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ABSTRACT Diet can influence the composition of the human microbiome, and yet
relatively few dietary ingredients have been systematically investigated with respect
to their impact on the functional potential of the microbiome. Dietary resistant
starch (RS) has been shown to have health benefits, but we lack a mechanistic un-
derstanding of the metabolic processes that occur in the gut during digestion of RS.
Here, we collected samples during a dietary crossover study with diets containing
large or small amounts of RS. We determined the impact of RS on the gut micro-
biome and metabolic pathways in the gut, using a combination of “omics” ap-
proaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics.
This multiomics approach captured changes in the abundance of specific bacterial
species, proteins, and metabolites after a diet high in resistant starch (HRS), provid-
ing key insights into the influence of dietary interventions on the gut microbiome.
The combined data showed that a high-RS diet caused an increase in the ratio of
Firmicutes to Bacteroidetes, including increases in relative abundances of some spe-
cific members of the Firmicutes and concurrent increases in enzymatic pathways and
metabolites involved in lipid metabolism in the gut.

IMPORTANCE This work was undertaken to obtain a mechanistic understanding of
the complex interplay between diet and the microorganisms residing in the intes-
tine. Although it is known that gut microbes play a key role in digestion of the food
that we consume, the specific contributions of different microorganisms are not well
understood. In addition, the metabolic pathways and resultant products of metabo-
lism during digestion are highly complex. To address these knowledge gaps, we
used a combination of molecular approaches to determine the identities of the mi-
croorganisms in the gut during digestion of dietary starch as well as the metabolic
pathways that they carry out. Together, these data provide a more complete picture
of the function of the gut microbiome in digestion, including links between an RS
diet and lipid metabolism and novel linkages between specific gut microbes and
their metabolites and proteins produced in the gut.
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rebiotics include some classes of dietary carbohydrates that are resistant to deg-

radation in the small intestine but metabolized by microbes in the colon, where
they are fermented into short-chain fatty acids (SCFA), gases, and other products, which
directly or indirectly affect the health of the host (1). The amount and types of
carbohydrates that reach the colon affect the composition of the gut microbiome (1, 2)
as well as the metabolic end products of microbial degradation (3). Foods that are
enriched with resistant but fermentable starches are of interest as prebiotics due to
their potential health benefits.

Resistant starch (RS) is an example of a complex carbohydrate and prebiotic that is
relatively resistant to degradation in the small intestine by a-amylase, a starch degra-
dation enzyme produced by the host. The degree of resistance to degradation is largely
dependent on the proportion of amylose to amylopectin that the starch molecule
contains. Amylopectin is a glucose polymer that is susceptible to enzymatic hydrolysis
by amylase at branching points occurring at «1-6 glycosidic bonds every 24 to 30
glucose units. In contrast, amylose is a more linear glucose polymer with primarily a1-4
glycosidic bonds that are not easily hydrolyzed. The crystallinity, particle size, structure,
and cooking approach are also factors that contribute to the digestibility of starches in
the diet. In this respect, RS can be classified into 4 different types: RS type 1 is physically
inaccessible, RS type 2 is native granular starch consisting of ungelatinized granules, RS
type 3 is retrograded amylose, and RS type 4 is chemically modified to make it
indigestible. Depending on the formulation of RS, the gut microbiome has been
reported to respond differently, with a trend for an increase in Bacteroidetes compared
to Firmicutes after an RS4 diet (4) and the opposite trend after an RS2 diet (5).

Once RS enters the colon in a form that is accessible to microbial digestion, it is
fermented to SCFA, such as butyrate. Butyrate has several proposed health benefits,
including provision of energy for colonic epithelial cells and improvement of insulin
sensitivity (6). Previous studies have established links between specific members of the
gut microbiome and RS digestion (2), including the key role of some members in
fermentation of RS to butyrate (7, 8). Specific taxa that have been shown to be involved
in RS metabolism include Faecalibacterium prausnitzii, Eubacterium rectale, and Rumi-
nococcus bromii (2, 9-11).

Here, we aimed to go beyond understanding impacts of RS at the microbial
community level, to gain a more complete understanding at a mechanistic level of
the impact of RS on the metabolic functions that are carried out by members of the gut
microbiome during RS digestion in conjunction with the host. We studied the gut
microbiome in stool samples collected from a cohort of individuals who had a pre-
scribed diet with high or low levels of RS in a crossover study design. We used a
within-subject crossover design to determine at what levels the responses were most
clearly manifested. To identify the functional potential of the gut microbiome during RS
digestion, we leveraged our development of untargeted “shotgun” approaches to
determine the complement of proteins (metaproteomics) (12) and metabolites (13) in
the gut. Together, this multiomics approach enabled us to develop a more complete
picture of the metabolic processes occurring in the gut during RS digestion.

RESULTS AND DISCUSSION

The dietary study included 39 participants with reduced insulin sensitivity, as
assessed using a homeostatic model assessment of insulin resistance (HOMA-IR) below
the median (14). The rationale for choosing insulin-resistant subjects was to determine
whether the diet would improve insulin sensitivity, as previously reported (15-18). The
participants consumed diets with either large amounts of carbohydrates (n = 16) or
small amounts of carbohydrates (n = 23), following a baseline diet. Next, all participants
consumed either large or small amounts of resistant starch (HRS or LRS, respectively) for
2 weeks, in a crossover time series study (see Fig. S1A in the supplemental material),
with a 2-week baseline washout diet in between. Fecal samples were collected after the
baseline diet (day 14) and again after the LRS and HRS diets (day 28 or day 56,
respectively), for a total of 3 samples per subject (Fig. STA and B). Macronutrient
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distributions in the baseline diet and both RS diets were similar, whereas the baseline
diet was low in foods containing naturally occurring RS. The HRS diet included
high-amylose cornstarch (Hi-Maize 260; Ingredion Inc., Bridgewater, NJ; 41.5 g RS/100 g
starch), while the LRS diet contained conventional, high-amylopectin cornstarch (Melo-
jel; Ingredion Inc., Bridgewater, NJ; 2.3 g RS/100 g starch). The amount of RS was
designed to match the carbohydrate load of the diet. Therefore, subjects in the
high-carbohydrate (HC) arm of the study consumed either 66 g RS for the HRS diet or
4 g for the LRS diet, whereas for the low-carbohydrate (LC) arm of the study the
subjects consumed either 48 g for the HRS diet or 3 g for the LRS diet, based on 2500
kcal/day menus (Fig. S1B). In the LRS diet group, Melojel cornstarch was consumed
cooked and in baked goods, while approximately 50% of the Hi-Maize cornstarch in the
HRS diet group was consumed raw and mixed with beverages, soups, or fruit purees.
The HRS and LRS diets were otherwise balanced with respect to amounts of fat, protein,
and food fiber, as described elsewhere (19).

All of the fecal samples were subjected to 16S rRNA gene (16S) sequencing to
determine the impact of diet on the gut microbial community structure. Interpersonal
variation was identified as an important factor, with samples clustering by patient
throughout the dietary intervention (Fig. S2A). The effect of prescribed diet was also
significant, and the low-carbohydrate diet showed the greatest impact of RS supple-
mentation on the microbial community structure (Fig. S2B). Therefore, the remaining
analyses that we present here focus on the samples from the low-carbohydrate diet
arm of the study (23 participants; 3 samples taken at 3 time points each, for a total of
69 fecal samples [Fig. S1B]). The 16S data also revealed that diet had a significant
impact on the microbiome structure, irrespective of the time of sampling during the
crossover study. For this reason, we classified samples based on the resistant starch
load of the diet at the time of sampling (baseline, HRS, or LRS, respectively), without
differentiating if that diet was assigned first or second during the crossover study.

In agreement with earlier observations (15-18), we reported significantly attenuated
postprandial insulin and glucose responses to the HRS meals (19). Whereas the HRS and
LRS diets did not affect fasting concentrations of insulin and glucose, the HRS meals
(19) produced significantly lower postprandial insulin and glucose responses, expressed
as incremental area under the curve (IAUC), compared to LRS meals (19). These results
suggest a potential utility for RS in improving meal-to-meal regulation of blood
glucose. However, we also found that plasma levels of trimethylamine-N-oxide (TMAO),
a biomarker of cardiovascular disease (CVD) risk, were higher following the HRS diet
(19). Therefore, the relative benefits of dietary RS should be further investigated,
probably on a per-individual basis.

Consistent with previous reports (2), we found that the HRS diet resulted in a shift
in the structure of the gut microbiome (Fig. 1). Although the bacterial structure of the
fecal samples varied between individuals (Fig. S3), there was a consistent increase in the
proportion of Firmicutes to Bacteroides following the HRS diet compared to the baseline
and LRS diets (Fig. 1), suggesting that members of the Firmicutes had a selective
advantage over members of the Bacteroides when there were large amounts of RS in
the diet. These changes included increases in relative amounts of species in the genera
Faecalibacterium, Roseburia, and Ruminococcus, which have been associated with bu-
tyrate production (20, 21) and found to be reduced in abundance in the gut microbiota
of participants with type 2 diabetes mellitus (T2DM) compared to healthy individuals
(22). Consistent with the increase of F. prausnitzii, Roseburia, and Ruminococcus, short-
chain fatty acid analysis revealed a slight increase of butyrate and propionate in the
fecal samples of participants consuming the HRS diet. Valerate and isovalerate were not
affected by the different diets. Further, specific taxa that increased following the HRS
diet included Faecalibacterium prausnitzii, Prevotellaceae, Ruminococcus, Eubacterium
rectale, Roseburia faecis, and Akkermansia muciniphila (Fig. 1), several of which have
previously been reported to increase in the colon following a high resistant starch diet
(2,9, 11).

In the present study, we went beyond taxonomic characterization to also investigate
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the functional shifts according to diet. We first employed a shotgun metaproteomics
approach (n = 24) (12) to determine the identities of thousands of host and microbial
proteins across the samples. The main Clusters of Orthologous Groups (COG) classes
(Fig. 2A) represented in the protein data included those for translation, carbohydrate
metabolism and transport, energy production and conversion, amino acid metabolism
and transport, and lipid metabolism. We added taxonomic annotations to the 56,294
bacterial proteins detected (Fig. 2B) and focused on proteins involved in carbohydrate
metabolism and transport that were significantly shifted in relative abundance by diet
(Fig. 2C). Of these, several proteins involved in butyrate metabolism were significantly
altered, as verified with the post hoc Kruskal-Nemenyi test (Fig. 2C), including butyrate
kinase (baseline versus HRS, P < 0.001; HRS versus LRS, P < 0.01) and enoyl coenzyme
A (enoyl-CoA) hydratase (LRS versus baseline, P < 0.0001; LRS versus HRS, P < 0.003).
A targeted quantification of butyrate in the samples revealed trends for increased
butyrate accumulation in the HRS diet and to a lesser extent in the LRS diet, although
this was highly variable between individuals (data not shown). Cross-feeding effects
between gut microbial populations have previously been shown to increase variability
between individuals because butyrate producers often take longer to become estab-
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lished after a dietary intervention (23). Furthermore, proteins involved in energy
production and conversion (phosphotransacetylase) and nucleotide metabolism and
transport (adenylosuccinate synthase, adenine/guanine phosphoribosyltransferases
[PRPPs], and related PRPP-binding proteins) were correlated with the HRS diet
compared to baseline (Fig. 2A and B). Proteins assigned to the main COG classes and
their corresponding phyla are shown in Fig. 2D; additional significant COG terms are
visualized in a heat map in Fig. S4.

The use of 16S data together with proteomics provided us with greater resolution
of functional roles of members of the gut microbiome. There was a high correlation
between the 16S data and the proteome data with respect to operational taxonomic
unit (OTU) and protein abundance (Fig. 2E), with more proteins detected for the more
abundant community members. For example, some members of the Firmicutes and
Bacteroidetes were both highly abundant at the 16S level and had the largest amount
of proteins detected. The most abundant families with the major protein identifications
were Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, and Prevotellaceae. There
were some outliers, e.g., the Eubacteriaceae, which had a relatively low abundance but
a high number of proteins detected, indicating a high level of protein production per
individual in this group. Another outlier was Pasteurellaceae, which were relatively
abundant but had few proteins assigned, suggesting that the represented populations
were not very active at the sampling time. The Proteobacteria were intermediate in
abundance and protein levels. Furthermore, the taxonomic assignment was attained for
many of the proteins (14%) based on the gut reference isolate database used for the
proteome searches. Most of the carbohydrate metabolism enzymes and transport
systems associated with the HRS diet were affiliated with specific species, such as
F. prausnitzii and Coprococcus comes, some of which were also more abundant follow-
ing the HRS diet than at baseline and after the LRS diet.

Analysis of human proteins in the samples revealed a relative enrichment of some
human proteins involved in lipid metabolism with the HRS diet by comparison to
baseline. These included lipases, such as colipase, pancreatic triglyceride lipase, and bile
salt-stimulated lipase. In contrast, human a-amylase was negatively correlated with the
HRS diet, presumably because of the resistant nature of the starch that made it less
accessible as a substrate during digestion (24, 25).

We used high-resolution mass spectrometry (Fourier transform ion cyclotron reso-
nance mass spectrometry [FT-ICR-MS]) to analyze metabolites in the same fecal samples
(n = 45). Metabolites were extracted with methanol and analyzed by FT-ICR-MS. Data
filtering and metabolite assignment using the MassTRIX (26) web server revealed 5,552
features, the majority (62%, 3,416 features) of which were unknown but assigned to
molecular formulas using NetCalc (27). Thirty-eight percent (2,136 features) could be
assigned to compounds. Nine percent (525 features) of the total 5,552 features are
listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (28) pathways.

By application of multivariate statistical analyses (Fig. 3), significant changes in gut
metabolites were found between samples collected after the HRS and baseline diets
(Fig. 3A) but not between baseline and LRS diets. Furthermore, a trend toward
separation was observed between the HRS and LRS diets (Fig. 3B). Several orthogonal
partial least-squares discriminant analysis (OPLS-DA) models were applied (Table 1),
which revealed significant features that were highly affected by the HRS diet compared
to baseline and LRS diets. This showed that almost half (46%, 2,566 features) of the total
5,552 features were altered by diet. As a consequence, 2.7% or 3.0% of the 46%
significant features detected were related to the baseline or LRS diets, respectively,
whereas a much higher percentage was related to the HRS diet (74.7% of the total
significant 2,566 features). Given the high number of unknown metabolites and the
accompanying difficulty of identification and classification (29, 30), we focused only on
the metabolites that were altered by diet according to OPLS-DA results.

The metabolite data strengthened the overall evidence that lipid metabolic path-
ways carried out by both the host and the microbiome were impacted by diet (Fig. 3A
and B). Several metabolites in pathways involved in lipid metabolism were significantly

September/October 2017 Volume 8 Issue 5 €01343-17

mBio’

mbio.asm.org 6


http://mbio.asm.org

Impact of Resistant Starch on Human Gut Microbiome

B ! E
100 279.232882
253217286
281248559
313217220
289217307
285149598
20 g 349238435
40 Y [} 5o 331.227864
319.264204
€0 . -100 333.243485
-80 [
-100 o
100 80 -60 40 20 0 20 40 60 80

1] (23%)

o BASELINE

60
40

tol11(16%)

315.232938
291.232903
317.248548
171.139046
199.170355
227201651
285.185993
345207151
301.217257
c 315.196593
319.227841

333.207132

281.087789

353.233346

449.327277

309.207131

335.222782

287.222731

337.238417

325.202045

351.217674

327.217677

329.233207

311222782

313.238436

337.311207

® 227128851
367.212654

369.228264

Baseline = ® HRS =@

0,04

poso[1]

463.233622
464.338369
435.348004
488.323154
363.217693
423275237
365.233330
367.248997
403.358165
441.337447
283.264254
309.279850
339.326858
367.358125
415.321803
431.316698
429.300966
361.202017
365.342500
311.295572
335.295544
419.353093
417.337420
433.332347
399.326818
401.342490
413.342482

0.2 0,15 01

D Alternating main pathways within RS intake LRS HRS

73.7%
72.5%
100.0%
83.7%
86.8%
85.0%
37.5%

Amino acid metabolism 26.3%
Biosynthesis of other secondary metabolites @ 27.5%
Carbohydrate metabolism -
Lipid metabolism @ 16.3%
Metabolism of terpenoids and polyketides O 13.2%
Nucleotide metabolism 15.0%

Xenobiotics biodegradation and metabolism 62.5%

172 6.24

HRS

LRS

mBio’

Linoleic acid metabolism; Biosynthesis of unsaturated fatty acids

Fatty acid biosynthesis

Fatty acid biosynthesis; Biosynthesis of unsaturated fatty acids

Steroid hormone biosynthesis
Steroid hormone biosynthesis.
Steroid hormone biosynthesis
Steroid hormone biosynthesis
Steroid hormone biosynthesis
Steroid hormone biosynthesis.
Steroid hormone biosynthesis
Steroid hormone biosynthesis
Steroid hormone biosynthesis.
Steroid hormone biosynthesis
Fatty acid biosynthesis

Fatty acid biosynthesis

Fatty acid biosynthesis

Androgen and estrogen metabolism

Steroid hormone biosynthesis.

Biosynthesis of unsaturated fatty acids

Arachidonic acid metabolism
Arachidonic acid metabolism
Arachidonic acid metabolism
Glycerolipid metabolism
Arachidonic acid metabolism
Primary bile acid biosynthesis

alpha-Linolenic acid metabolism

Arachidonic acid metabolism

Cutin, suberine and wax biosynthesis

Arachidonic acid metabolism
Arachidonic acid metabolism
Arachidonic acid metabolism
Arachidonic acid metabolism
Linoleic acid metabolism
Linoleic acid metabolism
Linoleic acid metabolism

Biosynthesis of unsaturated fatty acids
alpha-Linolenic acid metabolism

Arachidonic acid metabolism
Arachidonic acid metabolism

Androgen and estrogen metabolism

‘Sphingolipid metabolism
Primary bile acid biosynthesis
Sphingolipid metabolism

Steroid hormone biosynthesis

Secondary bile acid biosynthesis

Steroid hormone biosynthesis
Steroid hormone biosynthesis.
Primary bile acid biosynthesis
Steroid biosynthesis

Fatty acid biosynthesis;Biosynthesis of unsaturated fatty acids
Biosynthesis of unsaturated fatty acids

Biosynthesis of unsaturated fatty acids

Biosynthesis of unsaturated fatty acids

Steroid biosynthesis;Primary bile acid biosynthesis

Primary bile acid biosynthesis
Primary bile acid biosynthesis
Steroid hormone biosynthesis.

Biosynthesis of unsaturated fatty acids
Biosynthesis of unsaturated fatty acids
Biosynthesis of unsaturated fatty acids

Primary bile acid biosynthesis

Primary bile acid biosynthesis;C21-Steroid hormone metabolism

Primary bile acid biosynthesis

Steroid biosynthesis;Primary bile acid biosynthesis
Primary bile acid biosynthesis;C21-Steroid hormone metabolism

Steroid biosynthesis

FIG 3 Significant differences in fecal metabolite compositions between diets. (A) OPLS-DA score scatter plot comparing baseline diet (blue) versus HRS diet
(red); Q*(cum) = 0.8 and R2Y(cum) = 1. (B) OPLS-DA score scatter plot comparing LRS diet (green) with HRS diet (red); Q*(cum) = 0.6 and R2Y(cum) = 0.9. (A
and B) t[1] represents the first component; t0[1] expresses the variance orthogonal to the variable Y (class). (C) OPLS-DA loading scatter plot of metabolites
assigned to biosynthesis of other secondary metabolites (cyan), lipid metabolism (purple), and metabolism of terpenoids and polyketides (yellow). (D)
Alternating main pathways within different diets (HRS versus LRS); Q*(cum) = 0.6 and R2Y(cum) = 0.3. (E) Euclidean distance hierarchical clustering analysis
visualizing the different intensity levels of compounds related to lipid metabolism related in specific diet classes.

higher or lower in abundance in the HRS diet than at baseline (Fig. 3C, D, and E); these
included pathways for fatty acid metabolism, primary and secondary bile acid biosyn-
thesis, bile acid secretion, steroid biosynthesis, and metabolism of linoleic and arachi-
donic acid. In addition, many fatty acids varying in chain length and saturation degrees
from C,, to C,4 (Fig. S5) show a positive correlation with the HRS and LRS profiles (P <
0.05). Of these, three fatty acids, namely, hexadecanoic acid (C,.;), octadecadienoic
acid (C,g.,), and octadecenoic acid (C,g.;), were less abundant after diets containing

TABLE 1 OPLS-DA models for metabolomics analysis

Description Model R2Y(cum) Q2(cum) P (CV-ANOVA)
Baseline (28 days) versus LRS (28 days), fatty acyls only G1 versus G3, fatty acyls only 0.881 0.563 0.007
Baseline versus HRS (28 days) G1 versus G2 0.678 0.521 0.037
Baseline versus HRS (28 days), fatty acyls only G1 versus G2, fatty acyls only 0.995 0.853 0.00004
Baseline versus LRS (28 days) G1 versus G3 NS<
Baseline versus rest® G1 versus rest 0.835 0.459 0.0005
HRS (28 days) versus HRS (56 days) G2 versus G5 NS

HRS (28 days) versus LRS (28 days), fatty acyls only G2 versus G3, fatty acyls only 0.749 0.48 0.027
HRS (28 days) versus LRS (56 days) G2 versus G4 0.777 0.503 0.043
HRS versus LRS (G2, G5) versus (G3, G4) 0.443 0.277 0.017
HRS versus rest (G2, G5) versus rest 0.432 0.324 0.0003
LRS (28 days) versus LRS (56 days) G3 versus G4 NS

LRS versus HRS (28 days) (G3, G4) versus G2 0.92 0.56 0.016
LRS versus rest (G3, G4) versus rest 0.833 0.397 0.014

aNs, not significant.
bRest, the rest of the diet types.
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FIG 4 Multiomics data integration for different diet categories. (A) Network following HRS diet. Similarities (edges) within and between species, proteins, and
metabolites (circles, squares, and triangles, respectively) across participants and time points, including only nodes significantly higher (red) or lower (blue) in
HRS than baseline (two-sided t test; P < 0.05). (B) OPLS-DA plot of all data (features: metabolites, 5,552; proteome, 57,397; OTUs, 1,107) for baseline (blue,
negative x axis) versus HRS (red, positive x axis); P = 8.3 X 10-¢ (CV-ANOVA); R2Y(cum) = 0.96; Q*(cum) = 0.88. (C) OPLS-DA plot for HRS (red, negative x axis)

versus LRS (green, positive x axis); P = 0.026 (CV-ANOVA); R2Y(cum) = 0.883; Q*(cum) = 0.534.

high or low degrees of RS (Fig. S5). These novel findings suggest that products of
dietary RS fermentation in the colon are further metabolized by the gut microbiome
and involved in lipid biosynthesis as well as metabolism of host-derived lipids.

Although the baseline and LRS diets were hard to discriminate at the whole-profile
level, three features (m/z 171.13906, m/z 199.17035, and m/z 227.20166; C, .o, C15.0, and
C, 4.0 respectively), of which the fatty acids C,,., and C, ., were confirmed by ultrahigh-
performance liquid chromatography-mass spectrometry (UHPLC-MS), were signifi-
cantly (P < 0.002) elevated on the LRS diet (Fig. 3E, S5, and S6). These were correlated
with a Lachnospiraceae species that was also higher in relative abundance after the LRS
diet. Further analysis of the center log-transformed metabolomics data revealed that
the separation between baseline samples from the other samples was largely explained
by abundances of fatty acids and sterol lipids (Fig. S7).

The true power of our study design comes from the ability to examine results across
the different omics levels for an integrated systems picture. We used the context
likelihood of relatedness (CLR) method (31) to display potential interactions of all three
data sets, visualized as a network (Fig. 4A). Various areas of the network were assigned
to different metabolite compound classes and related to taxa and proteins. We de-
tected more discriminating features for the HRS diet compared to baseline (Fig. 4A)
than for the LRS diet compared to baseline (Fig. S8), which again demonstrates that the
HRS diet has a larger impact on the gut microbiome than the LRS diet. Some features
were anticorrelated with the HRS diet, suggesting that they decreased with increased
RS intake. These included 16S sequences corresponding to Bacteroides and Lachno-
spiraceae as well as some metabolites corresponding to unsaturated fatty acyls and
some sterol lipids (Fig. 4A).

The combined CLR data allowed us to identify features associated with a diet and
features that were cocorrelated. This systems view of the metabolite composition and
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clustering confirms results from previous analyses of the influence of dietary resistant
starch on some members of the Firmicutes, such as F. prausnitzii (32), and goes beyond
them by also identifying correlations of specific species with specific metabolites and
proteins. For example, not only was F. prausnitzii positively correlated with the HRS diet,
but we found 14 novel polyketides and several unknown metabolites that were also
correlated with this microorganism (Fig. 4A). Furthermore, F. prausnitzii was linked to a
specific protein in the data set, phosphoenolpyruvate carboxykinase (ATP), which is an
enzyme involved in several reactions of pyruvate metabolism. Changes in the abun-
dance of F. prausnitzii have been linked to dysbiosis in several human disorders (33),
and using our integrated systems approach, we are able to better understand its
function in vivo by relating its changes in abundance to changes in protein and
metabolite abundance (in both host and microbe) as a function of diet. Another
example was Ruminococcus sp., which expressed an ABC sugar transporter (based on
the proteome data) and was correlated with several unknown metabolites. We also
found several additional specific metabolites that could be correlated with specific taxa
(Table S1). To generalize this process of finding related features, we identified impor-
tant modules of the network and listed their features in Table S2. Note that the majority
of the metabolites remain unknown, illustrating the current challenge in identification
of metabolites with various masses and isomers.

We complemented this network-based approach using a supervised ordination
approach (Fig. 4B and C), combining the three data sets through a unit variance scaling.
This method was able to discriminate metabolites, proteins, and OTUs that were
correlated with each other and with the different diets. By examining the most
abundant features for each data set (16S, proteome, and metabolome) we found
numerous features that were cocorrelated with the HRS diet. For example, sterol lipids
correlated with several Ruminococcaceae, Clostridia, and Lachnospiraceae species. On
the other hand, numerous correlations of Bacteroidetes, Lachnospiraceae, and fatty acyls
could be detected for the baseline diet. In general, in the HRS diet we see a highly
significant increase in fatty acyls (HRS, 20.3%; LRS, 1.9%; baseline, 1.9%) and sterol lipids
(HRS, 25.6%; LRS, 0.4%; baseline, 1.1%) and simultaneously an increase of Faecalibac-
terium (HRS, 1.4%; LRS and baseline, 0.0%) based on all significant features from the
OPLS-DA results (Fig. 4B and C).

The multiomics data are summarized here in one overview model (Fig. 5) to
illustrate the main effects of the resistant starch diet on the gut microbiome and
functions that they carry out. Although some of the effects were previously predicted,
such as changes in starch degradation and metabolism (1, 3), this is the first overview
of the multitude of processes that occur using a systems approach to integrate
different multiomics measurements simultaneously. For example, proteins involved
in starch degradation and metabolism were increased in the HRS diet. Some enzymes,
in particular human a-amylase, were significantly less abundant in the HRS diet. We
hypothesize that this was due to the decrease in readily available starch compared to
the baseline diet. This study also reinforced the importance of specific members of the
Firmicutes, such as F. prausnitzii, for metabolism of nondietary carbohydrates in the diet,
including enzymes for butyrate production by this organism. Some of the unexpected
findings included links of F. prausnitzii to putative polyketide metabolites. In contrast,
members of the Bacteroidetes were reduced in abundance following the HRS diet.

In summary, these results demonstrate that a multiomics approach provides a
systems-level understanding of host and microbial metabolism and protein expression.
These include novel links between an RS diet and lipid metabolism by the host and
microbiome, beyond known impacts on short-chain fatty acid metabolism. The results
also point toward key linkages between several members of the gut microbiome and
metabolites and proteins produced in the gut. We present an overview of the multi-
omics data as a model of the complex interplay among organisms, metabolites, and
functional processes. A notable strength of the approach used here is that proteins and
metabolites were collected from host and microbiome simultaneously, allowing a
systems-level approach to observing their interplay. Taken together, the results em-
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FIG 5 Overview of detected enzymes, pathways, species, and metabolites that were significantly impacted by a resistant starch diet. Red arrows/frames,
increased in HRS; blue frames, decreased in HRS; black arrows, not detected or not increased in HRS over baseline; green arrows/frames, increased in LRS. 1,
starch and sucrose metabolism; 2, glycolysis from glucose to pyruvate; 3, 3-oxoacyl-(acyl carrier protein) synthase; 4, acetyl-CoA acetyltransferase; 5,
3-hydroxyacyl-CoA dehydrogenase; 6, enoyl-CoA hydratase; 7, enoyl-(acyl carrier protein) reductase (NADH); 8, acetate CoA-transferase; 9, butyrate kinase; 10,
citrate synthase; 11, aconitate hydratase; 12 and 13, isocitrate dehydrogenase; 14, 2-ketoglutarate ferredoxin oxidoreductase; 15, succinyl-CoA synthetase; 16,
succinate dehydrogenase/fumarate reductase; 17, fumarate hydratase; 18, malate dehydrogenase; 19, human enzymes.

Y

phasize the importance of longitudinal, multiomics study designs for unraveling the
effects of nutrition on the microbiome and health.

MATERIALS AND METHODS

Study design. Twenty-six women and 13 men were enrolled in the present study. They were insulin
resistant (HOMA-IR, >50th percentile for sex), had a body mass index (BMI) between 20 and 35 kg/m?
and met other eligibility criteria. Male participants (>20 years) and postmenopausal women (=43 years,
no menses for =3 years or no menses for =1 year and <3 years and additionally a follicle-stimulating
hormone [FSH] plasma concentration within that range) were selected. Furthermore, all participants were
nonsmokers, did not take any drugs (lipid- or glucose-lowering medications, blood-thinning agents,
hormones, and antibiotics), had no record of cardiovascular disease (CVD) or other chronic diseases, and
were otherwise healthy. Further clinical criteria are as follows: fasting glucose, <126 mg/dl; fasting
triglycerides, <500 mg/dl; blood pressure, <150/90; low-density lipoprotein (LDL) and total cholesterol,
=90th percentile for age and gender; 3 months prior to the study a stable weight with <3% change; and
abstention from alcohol and any dietary supplements during the study. The study protocol was approved
by the Institutional Review Board of Children’s Hospital and Research Center of Oakland. All participants
gave written informed consent to take part in the study. The study protocols were approved by the
Human Subjects Committee of both Children’s Hospital Oakland Research Institute and Lawrence
Berkeley National Laboratory. The study design is presented in Fig. S1 in the supplemental material.
Study participants were randomly assigned to either the high-carbohydrate (HC) or low-carbohydrate
(LC) arm of the study and then assigned to a sequence of the two experimental diets that added resistant
starch in proportion to carbohydrate load: for 2500 kcal/day menus, the low resistant starch diet
contained 3 g in the LC arm and 4 g in the HC arm, while the high resistant starch (HRS) diet contained
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48 g in the LC arm and 66 g in the HC arm. Each diet period was 2 weeks with a 2-week baseline washout
diet in between. In both diets, type 2 resistant starch, a granular form of high-amylose cornstarch, was
used. Melojel was used for LRS diets, while Hi-Maize 260 resistant starch was used for the HRS diets
(National Starch). Fecal samples and fasting, postheparin, and postprandial blood samples were collected
for the initial baseline diet and after each diet period.

DNA extraction, library preparation, and sequencing. DNA from the resulting 94 fecal samples
(Fig. S1) was extracted in duplicate from 0.25-g samples using the PowerSoil DNA extraction kit (Mo Bio,
Carlsbad, CA) according to the manufacturer’s instructions, plus an additional heat lysis step for 5 min at
60°C. The DNA was PCR amplified using the F515/R806 primer to target the V4-V6 region of the 16S rRNA
gene and barcoded with a 12-base error-correcting Golay code as previously described by Caporaso et al.
(34). Sequencing was performed on the lllumina HiSeq 2000 platform as previously described (35).

Sequence data were analyzed using the Quantitative Insights into Microbial Ecology (QIIME) pipeline.
Briefly, sequences were quality filtered using default parameters and clustered into operational taxo-
nomic units (OTUs) using the closed-reference OTU picking protocol at 97% sequencing identity (36). The
taxonomy associated with each OTU was calculated as previously described (37).

The raw OTU table was filtered, normalized, and imported into R (38) using the phyloseq package
(39). Samples were retained if they contained more than 5,000 reads. OTUs were retained if they
appeared more than five times in more than 5 samples. These filtering techniques reduced the number
of OTUs from 4,481 to 1,107 while preserving 98.6% of all observations. Using this filtered “biom” table,
the DESeq2 package (40) was used to identify OTUs which were differentially abundant between groups.
For significant OTUs at an alpha cutoff of 0.001 or 0.01, the log, fold change was reported. To control for
sequencing depth when calculating metrics of beta diversity and building the CLR interaction network,
OTU counts in each sample were proportionally scaled to an even depth of 5,000 reads per sample.

Combined protein and metabolite extraction. Each stool sample (~15 g) was homogenized in a
conical 50-ml Falcon tube with 20 ml cold sterile water using a handheld homogenizer (VDI 12
homogenizer, 115 V; VWR; catalog no. 82027-184) at full speed (30,000 rpm) for 2 periods of 30 s each,
with cooling on ice between homogenization periods. The homogenate was proportioned into four
50-ml conical Falcon tubes per sample (2 tubes were processed for metabolomics and 2 for proteomics
[see below]). For metabolite extraction, 2 portions were centrifuged at 4°C and 14,000 X g for 10 min,
and the aqueous supernatant was decanted and stored at —80°C. For methanol extraction, 1.2 ml of cold
(—20°C) methanol was added to each of the 2 cell pellets per sample and briefly mixed by vortexing. The
cells were lysed by pressure cycling with 30 cycles at 30,000 Ib/in2 using the Barocycler NEP3229 cell
disruptor (Pressure Biosciences, Easton, MA). The lysates were centrifuged for 10 min at 14,000 X g, the
two supernatants were combined into a fresh microcentrifuge tube, and the methanol extracts were
stored at —80°C.

For protein extraction, 5 ml of PBS was added to the remaining two tubes of homogenized fecal
material per sample, and the samples were briefly mixed by vortexing, followed by centrifugation at
4,000 X g for 5 min (4°C) to pellet larger debris. The supernatants were transferred to new 50-ml conical
Falcon tubes on ice. An additional 4 ml of cold phosphate-buffered saline (PBS) was added to the cell
pellet/debris per original tube and mixed with the homogenizer at full speed for 2 periods of 30 s each
on ice. The combined supernatants were centrifuged for 10 min at 10,000 X g (4°C), and the supernatants
were discarded. Each cell pellet was washed with cold PBS, resuspended in 600 ul of cold PBS, vortexed,
and centrifuged at 14,000 X g for 10 min in a preweighed microcentrifuge tube. The supernatant was
discarded, the pellet weight was calculated, and the sample was stored at —80°C.

Metaproteomics approach. The cell pellets were thawed and immediately diluted in 6 M guanidine-
10 mM dithiothreitol (DTT), followed by heating at 60°C for 1 h with constant vortexing to dissolve the
pellets. The samples were then diluted 6-fold with 50 mM Tris-10 mM CaCl, (pH 7.6) and mixed by
vortexing. Sequencing-grade trypsin (Promega, Madison, WI) was added to each sample at 1:100 (wt/wt)
protein, and trypsin digestion was performed overnight at 37°C while gently mixing. An additional
aliquot of trypsin was added to each sample at 1:100 (wt/wt) protein, and digestion was performed for
an additional 4 h at 37°C. The digested samples were centrifuged for 15 min at 10,000 X g to remove
particulate debris. Then, the samples were desalted using C,, Sep-Pak solid-phase extraction cartridges
(Waters, Milford, MA) and concentrated to ~5 ml using a Savant SpeedVac (Thermo Fisher Scientific,
Waltham, MA). The samples were then solvent exchanged with 0.1% formic acid in high-performance-
liquid-chromatography (HPLC)-grade water and concentrated by vacuum to ~500 ul. The samples were
filtered using Durapore polyvinylidene difluoride (PVDF) filters (0.45 wm; Millipore), aliquoted into 150-ul
aliquots, and stored at —80°C prior to two-dimensional (2-D) liquid chromatography-tandem mass
spectrometry (LC-MS/MS) analysis.

The resultant complex peptide mixtures (~150 ul) were loaded onto a biphasic C,5-SCX (reverse-
phase-strong cation exchange) (Phenomenex, Torrance, CA) self-packed nano-back column (3-cm Cg,
3-cm SCX, 150-pm inside diameter [i.d.]) that serves as the first dimension of the 2-D LC system to
capture peptides and wash away salts. Once loaded, the column was moved in line with a U3000 HPLC
(Dionex, subsidiary of Thermo Scientific, Waltham, MA) which was split to obtain an ~300-nl/min flow
rate over the nano-analytical columns. The back column was washed with 100% aqueous solvent
followed by an organic solvent gradient (70% acetonitrile [ACN], 0.1% formic acid) to remove salts and
move the peptides to the SCX phase. The back column was then attached to a 15-cm by 100-um C,,
front resolving column with an integrated nanospray tip (New Objective, Woburn, MA; Picofrit packed
with Phenomenex Aqua C, ). The resolving column was housed in a nanospray source (Proxeon; Thermo
Fisher) attached to a QExactive mass spectrometer (Thermo Fisher, Bremen, Germany). An automated
24-h two-dimensional LC-MS/MS run was programmed into Xcalibur (Thermo Fisher), and each sample
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was analyzed with a separation scheme consisting of 12 salt pulses followed by 2-h C,, separation, as
previously described (41). During each analysis and all sample runs, the QExactive settings were as
follows: normalized collision energy for heated capillary dissociation (HCD) of 28 eV, a full-scan resolution
of 70,000 from 400 to 1,600 m/z, an HCD MS/MS resolution of 17,500 with an isolation width of 3 m/z,
and a dynamic exclusion setting of 15 s. Peptides were not excluded based on charge state, and 1
microscan for both full and MS/MS scans was acquired. All MS and MS/MS data were acquired in profile
mode.

Quantitation and normalization of metaproteome data. All MS/MS spectra were searched against
our customized sequence database (42), consisting of human protein sequences, translated metag-
enome sequences, proteins of 34 human-gut-isolated microbial species, and common contaminants (i.e.,
trypsin and keratin; 36 protein sequences). All MS/MS individual runs were searched with the SEQUEST
(v.27) algorithm (43) against our customized FASTA sequence database, as previously described (42) (<4
miscleavages, 3-Da mass tolerance window around the precursor ion mass, and 0.5 Da for fragment ion
masses). All SEQUEST output files were gathered and filtered using DTASelect (1.9) (44) at =2 peptides
per protein and the following widely accepted parameters for all the MS runs: cross correlation (Xcorr)
of at least 1.8, 2.5, and 3.5 for +1, +2, and +3 charge states, respectively, and a minimum delta
normalized correlation (ACn) for 0.08. All the peptide spectrum matches (PSM) that could not satisfy a
postdatabase search filter, =—10 to =10 ppm, were excluded to remove false positives as described
previously (42). This resulted in a total of 57,397 proteins that were quantitatively identified (human,
1,103; microbes, 56,294). Spectrum counts (SC) of protein were normalized as described below (42):

Normalized SC; =

where N is the number of proteins, M is the number of MS runs, and j, k, and i are index values for each
specific MS run, protein, and spectral count, respectively.

The metaproteome data were functionally analyzed by using Cluster of Orthologous Groups (COG)
for microbial proteins and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms using COG
software R 3.1.3 and Python 2.7.6.

Metabolomics. Methanol extracts of the stool samples were measured randomized in negative
electrospray ionization mode [(-)ESI] using an ultrahigh-resolution SolariX Fourier transform ion cyclo-
tron resonance mass spectrometer (FT-ICR-MS) (Bruker Daltonik GmbH) with a 12-tesla superconducting
magnet and an Apollo Il electrospray ionization (ESI) source. For each sample, 500 scans were acquired
in single MS mode within a mass range from m/z 122.9 to m/z 1,000. The MS parameters were as follows:
capillary, —3,600 V; nebulizer pressure, 200 kPa; dry gas, 4.0 liter/min; dry temperature, 180°C. The
instrument was calibrated using a 5-ppm arginine solution.

(i) Metabolite data processing. Ultrahigh-resolution mass spectra were processed using Data Analysis 4.0
SP2 (Bruker Daltonik GmbH). All spectra were calibrated internally using a reference list of known masses (fatty
acids) with an error below 0.075 ppm and exported as ASCII files with a signal-to-noise ratio of 4 using
Automation Engine 4.0 (Bruker Daltonik GmbH). ASCII files were converted to ASC files by in-house software,
before all spectra were aligned to a data matrix with an error of 1 ppm by in-house software, resulting in 97,483
mass signals. The aligned data matrix was filtered by mass signals counted <5 times in # = 45 mass spectra and
a mass defect above 0.8, which resulted in 14,167 mass signals. The mass signals were assigned to molecular
formulas using NetCalc (27) (network tolerance, 0.2 ppm; NetCalc tolerance, 0.2 ppm) and searched against the
KEGG (28) (Kyoto Encyclopedia of Genes and Genomes), HMDB (45) (Human Metabolome Database), and
Lipid Maps (http://www.lipidmaps.org) databases using Horo sapiens as a reference organism using the Mass-
TRIX web server (26, 46) with a maximum error of 1 ppm.

For multivariate data analysis (MVA), samples had been divided into 3 main groups (baseline [blue, G1],
HRS [red, G2], and LRS [green, G3]), since orthogonal partial least-squares discriminant analysis (OPLS-DA)
revealed no significant changes between the LRS diets at day 28 and day 56, as well as between the HRS diets at
day 28 and day 56. Different OPLS-DA classification models were designed to evaluate the effect of resistant
starch on the gut microbiome, which are listed in Table 1. The classification models were first validated by the
7-fold cross-validation method. In order to exclude overfitting, a cross-validation analysis of variance (CV-
ANOVA) was applied for each OPLS-DA classification model. Further, the significance of each model (P value)
and indicators such as the goodness-of-fit R*Y(cum) and the goodness-of-prediction Q?(cum) were subse-
quently reported. In order to evaluate the metabolomics data set with respect to the impact of the different diets
on the human gut microbiome, all valid classification models of the OPLS-DA were merged to examine the most
discriminating features among the baseline, HRS, and LRS diets.

In order to identify significant features of the metabolomics data set, a lipidomics-MS/MS approach was
applied using an Acquity ultrahigh-performance liquid chromatography system (Waters GmbH, Eschborn,
Germany) coupled to a Bruker maXis ultrahigh-resolution—time of flight mass spectrometer (UHR-TOF-MS)
(Bruker Daltonik GmbH, Bremen, Germany) as previously described in the work of Witting et al. (47). Meth-
anol (MeOH), acetonitrile (ACN), isopropanol (IPA), ammonium formate, and formic acid were of LC-MS
quality and obtained from Sigma-Aldrich (Sigma-Aldrich GmbH, Taufkirchen, Germany). The water was
purged through a Merck Millipore system with a resistance of 18 M{) and a total organic carbon (TOC) of
<4 ppb. Standards and a representative sample set were measured under the same conditions.

Mass spectra were processed and calibrated using Data Analysis 4.1 SR 1 (Bruker Daltonik GmbH). Chro-
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TABLE 2 External calibration results of the SCFA analysis

Coefficient of

Name m/z (derivatized) RT (min) Calibration function determination (R?) Method
Propionic acid 2,411,341 4.0 y = 1.2119x — 0.5784 0.9990 uv
Butyric acid 2,551,497 4.6 y = 59,940x + 16,956 0.9981 MS
Isovaleric acid 2,691,654 53 y = 82,730x + 6,202.9 0.9993 MS
Valeric acid 2,691,654 5.5 y = 92,248x + 4,883 0.9998 MS

matograms were averaged, made standard dependent, and calibrated using a reference list of standards of the
injected calibration standard mix (G1969-85000; Agilent, Waldbronn, Germany), as well as the standards used
for the MS/MS experiment with an error of less than 0.5 ppm. The extracted ion chromatograms (EIC) were
extracted from each standard and representative sample with an error of +0.01 Da.

For fatty acid identification, mass signals assigned as fatty acids were extracted from the data matrix and
significantly changed fatty acids were visualized as box plots, displaying the intensity levels of each fatty acid
between the baseline, HRS, and LRS diets, using RStudio (version 0.99.489). The significance was tested by
applying the post hoc Kruskal-Nemenyi test for pairwise test of multiple comparisons of mean rank sums
(PMCMR package, version 4.1) (48). Metabolites of the lipid metabolism altered by diet were visualized in a heat
map by Hierarchical Clustering Explorer version 3.5 (49) (Human-Computer Interaction Lab, University of
Maryland—College Park). Therefore, the data were normalized (X — m/¢) and clustered by rows with Euclidean
distance.

(ii) Short-chain fatty acid analysis. The fecal MeOH extracts and chemical standards of propionic acid,
butyric acid, valeric acid, and isovaleric acid were prepared and derivatized as instructed in the AMP* mass
spectrometry kit (Cayman Chemicals) product insert. Each mixture was diluted with 352 ul A-B (5 mM
CH,COONH,, plus 0.1% acetic acid-ACN in a 99:1 ratio.

SCFA analysis was performed on an Acquity ultrahigh-performance liquid chromatography system (Waters
GmbH, Eschborn, Germany) coupled to a Bruker maXis UHR-TOF-MS (Bruker Daltonik GmbH, Bremen,
Germany), and SCFA were measured in positive electrospray ionization mode. Gradient separation of 1 ul took
place on a Waters BEH Cg column (1.7 wm, 2.1 mm by 150 mm) with A (5 mM CH,;COONH, plus 0.1% acetic
acid) and B (100% ACN). Total run time was 22 min plus 2 min prerun. Start conditions of the gradient
separation were 99% A. This was held for 1 min and then decreased to 1% A within 16 min and held for 2 min.
A was increased to 99% A for 0.2 min and held for 2.8 min. The flow rate was 0.3 ml/min, and column
temperature was 40°C. MS parameters were as follows: mass range, 1/z 50 to 1,200; nebulizer gas, 200 kPa; dry
gas, 8 liters/min; dry temperature, 200°C; spectrum rate, 2.0 Hz; capillary, 4,500 V; end plate offset, —500 V.
Simultaneously, a photodiode array detector (PDA) was operated at a UV range from 190 to 500 nm. For
calibration, a 1:4-diluted ESI-L low-concentration tuning mix (Agilent, Waldbronn, Germany) was injected
prior to the separation at the first 0.1 min of the analysis.

The adducts of the derivatized products were calculated as follows: M (monoisotopic mass [metabolite]) —
H,O0 + AMP* (C,,H,;N,*) = M — AMP™. The retention time (RT) was extracted by Data Analysis version 4.1
(Bruker Daltonik GmbH, Bremen, Germany), and the peak areas were extracted by QuantAnalysis version 2.1
(Bruker Daltonik GmbH, Bremen, Germany). SCFA were quantified by external calibration including 8 cali-
bration points based on the extracted peak areas of each standard concentration via the calculated calibration
function (Table 2).

Visualization of microbiome and proteome data. The microbiome and proteome data were
visually presented based on Voronoi treemaps, developed and adapted for biological applications at the
Greifswald University Institute for Microbiology (50-52). The treemaps originate from the work of Ben
Shneiderman (University of Michigan) (53), followed by an improvement to Voronoi treemaps performed
by Balzer and Deussen (54), and were adapted for applications in biosciences (50).

The protein data were condensed to the microbial species level, and the Voronoi treemaps were
colored accordingly to species (55). In order to assign the proteins to functional classes, all proteins were
analyzed separately (microbial to COG and human to KEGG Brite [56, 57]). Pearson correlation coefficients
were calculated based on RS amounts versus relative abundances of OTUs or proteins in the samples. For
these calculations, values approximating the concentrations of RS in the diets were assigned as follows:
0 for baseline, 0.05 (3 g RS) for LRS, and 1 (48 g RS) for HRS. For the rarefied OTU data, the correlation
coefficients were averaged and visualized using the same color code as applied to the proteome data,
and the treemap polygon sizes correspond to the average counts of OTUs for all samples to visualize
their relative amounts in the entire data set.

Multiomics integrative analyses. Pairs of data sets were assembled by matching participants from
each individual data set (16S, proteomics, and metabolomics) to provide maximum overlapping data sets
(16S plus proteomics, proteomics plus metabolomics, and metabolomics plus 16S). All individual and
combined data sets were then filtered to exclude those rows (OTU, protein, or metabolite, respectively)
that had greater than 50% of values missing. The context likelihood of relatedness (CLR) method was
applied to determine shared information for all pairs of rows (31, 58). Six individual networks were
constructed by applying a Z score filter of 6.5 to each comparison: protein plus protein, 16S plus 16S,
metabolomics plus metabolomics, 16S plus protein, protein plus metabolomics, and 16S plus metabo-
lomics. Edges from individual networks were combined into a single network taking interactions from
within a data set (e.g., protein to protein) from the networks inferred from single data sets (e.g.,
proteomics) and inter-data-set edges from the appropriate combined data sets (protein to metabolite
edges from the proteomics-plus-metabolomics data set). Networks were represented in Cytoscape (59),
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and annotations from the individual data types were used to highlight clusters of components enriched
in particular labels as indicated in the figures.

Multiomics integration was done using SIMCA-P 13.0.3.0 (Umetrics, Umed, Sweden). In order to study
the three combined data sets, two different OPLS-DA models were built: the baseline diet to the HRS diet
and the HRS diet to the LRS diet. For integration of all the different omics data sets, the samples were
aligned in one matrix and were unit variance (UV) scaled. OPLS-DA loading plots were constructed to
simultaneously visualize features of the genome, proteome, and metabolome impacted by baseline, LRS,
or HRS diet. The loadings were extracted and visualized as loading plots using RStudio (version 0.99.489)
(60).

Data availability. Sequencing data are available on Qiita (https://qiita.ucsd.edu/study/description/
1191) and the EBI-ENA accession is ERP104494. Proteomics analysis data are available on Zenodo
(https://zenodo.org/record/838741).
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