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David Sebastian6, Sergio Rodriguez-Cuenca7, Vicent Ribas6, Sı́lvia Bonàs-Guarch1, Sorin Draghici8,
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Abstract

Type 2 Diabetes (T2D) is a highly prevalent chronic metabolic disease with strong co-morbidity with obesity and
cardiovascular diseases. There is growing evidence supporting the notion that a crosstalk between mitochondria and the
insulin signaling cascade could be involved in the etiology of T2D and insulin resistance. In this study we investigated the
molecular basis of this crosstalk by using systems biology approaches. We combined, filtered, and interrogated different
types of functional interaction data, such as direct protein–protein interactions, co-expression analyses, and metabolic and
signaling dependencies. As a result, we constructed the mitochondria-insulin (MITIN) network, which highlights 286 genes
as candidate functional linkers between these two systems. The results of internal gene expression analysis of three
independent experimental models of mitochondria and insulin signaling perturbations further support the connecting roles
of these genes. In addition, we further assessed whether these genes are involved in the etiology of T2D using the genome-
wide association study meta-analysis from the DIAGRAM consortium, involving 8,130 T2D cases and 38,987 controls. We
found modest enrichment of genes associated with T2D amongst our linker genes (p = 0.0549), including three already
validated T2D SNPs and 15 additional SNPs, which, when combined, were collectively associated to increased fasting
glucose levels according to MAGIC genome wide meta-analysis (p = 8.1261025). This study highlights the potential of
combining systems biology, experimental, and genome-wide association data mining for identifying novel genes and
related variants that increase vulnerability to complex diseases.
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Introduction

Insulin resistance is a common trait present in complex

disorders such as type 2 diabetes (T2D), obesity or metabolic

syndrome (MetS). Around 340 million people suffer from diabetes

worldwide, 90% of whom have T2D (http://www.who.int/

diabetes/facts/en). Unlike type 1 diabetes, overt T2D is usually

diagnosed several years after its onset due to its milder presenting

symptoms, which in part explains why several devastating

complications such as cardiovascular related diseases tend to

develop soon after or have already arisen at the moment of the

initial diagnosis.
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There has been growing interest in identifying genes and

processes that could trigger insulin resistance beyond defects on

the insulin signaling cascade itself. As a result, defective

mitochondrial activity has been indirectly related to insulin

resistance in insulin-targeted tissues, such as skeletal muscle

[1,2,3] and liver [4]. In particular, patients with T2D and, more

importantly, non-diabetic subjects with type 2 diabetic relatives

showed mitochondrial dysfunction and lower expression of PPAR

gamma co-activator 1 alpha and 1 beta (PGC-1a and PGC1-1b),

which are key regulators of mitochondrial biogenesis and function.

In addition, subjects with early-onset type 2 diabetes typically

show defective activation of PGC-1alpha in response to physical

activity [5], and similarly, morbid obese type 2 diabetic patients

show a defective activation of mitochondrial gene expression in

response to weight-loss surgery [5]. Whether there is a heritable

component involved in the alterations in expression of mitochon-

drial genes/proteins in these common forms of T2D remains to be

determined.

Despite all of these efforts and lines of evidence, the mechanisms

and the molecular contributors to the connection between

mitochondria and the insulin signaling and resistance are still

unknown. The availability of a wide range of functional

interaction data, including metabolomics, genomics, transcrip-

tomics and proteomics and the integration of all these data using

systems biology approaches make it now possible to investigate in

detail the molecular basis of the interaction between the insulin

signaling cascade and mitochondrial biology in healthy and

pathological scenarios, particularly in the context of T2D.

In addition, and despite substantial progress achieved in the

identification of candidate genes involved in specific complex

processes or diseases through genome-wide association studies

(GWAS), for most diseases, including T2D, less than 10% of the

heritability (percentage of variance attributable to genetic varia-

tion) can be explained by the identified genetic associations [6].

Some hypotheses suggest that a portion of the missing heritability

stays behind multiple small effect size variants that have not yet

reached genome-wide significance in GWAS meta-analyses when

tested individually, due to insufficient sample sizes. If many of the

modest effect variants are assumed to implicate genes that function

in a limited number of biological processes, collective analysis of

variants based on prior biological knowledge could substantially

enhance association detection power. In that sense, the application

of systems biology approaches to analyze GWAS data may have

the potential to increase the chances of unraveling susceptibility

genes or biological processes for complex diseases.

In this study, we applied systems biology approaches to screen

and identify novel candidate T2D genes. The search has been

guided by the hypothesis that the functional components of the

crosstalk between the insulin signaling pathway and the biology of

the mitochondria may play a role in the etiology or the evolution

of the disease. We have also generated and analyzed gene

expression data on insulin resistance and mitochondria perturbed

scenarios to support these candidate genes. We finally tested

whether particular genetic variants in loci that contain the

identified genes could be collectively associated with T2D.

Results

Generation of the MITIN network
In order to identify genes specifically involved in the crosstalk

between the insulin signaling pathway and the mitochondria, we

looked for all possible direct and indirect functional interactions

between mitochondria and insulin signaling genes (Figure 1). We

started by building reliable models and parts lists for these two

systems. We first explored and manually filtered several public

versions of the insulin signaling pathway to end up with a

confident collection of 197 proteins/genes (see Methods). At the

same time, we extracted data from a database of nuclear and

mitochondrial-encoded mitochondrial proteins (MitoP2) to gener-

ate the corresponding list of 682 mitochondria genes [7].

Once both parts lists were constructed, we screened several

large functional interaction databases to identify direct and

indirect connections involving any of the protein/genes of each

of the systems. We applied several filters and cutoffs to be able to

isolate, from all available interactions, a reliable collection that will

be used further in our study. For example, from protein-protein

interaction (PPI) data, we only considered those protein pairs

whose interactions were reported by two or more independent

laboratories (PPIhigh) and whose pair of genes were reported to be

expressed both in any of the insulin-sensitive tissues (adipose tissue,

muscle, liver and heart, [8]); or any other PPI interaction reported

only by a single laboratory, simultaneously expressed in any of the

insulin-sensitive tissues and that also showed co-expression (gene-

expression correlation) in a dataset of 427 healthy human liver

samples [9] (these interactions are here termed PPIcorr). As a third

layer of functional interaction, we also linked those proteins

observed to belong to the same protein complex as described in

the CORUM protein complex database [10]. The fourth source of

interaction consisted of pairs of genes coding for enzymes that

participate in linked metabolic reactions, i.e. those reactions that

are adjacent in a metabolic reaction map according to the

Biochemical Genetic and Genomic (BiGG_met) and the Kyoto

Encyclopedia of Genes and Genomes database (http://www.

genome.jp/kegg/kegg2.html; KEGG_met) [11,12,13]. Finally, we

also included those interactions between genes coding for

complexes or genes linked in a signaling pathway, as defined by

KEGG (KEGG_path) [12]. This final functional interactome

comprised 57,751 high confidence functional interactions involv-

ing 6963 genes, which represent a whole functional network of

insulin-targeted tissues or cells.

From the pool of selected high quality interactions (affecting

6963 genes), we finally selected those interactions that, either

Author Summary

It has been shown that the crosstalk between insulin
signaling and the mitochondria may be involved in the
etiology of type 2 diabetes. In order to characterize the
molecular basis of this crosstalk, we mined and filtered
several interaction databases of different natures, includ-
ing protein–protein interactions, gene co-expression,
signaling, and metabolic pathway interactions, to identify
reliable direct and indirect interactions between insulin
signaling cascade and mitochondria genes. This allowed us
to identify 286 genes that are associated simultaneously
with insulin signaling and mitochondrial genes and
therefore could act as a molecular bridge between both
systems. We performed in vitro and in vivo experiments
where the insulin signaling or the mitochondrial function
were disrupted, and we found deregulation of these
connecting genes. Finally, we found that common variants
in genomic regions where these genes lie are enriched for
genetic associations with type 2 diabetes and glycemic
traits according to large genome-wide association meta-
analyses. In summary, we reconstructed the network
implicated in the crosstalk between the mitochondria
and the insulin signaling and provide a list of genes
connecting both systems. We also propose new potential
type 2 diabetes candidate genes.

Mitochondria–Insulin Crosstalk T2D Candidate Genes

PLOS Genetics | www.plosgenetics.org 2 December 2012 | Volume 8 | Issue 12 | e1003046



directly or indirectly, provide a link between the mitochondrial

and the insulin signaling cascade genes. We defined indirect

interactions as those mediated by genes, termed linker or

internode genes, that do not belong to either the insulin or the

mitochondria parts list, but that are simultaneously connected to

both systems. By applying these filters, we finally generated the

mitochondria-insulin (MITIN) network consisting of 886 genes

and a total of 1259 interactions, 70 direct (Table S1) and 1194

indirect. The 70 direct interactions involved 44 insulin genes and

37 mitochondria genes, most of them showing only one evidence

of interaction. Both the insulin and mitochondria genes that were

directly connected were linked to a median of two genes from the

other system. Direct connections showed heterogeneous sources of

interaction: PPIhigh, PPIcorr, Corum Complexes, BiGG_met,

KEGG_met, Kegg_pathway, contributed 41, 9, 13, 2, 3, 12 links,

respectively. Indirect interactions involved 286 linker internode

genes (Figure S1, Dataset S1, Table S2 and S3). These internodes

genes were connected to a mean number of 2.1 Insulin and 1.7

mitochondria genes and showed a mean of 2.6 and 2.0 lines of

evidence of interaction with insulin and mitochondria, respective-

ly. Regarding the 1194 indirect connections, PPI, PPIcorr, Corum

Complexes, BiGG_met,KEGG_met, Kegg_pathway, contributed

570, 472, 1263, 42, 160, 169 interactions, respectively.

While the majority of the internode genes seem to be novel, as

their bridging role connecting both systems has not yet been

described, some of them have already been shown to interact with

both systems, which constitutes an internal positive control of our

underlying search methodology. For example, TRAF2 shows

interactions within our MITIN network with four insulin and two

mitochondrial genes (Table 1). Interestingly, other independent

studies and approaches also identified five of these interactions. In

particular with MAP3K1 (MEKK1), CAV1 (caveolin-1) and

MTOR (mTOR), from the insulin signaling [14,15,16] and

MAP3K5 (ASK1) and CASP8 (caspase-8) from the mitochondria

[17,18] (Figure 2). Another example is NFKB1, for which we

found interactions with four insulin signaling and three mitochon-

drial genes. As above, NFKB1 has been also reported to interact

with the IKBKB [19,20], AKT2 [21], MAP3K1 [22] and SOCS3

insulin genes, as well as to BCL2L1 [22] [23] and BCL2 [24]

(Figure 2).

Figure 1. Schematic flow chart of the generation and evaluation of the MITIN network. The different sources of functional interaction are
combined to generate a functional interactome. The resulting network is used to identify the direct and indirect interactions between the insulin
signaling and mitochondria systems. The relevance of the MITIN network is tested analyzing gene expression data of models perturbing either insulin
signaling or mitochondria function, and testing the variability within or near the MITIN network genes using GWA meta-analyses from DIAGRAM
consortium. *In all PPIhigh and PPIcorr, both pair of interacting proteins have to be simultaneously expressed in any of the insulin-targeted tissues
(adipose tissue, muscle, liver and heart).
doi:10.1371/journal.pgen.1003046.g001

Mitochondria–Insulin Crosstalk T2D Candidate Genes
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The same MITIN network also allowed us to define which

mitochondrial genes are more connected to insulin signaling, and

vice-versa, either directly or indirectly. The top five insulin signaling

genes most connected to mitochondria are NOLC1, RPS6, IKBKB,

PKLR, SRC, with a total of 99, 40, 31, 28 and 22 indirect

connections with mitochondria, respectively. Similarly, the five

most connected mitochondrial genes with the insulin cascade were

TUFM, TP53, SLC25A5, POLG, ESR1, with a total of 93, 36, 29,

25, and 19 indirect connections, respectively (Table S4).

We next explored whether our collection of internode genes

where enriched in particular functions or processes by querying

the Molecular Signatures Database [25]. We found up to 148

functional signatures for which internode genes were significantly

enriched (5.76102107,p value,4.4161026, 1.94,Odds ra-

tio,20.1; Table S5). Besides several enriched categories related

to translation, Reactome Regulation of Expression in Beta Cells

(p = 3.5610287, Odds Ratio = 15.8), Reactome Insulin Synthesis and

Secretion (p = 4.46610279, Odds ratio = 14.0), and Reactome Diabetes

pathways (p = 1.39610235, Odds ratio = 5.5) were also highly

enriched among our set of internode genes. No significant

categories were found after correcting for multiple testing in a

set of internode genes identified from a simulated network made of

randomly generated interactions.

In order to facilitate the selection of any of these genes for

further studies, we have ranked them according to their number of

connections to each of the systems. Hence, we provide a confident

subset of 31 genes with at least three lines of evidence linking

insulin signaling and mitochondria genes simultaneously (Table 1).

Internode gene expression is altered in insulin resistance
and mitochondrial dysfunction experimental models

As further support of the functional relationship between

internode genes and both, the mitochondria and the insulin

signaling pathway, we explored whether the expression of these

identified internode genes is modified after perturbing each of the

mitochondria or insulin signaling systems independently.

To test the effect of the insulin signaling perturbation, we

performed gene expression profiling of C2C12 differentiated

myotubes that were either left untreated or treated with 100 nM

insulin for 2 days in order to induce an insulin resistance state.

This treatment resulted in the downregulation of the insulin

receptor and subsequently significantly reduced insulin signaling

cascades [26]. We used the gene set enrichment analysis method

(GSEA, [25]) to look for enrichment of differential expression

using our set of internode, mitochondria, and insulin genes as

molecular signatures. Using the collection of all 6963 genes with

identified interactions as a background, we found significant

enrichment of upregulation within the internode genes (Normal-

ized Enrichment Score (NES) = 1.7; False Discovery Rate

(FDR) = 0.0013), while observed downregulation enrichment

within the insulin signaling genes (NES = 21.4; FDR = 0.028)

(Figure 3a). We also explored a second model of insulin signaling

cascade perturbation through the analysis of transcriptome data

from myotubes treated with RNAi against DOR (also named

Tp53inp2). This gene is dysregulated in muscle of Zucker diabetic

rats, participates in the myogenic differentiation and mediates a

feed-forward loop between ecdysone receptor and the insulin

signaling in flies [27,28]. In this model, we also found that there

was an enrichment of upregulated internode genes (NES = 1.4;

FDR = 0.004) and enrichment of downregulated insulin

(NES = 21.35; FDR = 0.007) and mitochondrial (NES = 21.36;

FDR = 0.001) genes (Figure 3c).

In a parallel experiment we tested how perturbations of

mitochondria affect the expression of the MITIN network genes.
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For this, we analyzed gene expression from the heart of

Peroxisome-proliferator-activated-receptor c coactivator 1 beta

(PGC-1b) knock-out mice. PGC-1b is a co-activator that regulates

mitochondrial biogenesis and function [29,30,31,32]. The analysis

of heart gene expression of these mice showed an overrepresen-

tation of upregulated genes within the internodes (NES = 1.3;

Figure 3. Gene set enrichment analysis. Gene set enrichment analysis of models with impaired Insulin (a, c) or mitochondrial (b) function. In all
cases there was enrichment of upregulated genes within the internodes, except for the case when internodes were generated from a random
network (d).
doi:10.1371/journal.pgen.1003046.g003

Figure 2. Connections of two internode genes, TRAF2 and NFKB1, with insulin genes and mitochondria genes. Two strong candidates
linking both insulin and mitochondria genes from Table 1 were chosen and their connections to insulin genes and mitochondria genes verified using
literature published in the PubMed. See main text for detailed description. A) TRAF2 has been reported to be connected to MAP3K1 (MEKK1) and
CAV1 (caveolin 1) insulin genes, and to MAP3K5 (ASK1) and CASP8 (caspase-8) mitochondrial genes. A possible connection to MTOR (mTOR) has also
to be considered. MAP3K5 = ASK1; MAP3K1 = MEKK1. B) NFKB1 (NF-kB1) is connected to IKBKB (IKKb), AKT2, MAP3K1 and SOCS3 insulin genes, and
BCL2 and BCL2L1 mitochondrial genes. NFKB1 = NFKBp50; IKBKB = IKKb= IKK2; MAP3K1 = MEKK1; P65 = RelA. Green boxes represent insulin genes
reported to interact with TRAF2 or NFKB1 according to our network; and light-blue represents mitochondrial genes reported to interact with TRAF2
or NFKB1 according to our network. Yellow boxes represent insulin signaling genes.
doi:10.1371/journal.pgen.1003046.g002
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FDR = 0.02), enrichment of upregulated genes within the insulin

genes (NES = 1.6; FDR = 0.0012), and enrichment of downregu-

lated mitochondria genes (NES = 22.63; FDR = ,0.0001)

(Figure 3b). Again, as a control from our experiment, randomly

generated internode genes did not show any enrichment in any of

these experiments (Figure 3d).

Clinical implications of the Global MITIN Network
We next investigated whether any of these genes has been

associated to phenotypes related to insulin resistance or energy

metabolism. For this, we searched through the OMIM database

(http://www.ncbi.nlm.nih.gov/omim) those internode genes that

are involved in mendelian and complex disorders [33].

We found that, among all 286 internode genes, 191 (66%) were

in genomic loci associated to complex diseases or traits (SNPs

within 250 kb from internode gene were considered) and 17 (6%)

were involved in mendelian diseases. Interestingly 53 of the genes

(18%) contained or were near polymorphisms associated to T2D

or related traits such as obesity, adiposity, response to glucose

challenge, hypertension or coronary artery disease (Table S6).

10,000 random simulations showed that finding 53 genes

associated to T2D related traits was modestly more than what

expected by chance (p = 0.0535). In contrast, the 10,000 random

simulations also showed that we did not find more associations

with any complex trait (not restricting to T2D related traits), than

would be expected by chance, suggesting that the enrichment for

associations of the identified internode genes is specific for T2D

and related metabolic traits.

Scanning T2D genome-wide association meta-analyses
for variants in the internode genomic regions shows
enrichment of T2D associations

In order to further investigate the potential involvement of the

internode genes in the etiology of T2D, we screened the

DIAGRAM consortium GWAS dataset, which consisted on the

largest T2D meta-analysis available at the time of the study

(DIAGRAM meta-analysis): 8,130 cases and 38,987 controls [34].

To analyze enrichment of associated genes within the internodes,

we used MAGENTA [35], a software specifically designed for

large genome-wide association study meta-analyses, where indi-

vidual genotypes are typically not available. We found that our

internode gene list showed nominal enrichment for modest to

strongly associated genes within the top 5% of T2D scores, with 18

genes observed, including three already confirmed T2D associated

SNPs [34,36,37], compared to the 12 expected by chance

(p = 0.0549, Table 2). These results were robust to the enrichment

cutoff used (p = 0.0368 when testing for enrichment above the

97.5th percentile of all gene scores; 6 genes expected above cutoff,

11 observed). Unlike the collection of internode genes, no

significant enrichment for T2D associations was found for gene-

sets belonging only to the insulin signaling (p = 0.71) or to the

mitochondrial (p = 0.52) systems. The insulin and mitochondria

genes directly interacting with each other were also not enriched

for T2D associations (p = 0.53).

To further support the involvement of at least some of these 18

internode SNPs in glucose metabolism regulation, we also

computed how the best associated SNPs in the 18 regions

increased the risk of altered glycemic traits, available from

MAGIC consortium datasets [38,39,40,41,42], using an approx-

imation approach developed by Toby Johnson [43]. Among the

seven traits tested, we found a significant association risk score for

fasting glucose (p = 8.1261025 including the 18 top ranked SNPs

and p = 0.004 including 15 out of the 18 SNPs not previously

associated with T2D). In order to evaluate the probability of

finding such a highly statistical p-value, when using the top T2D

associated genes (and best local SNPs) we ran MAGENTA on

10,000 simulated random gene-sets, and extracted for each

simulation the p-values of the most significant SNP per gene for

all genes that ranked above the 95th percentile. The empirical p-

value was then calculated as the frequency of random gene-sets

whose p-values were smaller than the one obtained with the real

data and whose effect size was higher than 0. We found that

8.1261025 is significantly lower than what one can expect by

chance (p = 0.0144), confirming the association of our set of

internode genes, not only with T2D, but also to fasting glucose

levels.

Genetic variants in internode genomic regions associated
with T2D are also associated with metabolic related
quantitative traits

To further explore the involvement of the internode genes

associated with T2D (see above) in related metabolic traits we

explored several available GWA meta-analyses pertaining to

obesity-related traits from the GIANT consortium [44,45], seven

glycemic traits from MAGIC datasets [38,39,40,41,42], and

cardiovascular disease traits from the ICBP consortium [46]. We

found that in 10 of the 18 internode genomic loci with modest to

strong associations, there was at least one SNP showing association

(p,1025) to one of these metabolic traits. For example,

rs6453220, located in the IQGAP2 intron, was associated to

circulating glycated hemoglobin (p = 4.1961026) and rs13107325,

located upstream of NFKB1, was strongly associated with diastolic

blood pressure (p = 7.5361027), body mass index (p = 1.3761027),

high density lipoprotein levels (p = 7.2610211), and systolic blood

pressure (p = 2.5761027).

Discussion

Understanding the molecular basis of insulin resistance is

essential for the early diagnosis, treatment and prevention of T2D

and related co-morbidities, such as hyperlipidemia or cardiovas-

cular disease. In this study we explored the molecular basis of

insulin resistance beyond the known role of insulin signaling genes,

and, implicitly screened for novel candidate T2D genes. Based on

published evidence that connects the function of the mitochondria

with insulin resistance and T2D [5,47,48,49], we hypothesized

that there are genes responsible for the crosstalk between the

mitochondria and the insulin signaling system, which makes them

good candidates for T2D. By screening and filtering a variety of

available functional interaction data, we have first generated a

conservative network (MITIN) containing all genes involved in or

connected to the insulin signaling or mitochondrial systems, not

only through PPI but also based on interactions of other nature,

including co-expression, protein complexes, and signaling and

metabolic interactions. From there, we then selected a fraction of

286 internode genes that show connections to genes of both

systems and are, therefore, likely to be involved in the functional

crosstalk between the insulin signaling cascade and the mitochon-

dria.

We have examined these genes at different levels to validate

their bridging role and their potential implication in T2D or co-

morbidities. In order to provide a more stringent list amenable to

low throughput molecular biology experiments in future studies on

insulin resistance and diabetes, we ranked these genes on the basis

of their level of connectivity to insulin and mitochondrial genes

and generated a high confidence subset of 31 genes showing three

or more functional connections to each of the systems.
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While there are no reported confirmatory data for the majority

of the 286 internode genes, some have been already found to be

linked to both systems, and even to T2D and related metabolic

processes. For example TRAF2 [14,15,17,18], NFKB1

[19,20,21,22,23,24] (Figure 2) and SMAD3 [50], which show

multiple connections to insulin signaling and to mitochondrial

genes in our MITIN network, have also been described elsewhere

to interact with genes of both systems. In addition, variants near

the NFKB1 gene have been associated to T2D based on the

DIAGRAM dataset (best nearby SNP p-value = 1.661025), while

SMAD3 has been recently found to protect against diet-induced

obesity as well as coronary artery disease [50,51]. Other genes that

also emerge as connecting internode genes in our MITIN network,

such as the chaperone HPSP90AA gene, have not been previously

described as linked to the insulin or the mitochondrial systems, but

have been linked to insulin resistance conditions and hence to

T2D [52,53].

On top of the previous knowledge on some of the internode

genes, we provide here further evidence that supports the

robustness of our search strategy and of this collection of genes

as potential molecular connectors of these systems, as well as

insulin resistance or T2D candidate genes. First, the 286 internode

genes showed significant enrichment of functional categories, like

‘‘regulation of beta cell development’’ (p = 2.1610279), ‘‘insulin synthesis

and secretion’’ (p = 3.4610279) and ‘‘diabetes pathways’’

(p = 1.9610235). Second, experimental models of mitochondria

and insulin signaling perturbation caused a significant upregula-

tion of the internode genes. This could be the result of direct

regulation or a mechanism that compensates these perturbed

metabolic scenarios. In all cases, the expression analyses helped us

to confirm that these genes are indeed functionally connected to

both systems. Furthermore, the deregulation of these internode

genes under experimental conditions of insulin resistance suggests

their involvement in T2D.

Encouraged by our positive functional and expression results

supporting the connecting role of the internode genes and their

impact on T2D, we went one step further and used the MITIN

network as a basis for the identification of genetic signatures

associated with T2D, contributing to unraveling its missing

heritability. We tested for enrichment of T2D associations within

the newly identified internode genes, by analyzing the results from

the DIAGRAM GWA meta-analyses [34] using MAGENTA to

define gene association scores and enrichment of gene associations

[35]. We found enrichment of T2D variants within this group of

genes, involving 18 associated genes compared to the 12 that were

expected by chance (p = 0.0549). Our study also confirms the

absence of significant signal when we tested insulin signaling and

mitochondria gene-sets for enrichment of T2D associations. This

is in agreement with previous studies, where no enrichment was

found for mitochondrial or insulin signaling genes [34,35], and

suggests that the genes involved on the crosstalk between the

insulin and mitochondria networks are more susceptible to harbor

T2D risk variants than those that belong to either the insulin

cascade or the mitochondria alone. The best local SNP in each of

the 18 top ranked regions showed a combined risk score of

increased fasting glucose levels according to MAGIC consortium

data-sets (p = 8.1261025). Also supporting these results, several

variants in the internode genomic regions identified by MAGEN-

TA were also associated with many metabolic related quantitative

traits, as reported by the MAGIC [38,39,40,41,42], GIANT

[44,45] and ICBP [46] consortia (Table 2).

Interestingly, the best-associated SNP in four of the 18 genes

were among the 43 already validated loci of susceptibility for T2D,

which in the former reports were assigned to ZBED3, BCL11A,

PRC1, and KCNJ11 genes, based only in proximity [34,36,37].

Taking into account the intrinsic challenge in linking an associated

variant to its causal gene, we cannot exclude that these SNPs may

be proxies for causal variants affecting our group of identified

internode genes. Accordingly, recent findings suggest that a

fraction of regulatory variants can be more than 500 Kb away

from their regulated gene and that a single locus can expand more

than 1 Mb, and even contain more than one independent causal

variant [54,55,56]. Among the top 18 top ranked internode genes

identified by MAGENTA analyses of T2D GWAS meta-analysis,

there are independent lines of evidence suggesting the involvement

on the development of T2D or insulin resistance. For example,

two members of the IQ-motif-containing GTPase-activating

protein (IQGAP) family, scaffold proteins involved in a wide

range of cellular and signaling processes, including cytoskeletal

organization, cell adhesion, and tumorigenic processes [57,58],

appear in the top 95th percentile for association with T2D

according to MAGENTA analysis. IQ motif containing GTPase

activating protein 2 (IQGAP2), the second ranked gene according

to MAGENTA analysis, contained an intronic low frequency SNP

(rs6453220; MAF = 0.05), which was strongly associated with

glycated haemoglobin according to MAGIC WGA-meta-analyses

(Hb1Ac; p = 4.1961026), providing more evidence that variants in

IQGAP2 may contribute to insulin resistance. In addition, another

gene of the same family, IQGAP1 (top four according to

MAGENTA), was recently reported to bind the target of

rapamycin complex 1 (mTORC1) having a potential negative

feedback loop role upstream mTORC1/S6K1 AKT1 activation

[59]. Furthermore, IQGAP1 associates with PKA and AKAP79 in

pancreatic Beta cells, suggesting a role in the Beta-cell develop-

ment and physiology [60]. It is also worth mentioning that

IQGAP1 was also found upregulated in our chronic insulin

treatment experiment (fold change 1.4; FDR,0.01) and the

Tp53inp2 RNAi treatment in myotubes experiment (fold

change = 1.33; FDR = 0.1). These results, together with the

general role of scaffolding proteins as hubs of signaling pathways

further supports the implication of the IQGAP protein family in

the insulin signaling and the mitochondrial systems crosstalk and

its association to T2D. RAB4A (Best SNP p value = 3.561025) is a

GTPase that regulates glucose transporter GLUT4 [61], and is

suggested to participate in metabolic remodeling in the diabetic

heart [62]. Finally, breast cancer anti-estrogen resistance 1

(BCAR1), (Best SNP p value = 6.6161025, distance from gen-

e = 16.5 Kb) is another gene that deserves attention, as is

connected to 10 insulin genes, according to our network: CRK,

SRC, PTPN1, PTK2, CRKL, PIK3R1, GRB2, PTPRF, RHOA and

PTPRA. Interestingly, a SNP in an intronic region 16 Kb

upstream this gene was reported to be strongly associated with

type 1 diabetes [63].

In summary, this study contributes to untangling the molecular

basis linking the mitochondria and the insulin signaling systems

and provides a subset of novel T2D candidate genes for further

genetic, molecular and clinical studies. This study also constitutes a

proof of concept of the utility of combining several integrative

systems biology approaches with the analysis of gene expression

and large GWA meta-analyses to uncover novel associations with

complex diseases of otherwise hidden candidate genes.

Materials and Methods

Mitochondria and insulin parts lists
We constructed a consensus insulin pathway from several public

resources, including (Biocarta; www.biocarta.com, Kegg [12];

www.genome.jp/kegg/, and PID; [64]; http://pid.nci.nih.gov/)
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and a commercial resource (Biobase; www.biobase.de). This

pathway was manually curated and refined by the participation

of molecular biologists in the field.

In order to select the parts lists that compose mitochondrial

proteins or genes, we have selected a total set of 900 proteins from

the mitoP2 database (www.mitop2.de/; [7]). As it was done for the

insulin pathway, the set has been manually curated by the

participation of the expert groups in the consortium.

To allow for transferability of the results to other species, we

have identified each mouse orthologous gene/protein for all

involved proteins.

Generation of the MITIN network
To identify protein-protein interactions we used a non-

redundant set of 23 protein interaction datasets and only included

those interactions reported independently by two different

laboratories (PPIhigh) [8].

For the gene co-expression analysis, we used the dataset of

Schadt et al. [9], which consists of expression data of 427 healthy

human liver samples and constituted the largest insulin-sensitive

human transcriptome dataset. We evaluated the overlap between

gene co-expression in liver and low confident PPIs (those reported

only by a single lab) to provide a new source of high confident

interactions.

Third, we added those interactions that pertained to the

CORUM complex database [10], considering that two genes are

functionally linked if they both pertain to a common complex.

The fourth source of interaction consisted of pairs of genes

coding for those enzymes that participate in linked (or consecutive)

metabolic reactions as described in KEGG or BiGG databases

[11,12,13].

Finally, we also considered those interactions between genes

coding for complexes or genes linked any signaling pathway, as

defined by KEGG [12].

Identification of enriched signatures
We used the Molecular Signatures Database from the Broad

Institute ([25]; http://www.broadinstitute.org/gsea/msigdb) and

for a total of 6770 gene sets, we computed an enrichment score

based on a Chi-Square test. The corrected significant p-value after

applying Bonferroni’s correction for all the tests was 4.4161026.

We only considered gene sets that had at least 10 genes within the

group of internode genes.

Microarray data analysis and GSEA
All statistical analyses were performed using Bioconductor

(Gentleman et al., 2004). Microarray data was normalized via

quantile normalization and summarized to probeset expression

estimates via robust multi-array average (RMA) (Irizarry et al.,

2003) using the function rma from the oligo package. All the newly

generated data was deposited in the Gene Expression Omnibus

(GEO) (http://www.ncbi.nlm.nih.gov/geo) database (GSE3932).

We used gene set enrichment analysis (GSEA) (Subramanian et

al., 2005) as implemented in the Bioconductor library phenoTest

[65] to assess the degree of association between gene expression

and the following signatures: insulin, mitochondria and internodes.

As indicated in Subramanian et al. [25], P-values were computed

restricting attention to simulated ES with the same sign as ESobs.

Chronic insulin treatment
All chemicals and reagents were purchased from Sigma-Aldrich,

(Poole, UK). Briefly, C2C12 cells were cultured in Dulbecco’s

modified Eagle media (DMEM) supplemented with 10% Fetal

bovine serum, and penicillin/streptomycin. To induce differenti-

ation media was replenished by DMEM containing 2% (v/v) of

horse serum with penicillin/streptomycin. Myotubes between days

4 and 7 following the induction of differentiation were used for

experiments. For chronic insulin treatment cells were either left

untreated or incubated with 100 nMinsulin in DMEM for 48 h in

fusion medium to induce an insulin resistance state. Medium was

changed every 24 h.

Pgc1b knock-out model
Hearts were quickly collected and snap frozen in liquid nitrogen

from wild-type and PGC-1b KO on a mix background (sv129 and

C57BL/6) generated as previously reported [31]. Animal proce-

dures were performed in accordance with the UK Home Office

regulations and the UK Animal Scientific Procedures Act [A(sp)A

1986]. Animals were housed in a temperature-controlled room with

a 12-h light/dark cycle. Food and water were available ad libitum.

Dor silencing
Lentiviruses encoding scrambled or DOR siRNA were used as

reported [27]. Fifteen million C2C12 myoblasts grown on 12-well

plates were transduced at moi 100 and cells were amplified during

5–7 days. Transduced cells (GFP-positive) were then sorted with a

MoFlo flow cytometer (DakoCytomation, Summit v 3.1 software),

obtaining between 93%–99% GFP-positive cells. Confluent C2C12

myoblasts previously infected with lentiviruses encoding scrambled

RNA or DOR siRNA were allowed to differentiate in 5% horse

serum-containing medium for 4 days. Total RNA was purified and

microarrays were performed by using an Affimetrix platform.

Enrichment of T2D associations in internode genes
We used the latest DIAGRAM T2D GWA meta-analysis

comprising 8,130 cases and 38,987 controls [34] and the

MAGENTA software was used to test for enrichment of

associations in the 286 internode genes [35]. Briefly, we assigned

to each gene a set of SNPs that lie within 500 Kb upstream and

downstream of the gene’s most extreme transcript boundaries.

This boundaries were based on the fact that a fraction of

regulatory variants can be up to 500 Kb distal to their regulated

gene and that a single locus may harbor more than one causal

variants, and extend to more than 1 Mb from the locus top hit

[54,55,56]. For each gene, a score was assigned based on the most

significant SNP, followed by correction for confounders, including

gene size, number of independent SNPs, and linkage disequilib-

rium-based properties. Once all the association scores were

computed, MAGENTA tested for over-representation of genes

in a given gene set above a predetermined gene score rank cutoff,

which in this case was the 95th percentile of all gene scores. The

enrichment is evaluated against a null distribution of gene sets of

identical set size that were randomly sampled from the 6963 genes

that constitute our complete interactome based on all identified

functional interactions.

Risk score analyses using multi–SNP predictors in
glycemic traits from MAGIC consortium dataset

We computed how the best associated SNPs in the 18 regions

could collectively increase the risk of altered glycemic traits

available from MAGIC consortium datasets [38,39,40,41,42]. We

used the method described in [43]. An unweighted genetic risk

score was defined for each individual as the sum of the number of

risk increasing alleles at each of the 18 SNPs of interest. If one had

access to individual-level data, association between SNP score and

glycemic traits could be tested using the usual approach. However,
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when the risk score involves SNPs in linkage equilibrium, it was

shown [43] that association between risk score and trait can be

assessed using meta-analysis results only, without going back to

individual-level data. The effect of the risk score on the phenotype

is estimated by

Pk
j~1 a2

j
bbjbjPk

j~1 a2
j

, with standard error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Pk

j~1 a2
j

s
,

where bbbj is the meta analysis effect size for SNP j, and aj is the

inverse of the standard error estimate of bbbj .

The assumption of no Linkage Disequilibrium (LD) is required

for the contribution of each SNP to be independent and for the

standard error estimate to be valid. P-value for the risk score

association can be assessed using the ratio of the SNP score effect

estimate divided by its standard error, and assessing the

significance of the ratio by comparing it to the standard normal

distribution.

This large sample procedure will result in valid p-values under

the null hypothesis of no relationship between the trait and

variants included in the risk score.
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