated in the flesh of marine fish where bioavailability is dramatically increased20. Some of the mechanisms 
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whereby omega-3 fatty acids operate are linked directly to their anti-inflammatory actions since both EPA and 
DHA decrease synthesis of the pro-inflammatory prostaglandin E221. EPA and DHA are also precursors of the 
E-resolvins and D-resolvins that suppress inflammatory cytokine production and act to resolve inflammation22.

There is some evidence from case reports and from animal studies suggesting that the effect of omega-3 on 
the gut microbiota may also play an important role in the effects of omega-3 polyunsaturated acids on clinical 
parameters23–25. The relationship between the gut microbiota and its host plays a key role in immune system 
maturation, food digestion, drug metabolism, detoxification, vitamin production, and prevention of pathogenic 
bacteria adhesion. In fact, the composition of the microbiota is influenced by environmental factors such as diet, 
antibiotic therapy, and environmental exposure to microorganisms26.

Prebiotic foods are, by definition, non-digestible foods that specifically support the growth and/or activity 
of health-promoting bacteria that colonize the gastrointestinal tract. On the other hand, the role of omega-3 on 
microbiome composition and diversity has yet to be explored in human cohorts. Supplementation with DHA has 
been shown to help with oral and gastrointestinal diseases in which inflammation and bacterial dysbiosis play 
key roles27. Chronic low grade inflammation is often the result of an increase in plasma endotoxins, particularly 
lipopolysaccharides (LPS) derived from gut dysbiosis. The increase in plasma endotoxins leads to subsequent 
activation of the inflammasome and increased expression of inflammatory cytokines24. Analysis of gut microbiota 
and faecal transfer in mice has revealed that elevated tissue omega-3 fatty acids enhance intestinal production and 
secretion of intestinal alkaline phosphatase, which induces changes in the gut bacteria composition resulting in 
decreased lipopolysaccharide production and gut permeability, and ultimately, reduced metabolic endotoxemia 
and inflammation24.

A recent randomized, controlled clinical trial in an Indian population has shown that supplementation with 
omega 3 plus a probiotic has a greater beneficial effect on insulin sensitivity, lipid profile, and atherogenic index 
than the probiotic alone, although omega-3 supplementation showed only marginal effects on all the param-
eters28. A high omega-3 diet has also been shown to alter altered gut microbiota composition of drug-naïve 
patients with type 2 diabetes29. Such reports suggest an interaction between microbiome composition and intake 
of omega-3 fatty acids but a close examination of the links between omega-3 circulating levels and detailed micro-
biome composition in non-infant cohorts has not been explored to date.

Bacterial species, including those forming the human gut microbiome, are not well defined, and bacterial 
genomes are highly variable. Therefore regions used to identify bacteria vary in a continuum rather than clusters 
of similar sequences30. Bacteria that have 97% identity in a 16S rRNA gene variable region are considered to be 
the same taxa31. This is an arbitrary cut-off is thought to maximizes the grouping of bacteria classified as the 
same species while minimizing the grouping of bacteria classified as different species32. In order to determine 
how a batch of sequences should be partitioned into groups of 97% identity a clustering algorithm partitions the 
groups is used and taxonomic identity by matching the seed or central sequences with public databases are later 
assigned, the public database used was Greengenes in our case33. The resulting taxonomic groupings are known 
as Operational Taxonomic Units (OTUs), and are used consistently within the same experiment.

The aim of this study is to assess the association between omega-3 fatty acids serum levels and intake with 
microbiome composition diversity and with specific OTUs.

Results
We analysed data from 876 female twins with 16 s microbiome data and circulating levels of fatty acids includ-
ing DHA, total omega-3 fatty acids (FAW3), 18:2 linolenic acid (LNA), total omega-6 fatty acids (FAW6), total 
PUFA, and for comparison we also tested monounsaturated fatty acids; 16:1, 18:1 (MUFA), total saturated fatty 
acids (SFA), and total fatty acids (TotFA) measured at the same time point using the Brainshake NMR platform. 
Paired end reads covering the V4 region of the 16S rRNA gene were merged with a minimum overlap of 200nt 
using default parameters in the QIIME join_paired_ends.py script. Demultiplexed reads were then subject to 
chimera detection and removal on a per sample basis using de novo chimera detection in USEARCH, after which 
290445606 reads were retained from a total of 317617494 reads across all TwinsUK samples. Samples with less 
than 10,000 reads were discarded. Within the subset of 1044 samples used in the present study the final read depth 
was 80865 ± 35718 (mean ± SD). 1044 samples used in the present study the final read depth was 80865 ± 35718 
(mean ± SD).

The demographic characteristics of the study population are presented in Table 1.
The serum circulating levels of the polyunsaturated fatty acids FAW3, FAW6, LNA, and DHA reflect in part 

the intake levels: we observe a significant correlation between dietary omega-3 fatty acid intake estimates from 
FFQs and serum levels of FAW3 (ρ = 0.168, p < 2.64 × 10−7).

Omega-3 and omega-6 associate with microbiome diversity. After adjusting for age and BMI, we 
find that circulating PUFA levels measured as DHA, FAW3, LNA, FAW6, total PUFA are significantly and con-
sistently associated with higher microbiome diversity across the 5 alpha diversity indexes that we computed: 
Shannon, Chao1, Simpson and phylogenetic diversity indices, as well as observed species (e.g., with Shannon’s 
diversity DHA: Beta(SE) = 0.13(0.04), P = 0.0006; FAW3: 0.13(0.04), P = 0.0011, LNA: 0.11(0.004), P = 0.008, 
FAW6: 0.10(0.04), P = 0.0047, total PUFA: 0.11(0.04), P = 0.003). The complete results are presented in Fig. 1. We 
found however no significant association between microbiome diversity and circulating levels of saturated fatty 
acids or monounsaturated fatty acids (Fig. 1).

The association between FAW6 and microbiome diversity became not significant when adjusted for either 
FAW3 or only DHA (Beta(SE) = 0.035(0.04), P = 0.39). Similarly after adjustment for FAW6, FAW3 (i.e. 
DHA + EPA) became not significant (Beta 0.070 (0.04), P = 0.09). On the other hand the association between 
microbiome alpha diversity and DHA only (excluding other omega-3 fatty acids) remained statistically significant 
adjusting for FAW6 levels (Beta 0.080 (0.036), P = 0.03). Therefore we decided to focus specifically on DHA levels. 
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mean SD

Demographics

age, yrs 64.98 7.57

BMI, kg/m2 26.35 4.83

Diversity measures

Shannon diversity 6.42 0.79

CHAO1 1976.97 667.21

Observed Species 876.52 255.98

Phylogenetic Diversity 67.99 19.15

Simpson diversity 0.95 0.04

Serum Fatty Acids

DHA, mmol/l 0.14 0.05

FAW3, mmol/l 0.44 0.14

LNA, mmol/l 3.0 0.59

FAW6, mmol/l 3.58 0.64

PUFA, mmol/l 4.02 0.75

MUFA, mmol/l 2.63 0.62

SFA, mmol/l 3.42 0.69

TotFa, mmol/l 10.08 1.94

Dietary intake

Fibre dietary intake, g/day 19.99 7.08

DHA dietary intake, g/day 0.35 0.86

EPA dietary intake, g/day 0.09 0.07

Table 1. Descriptive characteristics of the 876 female twins studied, mean(SD). DHA docosahexaenoic 
acid, FAW3 total omega-3, LNA the omega-6 linoleic acid 18:2, FAW6 total omega 6 fatty acids, PUFA total 
polyunsaturated fatty acids, MUFA monounsaturated fatty acids; 16:1, 18:1, SFA saturated fatty acids, TotFA 
total fatty acids.

Figure 1. Each cell of the matrix contains the correlation between one serum fatty acid and a gut microbiome 
diversity measure and the corresponding p value. Analyses are adjusted for age, BMI and family relatedness. 
The table is color coded by correlation according to the table legend (red for positive and blue for negative 
correlations). DHA docosahexaenoic acid, FAW3 total omega-3, LNA the omega-6 linoleic acid 18:2,FAW6 total 
omega 6 fatty acids, PUFA total polyunsaturated fatty acids, MUFA monounsaturated fatty acids; 16:1, 18:1, SFA 
saturated fatty acids, TotFA total fatty acids.
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We tested for association between dietary intake of DHA and microbiome diversity and found a weaker associa-
tion between DHA intake and microbiome diversity (Beta(SE) = 0.06(0.03), P = 0.0203). As dietary fibre intake 
positively correlates with the gut microbiome34, we also ran the analysis adjusting for fibre intake and the results 
remained consistent (Supplementary Table 2).

In our data we calculated an estimate of microbial beta-diversity using both weighted and unweighted UniFrac 
distances30 as implemented in QIIME35 and used principal coordinate analysis to examine its associations with 
omega-3 circulating levels, but did not find significant patterns [data not shown]. This is expected as DHA is not the 
main source of microbiome variation, rather it is only one of the many variables influencing it. However, the sig-
nificant correlations of DHA and FAW3, respectively, with microbial alpha diversity do demonstrate an association 
of these metabolites with the overall microbiome composition. DHA serum levels associate with OTU abundances

We then investigated the association between OTUs and DHA and identified 38 OTUs significantly associ-
ated with serum levels of DHA after adjusting for covariates and multiple testing using FDR < 0.05 (Table 2). 
Out of 36 positive associations, 21 (58%) belong to the Lachnospiraceaes, 7 (19%) to the Ruminococcacae and 5 

Internal** OTU* BETA SE P Q

otu1501 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.13 0.03 8.33 × 10−7 0.001

otu1453 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.13 0.03 9.11 × 10−7 0.001

otu1367 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Lachnospira; s__ 0.13 0.03 3.36 × 10−6 0.002

otu283 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__; g__; s__ 0.10 0.02 2.61 × 10−5 0.009

otu1554 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae 0.11 0.03 6.72 × 10−5 0.019

otu781 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Lachnospira; s__ 0.12 0.03 7.29 × 10−5 0.017

otu1355 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.11 0.03 7.76 × 10−5 0.016

otu845 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__; g__; s__ 0.11 0.03 1.04 × 10−4 0.019

otu2057 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__ 0.11 0.03 1.30 × 10−4 0.021

otu1793 k__Bacteria; p__Firmicutes; c__Erysipelotrichi; o__Erysipelotrichales; f__Erysipelotrichaceae; g__; s__ 0.10 0.03 1.44 × 10−4 0.021

otu573 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.11 0.03 1.85 × 10−4 0.024

otu499 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Coprococcus; s__ 0.10 0.03 1.99 × 10−4 0.024

otu1933 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__Oscillospira; s__ 0.10 0.03 2.32 × 10−4 0.026

otu1760 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.10 0.03 2.59 × 10−4 0.027

otu134 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__ 0.11 0.03 3.01 × 10−4 0.029

otu1061 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.09 0.03 3.20 × 10−4 0.029

otu1103 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.10 0.03 3.27 × 10−4 0.028

otu1212 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__Oscillospira; s__ 0.10 0.03 3.69 × 10−4 0.030

otu867 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__ 0.11 0.03 3.83 × 10−4 0.029

otu1886 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__uniformis 0.09 0.03 3.85 × 10−4 0.028

otu769 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__ 0.10 0.03 4.21 × 10−4 0.029

otu1739 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae 0.10 0.03 4.36 × 10−4 0.029

otu1074 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__Oscillospira; s__ 0.10 0.03 4.37 × 10−4 0.027

otu169 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae −0.09 0.03 5.80 × 10−4 0.035

otu533 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.10 0.03 6.56 × 10−4 0.038

otu271 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Lachnospira; s__ 0.10 0.03 6.58 × 10−4 0.036

otu2051 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.10 0.03 6.66 × 10−4 0.035

otu1672 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Lachnospira; s__ 0.10 0.03 6.73 × 10−4 0.035

otu2050 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__ 0.09 0.03 7.84 × 10−4 0.039

otu436 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.10 0.03 9.21 × 10−4 0.044

otu1748 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__ 0.09 0.03 9.22 × 10−4 0.043

otu2002 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.09 0.03 9.94 × 10−4 0.045

otu205 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Lachnospira; s__ 0.10 0.03 9.99 × 10−4 0.044

otu1063 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__; s__ −0.09 0.03 1.06 × 10−3 0.045

otu55 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Roseburia; s__ 0.10 0.03 1.06 × 10−3 0.044

otu662 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__; s__ 0.10 0.03 1.10 × 10−3 0.044

otu1621 k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__ 0.10 0.03 1.15 × 10−3 0.045

otu2006 k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__uniformis 0.09 0.03 1.29 × 10−3 0.049

Table 2. Associations between gut bacterial operational taxonomic units (OTUs) and serum levels of 
docosahexanoic acid (DHA). Associations are expressed as the regression coefficient and standard error (adjusted 
for age, body mass index, family relatedness). P-values and FDR (Q-values) are shown. *OTUs are only analytical 
units which could represent individual strains or species, as such more than one can be assigned to the same 
taxonomy. **The internal name is meaningless and just randomly generated but it is there to indicate that there are 
separate hits.
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(14%) to the Bacteroidetes. Because some of these associations may simply reflect a correlation with microbiome 
diversity we further adjusted for Shannon’s index. We found that after adjustment for microbiome diversity the 
significant associations with individual OTUs (using a cut-off of FDR p < 0.05) remain nominally statistically 
significant. Therefore the associations with individual OTUs are not due exclusively to the correlation between 
Lachnospiraceaes abundance and measures of gut microbiome diversity.

We also explored whether the effects of percent DHA differed from those of absolute concentrations. We find 
that the same associations hold when absolute concentrations of DHA and percentage of DHA of all other fatty 
acids are seen both with regards to microbiome diversity (Shannon index association DHA% Shannon: Beta 
0.15(0.04), P = 0.001 DHA absolute concentration 0.13(0.04), P = 0.001) and with regards to the most highly 
associated OTU (otu1505 association DHA% Shannon: Beta 0.11(0 .03), P = 3.0 × 10−5 vs DHA absolute concen-
tration Beta 0.13(SE 0.03) P = 8.33 × 10−7).

Faecal metabolites associated with DHA levels and OTU abundances. To further understand 
the link between DHA levels and the gut microbiome we assessed the correlation between DHA circulating 
levels and faecal metabolites measured using commercial metabolomic panel (Metabolon Inc, Supplementary 
Table 3) in a subset of 707 individuals with data available. After adjusting for multiple testing using FDR < 0.05, 
the faecal metabolites associated with DHA serum levels were faecal levels of the omega-3 fatty acids EPA 
(Beta(SE) = 0.15(0.037), P = 4.35 × 10−5, FDR = 0.01), N-carbamylglutamate (0.15(0.039), P = 1.21 × 10−4, 
FDR = 0.02) and the dipeptide anserine (0.13(0.036), P = 5.3 × 10−4, FDR = 0.04) commonly found in fish and 
poultry meat36 and hence is likely to be positively correlated with fish intake) (Supplementary Table 1). We 
hypothesized that the association between some of the OTUs and DHA may be mediated by the levels in the gut 
of N-carbamylglutamate (NCG). We found that several OTUs whose abundance is associated with DHA serum 
levels are also associated with NCG faecal levels (Table 3). The association remains significant after adjustment 
for DHA, however some of the DHA associations with these OTUs are attenuated when adjusting for NCG levels 
(Table 3) suggesting that the correlation between the abundances some of these OTUs and DHA serum levels 
could be mediated by NCG faecal concentrations.

Discussion
In this study we show in a population based cohort of middle aged and elderly women that circulating levels 
of omega-3 fatty acids are associated with higher microbiome diversity and with a higher abundance of OTUs 
belonging to the Lachnospiraceae family.

Omega-3 levels in humans are determined by dietary intake and by conversion of alpha-linolenic acid (ALA) 
to DHA. Although it is possible that the gut microbiome affects absorption of these fatty acids, given that most of 
the absorption of fatty acids takes place in the small intestine, it seems more likely that the link that we observed 
between DHA and microbiome is mediated by circulating DHA, or by DHA incorporated into the large intestines 
or by other intermediates that DHA affects (e.g. D-series resolvins).

Having tested five different ecological measures of microbiome diversity we find that all of them are positively 
correlated with higher serum levels of omega-3 and omega-6 fatty acids and all of them show the same pattern 
with regards to the various fatty acid measures tested. Higher gut microbiome diversity is linked to lower inflam-
mation37, 38, thus our data reinforce the notion that omega-3 fatty acids are linked to lower gut inflammation.

We also identified 38 OTUs associated with circulating levels of DHA. In particular we find that positive asso-
ciations were enriched for the Lachnospiraceae family. Lachnospiraceae are one of the main taxonomic groups of 
the human gut where they function to degrade complex polysaccharides to short-chain fatty acids (SCFAs) such 
as acetate, butyrate, and propionate that are used by the host for energy39. SCFAs are the end products of fermen-
tation of dietary fibres by the anaerobic intestinal microbiota and have been shown to exert multiple beneficial 
effects on mammalian energy metabolism. The mechanisms underlying these effects encompass the complex 
interplay between diet, gut microbiota, and host energy metabolism40. Members of the Lachnospiraceae family are 
found in higher abundance in herbivorous animals41. The wide range of functions carried out by Lachnospiraceae 
may influence their relative abundance in gut communities of different hosts. In humans, members of this family 
have been associated with protection against C. difficile infections42 and obesity43. They are also known as potent 
short-chain fatty acid producers44, On the other hand, we also find members of the Ruminococcaceae associated 
with increased levels of DHA and subtypes of some of this family have been implicated in obesity45.

The anti-inflammatory benefits of omega-3 PUFAs on gut microbiome composition may be attributed to the 
products of DHA metabolism, in particular those resulting from endogenous lipoxygenase-catalyzed hydroxy-
lation of DHA, which in turn produces resolvins and protectin D1 through acetylation of the cyclooxygenase-2 
enzyme46. Numerous reports describe protective effects of EPA- and DHA-derived mediators in experimental 
models of inflammatory bowel diseases47, 48 (reviewed in ref. 49). There is also some evidence of some benefit 
from supplementation of omega-3 fatty acids in humans affected by inflammatory bowel conditions50–52.

Modulation of these inflammatory pathways may similarly explain how DHA could reduce bowel inflamma-
tory levels in bowel conditions where the ability of epithelial and immune cells in the intestine to differentiate 
between pathogenic and commensal bacteria leads to prolonged activation of nuclear factor-κB27. NF κB is a 
pro-inflammatory transcription factor which triggers overproduction of inflammatory cytokines. Inflammation 
of the gastrointestinal tract in turn interrupts the natural balance between the mucosal immune system and 
normal gut microbiota53. Although our data indicate that the DHA effect is independent of fibre intake, it is 
well known that SCFAs result from microbial fermentation of fibre40. Interventional nutritional studies may be 
required to quantify and dissect the contribution of these two types of dietary components on microbiome com-
position and SCFA production.

http://3
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Moreover, most of the bacterial grouping that we find associated with increased levels of serum DHA are also 
negatively correlated with Crohn’s disease severity and intestinal inflammation (the Pediatric Crohn’s Disease 
Activity Index) such as Lachnospiraceae, Coprococcus, Roseburia, Ruminococcus, and Clostridium54. These bacteria 
are known to be major producers of the SCFA butyrate55, 56.

In addition, we report that DHA serum levels correlate with the faecal concentration of NCG after adjusting 
for multiple testing. This carbamylated aminoacid, is available as a synthetic compound, but may also be gen-
erated in nature by protein carbamylation57. Given that the other faecal compounds strongly associated with 
DHA serum levels are omega-3 faecal levels and a dipeptide considered as a marker of animal protein (such as 
fish) intake, the abundance of this compound in the faeces is unlikely to be the result of intake of a supplement 
containing it. NCG is a precursor of arginine, a structural analogue of N- acetylglutamate and selective activa-
tor of the first enzyme of the urea cycle58. In animal studies NCG supplementation has been shown to improve 
arginine synthesis in enterocytes59, to regulate signalling pathways (such as signal transduction and activator 
of transcription 3 (Stat3), protein kinase B (PKB), and 70-kDa ribosomal protein S6 kinase)59 and to enhance 

Internal OTU BETA

NCG

P BETA

DHA

PSE SE

otu1621 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Ruminococcaceae; g__; s__ Unadj 0.15 0.04 9.71 × 10−4 0.10 0.03 0.001

Adj 0.14 0.05 2.81 × 10−3 0.09 0.04 0.02

otu573 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Lachnospiraceae; g__; s__ Unadj 0.13 0.04 1.15 × 10−3 0.11 0.03 1.85 × 10−4

Adj 0.12 0.04 3.79 × 10−3 0.08 0.03 0.02

otu769 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Ruminococcaceae; g__; s__ Unadj 0.12 0.04 2.92 × 10−3 0.10 0.03 4.21 × 10−4

Adj 0.11 0.04 0.01 0.07 0.03 0.02

otu1793 p__Firmicutes; c__Erysipelotrichi; o__
Erysipelotrichales; f__Erysipelotrichaceae; g__; s__ Unadj 0.11 0.04 8.89 × 10−3 0.10 0.03 1.44 × 10−4

Adj 0.1 0.04 0.02 0.10 0.03 1.44 × 10−4

otu436 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Lachnospiraceae; g__; s__ Unadj 0.1 0.04 0.012 0.10 0.03 9.21 × 10−4

Adj 0.09 0.04 0.03 0.08 0.04 0.02

otu2050 p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; 
f__Bacteroidaceae; g__Bacteroides; s__ Unadj 0.1 0.04 0.013 0.09 0.03 7.84 × 10−4

Adj 0.08 0.04 0.03 0.09 0.03 7.84 × 10−4

otu1886 p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; 
f__Bacteroidaceae; g__Bacteroides; s__uniformis Unadj 0.09 0.04 0.015 0.09 0.03 3.85 × 10−4

Adj 0.08 0.04 0.02 0.09 0.03 0.01

otu1453 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Lachnospiraceae; g__; s__ Unadj 0.09 0.04 0.023 0.13 0.03 9.11 × 10−7

Adj 0.08 0.04 0.06 0.10 0.03 0.0008

otu55 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Lachnospiraceae; g__Roseburia; s__ Unadj 0.09 0.04 0.03 0.10 0.03 1.06 × 10−3

Adj 0.08 0.04 0.06 0.08 0.04 0.02

otu1061 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Lachnospiraceae; g__; s__ Unadj 0.09 0.04 0.03 0.09 0.03 3.20 × 10−4

Adj 0.08 0.04 0.06 0.08 0.03 0.01

otu134 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Ruminococcaceae; g__; s__ Unadj 0.09 0.04 0.032 0.11 0.03 3.01 × 10−4

Adj 0.08 0.04 0.07 0.10 0.03 0.001

otu1074 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Ruminococcaceae; g__Oscillospira; s__ Unadj 0.08 0.04 0.042 0.10 0.03 4.37 × 10−4

Adj 0.06 0.04 0.09 0.07 0.03 0.04

otu499 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Lachnospiraceae; g__Coprococcus; s__ Unadj 0.09 0.04 0.043 0.10 0.03 1.99 × 10−4

Adj 0.08 0.04 0.07 0.06 0.03 0.06

otu1748 p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; 
f__Bacteroidaceae; g__Bacteroides; s__ Unadj 0.08 0.04 0.044 0.09 0.03 9.22 × 10−4

Adj 0.06 0.04 0.1 0.10 0.03 0

otu2051 p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Lachnospiraceae; g__; s__ Unadj 0.08 0.04 0.046 0.10 0.03 6.66 × 10−4

Adj 0.07 0.04 0.09 0.09 0.03 0.01

Table 3. Association between gut bacterial operational taxonomic units (OTUs) and N-carbamylglutamate 
(NCG) in faeces unadjusted (unadj) and adjusting for DHA serum levels (adj). The association of the same 
OTUs with DHA adjusted and unadjusted for NCG is also shown. All analyses are adjusted for age, BMI, and 
family relatedness.
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intestinal growth as well as heat shock protein-70 expression60. Importantly, it also reduces oxidative stress in the 
gut61, 62 and alters intestinal gene expression63. Some of the NCG effects may be mediated via arginine which helps 
maintain intestinal homeostasis, preserves the integrity of the intestinal epithelium under stress, and prevents 
intestinal permeability and bacterial translocation64, 65.

Given the beneficial effects of NCG in the mammalian gut, part of the explanation for the association between 
DHA and gut microbiome composition might be that the presence of DHA favours the production of NCG by 
the gut microbiota. This in turn is likely to result in improved gut function and reduced oxidative stress. We see 
that the association between DHA circulating levels and some of the OTUs (such as Coprococcus, Oscillospira, 
Roseburia) is attenuated when we adjusted for NCG faecal levels (Table 3) suggesting that some of the DHA effect 
may be mediated by NCG. These are some of the bacteria that, as mentioned above, have been linked to either 
reduced intestinal inflammation or reduced risk of Crohn’s disease and are butyrate producers.

Although these results are only observational and cross-sectional they raise the possibility that omega-3 fatty 
acids may represent an important dietary supplement also to improve gut microbiome health. Our data suggest 
that the effect of omega-3 FA, in particular DHA, is independent of fibre intake. These data also support the 
hypothesis that some of the reported beneficial effects of omega-3 supplementation may be due to their effect 
on the gut microbiome. Nonetheless, intake of omega-3 fatty acids tends to correlate with a healthier lifestyle in 
general1 and therefore some of the effects of DHA on the gut may be indirect. This cannot be directly established 
in our study given the cross-sectional nature of the data analysed.

We note several study limitations. First, given the cross-sectional nature of the data, we cannot establish 
whether it is omega-3 affecting microbiome diversity or the other way round. On the other hand, it is well known 
that omega-3 circulating levels are reflective of dietary intake66 and although the associations we find with esti-
mates of omega-3 dietary intake are weaker than with serum levels, this is likely to simply reflect the error of accu-
rate estimates of intake from food questionnaire data compared to the accuracy of serum level measurements. 
Therefore, we hypothesize that it is intake of PUFAs and in particular of DHA that results in higher microbiome 
diversity and increased Lachnospiraceaes abundance. Our data are consistent with a recent randomized crossover 
clinical study in obese individuals where the effects of the gut microbiome were compared between supplemen-
tation with high oleic acid canola oil, and canola oil plus DHA. A principal analysis component carried by the 
authors revealed a strong enrichment of Lachnospiraceae in the canola plus DHA vs canola oil group, and more 
modest enrichments for Coprococcus and Ruminococcaceae67. Second, our study also lacked direct measurement 
of SCFAs in order to show a direct correlation between DHA serum levels and SCFAs in the gut. Third, our cohort 
sonsists exclusively of middle aged and elderly women of European descent. The lack of male participants in our 
in this study limits the generalisability of our results since gender differences in the gut microbiome have been 
reported in humans68. Moreover, estrogens cause higher DHA concentrations in women than in men, probably by 
upregulating synthesis of DHA from alpha linoleic acid69. Additional studies including men may show stronger or 
weaker associations with omega-3 fatty acids. Fourth, we have used FFQs rather than other methods for assessing 
nutrient intake. It has been argued that 7-day diet diaries or records add useful information above and beyond 
FFQ remains and have higher reproducibility and lower error rates70. However,, the value of FFQs for assessing 
dietary composition has been documented objectively by correlations with biochemical indicators and the pre-
diction of outcomes in prospective studies71. Moreover, the key results we report are with serum levels of DHA, 
which are highly correlated with intake figures estimated from FFQs.

We also note several study strengths. Our study has the largest sample size studied to date with regards to the 
relationship between omega-3 fatty acids and the gut microbiome composition. The study was able to compare 
various NMR measures of omega-3, omega-6 in addition to dietary intake of omega-3 fatty acids. The study is one 
of the very few to investigate the link between microbiome associations and the faecal metabolome.

In conclusion, our data indicate a strong correlation between omega-3 fatty acids and microbiome com-
position and suggest that supplementation with PUFAs may be considered along with prebiotic and probiotic 
supplementation aimed at improving the microbiome composition and diversity. The study also suggests the 
translational potential NCG as a supplement to improve gut function and microbiome composition.

Methods
Study population. Study subjects were female twins enrolled in the TwinsUK registry, a national register 
of adult twins recruited as volunteers without selecting for any particular disease or trait traits72. In this study, 
we analysed data from 876 female twins with 16 s microbiome data and serum DHA, total omega-3, omega-6 
and LA acids measured at the same time using the Brainshake NMR platform. The study was approved by NRES 
Committee London–Westminster, all experiments were performed in accordance with relevant guidelines and 
regulations, and all twins provided informed written consent.

NMR Metabolomics. circulating levels of DHA, FWA3, LNA, FAW6, total PUFA, total MUFA, total SFA, and 
TotFA) were measured by Brainshake Ltd, Finland, (https://www.brainshake.fi/) from fasting serum samples 
using 500 Mhz and 600 Mhz proton nuclear magnetic resonance spectroscopy as previously described73. Traits 
were log-transformed and then scaled to standard deviation units, as previously proposed by Würtz et al.3. For the 
metabolites containing zeroes, 1 was added to all values of that metabolite before log-transformation.

Fibre and fatty acid intake. A validated 131-item semi-quantitative Food Frequency Questionnaire (FFQ) estab-
lished for the EPIC (European Prospective Investigations into Cancer and Nutrition)-Norfolk study74 was used 
to assess dietary intake. Estimated intakes of essential fatty acids and fibre (in grams per day) were derived from 
the UK Nutrient Database75 and were adjusted for energy intake using the residual method prior to analysis71.

https://www.brainshake.fi/
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Microbiota analysis. The stool DNA extraction is detailed in Goodrich et al.76 of 100 mg were taken from the 
sample and used for extraction. There was no homogenisation prior to this step. Faecal samples were collected 
and the composition of the gut microbiome was determined by 16 S rRNA gene sequencing carried out as pre-
viously described77, 78. Briefly, the V4 region of the 16 S rRNA gene was amplified and sequenced on Illumina 
MiSeq. Reads were then summarised to OTUs using open reference clustering Greengenes v13_8 at 97% sequence 
similarity78. OTU counts were converted to log transformed relative abundances, with zero counts handled by 
the addition of an arbitrary value (10−6). The residuals of the OTU abundances were taken from linear models, 
accounting for technical covariates including sequencing depth, sequencing run, sequencing technician and sam-
ple collection method. These residuals were inverse normalised, to make them normally distributed, and used in 
downstream parametric analyses. This approach allows us to adjust for potential confounders using parametric 
methods and is justified by both the sample size available and the normal distribution of the transformed OTU 
abundances.

The OTU table was rarefied to a depth of 10 000 OTUs per sample and five measures of gut microbiome alpha 
diversity were computed: Shannon, Chao1, Simpson and phylogenetic diversity indices, as well as observed spe-
cies. Alpha diversity indexes were standardised to have mean 0 and SD 1.

Faecal metabolomics. Metabolite concentrations were measured from 707 faecal samples by Metabolon 
Inc., Durham, US, using an untargeted LC/MS platform as previously describe79, 80. Here we analysed 424 metab-
olites of known chemical identity observed in at least 80% of all samples. Metabolites were scaled by run-day 
medians and inverse normalised as the metabolite concentrations were not normally distributed. We imputed the 
missing values using the minimum run day measures.

Statistical analysis. We assessed the association between circulating serum levels of DHA, FAW3, LNA, 
FAW6, total PUFA, total MUFA, total SFA, TotFA by using random intercept linear regression adjusting for age, 
BMI and family relatedness. Linear regression was also employed to investigate the association between OTUs 
and DHA adjusting for covariates and multiple testing using false discovery rate (FDR < 0.05). We then calcu-
lated the principal coordinates from both weighted and unweighted UniFrac distances, a measure of microbial 
beta-diversity81, as implemented in QIIME35 to further examine the associations between omega-3 circulating 
levels and microbiome composition.

Finally, we assessed the correlation between DHA circulating levels and faecal metabolites in a sub-analysis 
of 707 individuals using linear regression adjusting for age, BMI, family relatedness and multiple testing 
(FDR < 0.05). We then tested the associations between the significant faecal metabolites and the previously  
identified OTU adjusting also for DHA.

References
 1. Ortega, J. F. et al. Dietary supplementation with omega-3 fatty acids and oleate enhances exercise training effects in patients with 

metabolic syndrome. Obesity (Silver Spring) 24, 1704–1711, doi:10.1002/oby.21552 (2016).
 2. Howe, P. & Buckley, J. Metabolic health benefits of long-chain omega-3 polyunsaturated fatty acids. Military medicine 179, 138–143, 

doi:10.7205/MILMED-D-14-00154 (2014).
 3. Wurtz, P. et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 

131, 774–785, doi:10.1161/CIRCULATIONAHA.114.013116 (2015).
 4. Bonaa, K. H., Bjerve, K. S. & Nordoy, A. Docosahexaenoic and eicosapentaenoic acids in plasma phospholipids are divergently 

associated with high density lipoprotein in humans. Arteriosclerosis and thrombosis: a journal of vascular biology 12, 675–681 (1992).
 5. Oliveira, V. et al. Diets Containing alpha-Linolenic (omega3) or Oleic (omega9) Fatty Acids Rescues Obese Mice From Insulin 

Resistance. Endocrinology 156, 4033–4046, doi:10.1210/en.2014-1880 (2015).
 6. Ogawa, S. et al. Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes. The Tohoku 

journal of experimental medicine 231, 63–74 (2013).
 7. Muldoon, M. F. et al. Concurrent physical activity modifies the association between n3 long-chain fatty acids and cardiometabolic 

risk in midlife adults. The Journal of nutrition 143, 1414–1420, doi:10.3945/jn.113.174078 (2013).
 8. Casanova, M. A. et al. Omega-3 fatty acids supplementation improves endothelial function and arterial stiffness in hypertensive 

patients with hypertriglyceridemia and high cardiovascular risk. Journal of the American Society of Hypertension: JASH 11, 10–19, 
doi:10.1016/j.jash.2016.10.004 (2017).

 9. Barbosa, M. M., Melo, A. L. & Damasceno, N. R. The benefits of omega-3 supplementation depend on adiponectin basal level and 
adiponectin increase after the supplementation: A randomized clinical trial. Nutrition 34, 7–13, doi:10.1016/j.nut.2016.08.010 
(2017).

 10. Rajaei, E. et al. The Effect of Omega-3 Fatty Acids in Patients With Active Rheumatoid Arthritis Receiving DMARDs Therapy: 
Double-Blind Randomized Controlled Trial. Global journal of health science 8, 18–25, doi:10.5539/gjhs.v8n7p18 (2015).

 11. Jiang, J. et al. Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on Major Eicosanoids: A Systematic Review and Meta-
Analysis from 18 Randomized Controlled Trials. PloS one 11, e0147351, doi:10.1371/journal.pone.0147351 (2016).

 12. Mosca, L. et al. Usefulness of Icosapent Ethyl (Eicosapentaenoic Acid Ethyl Ester) in Women to Lower Triglyceride Levels (Results 
from the MARINE and ANCHOR Trials). The American journal of cardiology 119, 397–403, doi:10.1016/j.amjcard.2016.10.027 
(2017).

 13. Kristensen, S. et al. The effect of marine n-3 polyunsaturated fatty acids on cardiac autonomic and hemodynamic function in 
patients with psoriatic arthritis: a randomised, double-blind, placebo-controlled trial. Lipids in health and disease 15, 216, 
doi:10.1186/s12944-016-0382-5 (2016).

 14. Arnold, L. E. et al. Omega-3 Fatty Acid Plasma Levels Before and After Supplementation: Correlations with Mood and Clinical 
Outcomes in the Omega-3 and Therapy Studies. Journal of child and adolescent psychopharmacology 27, 223–233, doi:10.1089/
cap.2016.0123 (2017).

 15. Pompili, M. et al. Polyunsaturated fatty acids and suicide risk in mood disorders: A systematic review. Progress in neuro-
psychopharmacology & biological psychiatry 74, 43–56, doi:10.1016/j.pnpbp.2016.11.007 (2017).

 16. Reiner, M. F. et al. Omega-3 fatty acids predict recurrent venous thromboembolism or total mortality in elderly patients with acute 
venous thromboembolism. Journal of thrombosis and haemostasis: JTH 15, 47–56, doi:10.1111/jth.13553 (2017).

 17. Lin, G. et al. omega-3 free fatty acids and all-trans retinoic acid synergistically induce growth inhibition of three subtypes of breast 
cancer cell lines. Scientific reports 7, 2929, doi:10.1038/s41598-017-03231-9 (2017).

http://dx.doi.org/10.1002/oby.21552
http://dx.doi.org/10.7205/MILMED-D-14-00154
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013116
http://dx.doi.org/10.1210/en.2014-1880
http://dx.doi.org/10.3945/jn.113.174078
http://dx.doi.org/10.1016/j.jash.2016.10.004
http://dx.doi.org/10.1016/j.nut.2016.08.010
http://dx.doi.org/10.5539/gjhs.v8n7p18
http://dx.doi.org/10.1371/journal.pone.0147351
http://dx.doi.org/10.1016/j.amjcard.2016.10.027
http://dx.doi.org/10.1186/s12944-016-0382-5
http://dx.doi.org/10.1089/cap.2016.0123
http://dx.doi.org/10.1089/cap.2016.0123
http://dx.doi.org/10.1016/j.pnpbp.2016.11.007
http://dx.doi.org/10.1111/jth.13553
http://dx.doi.org/10.1038/s41598-017-03231-9


www.nature.com/scientificreports/

9SCIeNTIfIC RepoRts | 7: 11079  | DOI:10.1038/s41598-017-10382-2

 18. Bulaj, G. et al. Incorporating Natural Products, Pharmaceutical Drugs, Self-Care and Digital/Mobile Health Technologies into 
Molecular-Behavioral Combination Therapies for Chronic Diseases. Current clinical pharmacology 11, 128–145 (2016).

 19. Horrocks, L. A. & Yeo, Y. K. Health benefits of docosahexaenoic acid (DHA). Pharmacological research 40, 211–225, doi:10.1006/
phrs.1999.0495 (1999).

 20. de Magalhaes, J. P., Muller, M., Rainger, G. E. & Steegenga, W. Fish oil supplements, longevity and aging. Aging 8, 1578–1582, 
doi:10.18632/aging.101021 (2016).

 21. Calder, P. C. Omega-3 fatty acids and inflammatory processes. Nutrients 2, 355–374, doi:10.3390/nu2030355 (2010).
 22. Serhan, C. N., Dalli, J., Colas, R. A., Winkler, J. W. & Chiang, N. Protectins and maresins: New pro-resolving families of mediators 

in acute inflammation and resolution bioactive metabolome. Biochimica et biophysica acta 1851, 397–413, doi:10.1016/j.
bbalip.2014.08.006 (2015).

 23. Noriega, B. S., Sanchez-Gonzalez, M. A., Salyakina, D. & Coffman, J. Understanding the Impact of Omega-3 Rich Diet on the Gut 
Microbiota. Case reports in medicine 2016, 3089303, doi:10.1155/2016/3089303 (2016).

 24. Kaliannan, K., Wang, B., Li, X. Y., Kim, K. J. & Kang, J. X. A host-microbiome interaction mediates the opposing effects of omega-6 
and omega-3 fatty acids on metabolic endotoxemia. Scientific reports 5, 11276, doi:10.1038/srep11276 (2015).

 25. Yu, H. N. et al. Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Archives of medical 
research 45, 195–202, doi:10.1016/j.arcmed.2014.03.008 (2014).

 26. Vernocchi, P., Del Chierico, F. & Putignani, L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds 
Affecting Human Health. Frontiers in microbiology 7, 1144, doi:10.3389/fmicb.2016.01144 (2016).

 27. Tabbaa, M., Golubic, M., Roizen, M. F. & Bernstein, A. M. Docosahexaenoic acid, inflammation, and bacterial dysbiosis in relation 
to periodontal disease, inflammatory bowel disease, and the metabolic syndrome. Nutrients 5, 3299–3310, doi:10.3390/nu5083299 
(2013).

 28. Rajkumar, H. et al. Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut 
colonization in overweight adults: a randomized, controlled trial. Mediators of inflammation 2014, 348959, doi:10.1155/2014/348959 
(2014).

 29. Balfego, M. et al. Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naive patients with 
type 2 diabetes: a pilot randomized trial. Lipids in health and disease 15, 78, doi:10.1186/s12944-016-0245-0 (2016).

 30. Wong, R. G., Wu, J. R. & Gloor, G. B. Expanding the UniFrac Toolbox. PloS one 11, e0161196, doi:10.1371/journal.pone.0161196 
(2016).

 31. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287, doi:10.1126/
science.1123061 (2006).

 32. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National 
Academy of Sciences of the United States of America 108(Suppl 1), 4516–4522, doi:10.1073/pnas.1000080107 (2011).

 33. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and 
environmental microbiology 72, 5069–5072, doi:10.1128/AEM.03006-05 (2006).

 34. Menni, C. et al. Gut microbiome diversity and high fibre intake are related to lower long term weight gain. Int J Obes (Lond) (2017).
 35. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods 7, 335–336, 

doi:10.1038/nmeth.f.303 (2010).
 36. Cheung, W. et al. A metabolomic study of biomarkers of meat and fish intake. The American journal of clinical nutrition, doi:10.3945/

ajcn.116.146639 (2017).
 37. Nowak, P. et al. Gut microbiota diversity predicts immune status in HIV-1 infection. AIDS 29, 2409–2418, doi:10.1097/

QAD.0000000000000869 (2015).
 38. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184, doi:10.1038/

nature11319 (2012).
 39. Biddle, A., Stewart, L., Blanchard, J. & Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and 

Ruminococcaceae in diverse gut communities. Diversity 5, doi:10.3390/d5030627 (2013).
 40. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. 

Journal of lipid research 54, 2325–2340, doi:10.1194/jlr.R036012 (2013).
 41. Furet, J. P. et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS 

microbiology ecology 68, 351–362, doi:10.1111/j.1574-6941.2009.00671.x (2009).
 42. Petrof, E. O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. 

Microbiome 1, 3, doi:10.1186/2049-2618-1-3 (2013).
 43. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626, doi:10.1038/

nature11400 (2012).
 44. Duncan, S. H., Barcenilla, A., Stewart, C. S., Pryde, S. E. & Flint, H. J. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA 

transferase in butyrate-producing bacteria from the human large intestine. Applied and environmental microbiology 68, 5186–5190 
(2002).

 45. Kasai, C. et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, 
as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC gastroenterology 15, 100, 
doi:10.1186/s12876-015-0330-2 (2015).

 46. Serhan, C. N. et al. Novel proresolving aspirin-triggered DHA pathway. Chemistry & biology 18, 976–987, doi:10.1016/j.
chembiol.2011.06.008 (2011).

 47. Zhang, Q., Yu, J. C., Kang, W. M. & Zhu, G. J. Effect of omega-3 fatty acid on gastrointestinal motility after abdominal operation in 
rats. Mediators of inflammation 2011, 152137, doi:10.1155/2011/152137 (2011).

 48. Ohtsuka, Y. et al. omega-3 fatty acids attenuate mucosal inflammation in premature rat pups. Journal of pediatric surgery 46, 
489–495, doi:10.1016/j.jpedsurg.2010.07.032 (2011).

 49. Schwanke, R. C., Marcon, R., Bento, A. F. & Calixto, J. B. EPA- and DHA-derived resolvins’ actions in inflammatory bowel disease. 
European journal of pharmacology 785, 156–164, doi:10.1016/j.ejphar.2015.08.050 (2016).

 50. Smith, H. E. et al. Multiple micronutrient supplementation transiently ameliorates environmental enteropathy in Malawian children 
aged 12-35 months in a randomized controlled clinical trial. The Journal of nutrition 144, 2059–2065, doi:10.3945/jn.114.201673 
(2014).

 51. Yamamoto, T., Shimoyama, T. & Kuriyama, M. Dietary and enteral interventions for Crohn’s disease. Current opinion in 
biotechnology 44, 69–73, doi:10.1016/j.copbio.2016.11.011 (2017).

 52. Barbalho, S. M., Goulart Rde, A., Quesada, K., Bechara, M. D. & de Carvalho Ade, C. Inflammatory bowel disease: can omega-3 fatty 
acids really help? Annals of gastroenterology 29, 37–43 (2016).

 53. Shores, D. R., Binion, D. G., Freeman, B. A. & Baker, P. R. New insights into the role of fatty acids in the pathogenesis and resolution 
of inflammatory bowel disease. Inflamm Bowel Dis 17, 2192–2204, doi:10.1002/ibd.21560 (2011).

 54. Mottawea, W. et al. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nature communications 
7, 13419, doi:10.1038/ncomms13419 (2016).

 55. Takahashi, K. et al. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn’s 
Disease. Digestion 93, 59–65, doi:10.1159/000441768 (2016).

http://dx.doi.org/10.1006/phrs.1999.0495
http://dx.doi.org/10.1006/phrs.1999.0495
http://dx.doi.org/10.18632/aging.101021
http://dx.doi.org/10.3390/nu2030355
http://dx.doi.org/10.1016/j.bbalip.2014.08.006
http://dx.doi.org/10.1016/j.bbalip.2014.08.006
http://dx.doi.org/10.1155/2016/3089303
http://dx.doi.org/10.1038/srep11276
http://dx.doi.org/10.1016/j.arcmed.2014.03.008
http://dx.doi.org/10.3389/fmicb.2016.01144
http://dx.doi.org/10.3390/nu5083299
http://dx.doi.org/10.1155/2014/348959
http://dx.doi.org/10.1186/s12944-016-0245-0
http://dx.doi.org/10.1371/journal.pone.0161196
http://dx.doi.org/10.1126/science.1123061
http://dx.doi.org/10.1126/science.1123061
http://dx.doi.org/10.1073/pnas.1000080107
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.3945/ajcn.116.146639
http://dx.doi.org/10.3945/ajcn.116.146639
http://dx.doi.org/10.1097/QAD.0000000000000869
http://dx.doi.org/10.1097/QAD.0000000000000869
http://dx.doi.org/10.1038/nature11319
http://dx.doi.org/10.1038/nature11319
http://dx.doi.org/10.3390/d5030627
http://dx.doi.org/10.1194/jlr.R036012
http://dx.doi.org/10.1111/j.1574-6941.2009.00671.x
http://dx.doi.org/10.1186/2049-2618-1-3
http://dx.doi.org/10.1038/nature11400
http://dx.doi.org/10.1038/nature11400
http://dx.doi.org/10.1186/s12876-015-0330-2
http://dx.doi.org/10.1016/j.chembiol.2011.06.008
http://dx.doi.org/10.1016/j.chembiol.2011.06.008
http://dx.doi.org/10.1155/2011/152137
http://dx.doi.org/10.1016/j.jpedsurg.2010.07.032
http://dx.doi.org/10.1016/j.ejphar.2015.08.050
http://dx.doi.org/10.3945/jn.114.201673
http://dx.doi.org/10.1016/j.copbio.2016.11.011
http://dx.doi.org/10.1002/ibd.21560
http://dx.doi.org/10.1038/ncomms13419
http://dx.doi.org/10.1159/000441768


www.nature.com/scientificreports/

1 0SCIeNTIfIC RepoRts | 7: 11079  | DOI:10.1038/s41598-017-10382-2

 56. Crystal, T. H. & House, A. S. Articulation rate and the duration of syllables and stress groups in connected speech. The Journal of the 
Acoustical Society of America 88, 101–112 (1990).

 57. Meigh, L. CO2 carbamylation of proteins as a mechanism in physiology. Biochemical Society transactions 43, 460–464, doi:10.1042/
BST20150026 (2015).

 58. Chacher, B., Liu, H., Wang, D. & Liu, J. Potential role of N-carbamoyl glutamate in biosynthesis of arginine and its significance in 
production of ruminant animals. Journal of animal science and biotechnology 4, 16, doi:10.1186/2049-1891-4-16 (2013).

 59. Zeng, X. et al. N-carbamylglutamate enhances pregnancy outcome in rats through activation of the PI3K/PKB/mTOR signaling 
pathway. PloS one 7, e41192, doi:10.1371/journal.pone.0041192 (2012).

 60. Wu, X. et al. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock 
protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino acids 39, 831–839, doi:10.1007/s00726-010-
0538-y (2010).

 61. Cao, W. et al. Dietary arginine and N-carbamylglutamate supplementation enhances the antioxidant statuses of the liver and plasma 
against oxidative stress in rats. Food & function 7, 2303–2311, doi:10.1039/c5fo01194a (2016).

 62. Liu, G. et al. Changes in the metabolome of rats after exposure to arginine and N-carbamylglutamate in combination with diquat, a 
compound that causes oxidative stress, assessed by 1H NMR spectroscopy. Food & function 7, 964–974, doi:10.1039/c5fo01486g 
(2016).

 63. Wu, X., Zhang, Y., Liu, Z., Li, T. J. & Yin, Y. L. Effects of oral supplementation with glutamate or combination of glutamate and 
N-carbamylglutamate on intestinal mucosa morphology and epithelium cell proliferation in weanling piglets. Journal of animal 
science 90(Suppl 4), 337–339, doi:10.2527/jas.53752 (2012).

 64. Costa, K. A. et al. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male Swiss 
mice subjected to physical exercise under environmental heat stress. The Journal of nutrition 144, 218–223, doi:10.3945/
jn.113.183186 (2014).

 65. Fritz, J. H. Arginine cools the inflamed gut. Infection and immunity 81, 3500–3502, doi:10.1128/IAI.00789-13 (2013).
 66. Baia, L. C. et al. Fish and omega-3 fatty acid intake in relation to circulating fibroblast growth factor 23 levels in renal transplant 

recipients. Nutrition, metabolism, and cardiovascular diseases: NMCD 24, 1310–1316, doi:10.1016/j.numecd.2014.06.006 (2014).
 67. Pu, S., Khazanehei, H., Jones, P. J. & Khafipour, E. Interactions between Obesity Status and Dietary Intake of Monounsaturated and 

Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT). Frontiers in 
microbiology 7, 1612, doi:10.3389/fmicb.2016.01612 (2016).

 68. Haro, C. et al. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PloS one 11, e0154090, doi:10.1371/journal.
pone.0154090 (2016).

 69. Giltay, E. J., Gooren, L. J., Toorians, A. W., Katan, M. B. & Zock, P. L. Docosahexaenoic acid concentrations are higher in women 
than in men because of estrogenic effects. The American journal of clinical nutrition 80, 1167–1174 (2004).

 70. Day, N., McKeown, N., Wong, M., Welch, A. & Bingham, S. Epidemiological assessment of diet: a comparison of a 7-day diary with 
a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. International journal of epidemiology 30, 
309–317 (2001).

 71. Willett, W. & Stampfer, M. J. Total energy intake: implications for epidemiologic analyses. American journal of epidemiology 124, 
17–27 (1986).

 72. Moayyeri, A., Hammond, C. J., Valdes, A. M. & Spector, T. D. Cohort Profile: TwinsUK and healthy ageing twin study. International 
journal of epidemiology 42, 76–85, doi:10.1093/ije/dyr207 (2013).

 73. Soininen, P., Kangas, A. J., Wurtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in 
cardiovascular epidemiology and genetics. Circulation. Cardiovascular genetics 8, 192–206, doi:10.1161/CIRCGENETICS.114.000216 
(2015).

 74. Bingham, S. A. et al. Nutritional methods in the European Prospective Investigation of Cancer in Norfolk. Public health nutrition 4, 
847–858 (2001).

 75. McCance, R. A., Widdowson, E. M., Holland, B., Welch, A. & Buss, D. H. McCance and Widdowson’s The Composition of Foods 5th 
edn, (Great Britain Food Standards Agency, 1991).

 76. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799, doi:10.1016/j.cell.2014.09.053 (2014).
 77. Goodrich, J. K. et al. Genetic Determinants of the Gut Microbiome in UK Twins. Cell host & microbe 19, 731–743, doi:10.1016/j.

chom.2016.04.017 (2016).
 78. Jackson, M. A. et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 749–756, doi:10.1136/

gutjnl-2015-310861 (2016).
 79. Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nature genetics 46, 543–550, doi:10.1038/ng.2982 (2014).
 80. Menni, C. et al. Metabolomic markers reveal novel pathways of ageing and early development in human populations. International 

journal of epidemiology 42, 1111–1119, doi:10.1093/ije/dyt094 (2013).
 81. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nature 

genetics 46, 1173–1186, doi:10.1038/ng.3097 (2014).

Acknowledgements
This work was supported by the FP7 project HEALS (Health and Environment-wide Associations based on Large 
population Surveys) Project No. 603946 of the European Union’s Seventh Framework Programme and by the 
Medical Research Council Ancestry and Biological Informative Markers for Stratification of Hypertension grant 
(MR/M016560/1). The TwinsUK microbiota project was funded by the National Institute of Health (NIH) RO1 
DK093595, DP2 OD007444. Twins UK receives funding from the Wellcome Trust European Community’s Seventh 
Framework Programme (FP7/2007–2013 to TwinsUK); the National Institute for Health Research (NIHR) 
Clinical Research Facility at Guy’s & St Thomas’ NHS Foundation Trust and NIHR Biomedical Research Centre 
based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. CM is funded by the MRC 
AimHy (MR/M016560/1) project grant. A.M.V. is suppo rted by the NIHR Biomedical Research Centre based 
at Nottingham University Hospitals and the University of Nottingham. HLI collaborated with KCL to produce 
the metabolomics data from Metabolon Inc. We thank Dr Julia K. Goodrich, Dr Ruth E. Ley and the Cornell 
technical team for generating the microbial data. We wish to express our appreciation to all study participants of 
the TwinsUK cohort.

Author Contributions
Conceived and designed the experiments: C.M., T.D.S.; A.M.V. Analyzed the data: C.M., A.M.V. Contributed 
reagents/materials/analysis tools: J.Z., T.P., M.A.J., R.P.M., T.L., C.J.S. Wrote the manuscript: C.M., A.M.V. Revised 
the manuscript: J.Z., T.P., M.A.J., R.P.M., C.J.S., T.D.S.

http://dx.doi.org/10.1042/BST20150026
http://dx.doi.org/10.1042/BST20150026
http://dx.doi.org/10.1186/2049-1891-4-16
http://dx.doi.org/10.1371/journal.pone.0041192
http://dx.doi.org/10.1007/s00726-010-0538-y
http://dx.doi.org/10.1007/s00726-010-0538-y
http://dx.doi.org/10.1039/c5fo01194a
http://dx.doi.org/10.1039/c5fo01486g
http://dx.doi.org/10.2527/jas.53752
http://dx.doi.org/10.3945/jn.113.183186
http://dx.doi.org/10.3945/jn.113.183186
http://dx.doi.org/10.1128/IAI.00789-13
http://dx.doi.org/10.1016/j.numecd.2014.06.006
http://dx.doi.org/10.3389/fmicb.2016.01612
http://dx.doi.org/10.1371/journal.pone.0154090
http://dx.doi.org/10.1371/journal.pone.0154090
http://dx.doi.org/10.1093/ije/dyr207
http://dx.doi.org/10.1161/CIRCGENETICS.114.000216
http://dx.doi.org/10.1016/j.cell.2014.09.053
http://dx.doi.org/10.1016/j.chom.2016.04.017
http://dx.doi.org/10.1016/j.chom.2016.04.017
http://dx.doi.org/10.1136/gutjnl-2015-310861
http://dx.doi.org/10.1136/gutjnl-2015-310861
http://dx.doi.org/10.1038/ng.2982
http://dx.doi.org/10.1093/ije/dyt094
http://dx.doi.org/10.1038/ng.3097


www.nature.com/scientificreports/

1 1SCIeNTIfIC RepoRts | 7: 11079  | DOI:10.1038/s41598-017-10382-2

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-10382-2
Competing Interests: RPM is employee of Metabolon, Inc. TDS is co-founder of MapMygut Ltd. The other 
authors declare that they have no competing interests
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-10382-2
http://creativecommons.org/licenses/by/4.0/

	Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderl ...
	Results

	Omega-3 and omega-6 associate with microbiome diversity. 
	Faecal metabolites associated with DHA levels and OTU abundances. 

	Discussion

	Methods

	Study population. 
	NMR Metabolomics. 
	Fibre and fatty acid intake. 
	Microbiota analysis. 

	Faecal metabolomics. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Each cell of the matrix contains the correlation between one serum fatty acid and a gut microbiome diversity measure and the corresponding p value.
	Table 1 Descriptive characteristics of the 876 female twins studied, mean(SD).
	Table 2 Associations between gut bacterial operational taxonomic units (OTUs) and serum levels of docosahexanoic acid (DHA).
	Table 3 Association between gut bacterial operational taxonomic units (OTUs) and N-carbamylglutamate (NCG) in faeces unadjusted (unadj) and adjusting for DHA serum levels (adj).




