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Viruses interact with multiple host cell factors. Some of these are required to

promote viral propagation, others have roles in inhibiting infection. Here,

we delineate the function of the cellular factor PHF13 (or SPOC1), a putative

HIV-1 restriction factor. Early in the HIV-1 replication cycle PHF13 increased

the number of integrated proviral copies and the number of infected cells.

However, after HIV-1 integration, high levels of PHF13 suppressed viral

gene expression. The antiviral activity of PHF13 is counteracted by the viral

accessory protein Vpr, which mediates PHF13 degradation. Altogether, the

transcriptional master regulator and chromatin binding protein PHF13 does

not have purely repressive effects on HIV-1 replication, but also promotes

viral integration. By the functional characterization of the dual role of PHF13

during the HIV-1 replication cycle, we reveal a surprising and intricate mech-

anism through which HIV-1 might regulate the switch from integration to viral

gene expression. Furthermore, we identify PHF13 as a cellular target

specifically degraded by HIV-1 Vpr.
1. Background
Viruses hijack and reprogram the host cell machinery in order to achieve opti-

mal viral replication and multiplication. For a variety of viral infections,

including HIV-1, large efforts have been undertaken to identify cellular genes

which are beneficial or necessary for productive infection, so-called host depen-

dency factors [1–4]. On the other hand, host cells have evolved potent antiviral

strategies in order to suppress and restrict virus infection and production,

which are designated restriction factors [5]. Thus, knowledge of cellular factors

that are beneficial as well as inhibitory for viral infections is of fundamental

importance to tailor novel therapeutics and antiviral strategies.

Host cell factors are often manipulated by HIV-1 accessory proteins (i.e.

Nef, Vpu, Vif and Vpr) [6]. These are mostly dispensable for HIV-1 production

in cell culture but important for the maintenance of high viral loads and pro-

gression to AIDS in vivo. One important function of HIV-1 accessory proteins

is to achieve evasion from the host’s immune response for instance by downmo-

dulation of cell surface immune receptors or through counteraction of cellular

antiviral restriction factors. In recent years research efforts have delineated

major functions of Vpu, Vif and Nef [6]. By contrast, Vpr remains one of the

most enigmatic HIV-1 accessory proteins [7].

Vpr is a 12.7 kDa small protein consisting of three amphipathic helices with

the capacity to form oligomers [7]. Vpr enhances HIV-1 replication in human
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lymphoid tissue (HLT) [8], non-activated CD4þ T cells [9],

macrophages [10] and some immortalized T cell lines [11].

This enhancement could be related to its ability to increase

nuclear import of the HIV-1 pre-integration complex, acti-

vation of various transcription factors including NFAT

(nuclear factor of activated T cells) and a direct stimulation of

HIV-1 LTR transactivation [7,12]. One of the best-investigated

Vpr phenotypes is its ability to induce a G2 cell cycle arrest,

which is related to the association of Vpr with a larger

ubiquitin ligase complex composed of VPRBP (Vpr binding

protein or DCAF), DNA damage-binding protein 1 (DDB1)

and the ubiquitin ligase cullin 4A (CUL4A) [13]. However,

the physiological relevance of Vpr-mediated G2 arrest remains

unclear [7], although it was proposed to be relevant for HIV-1

evasion from immune sensing [14] and depletion of Tregs in the

context of CCR5-tropic HIV-1 infection [15].

PHF13 (PHD finger protein 13 or SPOC1; survival-time

associated PHD finger in ovarian cancer 1) was originally

identified as a potentially oncogenic cellular factor due to

the abundance of increased RNA levels in ovarian tumour

tissue which was associated with decreased survival prob-

ability of cancer patients [16]. It is conserved from

zebrafish to humans and involved in a multitude of pro-

cesses, including regulation of DNA damage response

[17,18] and development [19]. PHF13 is 300 amino acids in

length migrating at a MW of 43 kDa. It contains a bipartite

nuclear localization signal, two PEST domains, a conserved

C-terminal plant-homeodomain zinc finger (PHD) through

which it binds to chromatin and a conserved N-terminal

domain [20]. PHF13 was reported to regulate cell division

through the association with chromatin thereby influencing

its condensation [20]. In addition, PHF13 is recruited to

DNA double-strand break (DSB) repair loci post-induction

of DNA damage, implying an important role in the regu-

lation of the DNA damage response [17,18]. Recently, the

underlying mechanism of PHF13 targeting to chromatin

was elucidated [21]. It directly interacts with H3K4me2/3

DNA and associates with polycomb repressive complex 2

(PRC2) as well as RNA PolII. Thereby it intriguingly

up- and downregulates multiple genes involved in transcrip-

tional regulation, DNA binding and chromatin organization,

and cell cycle regulation and differentiation [21]. In addition,

the PHF13 interactome is enriched for approximately

50 spliceosomal proteins [22]. Altogether, this suggests

that PHF13 is a transcriptional co-regulator at H3K4me2/3

that couples transcription with co-transcriptional splicing

[21,22].

PHF13 was reported to repress gene expression of

adenovirus and the authors speculated that this might be a

general host defense mechanism of antiviral restriction,

because PHF13 expression was also reduced in lysates of an

HIV-1 infected T cell line [23]. We therefore investiga-

ted the role of PHF13 during HIV-1 infection and found

that the expression of PHF13 is tightly regulated through-

out the viral replication cycle. In the first few hours after

viral entry PHF13 stimulates HIV-1 integration and its

levels are unaffected. However, upon completion of proviral

integration, PHF13 is degraded by virion-delivered Vpr,

probably due to a repressive effect of PHF13 on HIV-1 gene

expression.

Altogether, oppositely what we expected, PHF13

has positive as well as negative effects on viral replication

dependent on the stage of HIV-1 infection.
2. Material and methods
2.1. Cell culture, plasmids and proviral constructs
293T were cultivated in DMEM supplemented with 10% FCS

(Gibco), Pen/Strep (120 mg ml21) and 350 mg ml21
L-gluta-

mine. U2OS cells and PHF13-inducible U2OS-C5 cells [20]

were both kindly contributed by Hans Will and cultured in

DMEM with standard supplements and additionally with

1% HEPES buffer solution (Gibco). Jurkat-TAg (kindly pro-

vided by O. Fackler), SupT1 and J-Lat cells (both from the

NIH AIDS Reagent Program) were grown in RPMI1640 sup-

plemented with 10% FCS, Pen/Strep, L-glutamine and 1%

sodium pyruvate (Gibco). For the generation of primary

human macrophages and CD4þ T cells, we isolated periph-

eral blood mononuclear cells (PBMCs) from buffy coat

received from the German Red Cross by Ficoll gradient cen-

trifugation. Macrophages and CD4þ T cells were generated

and cultured as described elsewhere [24]. All cells were

grown in a 5% CO2 atmosphere at 378C. Vpr pCG-expression

plasmids and the pCG-IRES-GFP have been described pre-

viously [9,25]. Similarly, PHF13 was amplified from cDNA

(kindly contributed by Hans Will) and ligated into the

pCG-IRES-mTagBFP vector [26]. All PCR-derived inserts

were sequenced to confirm their nucleotide identity. HIV-1

NL4–3 WT, DNef, DVpu and DVpr proviral constructs and

mutants have been described previously [8,9,27]. For some

experiments, we used similar HIV-1 NL4–3 variants

co-expressing Nef and GFP via an IRES, which is an indicator

for LTR transactivation [28,29]. Vpr pWPI lentiviral

constructs were kindly contributed by E. Cohen [30].

2.2. Generation of HIV-1 stocks and infection
experiments

In order to allow CD4-independent infection of target

cells and increase infection efficiencies vesicular stomatitis

virus glycoprotein (VSVG) pseudotyped HIV-1 stocks were

generated by standard calcium phosphate transfection of

293T cells essentially as described previously [9,20,28]. Briefly,

293T cells were cotransfected with the various NL4-3 proviral

constructs and the pHIT-G plasmid coding for the envelope

protein of the VSVG. Thirty-six hours later supernatants

were harvested, cleared by centrifugation and stored at 48C
until infection of target cells. For infection of U2OS or U2OS-

C5 cells 3 � 105 cells were seeded in six-well plates and

infected one day later with 200 ng p24 HIV-1 viral stocks.

If not indicated otherwise, 24 h later cells were washed

and replaced with fresh media. Similarly, 2 � 106 SupT1,

Jurkat-Tag or primary CD4þ T cells were cultivated in 2 ml

RPMI in six-well plates and infected with 200 or 400 ng p24

HIV-1 viral stocks. Vpr transcomplementation and infection

experiments were done as previously described [9].

2.3. Immunoblotting and antibodies
For protein analysis cells were lysed in RIPA buffer (50 mM

Tris–HCl pH 7.4, 150 mM NaCl, 2 mM EDTA, 1% NP-40,

0.1% SDS) supplemented with 1� complete protease inhibitor

cocktail (Roche). After 10 min on ice, the insoluble debris was

pelleted at 10 000g/48C for 10 min. Supernatant was diluted

with SDS loading buffer, heated at 958C for 5 min before loading

http://rsob.royalsocietypublishing.org/


rsob.royalsocietypublishing.org
Open

Biol.7:170115

3

 on October 17, 2017http://rsob.royalsocietypublishing.org/Downloaded from 
on a SDS-PAGE. Immunoblotting and SDS-PAGE were per-

formed using standard protocols. Blocking was done by

incubation in 10% [w/v] milk powder in TBS-T for 1 h at RT

with shaking. Incubation with primary antibody (diluted in

5% [w/v] milk powder in TBS-T) was performed overnight

at 48C with constant inversion. Alternatively, we used the estab-

lished protocol for PHF13 protein analysis and immunoblotting

[20,21]. Primary antibodies used in this study included mouse

anti-HIV-p24 (1 : 5000; Abcam), rabbit anti-HIV-Vpr (1 : 2000;

kindly provided by Ulrich Schubert [31]), monoclonal rat anti-

PHF13 (1 : 50; kindly provided by Elizabeth Kremmer [20]),

mouse anti-tubulin (1 : 1000; Sigma) or mouse anti-actin

(1 : 1000; Sigma). Secondary Ab conjugated to horseradish per-

oxidase were anti-rat IgG, anti-rabbit IgG (Jackson Immuno

Research) and anti-mouse IgG (Dianova). Immunoblots were

visualized by using the Fusion X7 camera system (Peqlab).

For LI-COR Odyssey Imaging System based detection we

used IRDye 800 CW goat anti-rabbit and goat anti-rat or goat

anti-mouse IRDye 680 RD (1 : 15 000; Li-COR Biosciences).

2.4. Knockdown of PHF13 in U2OS cells by siRNA
U2OS-C5 cells were transfected with 100 nM PHF13 specific

siRNA (50 UCACCUGUCCUGUGCGAAA 30) or iBoni control

N2 siRNA (riboxx) with Lipofectamine 2000 (Invitrogen) using

the standard protocol provided by the manufacturer and as

described previously [20].

2.5. Inhibitor treatment experiments
Proteasomal inhibitors were used in culture for up to 6 h at

5 mM MG132 (Calbiochem) and 5 mM lactacystin (Sigma).

Calpain was inhibited by treatment of cells in culture for 24 h

with 50 nM calpain inhibitor 1 (CI1 also called ALLN or

MG101; Sigma). GSK3bwas inhibited by incubating cells in cul-

ture for 6 h with 100 nM insulin (Sigma) or the specific inhibitor

SB216763 (Sigma) in increasing amounts (10–100 mM). Neddy-

lation inhibitor MLN4924 was purchased from BostonBiochem

and applied in a final concentration of 0.1 to 1 mM. HIV-1

inhibitors were used in the following concentrations: Raltegravir

250 nM (Santa Cruz), Flavopiridol 50 nM, Efavirenz 50 nM,

Saquinavir 50 nM (all from the NIH AIDS Reagents Program).

2.6. ELISA to assess HIV-1 p24 capsid production
Virus stocks or cell supernatants were lysed with Triton X-100

(Sigma) at 48C for 12 h. HIV-1 p24 Antigen Capture Assay Kit

(ABL Inc.) was used to measure the amount of the capsid protein

p24 as recommended by the manufacturer’s protocol. Unbound

material was removed by several washing steps with PBS.

Addition of Peroxidase substrate (KPL) leads to a colour

change of the solution, which was stopped by adding 100 ml

stop solution. Absorbance was measured at 450 nm in an

Infinite M200 (Tecan) and corrected for 650 nm reference wave-

length. Absolute p24 amounts were calculated by measuring a

sequential dilution and generation of a calibration curve.

2.7. Alu-PCR to measure the amount of integrated
proviral genomes

Cells were harvested 24 h after infection and chromoso-

mal DNA was extracted with the GeneJET Genomic DNA
purification Kit (Thermo). The Alu LTR-based real-time

nested PCR is a method to quantify the integrated HIV-1

proviral DNA in infected cells [32]. In the first PCR step, inte-

grated HIV-1 sequences were amplified with outward-facing

Alu primer 50-TCCCAGCTACTGGGGAGGCTGAGG-30 and

HIV-1 specific primer 50-ATGCCACGTAAGCGAAACTCTG

GCTAGCTAGGGAACCCACT-30. Conditions for PCR were

denaturation at 958C for 10 min, subsequently 15 PCR cycles

with 958C for 10 s, 608C for 10 s and 728C for 2 min 50 s. Of

note, 2 ml of the products served as template in the second

nested PCR step using viral LTR primer 50-TGCTAGAGATT

TTCCACACTGACTAAAAGGG-30 and 50-ATGCCACGTAAG

CGAAACT-30. Conditions of the second nested PCR were as

follows: 958C for 10 min, 45 cycles at 958C for 10 s, 608C for

5 s, 728C for 10 s. All PCRs were performed in a Light Cycler

LC 480 (Roche). As reference gene we used b-globin, which

was quantified with forward primer 50-ACACAACTGTGTT

CACTAGC-30 and reverse primer 50-CAACTTCATCCACGTT

CACC-30. Relative proviral copy numbers were quantified

using the method of Pfaffl [33,34].

2.8. PHF13 overexpression and microporation
PHF13 overexpression was induced by treatment of U2OS-C5

cells for 16–24 h with 1 mg ml21 doxycycline (Sigma). Addition-

ally, human PHF13 was expressed from cells microporated with

pCG-PHF13-IRES-mTagBFP vector or the mTagBFP-only vector

control. Jurkat-TAg or SupT1 cells were microporated using the

Neon (Life Technologies) transfection system and the Jurkat-

specific protocol available from the Life Technologies website.

Briefly, 1 � 106 cells were washed with PBS, centrifuged at

400g for 5 min and the supernatant was discarded. The cell

pellet was resuspended in the provided buffer solution contain-

ing the DNA and electroporated with three electric pulses

(1350 V, 10 ms). Afterwards, cells were transferred in pre-

warmed RPMI1640 media without antibiotics and cultivated

for 24–48 h at 378C, 5% CO2 to yield optimal levels of protein

expression. DNA or siRNA amounts for 1� 106 cells were

5 mg of plasmid DNA or 100 nM siRNA, respectively.

2.9. Software and statistics
For data analysis we used Microsoft EXCEL or GraphPad PRISM

5.0 and 6.0. Densitometric immunoblot analysis was done

with the LICOR build-in software package. CORELDRAW X7

was used for the generation of figures and Microsoft WORD

as well as ENDNOTE X7 for manuscript writing. Statistical sig-

nificance was assessed with GraphPad PRISM 5.0 and 6.0. The

used respective statistical test is indicated in the according

figure legends.
3. Results
3.1. PHF13 levels are reduced upon HIV-1 infection
PHF13 represses gene expression of adenovirus and the authors

speculated that PHF13 might generally act as a virus restriction

factor, including HIV-1 as they observed reduced PHF13 levels

in an HIV-1 infected T cell line [23]. We first clarified whether

PHF13 is expressed in non-infected cell lines relevant for

production and infection of HIV-1 as well as primary target

cells (i.e. PBMC, CD4þ T cells and macrophages; figure 1a).
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Figure 1. PHF13 is expressed in HIV-1 target cells and its expression is
reduced early post-infection. (a) Total cellular lysates of the non-infected indi-
cated cell lines and primary cells were subjected to immunoblot for detection
of PHF13 (43 kDa) and tubulin as described in the Material and methods
section. One representative of at least three independent blots is shown.
(b) SupT1 cells were infected with 200 ng p24 VSVG pseudotyped HIV-1
NL4-3 or mock infected. Cells were harvested at the indicated time points
post infection, total cell extracts were prepared and analysed for expression
of PHF13, HIV-1 capsid p24 and actin by immunoblot. Similar results were
obtained in two additional biological replicates. (c) Densitometric analyses
of the data shown in (b). Values are normalized to total protein content
(actin) by dividing the intensity of PHF13 by the corresponding actin inten-
sity. Protein expression was calculated relative to the mock 0.5 hpi time point
which was set to 1. (d ) Primary CD4þ T cells from two different donors were
infected with 400 ng p24 VSVG pseudotyped HIV-1 NL4-3 or mock infected.
Cells were harvested 48 hpi, total cell extracts were prepared and analysed for
expression of PHF13, HIV-1 capsid p24 and actin by immunoblot.

rsob.royalsocietypublishing.org
Open

Biol.7:170115

4

 on October 17, 2017http://rsob.royalsocietypublishing.org/Downloaded from 
As a reference we used U2OS cells, because previous studies on

PHF13 were mainly conducted in this cell line [20]. PHF13 was

robustly expressed in 293T cells, which are standard to produce

infectious HIV-1 stocks from transfected proviruses and all

other cell lines tested. This includes the immortalized T cell

lines SupT1 and Jurkat, both being CD4þ T cell lines widely

used in HIV-1 research, as well as Jurkat latently infected

with HIV-1 (Jurkat-Lat). In addition, PHF13 was expressed in

unstimulated and PHA-treated PBMC and primary CD4þ T

cells. Macrophages had substantially lower, albeit detectable

PHF13 expression (figure 1a). Furthermore, PHF13 levels

were dramatically lower in HIV-1-infected T cells in compari-

son with uninfected controls, suggesting that HIV-1 actively

reduces PHF13 expression (electronic supplementary material,

figure S1). We next measured the dynamics of PHF13 reduction

upon HIV-1 infection. SupT1 CD4þ T cells were infected with

HIV-1 and aliquots of the infected culture were taken at differ-

ent time points post infection. These were subjected to

immunoblotting for the detection of PHF13, p24 (HIV-1

capsid protein) and actin (figure 1b). In comparison with

mock-infected SupT1 cells we detected substantial reduction
of PHF13 in infected cells already at 4 hpi, which reached a

maximum at 24 hpi (figure 1b and quantification figure 1c).

We also detected reduced PHF13 levels in primary HIV-1-

infected CD4þ T cells (figure 1d). From these data we conclude

that HIV-1 reduces PHF13 levels early post-infection in a

time-dependent manner in virally infected T cells.
3.2. HIV-1 Vpr induces reduction of PHF13 steady state
expression

HIV-1 has evolved a repertoire of multi-functional accessory

proteins, which are required for effective immune evasion

and the maintenance of high viral loads [6]. For instance, Vpu

counteracts the antiviral restriction factor Tetherin [35,36] and

Nef inhibits cell surface expression of MHCI to evade lysis of

infected cells by cytotoxic T lymphocytes [37]. In contrast, the

cellular target(s) of Vpr are less defined, although Vpr has

recently been described to activate the SLX4 complex in order

to suppress the innate immune response against HIV-1 [14]

and it degrades the DNA repair helicase HLTF [38–40].

We hypothesized that reduction of PHF13 expression

might be due to the action of an HIV accessory protein. We

hence infected SupT1 cells with HIV-1 NL4-3 variants contain-

ing inactivating mutations in the accessory proteins Vpr, Nef

and Vpu, and measured PHF13 protein levels (figure 2a).

WT HIV-1-infected SupT1 cells displayed strongly reduced

PHF13 levels, and the same was true for infection with

Nef- and Vpu-deficient HIV-1. Strikingly, infection with Vpr-

deleted HIV-1 (DVpr) resulted in PHF13 levels comparable

with mock-infected cells (figure 2a).

We next aimed to set up an easy system to analyse Vpr-

mediated PHF13 reduction in transfected 293T cells. However,

Vpr expression alone was not sufficient to reduce PHF13

protein levels (data not shown). We hence considered that

(i) 293T cells might not support Vpr-mediated PHF13 reduction,

(ii) additional viral proteins could be necessary to reduce

PHF13, and (iii) degradation of PHF13 may occur only in the

context of HIV-1 replication and therefore cannot be recapitu-

lated by transfection of HIV-1 proteins. Hence, we either

transfected or infected 293T cells with WT HIV-1 and the

DVpr variant (figure 2b). Transfection with full-length HIV-1

resulted in only marginally reduced PHF13 levels, despite trans-

fection efficiencies greater than 90% and high p24 levels.

In contrast, infection of 293T cells with VSVG pseudotyped

HIV-1 led to a complete loss of PHF13 expression and this

phenotype was again clearly attributable to Vpr (figure 2b).

Vpr is incorporated into newly synthesized virions and,

therefore directly present in infected cells prior to de novo syn-

thesis of viral proteins. To analyse whether virion-delivered

Vpr is sufficient for PHF13 reduction we used DVpr HIV-1

and transcomplemented Vpr in the producer cell by cotrans-

fection of the pCG-Vpr expression plasmid, similar to our

previous experiments [9]. When SupT1 cells were infected

with WT HIV-1 or DVpr that was transcomplemented

with Vpr, reduction of PHF13 was robust (figure 2c). In con-

trast, control cells infected with DVpr HIV-1 which was

transcomplemented with GFP only showed PHF13 levels

similar to mock-infected cells. From this data we conclude

that virion-delivered Vpr is sufficient to cause reduction of

PHF13 in the infected host cell. Furthermore, we demonstrate

the importance of Vpr for reduced PHF13 expression in

primary HIV-1-infected CD4þ T cells (figure 2d).
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Figure 2. Vpr is the viral determinant responsible for PHF13 reduction.
(a) SupT1 cells were infected with equal p24 amounts (200 ng) of VSVG
pseudotyped HIV-1 NL4-3 IRES-eGFP or variants with inactivating mutations
in Vpr, Nef or Vpu. Forty-eight hours post-infection cell lysates were subjected
to immunoblot against PHF13, HIV-1 p24, tubulin and Vpr. (b) 293T cells
were either transfected with equal DNA amounts of the indicated HIV-1
NL4-3 IRES-eGFP constructs or infected with same p24 amounts (100 ng)
of the respective VSVG pseudotyped HIV-1 NL4-3 IRES-eGFP virus stocks.
Thirty-six hours later cells were analysed by immunoblot for PHF13, HIV-1
p24 and tubulin levels. (c) SupT1 cells were infected with 200 ng p24 of
VSVG pseudotyped HIV-1 NL4-3 IRES-eGFP or the DVpr variant, transcomple-
mented in the 293T producer cells with Vpr or GFP only. Forty-eight hours
later, cells were lysed and subjected to immunoblot for detection of
PHF13, HIV-1 p24, tubulin and Vpr. In addition to p24 quantification all
transfections or infections presented in (a) – (c) were analysed by flow cyto-
metry for the % of GFPþ cells. These were similar within experiments and in
the range of 50 to 90%. All immunoblots presented in (a) – (c) were con-
firmed in at least two additional independent experiments. (d ) Primary
CD4þ T cells from two different donors were infected with 400 ng p24
VSVG pseudotyped HIV-1 NL4-3, a variant with inactivated Vpr ORF or
mock infected. Cells were harvested 48 hpi, total cell extracts were prepared
and analysed for expression of PHF13, HIV-1 capsid p24, actin and Vpr by
immunoblot.
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3.3. PHF13 is degraded in a GSK3b and calpain-
dependent manner post integration of the proviral
HIV-1 genome

Generally, the HIV-1 accessory proteins are adaptors which

induce the degradation of cellular factors [6]. To test whether

proteases or the proteasome are involved in HIV-1-mediated

PHF13 degradation, we treated HIV-1-infected SupT1 cells

with ALLN, a specific calpain inhibitor, lactacystin and

MG132, both inhibitors of the proteasomal degradation

machinery [41,42]. This set-up was chosen because MG132

is less specific than lactacystin and additionally inhibits cal-

pains, calcium-dependent, non-lysosomal cysteine proteases

[43]. Although MG132 and lactacystin were fairly toxic in

SupT1 cells, they clearly stabilized PHF13 expression at a

level similar to non-infected cells (figure 3a) and this pheno-

type was confirmed in HIV-1 infected 293T cells (data not

shown). Furthermore ALLN prevented PHF13 degradation

by HIV-1 (figure 3a).

The canonical pathway of Vpr-mediated protein degra-

dation is through association with an E3 ubiquitin ligase

complex which might ultimately lead to the degradation of

cellular targets [7,13], including HLTF [38–40]. The activity

of this complex can be inhibited by the neddylation inhibitor

MLN4924 [44]. Treatment of HIV-1-infected SupT1 cells with

increasing concentrations of MLN4924 did not result in stabil-

ization of PHF13, but rather showed PHF13 levels in infected

cells which were similar to mock or DMSO cells (figure 3b).

This suggests that neddylation does not play a major role in

PHF13 degradation by HIV-1.

Calpains are calcium activated [45] and we have shown that

Vpr increases intracellular calcium levels as well as induces

NFAT translocation [9]. PHF13 contains two PEST domains

which are phosphorylated by the NFAT export kinase GSK3b

to regulate PHF13 stability [20]. In addition, it has been

suggested that Vpr might regulate the activity of Skp1, the

GSK3b homologue in yeast [46] and GSK3b inhibition sup-

pressed Vpr-mediated NFAT translocation [9]. This led us to

hypothesize that GSK3b could be involved in Vpr-mediated

PHF13 degradation. To analyse this, HIV-1-infected SupT1

cells were treated with the GSK3b inhibitors SB216763 [47]

and insulin [48] and PHF13 levels were monitored by immuno-

blotting (figure 3c). Inhibition of GSK3b by both inhibitors

stabilized PHF13 and prevented its degradation in HIV-1-

infected cells. Hence, enzymes involved in the canonical

NFAT pathway, GSK3b and calpains, seem to be involved in

Vpr-mediated PHF13 degradation.

To analyse at which stage of the HIV-1 infection cycle PHF13

degradation occurs, we used different inhibitors targeting

specific steps of viral replication (figure 3d). Western blot analy-

sis revealed that treatment of HIV-1-infected cells with the

reverse transcriptase inhibitor Efavirenz and the integrase

inhibitor Raltegravir prevented HIV-1-mediated PHF13

degradation. In contrast PHF13 degradation by HIV-1 was unaf-

fected upon treatment with the protease inhibitor Saquinavir

and the transcriptional repressor Flavopiridol (figure 3d).

Altogether, we conclude from these experiments that PHF13 is

degraded by HIV-1 Vpr via calpains, the proteasome and

GSK3b at a post-integration step, probably before the onset of

viral gene expression. In line with this, the integration deficient

HIV-1 variant D116N [49] was also impaired in PHF13 degra-

dation (figure 3e). These results are also in agreement with our

http://rsob.royalsocietypublishing.org/


mock
– +

– +

– + – + – + – + – +

– + – + – + – + – + – +

– + + +++

– + – + – +

mock

mock

mock DMSO Ralte. Efavir. Saqui. Flavo

insulinSB216763

DMSO MLN
HIV-1

HIV-1

HIV-1

HIV-1

p24

p24

PHF13

PHF13

PHF13

actin

p24

tubulin

tubulin

moc
k

D11
6N

W
T

DVpr

PHF13

p24

tubulin

ALLN MG132
HIV-1

PHF13

actin

p24

LC
(a)

(b)

(c)

(d)

(e)

Figure 3. (Caption opposite.)

Figure 3. (Opposite.) PHF13 is degraded by the proteasome in a GSK3b-
dependent manner early post-integration. (a) SupT1 cells were infected
with equal amounts of VSVG pseudotyped HIV-1 NL4-3 IRES-eGFP. Simul-
taneously, cells were treated with 50 nM calpain Inhibitor I (ALLN), or at
6 hpi with 5 mM proteasome inhibitors lactacystin (LC) or MG132 for
additional 6 h. PHF13, actin and p24 expression were analysed by immuno-
blotting. The same result was obtained in one additional experiment.
(b) SupT1 cells were incubated with increasing amounts (0.1; 0.25; 0.5;
1 mM) of MLN4924, DMSO or were mock treated for 3 h. Subsequently
cells were infected with 200 ng p24 VSVG pseudotyped HIV-1 NL4-3 IRES-
eGFP. Forty-eight hours post-infection lysates were generated and analysed
for PHF13, tubulin and p24 expression by immunoblotting. (c) SupT1 cells
were treated with increasing amounts (10; 40; 100 mM) of GSK3b inhibitor
SB216763 or 100 nM insulin for 6 h, followed by infection with 200 ng p24
VSVG pseudotyped HIV-1 NL4-3 IRES-eGFP. Forty-eight hours post-infection
cells were analysed by immunoblot for PHF13, tubulin and p24 expression.
(d ) SupT1 cells were infected with 200 ng p24 VSVG pseudotyped HIV-1
NL4-3 IRES-eGFP, simultaneously cells were incubated with different drugs
inhibiting various steps of HIV-1 replication. Forty-eight hours post-infection
cells were lysed and subjected to immunoblot for the detection of PHF13,
tubulin and HIV-1 p24. Raltegravir was used at 250 nM, whereas Efavirenz,
Saquinavir and Flavopiridol were used at 50 nM. (e) SupT1 cells were infected
with 200 ng p24 of VSVG pseudotyped HIV-1 NL4-3, the DVpr variant or
HIV-1 with mutation D116N, blocking integration. Forty-eight hours later,
cells were lysed and subjected to immunoblot for detection of PHF13,
HIV-1 p24 and actin. The data presented in (b) – (e) were all confirmed in
at least two additional independent replicates. Furthermore, for (a) – (d )
the % of GFPþ cells was analysed in all experiments to control for equal
infection rates. With Raltegravir and Efavirenz the number of infected
(GFPþ) cells was reduced to background levels.
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time course experiments (figure 1b,c), because PHF13 degra-

dation occurs as early as 4 hpi, at a time point when HIV-1

integration is detectable in immortalized T cells [32,50,51].

3.4. PHF13 degradation by Vpr mutants and primary
lentiviral Vpr alleles

Next, we aimed to extend our characterization of Vpr-mediated

PHF13 degradation by the functional analyses of various

previously described Vpr mutants [9,27]. We infected SupT1

cells with HIV-1 NL4-3 containing either a disrupted Vpr

ORF or known mutations at positions L64, R77 or R80

(figure 4a). Vpr L64P is unstable, not incorporated into virions

[9] and as expected does not degrade PHF13. The R77A/Q

change and the R80A mutations do not disrupt Vpr’s ability

to degrade PHF13. Notably, R77A/Q and R80A are associated

with induction of cell death, whereas only R80A has lost

the capacity to arrest cells in G2 [12]. We corroborated these

results by a transcomplementation approach, in which virus

producing 293T cells are transfected to co-express Vpr. Hence,

in the newly infected cell, Vpr stems only from incoming vir-

ions, but is not produced from integrated proviral DNA
(compare [9] and figure 2c). Consistent with the data in

figures 2c and 4a, virion-delivered Vpr was sufficient to degrade

PHF13 and this was independent of mutations R80A or R77Q

(figure 4b). Similar to the L64P variant, L64-68A is not incorpor-

ated into virions [9] and hence defective in PHF13 degradation.

Mutants L22A and E21/24Q do not oligomerize and are

impaired in inducing PARP1 translocation [9,12]. Nevertheless,

both mutants degraded PHF13 (figure 4b), suggesting that Vpr-

mediated PHF13 degradation is not coupled to these functions.

In sum, the results support our model of PHF13 degradation

by incoming Vpr and this phenomenon seems functionally

unrelated to Vpr-mediated G2 arrest.

Because HIV-1 NL4-3 is a laboratory-adapted strain, we

aimed to clarify if primary Vpr alleles are also capable to

degrade PHF13 and if this function is conserved among HIV-

1 groups. From Eric Cohen we kindly obtained a collection of

primary Vprs ligated into the lentiviral pWPI backbone, expres-

sing Vpr and GFP from a bicistronic mRNA via an IRES [30].

Upon infection of SupT1 cells with Vpr-containing (and expres-

sing) VLPs, all primary Vpr alleles, except the HIV-1 M subtype

D_lo variant degraded PHF13 with a potency similar to Vpr

from the laboratory-adapted HIV-1 HXB, which serves as a

reference here (figure 4c). This is not surprising, because Vpr

D_lo is C-terminally elongated, mislocalizes to the cytoplasm

and was also inactive in other Vpr functions [30]. In contrast

and in agreement with our inhibitor experiments and mutagen-

esis approach, HIV-1 Vpr Group P which does not arrest cells in

G2 [30], markedly reduced PHF13 expression (figure 4c). In con-

clusion, PHF13 degradation is a conserved function of primary

HIV-1 Vpr alleles.
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producer cells with the indicated Vpr mutant, WT Vpr or GFP only as a con-
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200 ng of bicistronic pWPI-GFP lentiviral reporter constructs co-expressing GFP
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3.5. PHF13 overexpression prior to infection enhances
HIV-1 integration

We next aimed to elucidate the biological function of PHF13

within the HIV-1 replication cycle. For this, we used two

experimental systems: (i) U2OS-Clone 5 cells in which PHF13

expression can be induced by treatment with doxycycline [20]

and (ii) Jurkat-TAg cells transiently electroporated with a

pCG-CMV driven reporter construct coexpressing PHF13 and

mTagBFP via an IRES. PHF13 overexpression was induced in

U2OS-C5 cells and 24 h later cells were infected with HIV-1

NL4-3 GFP, allowing for quantitation of HIV-1 infection by

measuring the percentage of GFP-expressing cells. Treatment

with doxycycline induced PHF13 overexpression and the

number of HIV-1-infected (GFPþ) cells increased nearly 1.8-

fold (figure 5a). This was not observed in the parental cell line

U2OS (electronic supplementary material, figure S2). The

same was true for CD4þ Jurkat cells, which were electroporated

to express PHF13 (figure 5b), such that in BFP-positive cells,

which overexpressed PHF13, HIV-1 infection was roughly

twofold more efficient when compared with Jurkat cells
electroporated with a BFP-only control plasmid (figure 5b).

Hence, PHF13 appeared to enhance the number of infected cells

when it was expressed prior to infection of target cells, although

PHF13 was suggested to act as HIV-1 restriction factor [23].

PHF13 is involved in the regulation of DNA repair

[17,20] and chromatin-associated through direct binding to

H3K4me2/3 [21], which is superimposed on HIV recurrent inte-

gration genes [52]. This prompted us to test the effect of PHF13

on the number of integrated proviral genomes. Samples from

PHF13 overexpressing and HIV-1-infected U2OS-C5 and

Jurkat cells were taken at 24 hpi, and genomic DNA was

extracted to quantify the number of integrated proviruses by

Alu-PCR (figure 5c,d). Cells treated with the integration inhibitor

Raltegravir (þRalt.) during infection served as negative control

for the absence of proviral integration. This analysis revealed

that PHF13 overexpression prior to HIV-1 infection leads to a

higher number of integrated proviral genomes; in U2OS-C5

cells up to threefold and in Jurkat T cells with approximately

eightfold increased efficiency.

3.6. PHF13 overexpression suppresses HIV-1 gene
expression at the post integration stage

PHF13 appears to increase HIV-1 proviral copy numbers, but is

then degraded. This implies that PHF13 expression could have

antiviral effects at the post integration stage of the HIV-1 replica-

tion cycle. In order to test this hypothesis, PHF13-inducible

U2OS-C5 cells were infected with HIV-1 NL4-3 GFP. Twenty-

four hours later PHF13 overexpression was induced by addition

of doxycycline to the cell culture media followed by FACS analy-

sis 48 hpi. In contrast to what we observed when PHF13 was

overexpressed prior to infection (figure 5), the total number of

HIV-1-infected cells (% GFPþ) remained comparable between

doxycycline induced and non-induced cells (figure 6a). How-

ever remarkably, the GFP mean fluorescence intensity, which

is a marker for HIV-1 gene expression, was reduced in PHF13

overexpressing U2OS-C5 cells (figure 6b,c). This phenotype

was clearly PHF13 dependent because it was absent in infected

but mock-treated or parental U2OS cells (electronic supplemen-

tary material, figure S3). Furthermore, supernatants from

doxycycline induced and HIV-1-infected U2OS-C5 cells con-

tained approximately half the amount of infectious HIV-1

particles in comparison to the controls (figure 6d,e). In

conclusion, PHF13 inhibits HIV-1 gene expression and

production of progeny virions in the post-integration phase of

the viral replication cycle.

3.7. HIV-1 Vpr counteracts PHF13-mediated inhibition
of viral gene expression

Inhibition of viral gene expression imposed by PHF13 could be

antagonized by Vpr. To challenge this hypothesis, PHF13 indu-

cible U2OS-C5 cells were infected with equal amounts of WT

HIV-1 or the DVpr mutant. Simultaneously, PHF13 expression

was suppressed bysiRNA knock-down or induced by treatment

with doxycycline. 48 hpi cells and supernatants were harvested

and analysed by FACS and p24 ELISA (figure 7). As expected,

when PHF13 is overexpressed or knocked down at the post-

integration step, the total percentage of HIV-1-infected

(% GFPþ) cells was comparable between all infections

(figure 7a). Furthermore, cells were lysed and subjected to

immunoblotting. This confirmed equal infection efficiencies
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Figure 5. PHF13 expression prior to infection increases the number of integrated proviral genomes and infected cells. (a) U2OS-C5 cells were treated with
1 mg ml21 doxycycline or left untreated for 24 h before cells were infected with 100 ng p24 VSVG pseudotyped HIV-1 NL4-3 IRES-eGFP. Twenty-four hours post-
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rsob.royalsocietypublishing.org
Open

Biol.7:170115

8

 on October 17, 2017http://rsob.royalsocietypublishing.org/Downloaded from 
by p24 detection, the efficiency of siRNA-mediated PHF13

knock-down and PHF13 overexpression when induced with

doxycycline, as well as PHF13 degradation by Vpr (electronic

supplementary material, figure S4). Analysis of GFP mean fluor-

escence intensity as an indirect marker for HIV-1 LTR activity

and viral gene expression showed no influence of PHF13 knock-

down when cells were infected with HIV-1 WT (figure 7b). As

PHF13 is efficiently degraded by Vpr, this phenotype was
expected. Of note, when PHF13 was doxycycline induced in

HIV-1 WT-infected cells viral gene expression was reduced to

the level of mock or control siRNA transfected cells infected

with DVpr HIV-1. Conversely, knockdown of PHF13 in DVpr

HIV-1 infections led to a complete recovery of viral gene

expression similar to HIV-1 WT (figure 7b).

As an independent readout for viral gene expression and

production of progeny virions we took supernatants of the

http://rsob.royalsocietypublishing.org/
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same cells and measured the amount of released HIV-1 p24

capsid (figure 7c). This analysis mirrored the effects that we

observed previously when using GFP mean fluorescence inten-

sity of infected cells as an indicator for the efficiency of viral

gene expression. These experiments demonstrate that PHF13

interferes with HIV-1 gene expression and its activity is

counteracted by Vpr.
4. Discussion
In this study, the role of the nuclear protein and putative restric-

tion factor PHF13 for HIV-1 replication was investigated. PHF13

was shown to increase proviral integration and hence the total

number of infected cells. Nonetheless, PHF13 was degraded

by the viral accessory protein Vpr after integration (figure 8).

This degradation probably evolved due to inhibitory effects of

PHF13 on viral gene expression. Hence, PHF13 seems initially

important for efficient HIV-1 integration. At later steps, Vpr

degrades PHF13 to counteract its antiviral functions.

4.1. Vpr induces PHF13 degradation independent of its
interaction with the CUL4 E3 ubiquitin ligase complex

Vpr is a multi-functional HIV-1 accessory protein that is

assumed to play an important role during the early phase of
infection. This includes increased nuclear import of the viral

pre-integration complex (PIC), enhancement of HIV-1 reverse

transcription and induction of the G2 cell cycle arrest [7].

Interestingly, Vpr can cause epigenetic disruption of hetero-

chromatin by inducing displacement of heterochromatin

protein 1-a (HP1-a) through acetylation of histone H3 [53].

As HP1-a is in a complex with PHF13 [17,20], Vpr-mediated

PHF13 degradation could be mechanistically linked to this phe-

notype. Moreover, other proteins involved in DNA repair (i.e.

uracil-DNA glycosylase 2, single-strand selective monofunc-

tional uracil-DNA glycosylase and more recently the DNA

helicase/translocase HLTF) are degraded by Vpr through an

E3 ubiquitin ligase complex composed of VPRBP (Vpr binding

protein or DCAF), DDB1 and cullin 4A (CUL4A) [38–40,44,54].

Using the neddylation and CUL4A inhibitor MLN4924 we still

observed efficient PHF13 degradation by Vpr. Furthermore,

Vpr mutants and the primary HIV-1 P variant, which do not

associate with CUL4A or cause G2 arrest (figure 4) [30], effi-

ciently degraded PHF13. Accordingly, the Vpr-associated

CUL4A ubiquitin ligase seems inessential for PHF13 degra-

dation. In contrast, our data suggest that Vpr mediates PHF13

depletion through the proteasome involving GSK3b and cal-

pains. Consistent with our findings, PHF13 stability is

regulated by GSK3b [20] and Vpr has been proposed to influ-

ence the activity of the GSK3b homologue in yeast Skp1 [46].

Accordingly, we recently reported that virion-delivered Vpr
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Figure 7. Vpr counteracts PHF13-mediated suppression of viral gene
expression. U2OS-C5 cells were either mock transfected or transfected with
control siRNA (csiRNA) or siRNA constructs directed against PHF13
(siPHF13). Twenty-four hours later cells were infected with 100 ng p24
VSVG pseudotyped HIV-1 NL4-3 IRES-eGFP or the DVpr variant for 6 h,
washed and incubated for additional 18 h in medium with or without
1 mg ml21 doxycycline. Twenty-four hours later cells were analysed by
flow cytometry or ELISA for (a) the percentage of GFPþ, hence HIV-1-
infected cells, (b) MFI of the GFPþ cells as marker for LTR transactivation
and (c) the amount of p24 released in the supernatants. Mean values and
standard deviations were calculated from four (a and b) or three (c) indepen-
dent experiments and normalized to the HIV-1-infected and mock-treated
control. Statistics were calculated with one-way analysis of variance
(ANOVA) with a Bonferroni multiple comparison post-test. *p , 0.05;
**p , 0.01; ***p , 0.001; n.s., not significant.

rsob.royalsocietypublishing.org
Open

Biol.7:170115

10

 on October 17, 2017http://rsob.royalsocietypublishing.org/Downloaded from 
enhances intracellular calcium and induces NFAT translocation

[9], supporting the notion that Vpr has the capability to dysre-

gulate cellular players in the canonical NFAT pathway (i.e.

GSK3b and calpains).

The exact mechanism of Vpr-mediated PHF13 degradation

remains to be established. GSK3b substrates (i.e. PHF13) need
to be pre-phosphorylated by a priming kinase before GSK3b

can bind and hyperphosphorylate them [55]. Hence, it

is tempting to speculate that Vpr directly or indirectly

pre-phosphorylates PHF13 by hijacking an unknown inter-

mediate player. Intriguingly, Vpr can activate Wee1 kinase,

which subsequently leads to phosphorylation of cellular

targets, for instance p34-cdc2 [56]. Since we were not able to

show a direct interaction between Vpr and PHF13, or Vpr

and GSK3b, by FRET and coimmunoprecipitation experiments,

(data not shown) we argue in favour of the latter. The timely

activation of such a nuclear kinase by Vpr seems realistic, con-

sidering the rapid transport of virion-borne Vpr into the

nucleus as recently elegantly shown by sophisticated imaging

techniques [57], which is also in line with our observation of

rapid PHF13 degradation as early as 4 h after infection.
4.2. Mechanistic explanations for the enhancement
of HIV-1 integration by PHF13

HIV-1 integration induces DNA DSBs of the genome and the

two major pathways for DSB repair in mammalian cells, the

non-homologous end joining (NHEJ) or homologous recombi-

nation repair (HR) are activated [58]. Further, PHF13 depletion

enhances NHEJ repair activity but impairs HR, and conversely,

overexpression of PHF13 reduces NHEJ repair activity [17].

In our experiments high levels of PHF13 enhanced HIV-1

integration, arguing that HR could be more important for

viral integration than NHEJ.

The TRIM family protein KAP-1 inhibits HIV-1 integration

by binding to acetylated integrase and inducing its deacetyla-

tion, thereby negatively regulating integrase activity [59].

KAP-1, similar to PHF13, is also antiviral against adenoviruses

[60]. As PHF13 interacts with KAP-1 and modulates its chroma-

tin association [17] it could sequester KAP-1 and interfere with

KAP-1-mediated inhibition of HIV-1 integration. Another

aspect is that HIV-1 preferentially integrates in chromatin

localized at the periphery of the nucleus, at the borders of

heterochromatic Lamin-associated domains (LADs) [52,61,62].

Notably, H3K4me2/3 is superimposed on HIV recurrent inte-

gration genes at LAD borders [52], and recently Chung et al.
[21] demonstrated by a series of experiments direct binding of

PHF13 to H3K4me2/3. In conclusion, PHF13 could direct

non-integrated HIV-1 DNA to these active sites of heterochro-

matin at the nuclear periphery. Altogether, the different

functions associated with PHF13 are in line with our exper-

imental findings. In the future, it will be highly interesting to

delineate which feature(s) of PHF13 are associated with

enhanced HIV-1 integration, if and how there is an interplay

with the main HIV-1 integration factor LEDGF [63], and how

PHF13 influences HIV-1 nuclear distribution.
4.3. PHF13-mediated restriction of HIV-1 gene
expression is antagonized by Vpr

After integration, PHF13 leads to a reduction of HIV-1 gene

expression and virus production and release. PHF13 trans-

forms chromatin into a more condensed heterochromatin

form [20], which could be associated with suppression of

gene expression. For proper transcriptional activation of the

viral genome, DNA has to be in a decondensed form (euchro-

matin) to allow access of transcription factors and Tat [64,65].
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Hence, one theory is that PHF13 represses viral gene expression

at the level of transcription by formation of heterochromatin.

The expression level and localization of PHF13 are dynami-

cally regulated during the cell cycle and might play a role

during cell division [20]. In early G1–S, as well as early S

phase, PHF13 expression levels are significantly decreased but

during late G2 and M phases PHF13 levels are increased. This

indicates that PHF13 might be important during late G2 and

could drive cell cycle progression. In the G2 phase the HIV-1

LTR is in a higher transcriptional activation state and it was pos-

tulated that Vpr induces G2 arrest to promote efficient LTR

transactivation [7,66–68]. Hence, it can be speculated that Vpr

might degrade PHF13 to prevent cell cycle transition from G2

to G1. While this is an attractive hypothesis, our data argue

against PHF13 as essential factor for the Vpr induced G2

arrest: (i) PHF13 knockdown in U2OS cells did not promote

G2 cell cycle arrest (data not shown), (ii) the neddylation and

CUL4A ubiquitin ligase inhibitor MLN4924 did not block

Vpr-mediated PHF13 degradation, and Vpr mutants and var-

iants that were inactive in inducing G2 arrest efficiently

degrade PHF13. The ability of Vpr to induce G2 arrest correlates

with its association with the CUL4A ligase complex [13,69].

Therefore, in line with our data, both activities are probably

separable and functionally independent.

PHF13 knockdown in DVpr infections led to levels of

HIV-1 gene expression and virus release which were compar-

able to the levels observed with HIV-1 WT. While the

enhancing effect of Vpr on HIV-1 LTR transactivation has

been reported several times, the mechanistic explanation for

this phenotype was lacking [7]. With PHF13, we here identify

the cellular factor interfering with HIV-1 gene expression.

Clearly, this factor is degraded and antagonized by Vpr.

PHF13 directly binds to H3K4me2/3 and is a transcrip-

tional co-regulator, resulting in the up- and downregulation

of a multitude of genes involved in transcriptional regulation,

chromatin reorganization, cell cycle and differentiation [21]. Its

activity on transcription is probably due to its formation of a
complex with the RNA PolII and the PRC2. Indeed, Chung

et al. [21] have nicely shown that PHF13 depletion disrupted

this complex and leads to increased expression of genes with

high H3K4me2, H3K27me3 and other histone marks. Notably,

early LTR transcription is silenced by PRC2 and H3K27me3,

which also leads to HIV-1 dormancy [70]. We favour and put

forward a model in which PHF13 in complex with PRC2

silences HIV-1 gene expression at H3K4me2/3 integration

sites. This block is alleviated by Vpr-mediated PHF13

depletion. Of note, the multitude of Vpr effects on several cel-

lular processes [7,12,71] could be explained by the depletion of

PHF13 and its emerging role in transcriptional regulation and

co-transcriptional splicing [22].

Counteraction of cellular restriction factors is probably the

most important feature of lentiviral accessory proteins. Vif

antagonizes the APOBEC3G deaminase [72–75], Vpu and

Nef counteract Tetherin [35,36,76,77], and Nef counteracts

SERINC3/5 to maintain infectivity of viral particles [78–80].

Vpx, which is expressed by HIV-2 and some SIVs, neutralizes

the antiviral activity of the nucleotide hydrolase SAMHD1

[81,82]. Other antiviral host cell proteins (e.g. Trim5a) have

been evaded by the evolution of HIV-1 capsids which are not

sensed by this factor [83,84]. It is noteworthy that all these

cellular restriction pathways act at different stages of the viral

replication cycle. Trim5a prevents uncoating of the capsid,

APOBEC3G hypermutates the viral genome, SAMHD1 inter-

feres with reverse transcription, Tetherin with virus release

and SERINC3/5 with HIV-1 infectivity. With PHF13 we now

add a factor interfering with HIV-1 gene expression. As

PHF13 also dampens adenoviral gene expression [23], it is

likely that, similar to the restriction factors discussed above, it

could be part of the innate antiviral host defense machinery

acting against a broad panel of viruses. However, it has to be

noted that PHF13, similar to SERINC3/5, is not interferon-a

induced (electronic supplementary material, figure S5) [78,79].

Studies answering the above questions, as well as investi-

gation of the effects of Vpx and simian immunodeficiency
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virus, and primary patient-derived HIV-1 Vpr alleles on

PHF13 expression, are of high relevance.

4.4. Potential role of Vpr-mediated PHF13 degradation
in primary HIV-1 target cells, macrophages and
CD4þ T cells

PHF13 is expressed in most cell lines and primary cells, albeit we

observe substantially lower levels of PHF13 in primary macro-

phages in comparison to CD4þ T cells (figure 1a). As PHF13 is

a transcriptional regulator and active in cycling cells, this could

explain the low abundance in macrophages. Of note, recent

data demonstrate that HIV-1 preferentially infects G1-like cycling

macrophages, expressing phosphorylated and thus antiviral

inactive SAMHD1 [85]. If this minor population of macrophages

expresses high levels of PHF13 which could be degraded by Vpr

remains to be addressed. However, such a scenario could explain

the importance of Vpr for viral replication in macrophages

[27,86–89]. On the other hand, PHF13 is robustly degraded in

HIV-1-infected CD4þ T cells by Vpr. Also in certain immorta-

lized T cell lines HIV-1 Vpr was shown to have a positive effect

on viral replication [11,68]. It further clearly enhances replication

in human lymphoid tissue, mainly containing CD4þ T cells

[8,27], and we could recently demonstrate Vpr-mediated

enhancement of non-stimulated CD4þ T cell infection [9].

Hence, theaforementioned effects of Vprandconcomitant degra-

dation of PHF13 are probably relevant in primary HIV-1 target

cells. Furthermore, by favouring HIV-1 genome integration and

repressing viral transcription PHF13 might act as a latency pro-

moting factor. To clarify this highly relevant question further

experimentation is required and warranted.
5. Conclusion
The results of this study suggest that PHF13 has opposing

effects throughout the HIV-1 replication cycle (figure 8). After

viral entry and nuclear import of the PIC, PHF13 can increase

the number of integrated HIV-1 proviral genomes. After inte-

gration, PHF13 acts as antiviral restriction factor and inhibits

viral gene expression. HIV-1 counteracts this suppressive

effect on gene expression by Vpr, which promotes degradation

of PHF13. Nevertheless, due to its positive effects on integration

PHF13 is not a bona fide restriction factor. Fascinatingly, HIV-1

appears to have evolved a sophisticated and highly regulated

mechanism to exploit PHF13 for the optimization of viral

replication and virus production.
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