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Phenotype-driven identification of modules in a hierarchical
map of multifluid metabolic correlations
Kieu Trinh Do1, Maik Pietzner2, David JNP Rasp1, Nele Friedrich2,3, Matthias Nauck2,3, Thomas Kocher4, Karsten Suhre5,6,
Dennis O. Mook-Kanamori6,7,8, Gabi Kastenmüller5,9 and Jan Krumsiek 1,9

The identification of phenotype-driven network modules in complex, multifluid metabolomics data poses a considerable challenge
for statistical analysis and result interpretation. This is the case for phenotypes with only few associations ('sparse' effects), but, in
particular, for phenotypes with a large number of metabolite associations ('dense' effects). Herein, we postulate that examining the
data at different layers of resolution, from metabolites to pathways, will facilitate the interpretation of modules for both the sparse
and the dense cases. We propose an approach for the phenotype-driven identification of modules on multifluid networks based on
untargeted metabolomics data of plasma, urine, and saliva samples from the German Study of Health in Pomerania (SHIP-TREND)
study. We generated a hierarchical, multifluid map of metabolism covering both metabolite and pathway associations using
Gaussian graphical models. First, this map facilitates a fundamental understanding of metabolism within and across fluids for our
study, and can serve as a valuable and downloadable resource. Second, based on this map, we then present an algorithm to
identify regulated modules that associate with factors such as gender and insulin-like growth factor I (IGF-I) as examples of traits
with dense and sparse associations, respectively. We found IGF-I to associate at the rather fine-grained metabolite level, while
gender shows well-interpretable associations at pathway level. Our results confirm that a holistic and interpretable view of
metabolic changes associated with a phenotype can only be obtained if different layers of metabolic resolution from multiple body
fluids are considered.
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INTRODUCTION
Metabolomics is the study of metabolic profiles at a global level.
The metabolome is a readout of the biochemical transformations
that involve small molecules in a body fluid or organ, and it
reflects a snapshot of the state of a biological system.1,2 Therefore,
metabolomics has frequently been used to identify patterns
associated with various pathophysiological states in humans, such
as diabetes mellitus,3,4 cardiovascular disease,5,6 and Alzheimer’s
disease.7–9

Most published metabolomics studies focused on only one
body fluid, usually blood or urine; however, phenotypes usually
have links to metabolism in multiple fluids simultaneously. For
example, we reported multifluid associations for type 2 diabetes in
two recent studies.10,11 With continuous technical advancements
and decreasing costs, datasets with simultaneous metabolomics
measurement should become available rapidly, as can be seen by
the increasing research in this field.12–16

Phenotype associations in such large-scale, heterogeneous
metabolomics datasets can be expected to be substantially
complex, spanning functional modules, possibly across multiple
fluids (Fig. 1). Functional modules are commonly defined as
groups of correlating entities that are functionally coordinated,
coregulated, or generally driven by a common biological

process.17 Systematic module identification algorithms are well
established for omics data,17–22 but have rarely been applied to
high-throughput metabolomics data. A few metabolomics studies
proceeded toward this objective by finding clusters in metabolite
correlation networks, and by subsequently performing enrichment
analyses with respect to a certain phenotype;23–26 however, none
of these studies performed a systematic phenotype-driven
module search. Moreover, these analyses were performed in only
one single fluid.
The identification and interpretation of modules for phenotypes

that show rather few ('sparse') associations with metabolomics
data are usually straightforward; however, phenotypes such as
gender or BMI have been described to associate with more than a
third to half of the blood metabolome.26–28 A module search
would lead to numerous results covering the majority of the
metabolic network ('dense' associations), thereby impeding
interpretation by their sheer quantity (Fig. 1). To solve this, we
suggest performing association analysis and module identification
at a coarser level, by grouping metabolites into their common
pathways (defined as groups of metabolites with common
biochemical and biological properties based on prior knowledge).
The general idea is that while sparse phenotypic associations can
only be detectable at the metabolite level, modules of dense
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phenotypic associations might be easier to interpret at the
pathway levels.
In this study, we present a method for the systematic phenotype-

driven identification of modules from multifluid metabolomics data,
operating both at the single metabolite and at the pathway level.
Specifically, we created a hierarchical map of multifluid metabo-
lomics correlations as a template for the underlying metabolic
network. Based on this network, we automatically extracted
modules associating with two example phenotypes.
To create this hierarchical map, we generated data-driven

multifluid networks from blood, urine, and saliva metabolomics
data of the German Study of Health in Pomerania (SHIP-TREND)

cohort.29 Specifically, we estimated Gaussian graphical models
(GGMs) based on partial correlations at the metabolite level and at
two pathway levels: 'super-pathways' representing metabolite
classes such as 'Lipid' or general metabolic processes such as
'Energy' and 'sub-pathways' representing biochemical subclasses
or processes within a super-pathway such as 'Lysolipid' or 'TCA
cycle,' respectively. The three networks (metabolite, sub-pathway,
and super-pathway) together depict the hierarchical map.
Moreover, we developed a module search algorithm inspired by

Chuang et al.20 and applied it to serum measurements of insulin-
like growth factor I (IGF-I) and gender. IGF-I is a growth hormone
with high sequence homology to insulin. It participates in

Fig. 1 Concepts of sparse and dense phenotype associations in metabolic networks. The figure depicts the concepts of sparse (top) and
dense (bottom) phenotypic associations in metabolite (left) and pathway (right) networks. Metabolites, represented as nodes, can be grouped
by knowledge-driven pathway information for visualization purposes. In addition, the nodes can be colored according to their phenotype
associations (e.g. determined by a t-test). Network inference is performed to create a network, where an edge between two nodes represents
their statistical correlation. Based on this network a module identification approach is applied to search for groups of correlating entities that
are related to a phenotype of interest. For the pathway analysis, metabolites of the same pathway are aggregated to generate a pathway
representative, which again can be colored according to phenotype associations. A pathway network is generated by connecting two
pathway representations that are statistically correlated. Finally, a module identification approach is applied on this pathway network
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numerous biochemical processes, in particular in the stimulation
of cell growth and proliferation, and has been found to be
associated with various disorders such as diabetes, cardiovascular
diseases, and cancer.30–34 Despite its key roles in various
biochemical processes, mapping IGF-I−metabolite associations
onto a metabolite network in a previous study on the same
dataset from the SHIP cohort resulted in only a relatively small
number of blood and urine metabolites.34 Thus, IGF-I here serves
as a trait with sparse associations. For gender associations, on the
other hand, we found associations with a major part of the
metabolic network,26 thus representing a trait with dense
associations.

RESULTS
Our analysis was based on data from the SHIP-TREND cohort. The
dataset comprised 906 individuals, 512 females and 394 males, for
which fasting plasma, urine, and saliva samples were available.
Untargeted metabolomics measurements were performed by
ultra-high liquid-phase chromatography coupled with tandem
mass spectrometry (UPLC-MS/MS). Data preprocessing included
run-day normalization, dilution factor normalization (for urine and
saliva), log transformation, outlier handling, and handling of
missing values. After preprocessing, 610 known metabolites and
387 metabolites, whose chemical structures had not been
identified yet, were available for further analysis. For each
metabolite, knowledge-based pathway annotations from the
metabolomics platform (Metabolon Inc.) were used. Each known
metabolite was annotated with one of 73 'sub-pathways', which
represent metabolic pathways or biochemical subclasses of the
compounds (e.g., 'Branched-chain amino acid', 'Lysolipid',

'Glycolysis'). In addition, each sub-pathway was assigned to one
of eight broad 'super-pathways' ('Amino acid', 'Lipid', 'Carbohy-
drate', 'Nucleotide', 'Peptide', 'Energy', 'Cofactors and vitamins',
and 'Xenobiotics'). These pathway annotations have been
frequently used in previous studies that investigated data from
the same platform (see e.g. refs. 35–37). Metabolites, their
annotations, and a comparison of the measured metabolite pools
between fluids can be found in Supplementary Information S1.

Pathway representation and generation of the hierarchical map
We generated the hierarchical metabolic map by inferring three
networks, representing the metabolic processes at three decreas-
ing levels of granularity (Fig. 2): The first comprised multifluid
correlations between single metabolites based on a GGM, a
correlation-based network inference approach. Note that
unknown metabolites were used to estimate the metabolite
network, but were excluded from this view. To generate a sub-
pathway network, a GGM was calculated based on sub-pathway
eigenmetabolites. The majority of these eigenmetabolites showed a
high degree of explained variance for their respective metabolites
(Supplementary Information S2), and thus were reasonable
statistical representatives of the pathways. To generate the
super-pathway network, the sub-pathway GGM was collapsed by
connecting any two super-pathways that showed at least one
connection in the sub-pathway network. This procedure was
chosen instead of calculating GGMs on the corresponding super-
pathway eigenmetabolites due to the substantially high hetero-
geneity of most of the super-pathways (e.g., the very broadly
defined ‘Lipid’ super-pathway). This is reflected by low-explained
variances for super-pathway eigenmetabolites (Supplementary

Fig. 2 Hierarchical map of multifluid metabolic processes at a metabolite, b sub-pathway, and c super-pathway levels. In the metabolite and
sub-pathway network, edges were drawn if both partial correlation and Pearson correlation were significant at α= 0.05 after Bonferroni
correction for multiple testing. The super-pathway network c was generated by collapsing the sub-pathway GGM, i.e. drawing an edge
between two super-pathways whenever at least one pair of their sub-pathways was connected. Note that all three networks share the same
overall layout
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Information S2), which would not suffice as true pathway
'representatives'. Note that unknowns were excluded from the
pathway analysis since these metabolites could not be assigned to
a sub-pathway or super-pathway.
Interactive versions of the networks as yEd .graphml files, as well

as corresponding correlation matrices, are available in Supple-
mentary Information S3. Detailed lists of all correlation coefficients
and the associated pathways can be found in Supplementary
Information S4.
At the most fine-grained level, the hierarchical map contained

335 plasma, 473 urine, and 189 saliva metabolites, with a total of
1244 edges between them (1041 intrafluid and 203 interfluid
edges, Fig. 2a, Fig. 3a). The sub-pathway GGM comprised 54
plasma, 53 urine, and 45 saliva eigenmetabolites, and, in total, 110
edges out of which 90 were within fluids and 20 were across fluids
(Fig. 2b, Fig. 3b). The coarsest level represented by the collapsed
super-pathway network consisted of 24 nodes, and 27 intrafluid
and 10 interfluid edges (Fig. 2c, Fig. 3c). In general, we observed
most correlations to be intrafluid in all the three networks. Since,
in particular, salivary metabolomics measurements can be
dependent on the oral hygiene of the study participants, we
investigated whether the hierarchical map was influenced by the
participants’ teeth brushing behavior. Overall, we found only
marginal differences in the correlation structures, which were
mainly based on statistical variance rather than biologically driven
by oral hygiene (Supplementary Information S5).

Similarities and differences of correlation structures across body
fluids
To obtain a general overview of the hierarchical map, we explored
it at the highest level of body fluids considering two aspects: (i)
How similar are the intrafluid correlation structures when
comparing the three different fluids? (ii) How can the crosstalk
between fluids be characterized?

Similarity of body fluids. For all the three fluids, we determined
the fluid-specific correlations, i.e., those exclusively occurring in
only one body fluid, and the correlations shared between at least
two fluids (Figs. 3d–f). At all levels, the number of fluid-specific
edges far exceeds the number of shared edges.
At the metabolite level, 266, 447, and 207 intrafluid edges were

exclusively found in plasma, urine, and saliva, respectively. A
pairwise comparison of the fluids yielded 57 edges that occurred in
at least two body fluids, with the majority (31) shared between
plasma and urine (Fig. 3d). Plasma and saliva shared 17 correlations,
whereas urine and saliva shared only 2 correlations. Overall, 50 and
77% of the fluid-specific metabolite edges occurred within the
same sub-pathway and super-pathway, respectively, while for
correlations that can be found in at least two fluids 80% were
observed within sub-pathways and 90% in super-pathways
(Supplementary Information S4). This indicates that, if correlations
are shared across fluids, the two correlating metabolites more often
act in similar biochemical processes compared to exclusive
correlations. Comparing all the three fluids simultaneously, an
overlap can only be reasonably analyzed for metabolites that were
also measured in all the three of them. Inspecting only edges
between such metabolites (black numbers in Fig. 3d) left 49
intrafluid edges, of which seven occurred in all the three fluids.
At the sub-pathway level, we found 69 fluid-specific and

10 shared edges (Fig. 3e). Only one edge occurred in all fluids
(‘Fatty Acid Metabolism (also BCAA Metabolism)’ with ‘Fatty Acid
Metabolism (Acyl Carnitine)’). Two edges were observed in both
plasma and urine, and interestingly, urine and saliva shared seven
edges (Supplementary Information S4), all of which were within
the same respective super-pathway. Overall, at the super-pathway
level, more fluid-specific edges (14) were observed compared to
the shared edges (5) (Fig. 3f).

Crosstalk between fluids. We investigated the crosstalk between
the fluids by analyzing the interfluid correlations in the
hierarchical map (Figs. 3a–c). In total, there were 203 crossfluid

Fig. 3 Global structure of the hierarchical map. a–c Absolute number and percentage of significant intra-fluid and interfluid edges. The
percentage is calculated as the number of edges divided by all possible edges. d–f Number of intrafluid edges occurring in only one fluid or
shared across two or all three fluids. Black numbers correspond to links between metabolites, sub-pathways, or super-pathways that were
measured in all the three body fluids, while gray numbers represent metabolites and pathways that occur in at most two body fluids
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edges at the metabolite level (Fig. 3a). A vast majority of edges
was observed between plasma and urine (173), while there were
only 21 and 9 edges between plasma and saliva and urine and
saliva, respectively. In total, 98 of these 203 edges (75 plasma-
urine, 19 plasma-saliva, and 4 urine-saliva) were between the same
metabolites measured in different fluids, for example, between
plasma betaine and urine betaine (Supplementary Information S4).
At the sub-pathway level, we found 20 crossfluid correlations,
collapsed to 10 interfluid links between super-pathways (Fig. 3b).
The majority of sub-pathway and super-pathway edges could
again be observed between plasma and urine. Except one
(‘Tocopherol Metabolism’ and ‘Food Component/Plant’), all cross-
fluid edges were between the same sub-pathways. Six out of eight
plasma super-pathways were linked to the respective same super-
pathway node in urine, reflecting the aforementioned strong
connection between those two fluids (Fig. 3c). In contrast, plasma
and saliva, as well as urine and saliva were connected by only a
few links.
Summarizing the results from this section, we found the

majority of intrafluid correlations to be fluid-specific at all levels,
providing evidence for substantial discordance of correlation
structures across the different fluids. All edges, in particular, the
shared correlations, occurred mainly between entities of the same
pathways. Our results also indicated that plasma and urine are
both more similar and more strongly connected to each other
than to saliva, while saliva has a higher similarity and more
connections to plasma than to urine. In general, crossfluid
correlations were mostly observed between the same pathways,
pointing toward a substantial impact of transport and exchange
processes on the metabolomes between the fluids.

Phenotype-driven module identification procedure
We developed a procedure to identify modules associated with a
phenotype at different levels of the hierarchical map. The
algorithm is graphically outlined in Supplementary Information
S6. Briefly, given a network, a phenotype variable, a scoring
function, and a seed (=starting) node; a greedy search algorithm
identifies an optimal module by score maximization. The optimal
module is determined by extending candidate modules along its
network edges, until no further score improvement can be
achieved. Each candidate module is scored by the negative
logarithmized p-value of a regression-based association of a
representative value of all metabolites in the module with the
phenotype (see Methods). Notably, a single metabolite is scored
by its univariate association with the phenotype. In a final
consolidation step, overlapping optimal modules, for instance,
those obtained from neighboring seed nodes, are identified and
combined into a maximal module.
We followed a conservative multiple testing correction

approach: To be significant, the p-value of a module had to be
lower than the significance level of 0.05 divided by the number of
network nodes (Bonferroni correction at node level). In addition,
we required each module’s score to be higher than the maximum
score observed across all single components of the module.
The procedure was applied to two phenotypes at all the three

levels (metabolite, sub-pathway, and super-pathway): IGF-I as a
phenotype with sparse associations, and gender as a trait with
dense associations.

Phenotype-driven module identification for sparse associations:
IGF-I
Associations of IGF-I with blood and urine metabolites in the SHIP-
TREND dataset were investigated in a previous study by Knacke
et al.34 Here, we additionally integrated metabolomics measure-
ments from saliva. Notably, in the work by Knacke et al., IGF-I
associations were analyzed for males and females separately. In
our study, however, the results of a module search stratified by

gender were mostly covered by modules from a joint gender
analysis, which is why the latter analysis was chosen. Furthermore,
Knacke et al. used a more relaxed multiple testing correction (FDR
at 0.05), while in this study we applied the conservative Bonferroni
correction, since we expected a substantially increased statistical
power for the module-identification approach.
At the metabolite level, our algorithm identified six modules

associated with IGF-I (Fig. 4). For the sub-pathway network, we
obtained only one module comprising plasma and urine ‘Steroid’
pathway metabolites (Supplementary Information S7). Furthermore,
no modules were found at the coarsest level for super-pathways,
confirming that IGF-I associations are rather sparse in the metabolic
network. Therefore, we restricted the following analysis to the
modules identified at the fine-grained metabolite level.
The six identified modules demonstrate that the module-

identification algorithm enhances classical association analysis in
several ways: It detected modules that (i) cover multiple pathways
(see modules A and F) and (ii) span multiple body fluids (see
modules B–E). (iii) Moreover, the algorithm was able to dissect
apparently related but distinct processes. For example, modules C
and E were in close proximity in the network and both contained a
steroid amongst unidentified metabolites; however, the identifica-
tion of two distinct modules suggested that they reflect two
different processes that are independently associated with IGF-I
levels. (iv) The algorithm increased the statistical power in several
cases. For modules A–C, none of the single metabolites inside the
modules was significant, whereas the entire module showed a
significant p-value. This can be attributed to the reduction of
statistical noise when aggregating concentrations of multiple
metabolites.
Beyond the advantages of our approach compared to classical

association analysis, we found a series of biologically interesting
results. Initially, we were able to confirm previously identified IGF-I
associations. For instance, it has been reported that there is a
complex interplay between sex hormones and IGF-I.38,39 In our
study, we identified a multifluid module containing a cluster of
plasma and urine epiandrosterone and androsterone metabolites
(module B). IGF-I has also been linked to the maintenance of
physiological mitochondrial function via regulation of the expres-
sion of the mitochondrial pyrimidine nucleotide carrier PNC1.34,40

The association of single blood metabolites from the pyrimidine
pathway with IGF-I has already been reported by Knacke et al. In
the present study, we additionally observed that the aggregation
of several blood and urine metabolites from this pathway (module
D) yielded a considerably lower p-value than the single
components, further supporting the link between pyrimidines
and IGF-I. Both modules B and D contain metabolites from plasma
and urine, indicating that not only the concentration levels of the
respective metabolites in these fluids but also their crossfluid
transport processes might be associated with IGF-I.
We also detected IGF-I associations, that to the best of our

knowledge, have not been reported previously. We found a saliva
module (A) comprising three amino acids, 2-hydroxyglutarate, a
lipid, and laurylsulfate, a xenobiotic, each of which alone was not
significantly associated with the phenotype. Associations of these
metabolites with IGF-I have not previously been reported, in
particular not in human saliva. Module F contained the xenobiotic
2-ethylhexanoate (EHA) and the fatty acid caprylate (8:0), neither
of which has been reported with IGF-I to date; however, in this
case, the module score seems to be mainly driven by EHA, while
the fatty acid only contributes marginally to the score.
Finally, we investigated the effects of oral hygiene on the

modules identified for IGF-I by correcting for the teeth brushing
behavior of the study participants in the module identification
process. Exactly the same modules were found, indicating that
oral hygiene has no effects on metabolic changes related to IGF-I
(Supplementary Information S5).
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Phenotype-driven module identification for dense associations:
Gender
We next applied the module-identification algorithm with gender
as phenotype, representing a trait with dense associations. As
expected, for the metabolite network, we found a high number

(73) of gender-associated modules (Supplementary Information
S8). At the sub-pathway level, we identified 13 regulated modules
(Fig. 5). Finally, at the super-pathway level, two modules indicating
associations at a very global level were detected (Supplementary
Information S8): the first module comprised plasma ‘Amino acid’

Fig. 4 IGF-I modules. This metabolite network is a relayouted version of the metabolite GGM in Fig. 2a. Edge widths reflect absolute partial
correlation values. Each colored region corresponds to an identified IGF-I module. For readability, p-values are given in e-notation (e.g., 1.5e
−5=1.5·10−5). Node label prefixes P::, U::, and S:: indicate metabolites measured in plasma, urine, and saliva, respectively
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and ‘Peptide’, and the second module consisted of saliva
‘Carbohydrate’ and ‘Amino acid’. Herein, we focus on modules
detected at the sub-pathway level, which seemed to be an
appropriate compromise between the metabolite and super-
pathway levels.

From the 13 sub-pathway modules, 9 were within one fluid only
(Fig. 5). We observed three multifluid modules comprising both
plasma and urine sub-pathways (H, K, L). These results again
demonstrate the strength of our approach to find phenotype-
associated processes that span multiple pathways and even

Fig. 5 Gender modules. This sub-pathway network is a relayouted version of the sub-pathway GGM in Fig. 2b. Edge widths reflect absolute
partial correlation values. Each colored region of this network corresponds to one identified module. For readability, p-values are in e-notation
(e.g., 1.5e−5=1.5·10−5). Node label prefixes P::, U::, and S:: indicate metabolites measured in plasma, urine, and saliva, respectively
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multiple body fluids. We were also able to reveal more subtle,
non-obvious phenotype associations as shown in module J, where
the combination of a gender-associated and a non-associated
pathway led to a lower p-value than each pathway alone. In
addition, the results show that the proposed method was able to
link processes that appeared to be unrelated, since they were
assigned two different pathways. This is shown in module I, which
consisted of the plasma sub-pathways ‘Nicotinate and Nicotina-
mide Metabolism’ and ‘Xanthine Metabolism’. Both pathways
contain metabolites related to coffee metabolism. The former
covers caffeine derivatives, while the latter consists of trigonelline,
an alkaloid found in coffee. Interestingly, the module identification
approach recognized the phenotype-driven relationship between
these two pathways and grouped them into one gender module.
Similar to the IGF-I results, the method identified both

previously reported and novel phenotype associations. A well-
known metabolome–gender association, the steroid pathway, was
thereby detected as a multifluid module, spanning the plasma and
urine pathways (Module H). We also detected three intrafluid lipid
modules (B–D), showing multiple processes within this pathway in
which men and women differ. Modules C and D comprised
pathways from blood, while module B consisted of salivary ‘Fatty
acid, monohydroxy’ and ‘Fatty acid, Dicarboxylate’. Several
metabolites of these pathways in blood and saliva were found
to associate with gender in previous studies,10,26,41,42 but in
addition, we were able to show that all pathways in saliva had a
lower p-value when considered in combination. In module K, we
found an association of histidyl peptides with gender, confirming
previous findings in human muscle tissue that the female gender
is associated with reduced levels of such peptides.43,44 Moreover,
we here illustrated that this sexual dimorphism can be observed
across human blood and urine. Besides confirming known gender
associations, we found a module (L) comprising plasma and
urinary lipids of ‘Fatty acid, Amino’, which to the best of our
knowledge, have not been reported before.
We investigated whether our identified modules could be

replicated in the Qatar Metabolomics Study on Diabetes
(QMDiab3). Since the set of measured metabolites differ between
SHIP-TREND and QMDiab due to different profiling platforms, we
only considered metabolites measured in both cohorts for an
appropriate comparison. We generated a new hierarchical map
based on the reduced SHIP-TREND dataset comprising 752
metabolites in total (490 known and 262 unknown), which were
grouped into 134 different sub-pathways. The module search
algorithm was run at the sub-pathway level of this newly
generated hierarchical map for both SHIP-TREND and QMDiab.
One-third of the gender-associated modules identified in the
reduced SHIP-TREND were replicated in QMDiab (Supplementary
Information S9). One factor accounting for this observation was
the differing number of samples, i.e., the power of the cohorts.
SHIP-TREND included 906 individuals with metabolomics mea-
surement of all three body fluids, whereas QMDiab comprised a
total of 372 participants. Finally, SHIP-TREND and QMDiab also
differed in the study design. In SHIP-TREND, samples of fasting
individuals were collected; whereas in QMDiab, the participants
were nonfasting. The SHIP-TREND was conducted in West
Pomerania, Germany, whereas the individuals in the QMDiab
cohort were mainly of Arab and Asian ethnicity. Moreover, in
contrast to SHIP-TREND, which was designed as a healthy cohort,
QMDiab was a case-control study for type 2 diabetes. Despite
substantial differences in study design and metabolomics
measurement, QMDiab is, to the best of our knowledge, the only
available cohort comprising metabolomics measurements in
plasma, urine, and saliva, and therefore the only cohort available
for replication of our results. Moreover, the replication of one-third
of the results despite the substantial differences between the
cohorts indicated that these results are very robust and
generalizable.

We investigated the effects of oral hygiene on the gender-
related modules. However, this analysis might be statistically
unfeasible, because teeth brushing frequency was significantly
associated with gender. Nevertheless, only one module was
omitted when we corrected for the effects of oral hygiene
(Supplementary Information S5).

DISCUSSION
In this paper, we presented an approach for the phenotype-driven
identification of modules associated with phenotypes at multiple
scales. To this end, a hierarchical, multifluid view of metabolism at
three levels of granularity was generated and analyzed for
metabolomics data from plasma, urine, and saliva of 906
participants in the SHIP-TREND cohort. A hierarchical module-
identification procedure was then applied to this map for IGF-I
measurements and gender representing phenotypes with ‘sparse’
and ‘dense’ associations, respectively.
The hierarchical map serves as a template of human

metabolism for the module identification approach. But in
addition, it allows to obtain a fundamental understanding of
biochemical processes captured within and across body fluids. At
all levels and as expected, the majority of correlations occurred
within the same fluid. Moreover, most network edges were fluid-
specific, that is, solely occurred in only one fluid, suggesting
diverse metabolic processes in the fluids. This can probably be
attributed to the substantially different physiological roles of each
fluid, capturing metabolism at various levels. Analyzing the
crosstalk between fluids, correlations were mainly observed
between plasma and urine, followed by plasma and saliva, while
only a few edges were found between urine and saliva. The strong
link between plasma and urine was expected and reflects their
close relationship through the excretion and reabsorption
processes in the kidneys. Blood and saliva are also physiologically
connected through the salivary glands. Finally, the weak
urine–saliva crossfluid correlation might reflect an indirect
connection of these fluids through blood. Overall, nearly half of
the crossfluid correlations were observed between the same
metabolites (e.g., plasma betaine and urine betaine). In the sub-
pathway network, crossfluid correlations mostly connected the
same sub-pathways (e.g., plasma ‘Xanthine Metabolism’ and saliva
‘Xanthine Metabolism’). Such correlations between biochemically
closely related molecules may arise due to transport and
exchange processes across the fluids.
We then performed a module identification approach based on

the hierarchical map. We found that IGF-I was associated with
rather local parts of the metabolic network, while at the more
global level (sub-pathways and super-pathways) fewer modules
were detected. In contrast, for gender, we identified a large
number of modules (73) in the fine-grained metabolite network.
At the sub-pathway level, these numerous modules were fused
into 13 sub-pathway modules, facilitating biological interpretation
by providing a better overview over parts of metabolism affected
by gender. Two modules were detected at the coarse super-
pathway level, but did not promote biological interpretation in
this case.
For both IGF-I and gender, we could confirm previously

reported associations. In addition, our analyses extended these
findings to multiple fluids. For example, we could extend the
association between IGF-I and plasma pyrimidine metabolites to
urine, which has already been reported by Knacke et al.34

Moreover, to the best of our knowledge, in this study, IGF-I
associations were analyzed in saliva for the first time. For gender,
for instance, we showed that the association with histidyl peptides
appears across human blood and urine. For both the phenotypes,
the identification of multifluid modules suggested that not only
the concentration levels of the respective metabolites in the
corresponding fluids, but also the transport and exchange
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processes between the fluids were associated with the pheno-
types. These types of findings could only be leveraged through a
module search on multifluid data.
Our results demonstrated an increase in statistical power for the

phenotype-driven module identification approach compared to
classical analysis. We found significant modules comprising
components that were not significantly associated with the
phenotype when the single components were considered alone
(e.g., IGF-I modules A–C). Moreover, by combining metabolite
groups from different body fluids, statistical power is also
substantially increased compared to the results from just a single
fluid (e.g., gender modules H, K, L). This increase is most likely due
to the reduction in statistical noise while aggregating measure-
ments of multiple metabolites. Another major advantage of the
module approach lies in overcoming borders of pathway
definitions, which are inherently arbitrary for any commonly
available metabolite-centric or process-centric pathway annota-
tions. Our algorithm recognizes the phenotype-driven interplay of
pathways and merges them, if appropriate, as shown in gender
module I. This module reflected the well-known gender associa-
tion with metabolites from caffeine metabolism,45 which were
originally assigned to two different pathways according to sub-
pathway definitions in this study.
The present study could be extended in several directions. (i)

We used pathway annotations provided by the metabolomics
platform, which are analogous to KEGG pathways.46 For future
studies, other pathway definitions, such as in the HMDB47 or
MetaCyc48 could be used; however, since a large number of
measured metabolites will not be covered in those databases,49

this approach would currently result in a substantial loss of
information. (ii) Following the eigengene approach,50 we defined a
pathway representative as the first principal component of its
metabolites. To capture a higher degree of variance explained,
multivariate association methods, such as canonical correlation
analysis51 and O2-PLS52 could be adapted to model the relation-
ships between the two pathways. (iii) Our module identification
approach is only suitable for finding modules where all
components show the same direction of association with the
phenotype (all positively or all negatively associated), while
opposing effects will cancel out. A possible solution to this
restriction would be the use of the multivariate modeling
approaches mentioned in the previous point. (iv) We used data
from the Qatar Metabolomics Study on Diabetes (QMDiab,
Supplementary Information S9) to replicate the gender results. It
would be interesting to also replicate our IGF-I results in a suitable
cohort. To the best of our knowledge, no dataset comprising
human plasma, urine, and saliva metabolomics data, as well as
measurements of IGF-I are currently available besides the SHIP
study. Moreover, to the best of our knowledge, QMDiab is the only
available cohort comprising metabolomics measurements of
plasma, urine, and saliva from the same individuals. (v) We
applied our module identification approach to a multifluid
metabolomics dataset. Owing to the rapid progress in high-
throughput technologies, other omics data types have become
readily available. It would be particularly interesting to include
SNPs or transcripts, for instance, into the network.
In conclusion, we introduced a hierarchical map, that besides

serving as a template of human metabolism for the module
identification algorithm, can also be a valuable, downloadable
resource for future studies, since it allows for a fundamental
understanding of the complex correlation structure within and
across multiple body fluids. Based on this map, we proposed an
approach for the phenotype-driven identification of modules
spanning multiple pathways and multiple body fluids. These
modules provide deeper insights into mechanistic aspects of
phenotype associations. Importantly, our module approach is

generic, and therefore widely applicable. An R implementation of
the algorithm is freely available as supplementary material for this
paper. It can be used directly for any other dataset, given the
presence of a data matrix, annotations of the respective variables,
and a phenotype.

MATERIALS AND METHODS
Study cohort, metabolomics, and IGF-I measurement
Metabolomics data were obtained from the Study of Health in Pomerania
(SHIP-TREND), conducted between 2008 and 2011 in West Pomerania,
Germany, with 4420 participants. The study was approved by the local
ethics committee and conformed to the principles of the Declaration of
Helsinki. Written informed consent was obtained from all participants.
Details about sample acquisition and experimental procedures can be
found elsewhere.29,34 Briefly, metabolomics measurements were performed
for a subset of 1000 participants without self-reported diabetes. The dataset
included 561 females and 439 males with an age distribution of 50.14 ±
13.17 (mean ± SD) and 50.08 ± 14.24, and a BMI distribution of 26.99 ± 5.12
and 27.85 ± 3.7, respectively. Fasting (≥8 h) plasma and urine samples were
collected between 07:00 and 12:00 am. Blood was sampled from the cubital
vein of subjects in a supine position. Samples were stored at −80 °C.
Stimulated saliva was collected with a commercially available collection
system (Salivette®). The subjects chewed a plain cotton roll for exactly 1min
to stimulate salivation. The rolls with the absorbed saliva were placed into
the Salivette® and immediately centrifuged at 1000×g for 20min at 4 °C to
remove food remnants, insoluble material, and cell debris. The resulting
supernatant was stored at −80 °C. Samples were analyzed on an untargeted
metabolomics platform established by Metabolon Inc. (Durham, USA) with
ultra-high liquid-phase chromatography coupled with tandem mass
spectrometry (UPLC-MS/MS) in both positive and negative modes. The
measurements were performed at the Genome Analysis Center, Helmholtz
Zentrum, Munich, yielding a total of 1665 metabolites across all fluids, of
which 1190 represented unique metabolites. Blood IGF-I concentrations
were determined by automated two-site chemiluminescent immunoassays
on the IDS-iSYS kit (Immunodiagnostic Systems, Boldon, UK).

Preprocessing and quality control
To correct for daily variations of the metabolomics platform, raw ion
counts of each metabolite were rescaled by their respective median value
on the run day. To ensure valid medians, metabolites with fewer than three
measured values for more than the half of the run days were filtered out.
This procedure resulted in 1317 total (475, 558, and 284 metabolites for
plasma, urine, and saliva, respectively) and 991 unique metabolites from all
three body fluids. Probabilistic quotient normalization (PQN) was then
applied to urine samples to account for diurnal variation. PQN has
previously been shown to be superior to common creatinine scaling.53

PQN was, moreover, used to normalize saliva measurements for dilution
variations. For the PQN procedure, first a ‘pseudo-sample’ (reference) was
calculated as the mean of all metabolites with no missing entries for all
participants (131 urine and 37 saliva metabolites). Subsequently, a dilution
factor was estimated as the median quotient between the reference and
each sample. Finally, all measurements were divided by the respective
dilution value. Of note, urine creatinine and the estimated urinary dilution
factor were substantially correlated (r = 0.91, p < 0.001) within the SHIP-
TREND data (Supplementary Information S1).
All metabolite levels and serum IGF-I measurements were log2-

transformed. Multivariate outlier detection (using only metabolites with
no missing values across all samples) was performed separately for all
fluids using an algorithm proposed by Filzmoser et al. (2008),54

implemented in the pcout function within the R package mvoutlier. Briefly,
this algorithm calculates an outlier score for each sample using principal
component analysis and the Mahalanobis distance on a robustly scaled
data matrix. Default parameters were used for the identification process,
and the exclusion criterion was set to 4 SD. As a result, 13, 8, and
16 samples from plasma, urine, and saliva, respectively, were excluded
from further analyses. After these preprocessing steps, the dataset
comprised 906 individuals for which fasting plasma, urine, and saliva
samples, as well as IGF-I measurements were available.
Since for the network inference procedure a fully observed data matrix is

required, missing values were imputed by the following procedure: All
metabolites with more than 20% missing values (320) were excluded from
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the dataset to avoid false positive results and to preserve statistical power.
The first step of imputation was performed per run day on the log-
transformed raw data (before normalization). Following the assumptions
that missing values occur due to a detection threshold and that
metabolites are log-normally distributed, each missing value was replaced
by a random value drawn from the censored part of a normal distribution
reconstructed by maximum-likelihood estimation.55,56 To ensure robust
parameter estimation for the truncated normal distributions, this
procedure was only applied to metabolites for which the respective run
day contained more than 10 nonmissing concentration values. Remaining
missing values were imputed with the mice R package (version 2.22) with
predictive mean matching as an elementary imputation model. Note that
we also used the stringent threshold of 20% to exclude variables with
missing values, because estimating (partial) correlations based on too
many imputed values that in turn were generated by mice using the
covariance structure of the data might introduce unwanted bias. The final
imputed dataset consisted of 906 samples and 997 metabolites.

Metabolite pathway representation
Each metabolite with known chemical structure (610 metabolites) was
annotated with one of the 73 sub-pathways (such as ‘Lysolipid‘, ‘TCA Cycle‘,
‘Glycolysis‘, ‘Branched-chain amino acid‘), and one of eight more general
super-pathways (‘Amino acid’, ‘Lipid’, ‘Carbohydrate’, ‘Nucleotide’, ‘Pep-
tide’, ‘Energy’, ‘Cofactors and vitamins’, and ‘Xenobiotics’). The remaining
387 metabolites have unknown chemical structure (unknowns), and thus,
cannot be assigned to any pathway for which reason they were excluded
from the pathway analyses. A detailed list of metabolites and their
annotated pathways is provided in Supplementary Information S1.
For each sub-pathway, a principal component analysis was performed

after scaling all variables to a mean of 0 and a variance of 1. The first
principal component was used as a representative value for the entire set
of metabolites in the pathway. These eigenmetabolites23,50,57 were then
subjected to the network inference procedure below.

Network inference
Two networks were inferred using GGMs, one for metabolite concentra-
tions (all metabolites) and one for the sub-pathway eigenmetabolites
(unknowns excluded) using the GeneNet R package, version 1.2.12. GGMs
are based on partial correlations, which represent the linear associations
between two variables corrected for all remaining variables in multivariate
Gaussian distributions. We included age, gender, and BMI as standard
covariates into the model. Edges between metabolites or sub-pathways
were assigned if both their Pearson correlations and their partial
correlations were statistically significant with α = 0.05 after the Bonferroni
correction for p

2

� �
tests, where p is the number of metabolites or sub-

pathways, respectively.
To obtain a global view of connections between the super-pathways,

the sub-pathway GGM was collapsed into a super-pathway network. To this
end, a link between two nodes was drawn if there was at least one
connection between any two sub-pathways assigned to the two respective
super-pathways in the underlying sub-pathway GGM.

Module identification algorithm
Module representatives. For a candidate module M, a representative value
RM is defined as the average of scaled intensities (average z-score) of all
metabolites in M. If M consists of sub-pathways, then the representative is
calculated as the mean z-score of all metabolites in the set union of all sub-
pathways. Notably, for pathway network estimation, a pathway represen-
tative was defined as the sub-pathway eigenmetabolite based on the
assumption that pathway components share common chemical and
biological properties. In contrast, we chose to use mean z-scores as module
representatives, since modules are considerably more heterogeneous.

Scoring function. The score of each candidate module M is obtained from
the multivariable linear regression model

RM � βM;0 þ βM;1 � P þ βM;2 � genderþ βM;3 � ageþ βM;4 � BMIþ 2M (1)
where RM is the aforementioned representative value, βM,0 is the intercept,
βM,1,…,βM,4 are the regression coefficients for each independent variable, P
is the phenotype of interest, and ϵM is a normally distributed error term.
The module score is then defined as the negative logarithmized p-value of
the coefficient βM,1, which represents the magnitude of phenotype

association. Notably, the score of a single component equals its negative
logarithmized p-value from a univariate analysis. Furthermore, the scoring
function for gender does not contain gender as a covariate.

Module identification. Given the scoring function and an initial node (seed
node), a greedy search procedure is performed to identify an optimal
module. In every iteration, each neighboring node of the candidate module
is added and the score of the extended module is calculated. The neighbor
leading to the highest score improvement is then added to the module.
Furthermore, a neighbor is only added if the score of the new module is
higher than the scores of all single components. The algorithm terminates
if no further improvements can be made. In a final step, overlapping
optimal modules from different seed nodes are combined into a single
module (maximal module), which is rescored by the scoring function.
For the identification of IGF-I-associated and gender-associated mod-

ules, the procedure was applied to all three networks, namely, the
metabolite, the sub-pathway, and the super-pathway networks. To assess
the significance of the modules, a conservative multiple testing correction
procedure was used with a significance level of α = 0.05 after the
Bonferroni correction for the total number of nodes in the underlying
network. The proposed algorithm is visually described in Supplementary
Information S6 and available as R code in Supplementary Information S10.
An example of how to execute the R scripts in S10 is explained in S11.

DATA AVAILABILITY
The data that support findings of this study are available from the Ernst-
Moritz-Arndt-Universität Greifswald but restrictions apply to the availability
of these data (the informed consent given by the study participants does
not cover data posting in public databases), which were used under license
for the current study, and so are not publicly available. Data are however
available from the authors upon reasonable request and with permission
of the Ernst-Moritz-Arndt-Universität Greifswald or can be directly applied
for via www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php?
lang=ger.

Code availability
An implementation of the generic approach and an example script is freely
available as supplementary material (Supplementary Information S10 and
S11).
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