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1 Supplementary Material and Methods

1.1 Meta-gene scoring

In order to produce to an activity matrix to score the gene sets representing pathways, we used
the single sample Gene Set Enrichment Method (ssGSEA) [4] as implemented in the GSVA [3] R
package with default parameters. We briefly present the ssGSEA procedure as described in [1]:

Given a gene set G of size NG and a single sample S of the data set of NG genes, the gene values
in the measurement are replaced by their ranks according to their absolute expression values, from
high to low L = {r1, r2, ..., rN}. An enrichment score for ES(G,S) is then obtained by the sum
of the difference between the weighted empirical cumulative distribution function (ECDF) of the
genes in the measurement

ES(G,S) =

N∑
i=1

|PWG (G,S, i)− PNG
(G,S, i)|

where:
PWG =

∑
rj∈G,j≤i

|rj |α∑
rj∈G |rj |

α

and

PNG
=

∑
rj∈G,j≤i

1

N −NG

The calculation is repeated for each gene set and each in the dataset. The exponent α is set to it’s
default value of 1/4. For the case when a gene in the gene set is not found in the dataset, then it’s
set to the average expression value of all genes for that sample.

1.2 Removal of correlated features

Features were clustered based on their Spearman’s correlation coefficient using TransClust [5], with
a threshold value of 0.9. This produced clusters of features where the average Spearman correlation
value of all pairs of features within each cluster was above 0.9. Finally, the feature with the highest
average similarity within the cluster was taken as cluster representative, while all other features in
the cluster were discarded from further workflow steps.
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1.3 Feature selection and model building

To select a small set of predictive features we used the varSelRF R package, which performs feature
selection with Random Forests using a recursive feature elimination approach. The feature selection
procedure implemented in varSelRF [2] starts by building a random forest with all features and
then iteratively proceeds to remove 20% of the least important features. This procedure is repeated
until a model with only two features is left. The model with the lowest out-of-bag error (OOB) is
reported as final solution.

1.4 Evaluation measures

The F-score is defined as

2 ∗ P ∗R
P +R

Where P is precision, defined P = tp
tp+fp and R is recall, defines as P = tp

tp+tn . And tp = true
positives, tn = true negatives, fp = false positives.

Let A and B be two sets, the Jaccard Index is defined as following:

J(A,B) =
|A ∩B|
|A ∪B|

1.5 Random networks

Two types of networks randomization strategies were tested: i) node label permutation and ii)
degree preserving rewiring.

Given the parameter L, degree preserving rewiring consists of the following steps while L > 0:

1. Randomly sample two edges e1 = (u1, v1) and e2 = (u2, v2) from E(G)

2. If en1 = (u1, v2) /∈ E(G) and en2 = (u2, v1) /∈ E(G), create edges en1, en2 and remove e1, e2
from E(G), decrease L := L− 1, else go to 1.

Where L was set to 4 ∗ |E| for each network. For each randomization strategy, 20 networks were
generated and the 5-fold cross-validation scheme was executed with the full pipeline for all types
of features on the TCGA genes expression (Figure S6) and DNA methylation (Figure S7) cohorts.
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2 Supplementary Tables

Table S1: Number of samples by PAM50 subtypes for TCGA and ACES datasets

Dataset Basal Her2 LumA LumB
TCGA 98 58 230 127
Desmedt-June07 42 23 68 43
Hatzis-Pusztai 73 20 28 26
Ivshina 14 21 36 21
Loi 4 6 20 22
Miller 9 11 43 18
Minn 21 12 13 15
Pawitan 15 18 57 45
Schmidt 21 17 74 47
Symmans 7 16 90 84
WangY 36 10 4 2
WangY-ErasmusMC 51 34 89 70
Zhang 4 3 62 47

Table S2: KEGG pathways related to the hallmarks of cancer

KEGG ID Pathway Name Hallmark ID
hsa03410 Base excision repair 7
hsa03420 Nucleotide excision repair 7
hsa03430 Mismatch repair 7
hsa03440 Homologous recombination 7
hsa03450 Non-homologous end-joining 7
hsa04010 MAPK signaling pathway 1
hsa04012 ErbB signaling pathway 1
hsa04070 Phosphatidylinositol signaling system 1
hsa04150 mTOR signaling pathway 1
hsa04310 Wnt signaling pathway 2
hsa04330 Notch signaling pathway 3
hsa04350 TGF-beta signaling pathway 4,8,10
hsa04370 VEGF signaling pathway 3
hsa04110 Cell cycle 1
hsa04115 p53 signaling pathway 4,5,6,7
hsa04210 Apoptosis 5
hsa04510 Focal adhesion 4,9
hsa04520 Adherens junction 9
hsa04640 Hematopoietic cell lineage 8,10
hsa04610 Complement and coagulation cascades 8,10
hsa04620 Toll-like receptor signaling pathway 8,10
hsa04621 NOD-like receptor signaling pathway 8,10
hsa04622 RIG-I-like receptor signaling pathway 8,10
hsa04623 Cytosolic DNA-sensing pathway 8,10
hsa04650 Natural killer cell mediated cytotoxicity 8,10
hsa04612 Antigen processing and presentation 8,10
hsa04660 T cell receptor signaling pathway 8,10
hsa04662 B cell receptor signaling pathway 8,10
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KEGG ID Pathway Name Hallmark ID
hsa04664 Fc epsilon RI signaling pathway 8,10
hsa04666 Fc gamma R-mediated phagocytosis 8,10
hsa04670 Leukocyte transendothelial migration 8,10
hsa04672 Intestinal immune network for IgA production 8,10
hsa04062 Chemokine signaling pathway 8,10
hsa00030 Pentose phosphate pathway 6
hsa04512 ECM-receptor interaction 9
hsa04060 Cytokine-Cytokine receptor interaction 1,10
hsa04024 cAMP signaling pathway 1
hsa04151 PI3K-Akt signaling pathway 1,4
hsa04630 Jak-STAT signaling pathway 9,10
hsa03320 PPAR signaling pathway 1
hsa04611 Patelet Activation 8
hsa00010 Glycolysis / Gluconeogenesis 6
hsa00190 Oxidative phosphorylation 6
hsa00020 Citriate cycle (TCA cycle) 6
hsa00260 Glycine serine and threonine metabolism 6
hsa00471 D-Glutamine and D-Glutamate metabolsim 6
hsa00330 Arginine and proline metabolsim 6
hsa04066 HIF-1 signaling pathway 6
hsa00250 Alanine, aspartate and glutamate matabolism 6
hsa00564 Glycerophopholipid metabolism 4
hsa04810 Regulation of actin cytoskeleton 1,3,10
hsa05230 Central Carbon metabolism in cancer 6
hsa05231 Choline metabolism in cancer 1,3,5,10
hsa04064 NF-kappa B signaling pathway 8,10

Table S3: Hallmarks of Cancer

Hallmark ID Hallmark Name
1 Sustaining Proliferative Signaling
2 Enabling Replicative Immortality
3 Inducing Angiogenesis
4 Evading Growth Suppressors
5 Resisting Cell Death
6 Deregulating Cellular Energetics
7 Genome Instability and Mutation
8 Avoiding Immune Destruction
9 Activating Invasion and Metastasis
10 Tumor-promoting Inflammation
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Table S4: Average overlap of genes contained in the selected features for all runs within the CV
loop for TCGA

KPM_HTRIdb KPM_HNET KPM_HPRD KPM_I2D CPDB MSIG SG PAM50
KPM_HTRIdb 516.80 149.10 101.28 182.36 119.64 210.28 45.40 25.24

KPM_HNET 369.56 116.36 186.44 127.92 196.62 41.82 27.78
KPM_HPRD 243.66 141.90 91.36 129.82 26.52 17.98

KPM_I2D 475.92 131.22 220.54 43.30 23.82
CPDB 1942.42 574.50 32.34 26.96
MSIG 2832.48 68.48 42.66

SG 82.54 15.42
PAM50 50

Table S5: Overlap of genes contained in the selected features for the final models build from the
full TCGA data set

KPM_HTRIdb KPM_HNET KPM_HPRD KPM_I2D CPDB MSIG SG PAM50
KPM_HTRIdb 736 210 106 308 162 309 89 32

KPM_HNET 293 86 158 121 156 56 26
KPM_HPRD 169 96 81 97 29 15

KPM_I2D 458 166 186 57 25
CPDB 2570 574 46 29
MSIG 2254 87 41

SG 107 24
PAM50 50

3 Supplementary Figures

Figure S1: Performance (F-score) of all features in each of the 12 ACES validation datasets.
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Figure S2: Stability of MG features from a priori pathways inside the cross-validation evaluation
scheme for the TCGA DNA methylation cohort. The Jaccard Index (a) was computed for the
selected features of each pair of folds.

Figure S3: Prediction performance (F-score) for the different models in the TCGA DNA methyla-
tion. Top figure (a) corresponds to the overall performance, bottom figure (b) to performance by
subtype.
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(a) (b)

Figure S4: Stability of gene markers from de novo pathways inside the cross-validation evaluation
scheme for the TCGA DNA methylation cohort. The Jaccard Index (a) was computed for the
genes within the selected features for each pair of folds. In (b) the number of genes that were
selected for all runs.
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(a)

(b)

Figure S5: Evaluation on randomized sample labels for the TCGA gene expression (a) and DNA
methylation (b) cohort.
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(a)

(b)

Figure S6: Evaluation on randomized networks for the TCGA gene expression cohort. Two ran-
domization strategies were used: node label permutation (SH) and degree-preserving edge rewiring
(RW)
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(a)

(b)

Figure S7: Evaluation on randomized networks for the TCGA DNA methylation cohort. Two ran-
domization strategies were used: node label permutation (SH) and degree-preserving edge rewiring
(RW)
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Figure S8: Top 20 most frequently selected CPDB features after the feature selection step in each
cross-validation run from the TCGA gene expression data sets. Features were sorted afterwards
by their averaged mean decrease in accuracy given by the random forest model.

Figure S9: Top 20 most frequently selected MsigDB features after the feature selection step in each
cross-validation run from the TCGA gene expression data sets. Features were sorted afterwards
by their averaged mean decrease in accuracy given by the random forest
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Figure S10: The top-20 most frequently selected genes (TCGA gene expression ) for each feature
type, sorted by their average mean decrease in accuracy from the random forest models
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Figure S11: The top-20 most frequently selected genes (TCGA DNA methylation) for each feature
type , sorted by their average mean decrease in accuracy from the random forest models.
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Figure S12: Confusion matrices for each of the models averaged over all cross validation repeats
and folds on the TCGA expression data

Figure S13: Confusion matrices for each of the models for the ACES validation data sets.
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Figure S14: Confusion matrices for each of the models averaged over all cross validation repeats
and folds on the TCGA DNA methylation data

Figure S15: PCA of combined TCGA and ACES datasets
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Figure S16: PCA of combined TCGA and ACES datasets after batch correction

Figure S17: Performance of TCGA-trained models on ACES datasets after batch correction
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Figure S18: Performance per subtype of TCGA-trained models on ACES datasets after batch
correction
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