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ABSTRACT Testing for the existence of variance components in linear mixed models is a fundamental task in many applicative
fields. In statistical genetics, the score test has recently become instrumental in the task of testing an association between a set
of genetic markers and a phenotype. With few markers, this amounts to set-based variance component tests, which attempt
to increase power in association studies by aggregating weak individual effects. When the entire genome is considered, it
allows testing for the heritability of a phenotype, defined as the proportion of phenotypic variance explained by genetics. In the
popular score-based Sequence Kernel Association Test (SKAT) method, the assumed distribution of the score test statistic is
uncalibrated in small samples, with a correction being computationally expensive. This may cause severe inflation or deflation
of p-values, even when the null hypothesis is true. Here, we characterize the conditions under which this discrepancy holds,
and show it may occur also in large real datasets, such as a dataset from the Wellcome Trust Case Control Consortium 2
(n=13,950) study, and in particular when the individuals in the sample are unrelated. In these cases the SKAT approximation
tends to be highly over-conservative and therefore underpowered. To address this limitation, we suggest an efficient method
to calculate exact p-values for the score test in the case of a single variance component and a continuous response vector,
which can speed up the analysis by orders of magnitude. Our results enable fast and accurate application of the score test in
heritability and in set-based association tests. Our method is available in http://github.com/cozygene/RL-SKAT.
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The variance component model is a well established statistical
framework used in many scientific fields. Testing for an as-

sociation between several explanatory variables and a univariate
response produces a variety of useful applications. For example,
in metagenomics, an association is tested between a phenotype
(e.g, body mass index, blood glucose levels, blood lipid lev-
els, etc.) and the relative abundance counts of the measured
species (Zhao et al. 2015).
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In statistical genetics, testing for an association between a
set of genetic markers and a phenotype, such as a disease or
a trait, is a fundamental task. Since studies to detect genetic
signals are often underpowered, even with large datasets becom-
ing available, the common approach to help alleviate this issue
is grouping together genetic markers and testing them jointly.
Grouping genetic markers is commonly implemented under the
framework of variance component models. In addition to asso-
ciation testing, this framework can be used to answer several
questions, such as estimation of the underying heritability of
a phenotype (Kang et al. 2010); estimating the uncertainty of
such estimation (Furlotte et al. 2014; Schweiger et al. 2016, 2017);
phenotype prediction (Hayes et al. 2001), and more.
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We consider two main scenarios in which such tests are per-
formed: (i) a single phenotype, many sets of markers; (ii) many
phenotypes, a single set of markers. Scenario (i) is common
in set-testing, where relatively few markers are tested jointly.
This is particularly useful in the case of rare variants, which are
increasingly available for study using sequencing technologies,
and which consistute a large part of human genetic variability.
In such studies, a single phenotype is often tested against several
sets of markers (for example, all rare variants in a single gene),
because single-marker tests are often underpowered. Scenario
(ii) occurs when studying heritability, defined as the proportion
of phenotypic variance explained by genetics. Here, the tested
markers are commonly the entire set of genotyped or sequenced
single-nucleotide polymorphism (SNP) variants, or large por-
tions of the genome (defined by, e.g., chromosome or functional
annotation), and they are often tested against many (e.g., thou-
sands) of phenotypes. Such phenotypes could be expression
profiles of genes (Price et al. 2011; Wright et al. 2014; Lloyd-Jones
et al. 2017), methlyation levels across of various methylation
sites in the DNA (Quon et al. 2013; Van Dongen et al. 2016) or
neuroimaging measurements (Ganjgahi et al. 2015; Ge et al. 2015).

Within the variance components framework, a common ap-
proach for association testing is the score test. It is used, for
example, for testing the heritability of morphometric measure-
ments derived from brain structural MRI scans (Ge et al. 2015)
and on fractional anisotropy measures in subjects from the Ge-
netics of Brain Structure study (Ganjgahi et al. 2015).

The main popular alternative to the score test is the general-
ized likelihood ratio (LR) test, e.g. as implemented by GCTA, a
popular software package for heritability estimation (Yang et al.
2011). Both the score test and the LR test are based on proper-
ties of the likelihood function. The LR test statistic is calculated
from the likelihood of the best fitting model across different
heritability values, and from the likelihood of the model corre-
sponding to no heritability. Conversely, the score test is based
on the derivative of the likelihood function at the point corre-
sponding to zero association, and testing if it is significantly
nonzero. Compared with the LR test, the score test is often ad-
vantageous as it requires parameter estimation only for the null
model, whereas the LR test requires parameter estimation for
both the null and the alternative model. Additionally, the score
test is the locally most powerful test; see (Lippert et al. 2014)
for a thorough comparison between the two tests, mainly in the
context of set testing.

The Sequence Kernel Association Test (SKAT) (Wu et al. 2011)
has become the standard score-based test in statistical genetics
and in metagenomics (Zhao et al. 2015), in large part due to its
computational tractability. One of its merits is that it does not
rely on the asymptotic distribution of the score test statistic, in-
stead specifying a non-asymptotic distribution for the statistic
under the null hypothesis of no association. However, it has
been observed that this distribution may be inaccurate. In the
SKAT-O extension (Lee et al. 2012), a resampling-based moment-
matching correction is suggested. An adaptive permutation
testing procedure is suggested in (Hasegawa et al. 2016). Chen
et al. provide a method for calculating exact p-values (Chen et al.
2016); however, their method may be significantly slower than
that of SKAT, as it requires the eigendecomposition of a full rank
square matrix, whose computational complexity is typically cu-
bic in the sample size, for each distinct response variable (e.g.,
phenotype) or each set of explanatory variables (e.g., SNP set).
Finally, in these works, it is reported that this discrepancy occurs

mainly in studies having a small sample size, and it is currently
unclear to which extent the p-values of SKAT are calibrated for
large sample sizes.

Here, we undertake a thorough analysis of the null distri-
bution of the score test statistic, and its discrepancy under the
SKAT approximation. We suggest a practical way to quantify
this discrepancy, and show that such discrepancies may occur
even at large sample sizes. We show that a discrepancy is ex-
pected when the number of markers is comparable to or larger
than the number of individuals, and when the individuals are
relatively unrelated. In particular, in addition to such inaccura-
cies occuring in tests of sets of rare-variants in small samples,
we conclude that they may also occur in large scale heritability
studies. We further suggest a computational method, Recali-
brated Lightweight SKAT (RL-SKAT), that allows exact p-value
computation while maintaining computation time as in SKAT;
in particular, for multiple phenotypes tested against the same
marker set, only a single eigendecomposition is required. Finally,
we demonstrate and validate our results on two real datasets, a
large dataset from the Wellcome Trust Case Control Consortium
2 (Consortium et al. 2011) (WTCCC2) study and the Cooperative
health research in the Region of Augsburg (KORA) study (Holle
et al. 2005) dataset.

Materials and Methods

We begin by reviewing the score test, as defined by the SKAT
method (Wu et al. 2011) (see also the Supplemetary Information
of (Lippert et al. 2014) for an excellent review). We focus here
on continuous phenotypes, and on the case of a single variance
component; for other cases, see the discussion below.

The variance components model
We consider the following standard variance components model
(see (Searle et al. 2009) for a detailed review). Let n be the number
of observations and y be a n × 1 vector of responses. Let X be a
n × p design matrix of p covariates, associated with fixed effects
(possibly including an intercept vector 1n as a first column, as
well as other covariates) and let β be a p× 1 vector of fixed effects.
Finally, let K be a kernel matrix, which, in a kernel-based method
such as SKAT, can be taken to be any symmetric positive-definite
matrix that encodes similarity between individuals. Then, y is
assumed to follow:

y ∼ N
(

Xβ, σ2
gK + σ2

e In

)
, (1)

The fixed effects β and the coefficients σ2
g and σ2

e are the parame-
ters of the model.

In the context of statistical genetics, y is a vector of pheno-
type measurements for each individual and X is a matrix of
covariates (often including an intercept, sex, age, etc.). Let Z be
a n × m standardized (i.e., columns have zero mean and unit
variance) genotype matrix containing the m SNPs we test. The
common choice for K is a weighted dot product of the genetic
markers (Yang et al. 2010); formally, define K = ZWZ>, where
W is a non-negative m × m diagonal matrix assigning a weight
per SNP. A standard choice is the uniform Wi,i = 1/m (see (Wu
et al. 2011) for a discussion). The narrow-sense heritability due
to genotyped common SNPs is defined as the proportion of total
variance explained by genetic factors (Visscher et al. 2008):

h2 =
σ2

g

σ2
g + σ2

e
. (2)
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The score test
Under the above model, evaluating whether the tested covari-
ates influence the response, while adjusting for additional covari-
ates, corresponds to testing the null hypothesis σ2

g = 0. SKAT
tests this hypothesis with a variance component score test in
the corresponding mixed model. Specifically, the score statistic
in the single-kernel case is obtained from the derivative of the
restricted likelihood, discarding terms which are constant with
respect to y (Lippert et al. 2014):

Q(y) = y>SKSy (3)

where S = In −X(X>X)−1X> is the projection matrix to the sub-
space orthogonal to the covariates X. For clarity of presentation,
we will divide the statistic by σ2

e . Then,

Proposition 1. Let {φi} be the eigenvalues of SKS> and be χ2
1,i

are i.i.d. random variables distributed chi-square with one degree of
freedom. Then,

Q/σ2
e ∼

n

∑
i=1

φiχ
2
1,i . (4)

The proof of Proposition 1, as well as all proofs below, are
deferred to the Supplemental Material.

The exact distribution of the score test statistic

The above derivation is exact whenever σ2
e is known. However,

in practice, σ2
e is not known and needs to be estimated from

the data; most often, from the single response vector we are
testing. In practice, σ2

e is replaced with its restricted maximum
likelihood (REML) estimate. The REML estimate is simply the
corrected mean of the squared entries of the phenotype, after
regressing out the covariates and using S>S = S:

σ̂2
e (y) =

‖Sy‖2

n − p
=

y>Sy
n − p

. (5)

We note that sometimes the ML estimate y>Sy/n is used, or
just y>Sy; as this only introduces a multiplicative constant, we
use the unbiased REML estimate for simplicity of presentation
later. The statistic Q and σ̂2

e , are in fact dependent random vari-
ables. Therefore, the assumed distribution of Q/σ̂2

e (described in
Proposition (1)) does not hold when substituting σ2

e with its esti-
mate, σ̂2

e . In (Zhang and Lin 2003; Liu et al. 2007, 2008; Wu et al.
2011), this subtitution is justified by the claim that the (restricted)
ML estimator σ̂2

e is consistent, and may therefore be substituted
by its true value for a sample size n large enough. However,
this argument does not take into consideration the dependency
between Q and σ̂2

e . Also, as shown below, this distribution might
not hold in realistic settings. In (Chen et al. 2016), this discrep-
ancy is reported for small samples, and an exact distribution is
derived for the statistic Q/σ̂2

e , and for any n, K and X, which we
review here:

Proposition 2. The distribution of Q/σ̂2
e may be modeled as a ratio

of quadratic forms of normal variables. In particular, if z ∼ N (0n, In),
then

Q
σ̂2

e

d
= (n − p) · z>SKSz

z>Sz
(6)

Assessing the discrepancy
While noted in the literature (Zhao et al. 2015; Chen et al. 2016),
the above discrepancy is reported for small samples only. How-
ever, as we show now, it may occur also when the number of

individuals is large. We give a qualitative measure for when to
expect large discrepancies between the asymptotic approxima-
tion of a weighted mixture of chi-squares and the exact distribu-
tion.

In the Supplemental Material, it is shown that the distri-
butions of Q/σ2

e and Q/σ̂2
e have the same means, but that

Var(Q/σ2
e ) > Var(Q/σ̂2

e ), i.e. the latter having a smaller vari-
ance. We can further quantify the ratio between the variances as
an indicator to the discrepancy between the distributions.

Proposition 3. Denote the eigenvalues of SKS by φ1, . . . , φn and
note that there are at most n − p non-zero eigenvalues φi. Denote the
first two sample moments of the eigenvalues by φ̄ = ∑n

i=1 φi/(n − p)
and φ2 = ∑n

i=1 φ2
i /(n − p). Denote the empirical variance of the

eigenvalues by σ2(φ) = φ2 − (φ̄)2. Then,

R :=
Var(Q/σ2

e )

Var(Q/σ̂2
e )

=
n − p + 2

n − p
·
((

σ(φ)

φ̄

)−2
+ 1

)
(7)

The expression σ(φ)/φ̄ is the (sample) coefficient of variation
(CV) of the eigenvalues – a unitless, relative measure of their
dispersion. Therefore, the ratio becomes larger when the CV is
smaller. Also, as noted above, since the approximation wrongly
ignores the dependency between the statistic Q and σ̂2

e , we ex-
pect the discrepancy to grow larger as the correlation between
Q and σ̂2

e increases. We therefore examine this correlation as an
additional measure of this discrepancy.

Proposition 4. Let σ(φ)/φ̄ be the coefficient of variation (CV) of the
eigenvalues as above. Then,

Corr(Q, σ̂2
e ) =

((
σ(φ)

φ̄

)2
+ 1

)−1/2

. (8)

This again demonstrates that CV affects discrepancy – the
correlation becomes stronger when the CV is smaller. When
CV � 1, for example when K ≈ In, we have R � 1 and
Corr(Q, σ̂2

e ) ≈ 1. Conversely, when CV � 1, we have R ≈ 1
and Corr(Q, σ̂2

e ) ≈ 1/CV. This also gives the variance ratio as
the function of the correlation as

R =
n − p + 2

n − p
· 1

1 − Corr2(Q, σ̂2
e )

. (9)

To summarize, the discrepancy is strong when the eigenvalues
are more uniformly dispersed, and is weak when they have large
variability. The dispersion of the eigenvalues of a kinship matrix
has been previously shown to be related to the uncertainty in
estimation of heritability: In (Visscher and Goddard 2015), it is
shown that the asymptotic variance of the heritability REML es-
timator decreases with the variance of the entries of the kinship
matrix, and with the variance of the eigenvalues. In (Schweiger
et al. 2016), this result is shown without assumptions of asymp-
totics.

Examples. We now employ Propositions 3 and 4 to analyze sev-
eral interesting examples in a genetic context. For simplicity, in
the following, we use X = 0, so that p = 0 and S = In.

• Completely unrelated cohort. Suppose the cohort contains
completely unrelated individuals; then, K = In. Thus,
φ1 = . . . = φn = 1, so R = ∞, Corr(Q, σ̂2

e ) = 1, and
Q/σ̂2

e is the constant n. Compare this to the case where
σ2

e is known; then, it can be easily seen that Q/σ2
e ∼ χ2

n.
Therefore, the mean is the same but the variance vanishes
completely.
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• Rank-one kinship matrix. Consider the case of a simple
burden test (Lee et al. 2012): If we assume the random
effects s of all SNPs are identical, the burden test becomes
equivalent to the score test with K = uu>, where u =
Z1m. Alternatively, consider the extreme case, where all
the individuals are identical - K = 11> (while unlikely
in human, this could be approximately true in studies of
plants, yeast, etc.). In both these cases, there is a single
nonzero eigenvalue: φ2 = . . . = φn = 0, which gives R ≈ 1

and Corr(Q, σ̂2
e ) = (φ1/n)/

√
φ2

1/n = 1/
√

n; that is, with
large enough sample size, we expect the correlation to be
effectively zero, and the SKAT mixture approximation to
hold well.

• A full rank kinship matrix. Assume the matrix Z con-
tains m > n SNPs in linkage equilibrium, where each
column was mean-centered and normalized to have unit
variance. Choosing the linear kernel K = ZZ>/m, we
follow (Patterson et al. 2006) in modeling Z as a matrix
of random standard normal variables, from which it fol-
lows that K is a Wishart matrix. The limit distribution
of the density of the eigenvalues of K is specified by
the Marčhenko-Pastur distribution (Marcenko and Pas-
tur 1967), with its first two moments known to be 1 and
1 + n/m. Under this approximation, φ̄ ≈ 1, φ2 ≈ 1 + n/m,
σ2(φ) ≈ n/m, R ≈ (n− p+ 2)/(n− p) · (1+ n/m)/(n/m)
and Corr(Q, σ̂2

e ) ≈ 1/
√

1 + n/m. When m � n, as is often
the case, R � 1 and Corr(Q, σ̂2

e ) ≈ 1. This shows that for a
large class of kinship matrices, we would expect the SKAT
mixture approximation to hold poorly.

• A SNP set. Now, consider the case of set-testing, where
Z is a normalized matrix of m < n SNPs in linkage
equilibrium. Following the modeling above, we have
again R ≈ (n − p + 2)/(n − p) · (1 + n/m)/(n/m) and
Corr(Q, σ̂2

e ) ≈ 1/
√

1 + n/m; when m � n, R ≈ 1 and
Corr(Q, σ̂2

e ) ≈
√

m/n � 1, and thus expecting a good ap-
proximation by the mixture. This perhaps shows why the
SKAT mixture approximation was considered good in the
context of set-tests, when few variants or a large sample
is considered. This also shows why, in small samples, the
mixture is expected to be a poor approximation.

Calculating p-values
We now describe how to efficiently calculate p-values for the
distribution of the statistic r = Q(y)/σ̂2

e (y) calculated from the
data; that is, given an observed statistic r, what is Pr(Q/σ̂2

e > r)
under the null? We review the result in (Chen et al. 2016):

Proposition 5. Let r be the observed value of the statistic. Denote by
α
(r)
1 , . . . , α

(r)
n the eigenvalues of SKS − r/(n − p) · S. Then,

Pr
(

Q
σ̂2

e
> r
)
= Pr

(
n

∑
i=1

α
(r)
i χ2

1,i > 0

)
(10)

where χ2
1,i are i.i.d. random variables distributed chi-square with one

degree of freedom.

However, this condition requires us to calculate the eigenval-
ues of SKS − r/(n − p) · S for each new value r, which, naively,
has a complexity of O(n3). We consider two scenarios where
this is problematic. First, in many heritability studies, we wish
to test the heritability of many (e.g., thousands) of phenotypes,
all relative to the same kernel or kinship matrix (see above). For
each phenotype y1, . . . , yN , we calculate its score test statistic ri.

For p-value calculation, we need to compute the eigendecom-
position of SKS − ri/(n − p) · S for each observed statistic ri,
which is a significant computational burden.

A second problematic scenario is of an association study of
a single phenotype with many sets of SNPs, e.g. rare variants.
Choosing a weighted linear kernel as in SKAT (Wu et al. 2011),
we have Ki = ZiWiZ>

i for each set. As Ki changes with each test,
in principle, we need to perform a costly O(n3) eigendecompo-
sition for each matrix Ki. However, a significant computational
saving is gained due to the fact that the nonzero eigenvalues of
SKiS = SZiWiZ>

i S are the same as those of W1/2
i Z>

i SZiW
1/2
i ,

which is an m × m matrix (Lippert et al. 2014). As the number of
tested SNPs m is often small, calculating the eigenvalues of this
matrix instead is significantly faster, taking only O(m3), with
matrix construction taking only O(n(m + p)2) (see (Lippert et al.
2014)). However, with the exact approach, we need to calculate
the eigenvalues of SKiS − ri/(n − p) · S instead of SKiS. Even
when Ki is low rank, the matrix SKiS − ri/(n − p) · S may be
close to full rank, so another approach is needed.

The following characterizes the eigenvalues of SKS− r/(n −
p) · S given the eigenvalues of SKS:

Proposition 6. Let r be the observed score test statistic. Denote by
φ1, . . . , φn the eigenvalues of SKS. Denote the column space of a
matrix A by col(A), its null space by ker(A). Then,

Pr
(

Q
σ̂2

e
> r
)
=

Pr

(
k

∑
i=1

(
φi −

r
n − p

)
χ2

i,1 −
k+q

∑
i=k+1

r
n − p

· χ2
i,1 > 0

)
(11)

where k = rank(SKS) is the number of nonzero eigenvalues φi,
q = dim(ker(SKS) ∩ col(S)), and χ2

1,i are i.i.d. random variables
distributed chi-square with one degree of freedom, i = 1, . . . , k + q.

Proposition 6 shows that calculating the p-value amounts to
evaluating the cumulative distribution function (cdf) of a certain
weighted mixture of chi-square distribution at 0. This can be
done rapidly using the Davies method (Davies 1980), which is
based on the numerical inversion of the characteristic function
and runs in O(n) complexity, or using other methods (Duchesne
and De Micheaux 2010).

It remains to calculate k and q. Naively, this can be done in
O(n3), for example by calculating the singular value decompo-
sition (SVD) of SKS and S to get k and to obtain vector bases
for ker(SKS) and col(S), and by calculating the SVD of a ma-
trix whose columns are the two vector bases to obtain q. When
the same kernel is used with many phenotypes, it is a single
preprocessing step. However, when the number of SNPs used
to construct the kernel and the number of covariates are small,
these quantities can be calculated much faster:

Proposition 7. Suppose K = ZWZ>, and let k = rank(SKS) and
q = dim(ker(SKS) ∩ col(S)). Then, k and q can be calculated in
complexity O(n(m + p)2).

Most commonly, k = min(m, n)− 1. When the number of
SNPs m and the number of covariates p are small, the computa-
tional saving is substantial.

Data Availability
This study makes use of data generated by the Wellcome Trust
Case Control Consortium. A full list of the investigators who
contributed to the generation of the data is available from
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www.wtccc.org.uk. Funding for the project was provided by the
Wellcome Trust under award 076113. The KORA study was initi-
ated and financed by the Helmholtz Zentrum München German
Research Center for Environmental Health, which is funded by
the German Federal Ministry of Education and Research (BMBF)
and by the State of Bavaria. Furthermore, KORA research was
supported within the Munich Center of Health Sciences (MC-
Health), Ludwig-Maximilians-Universität, as part of LMUin-
novativ. The data used in this manuscript were obtained via
KORA.PASST (https://epi.helmholtz-muenchen.de/) with the fol-
lowing variables: KORA F4 Illumina HumanMethylation450K
BeadChip array, BMIQ normalization KORA F4 Affymetrix 6.0
SNP Array; imputed (HapMap2 reference panel). Access to the
data may be obtained by request to KORA.

Results and Discussion

Performance summary

We summarize the results described in above in Table 1 and in
Algorithms 1 and 2. We compare our method, RL-SKAT, with
the SKAT formulation and the correction of (Chen et al. 2016) us-
ing the naive implementation of Proposition 5, as implemented
by the MiRKAT software package (Zhao et al. 2015). The two sce-
narios discussed are those of a heritability study (same K with
many responses yi) and SNP set-testing (many low rank Ki). In
all methods, a preprocessing step of calculating X† and {φi} is
required. In a heritability study, calculating the statistic Q/σ̂2

e
amounts to evaluating two quadratic forms in O(n2). Compared
to RL-SKAT, MiRKAT requires a full O(n3) eigendecomposition
for each yi. For a set-testing study, these quadratic forms can
be calculated in O(n(m + p)) due to the low rank of Ki. Again,
MiRKAT requires a full O(n3) eigendecomposition, compared
to the O(n(m + p)2) procedure described in Proposition 7.

We now demonstrate our results on two datasets: a dataset
from the Wellcome Trust Case Control Consortium 2 (Consor-
tium et al. 2011) (WTCCC2) study and the Cooperative health
research in the Region of Augsburg (KORA) study (Holle et al.
2005). A full description of data preprocessing is given in the
Supplemental Material.

A simulation study using WTCCC2 data

We first analyze data with real genotypes from the WTCCC2
Multiple Sclerosis dataset, and simulated phenotypes. We used
the same data processing described in (Yang et al. 2014), resulting
in m=360,556 SNPs for n=13,950 individuals. We constructed the
kinship matrix by a standard, uniformly weighted linear kernel.
We sought to demonstrate the discrepancy between the true null
distribution and the chi-square weighted mixture distribution.
Following Proposition 4, we calculated the correlation to be
0.886 and variance ratio to be R = 4.69, indicating that a large
discrepancy is possibly expected. To verify this, we simulated
10,000 random phenotypes, where each phenotype is a vector of
i.i.d. standard normal variables. We tested whether the variance
component is significantly greater than zero, and calculated their
p-values under the assumption of either of the two distributions.
In Figure 1, we show the quantile-quantile plots for the two sets
of p-values. As evidenced, using the SKAT mixture distribution
results in a severe deflation of small p-values, while using the
correct distribution as in Proposition 1 results in an accurate
p-value distribution. This shows that even for large sample sizes
(n=13,950), such a discrepancy is possible.
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Figure 1 Statistic distribution. Results of the WTCCC2
data analysis, presented by quantile-quantile plots of the
− log10(p)-values for heritability significance of 10,000 ran-
dom phenotypes drawn under the null distribution. Significant
deviation from the black line indicates a deflation arising from
an inaccurate null distribution. Calculation under the assump-
tion of a weighted mixture of chi-square distributions, gives
deflated p-values and potentially creating false negatives. Us-
ing the correct distribution, as implemented in RL-SKAT, results
in calibrated p-values.
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Figure 2 Power study. The power of the accurate approach and
SKAT is shown for p-value threshold of p = 0.05, for the KORA
dataset, on 10,000 simulated phenotypes with varying degrees
of true underlying heritability. SKAT is seen to be severely
underpowered.
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Algorithm 1 RL-SKAT for heritability

procedure PREPROCESSING(X, K) . Preprocessing step, done once
Calculate X† = (X>X)−1X> . O(np2)
Calculate SKS using S = I − XX† . O(n2 p)
Calculate φ1, . . . , φn, the eigenvalues of SKS . O(n3)
Extract k = rank(SKS) . O(1)
Calculate q = dim(ker(SKS) ∩ col(S)) using Proposition 7 . O(n(n + p)2)

procedure TEST(y) . Calculate p-value for a single phenotype y
Calculate the score: r := Q/σ̂2

e = (n − p) · y>SKSy/y>Sy . O(n2)

Calculate {α
(r)
i } as in Propositions 5 and 6 . O(n)

Calculate the p-value p = Pr
(

∑n
i=1 α

(r)
i χ2

1,i > 0
)

using the Davies method . O(n)

Algorithm 2 RL-SKAT for set-tests

procedure PREPROCESSING(X, ZW1/2) . Preprocessing step, done once
Calculate X† = (X>X)−1X> . O(np2)
Calculate SZW1/2 using S = I − XX† . O(nmp)
Calculate φ1, . . . , φn as the squares of the singular values of SZW1/2 . O(nm2)
Extract k = rank(SKS) . O(1)
Calculate q = dim(ker(SKS) ∩ col(S)) using Proposition 7 . O(n(m + p)2)

procedure TEST(y) . Calculate p-value for a single phenotype y
Calculate the score: r := Q/σ̂2

e = (n − p) · y>SKSy/y>Sy, using K = ZWZ> . O(n(m + p))
Calculate {α

(r)
i } as in Propositions 5 and 6 . O(n)

Calculate the p-value p = Pr
(

∑n
i=1 α

(r)
i χ2

1,i > 0
)

using the Davies method . O(n)

Table 1 Performance summary. Comparison of the different approaches for p-value calculation discussed. RL-SKAT achieves accu-
racy while remaining computationally efficient.

Scenario Algorithm Exact? Preprocessing Calculating Q/σ̂2
e Calculating p-value

Heritability

SKAT Approximate O(np2 + n2 p + n3) O(n2) O(n)

MiRKAT Exact O(np2 + n2 p) O(n2) O(n3)

RL-SKAT Exact O(np2 + n2 p + n3) O(n2) O(n)

Set-testing

SKAT Approximate O(np2 + nmp + nm2) O(n(m + p)) O(n)

MiRKAT Exact O(np2 + nmp) O(n(m + p)) O(n3)

RL-SKAT Exact O(np2 + nmp + n(m + p)2) O(n(m + p)) O(n)
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Testing for heritable methylation sites in the KORA dataset

The longitudinal KORA study consists of whole-blood methyla-
tion levels and genotypes of n=1,799 individuals. The phenotype
is the proportion of methylated samples at a specific site, aver-
aged across DNA samples of an individual. The study consists of
independent population-based subjects from the general popula-
tion living in the region of Augsburg, southern Germany (Holle
et al. 2005). Whole-blood samples of the KORA F4 study were
used as described elsewhere (Pfeifferm et al. 2015). In summary,
a total of 431,366 methylation site phenotypes, and 657,103 SNPs,
were available for analysis. The correlation as in Proposition 4 is
0.976 and the variance ratio is R = 22.01, indicating again that a
large discrepancy is expected. We performed a heritability study
of multiple phenotypes with the same kinship matrix, by testing
the heritability of the N=43,140 methylation sites on chromo-
some 1. As it is common for a methylation site to be correlated
with its surrounding SNPs (Gibbs et al. 2010; Zhang et al. 2010;
Bell et al. 2011), we avoided such cis effects by using a kinship ma-
trix constructed from the m=604,170 SNPs on all chromosomes
other than 1. The kinship matrix is constructed by a standard,
uniformly weighted linear kernel. For covariates, we used X con-
sisting only of an intercept vector. Again, we calculated p-values
under the assumption of the two distributions. We note that it
has been shown that some methylation site profiles often display
significant heritability, while others do not; thus, both significant
and insignificant p-values are expected (Rahmani et al. 2017).

In Figure 3 we show the histograms of the log10 of the p-
value of all the considered phenotypes. The two histograms are
indeed very different; p-values calculated using the inaccurate
SKAT mixture distribution indicate that the heritability of almost
all sites is considered insignificant; for example, using a Bon-
ferroni threshold of 0.05 · 1/43140 ≈ 10−6, only 8/43,140 sites
are significant. In light of the results above, it is reasonable to
suspect that p-values of many heritable phenotypes are deflated,
thus causing false negatives. The p-values distribution has a
peak around 0.5, likely an artifact of the inaccurate calculation
method. In comparison, p-values calculated by RL-SKAT do not
exhibit such a peak. They are significantly smaller, and using the
same Bonferroni threshold, we now find 319/43,140 significant
sites. Indeed, a simulated power study of both approaches un-
der varying degrees of true underlying heritability validates that
the inaccurate approach results in a severe decrease in power
(Figure 2), which has been reported in the literature (Uemoto
et al. 2013). As a point of reference, we compared the power of
RL-SKAT with that of the popular LR test approach, and found
the have similar power (see the Supplemental Material). We
conclude that in this dataset, using the SKAT distribution for
p-value calculation is highly problematic.

Benchmarks

Finally, we benchmarked the methods discussed here on the
KORA dataset under the two above scenarios, on a 64G, 2.2GHz
Linux workstation, using our implementation in the Python
language. We verified that the relevant part of our implemen-
tation is equivalent to MiRKAT and has a very similar running
time. For the scenario of heritability testing, we calculated the
p-values of 1000 phenotypes with the kinship matrix. For the
scenario of set testing, we used 1000 sets of 100 SNPs each. The
results are summarized in Table 2; as expected, the computa-
tional savings are very significant, achieving a speedup of more
than two orders of magnitude. We expect the speedup to be
even more significant for larger datasets.

Discussion

In summary, we have shown that the distribution suggested by
SKAT to the score test statistic may be very inaccurate. Unlike
previous studies, which have noted this discrepancy only in
small sample sizes, we have shown that it might occur in large
studies as well. We have proposed a computational method
to accurately calculate p-values without compromising compu-
tational time. Finally, we demonstrated our findings in two
datasets.

The exact calculation of p-values can be applied to other
variants of the score test; for example, the SKAT-O (Lee et al.
2012) seeks to find an optimal combination of burden tests and
non-burden tests, which amounts to the score test with a certain
kernel.

In this work, we focused on the case of a single kernel, and on
a continuous phenotype. The extension of this work to multiple
kernels (e.g., corresponding to several sets of SNPs) or to binary
phenotypes (e.g., case/control studies) is nontrivial, as the null
distribution cannot be modeled as a ratio of quadratic forms; see,
e.g., (Wu et al. 2016; Wang 2016). It therefore remains a subject
for future work.

We believe that the prominence of likelihood-ratio based
tests in heritability studies might stem from the statistical issues
discussed above; see for example (Uemoto et al. 2013), where
SKAT was found to be significantly less powerful. It is our
hope that this paper would facilitate the use of score tests in
heritability studies in the future.
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