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The a4 coefficient as a descriptive measure
of the within-group agreement of ratings

Ludwig Kreuzpointner'*, Patricia Simon' and Fabian J. Theis?

'Universitit Regensburg, Germany
“Helmholtz Zentrum Miinchen, Germany

The ay coefficient was developed to measure the within-group agreement of ratings.
The underlying theory as well as the construction of the coefficient are explained. The
a4 coefficient ranges from 0 to |, regardless of the number of scale points, raters, or
items. With some limitations the measure of the within-group agreement of different
groups and groups from different studies is directly comparable. For statistical
significance testing, the binomial distribution is introduced as a model of the ratings’
random distribution given the true score of a group construct. This method enables a
decision about essential agreement and not only about a significant difference from 0 or
a chosen critical value. The a4 coefficient identifies a single true score within a group. It
is not provided for multiple true score settings. The comparison of the a4 coefficient
with other agreement indices shows that the new coefficient is in line with their
outcomes, but does not result in infinite or inappropriate values.

I. Introduction

In recent years, multi-level theory has been increasingly used for the analysis of
organizational processes since organizations are hierarchically structured systems with
different levels of analysis. Due to the nested structure of organizations, it is assumed
that the ongoing processes on one level influence the processes on another level. If this
aspect is not considered, statistical artefacts and contradictory results may easily be
obtained (Bliese, 2000). In multi-level theory, different models have been proposed for
the analysis of the relations within and across levels (Chan, 1998; Klein & Kozlowski,
2000; Kozlowski & Klein, 2000; Moritz & Watson, 1998). If the analysis is based on a
so-called bottom-up composition model, it is required to test the within-group
agreement of the individual ratings when aggregating the data at the group level. Given a
high within-group agreement, the mean of the individual data can be used as a measure
of the group-level construct such as group cohesiveness, group norms, or climate
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(Cohen, Doveh, & Eick, 2001; Klein & Kozlowski, 2000; Kozlowski & Hattrup, 1992;
Lance, Butts, & Michels, 2006; Lindell & Brandt, 1997; Moritz & Watson, 1998). Ludtke
and Robitzsch (2009) list some further research areas using within-group agreement:
aggregating group perceptions, for example fairness, in industrial and organizational
psychology (Masterson, 2001); measuring the characteristics of a group by asking its
members, in small-group research; and pooling students’ answers to a class-level
measurement, in educational research.

For the estimation of the agreement among those ratings the 7w coefficient is
often proposed (Bliese, 2000; Chan, 1998; Klein & Kozlowski, 2000; Moritz &
Watson, 1998), which was originally developed by Finn (1970) and further studied
by James, Demaree, and Wolf (1984, 1993). The within-group agreement coefficient
rwe is defined in the case of a single item as rwga) = 1 — sfcj/(rﬁ, where sf(j
corresponds to the sample variance in the ratings of the K judges on a single item
X;. o} refers to the expected variance (F) due to random response mostly based on a
uniform distribution (U) (Lidtke & Robitzsch, 2009). The expected variance in the
uniform case is determined by the equation o7 = (4% — 1)/12, where A corresponds
to the number of scale points, which means that on a five-point scale 4 = 5.
The term s /O’E reveals the proportion of error variance in the ratings and so
1—s 1/015 represents the proportion of non-error variance (Finn, 1970; James et al.,
1984). The ryg coefficient represents an attempt to remove the variance expected
by chance from the observed variance. One less the proportion of variance in the
ratings corrected for chance corresponds to the degree of agreement in the
ratings. The coefficient may be extended to multiple items, referred to as rwgc ),
based on the same principles. A weakness of the 1y, coefficient is that it becomes
negative when 327 > 07 (rwecp becomes negative if of <s2 <Jic§)
James et al. (1984) proposed setting negative ryg to 0. According to Ludtke and
Robitzsch (2009, p.3) this method could cover ‘the fact that a target has multiple
true scores’. Cohen et al. (2001) analysed the statistical properties of ryg. They
pointed out the problems by testing the statistical significance when setting negative
values to 0 with the consequence of ‘a large proportion (.90) of zero values’ (p.301)
in the one-item case.

Lindell and Brandt (1997) proposed replacing the uniform distribution with
maximum dissensus as reference distribution so that the coefficient lies within the
proper interval [0,1], referred to as rwg mv. There are several parallels between
Lindell and Brandt’s work and the a, coefficient, presented in the present paper.
Subtle distinctions result from using distances instead of the variance. Using the
sample variance (with denominator n — 1) may again lead in extreme cases to
negative rwg mv. The fact that the formula for the maximum variance does not
exactly fit with the formula for sample variance is due to the small differences in
the values of a,; and rwg_mv-

As an alternative, Schmidt and Hunter (1989) proposed estimating the within-
group agreement with the standard deviation of ratings or the standard error of
the mean. But without a fixed reference point in these procedures, they do not
satisfy the aim of obtaining a measure delivering information about the extent of
agreement. The coefficient ay; proposed by Brown and Hauenstein (2005) uses the
maximum variance given the mean of the ratings. The values of ay lie between
—1 (maximum disagreement) and +1 (maximum agreement). There is only a
problem modelling agreement when many ratings have the maximum or minimum
value on the scale.
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2. The a4 coefficient for the estimation of the within-group inter-rater
agreement

To simplify matters, our theoretical remarks are explicated for the case of three raters
rating one object on a single item. These remarks can be readily extended to any number
of raters and items. The question is how similar ratings can be in order to conclude that
they agree to a substantial extent. Therefore, the degree of inter-rater agreement is a
function of the deviations in the judgements. Based on the assumptions of classical test
theory the observed score x can be decomposed into a true score ¢ and an error score e;
the following three equations are obtained for the raters’ judgements: for rater 1,
x =1+ ey; for rater 2, y =t + e); for rater 3, z =t + e,. If the degree of inter-rater
agreement is understood as a function of deviations in the judgements, the observed
scores of the raters can be subtracted from one another:

Rater1 — Rater2: x—y={+e) — {+e),
Rater1 —Rater3: x—z={+ey) — (@ +ey),

Rater2 — Rater3: y—z=U+e)— (+e).

Since the same object underlies each rater’s judgment and therefore the same true score
t, the obtained deviations between the x-, )-, and z-scores are only caused by the error
score e, referred to as distance d, ;:

Rater1 —Rater2: x—y=e, —e, =dp,
Rater1 —Rater3: x—z=e, —e,=d3,

Rater2 — Rater3: y—z=e, —e, =d33.

The distances d,, ; between the observed scores reveal the degree of disagreement in the
ratings. The greater the deviations are, the lower the raters’ agreement is; as a
consequence, the ratings’ objectivity declines (Simon & Kreuzpointner, 2008). If one
were to add up only these deviations, the positive and negative deviations could yield a
value of zero. To prevent this and to be able to apply the coefficient in the case of
multiple items, the squared Euclidean distances d,f,y, are used. As greater deviations carry
more weight, a stricter criterion of objectivity results through squaring. This is useful
because great deviations are a sign of low agreement. By summing up the individual
squared Euclidean distances d,i ;> a statistical value results for the extent of disagreement
among the raters, referred to as d*:

K K
dz = Z Z Z (xkj - xk/j-)z, (1)

J=1 k=1 k'=k

where K is the number of raters and J the number of items. However, without a
reference point the statistical value of d° cannot be interpreted as being a large or a
small disagreement. The fact that rating scales are bounded now becomes an
advantage. Due to the restriction of a scale, the maximum possible disagreement among
the raters is known. Maximum disagreement results from the difference between the
maximum value b of a scale and the minimum value a of a scale which is squared
once again: d?> = (b — a)’. Given more than two raters or more than one item,

max
the calculation of the maximum possible disagreement on a scale must be adjusted.
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For the adjustment, the following two equations result depending on whether the
number of raters K is even or odd:

Ao =J-( — a)*-(K*/4), if Kiseven, @

max

die =T — @) (K* — D/4), if Kisodd. ©)
The mathematical proof for Equations (2) and (3) is described in Appendix Al. With
these two statistical values, the sum of the squared Euclidean distances between the
raters d” and the maximum disagreement drzmx, a coefficient for the measurement of the
extent of inter-rater agreement can be constructed. Dividing d° by d? .  delivers
information about the extent of disagreement in the ratings. Hence, 1 as the value of
perfect agreement minus the extent of disagreement delivers information about the
extent of inter-rater or within-group agreement:

ag:=1—d*/d},.. <))
According to its function as a descriptive measure of the agreement among ratings,
this coefficient is called the agreement coefficient. The subscript d symbolizes
that the coefficient is calculated from distances. The a, coefficient is an extension of the
U coefficient suggested by Fricke (1972) to measure the objectivity within mastery
testing. Fricke derived and used his index only for dichotomous data. Moreover, we have
derived precise results for dZ _ for odd and even numbers of raters, not taken into
account by Fricke.

3. Features of the ay coefficient

The a, coefficient ranges from O to 1. This is because the ratio of d?/d> can only vary
within the interval [0,1] since d? as a deviation measure cannot be negative and is limited
by the maximum value d2__ (see Appendix AD). Given maximum agreement, a; = 1
since in this case d* = 0. Given maximum disagreement, d* = dz,__ and therefore
ag=1—di, /d%,. =1—1=0. Hence, the range of a, is limited between 0 and 1
regardless of the number of scale points, raters, or items (see Appendix A3).

A further feature of the a, coefficient is that the scores are interval-scaled. Given
equal numbers of raters, items, and scale points, the difference of .05 between two a,
values of .80 and .85 reflects the same difference in agreement as the difference between
two a, values of .90 and .95. This is true because the a, coefficient is based on
distances, which are by definition at least interval-scaled (see Appendix A4).
Additionally, under the condition of the same number of items and raters, two ay,
coefficients based on different numbers of scale points can also be compared. The effect
of the scale points on the magnitude of the coefficient is eliminated by the ratio of
d?/dz,.. since the sum of the squared Euclidean distances d* as well as the maximum
possible distances d2_  depend in the same manner on the number of scale points
(see Appendix A2). However, this is only true without restrictions when continuous
scales (such as visual or other analogue scales) are used. Given discrete scales, an
identical transformation of different scales is not always possible. In this case, whole
numbers only result when the upper bound of the broader scale represents an integer

multiple of the upper bound of the narrower scale. Therefore, in the case of discrete
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scales, one can only speak of an approximate independence of the number of scale
points (compare the critical values in Tables B1 and B2 or B3 and B4).

It is important to mention that the a,, coefficient can also be expressed in terms of
the sum of squares (SS) since the squared Euclidean distances divided by the number
of raters is equal to the SS. Accordingly, @* could be substituted by the SS between the
ratings and 4?2 by the maximum SS. In cases of more than one item, d* is equal to
the sum of SS for each item and dZ_ corresponds to J times the maximum SS of one
item. Both procedures lead to the same values. However, squared Euclidean distances
were deliberately chosen for three reasons. First, the Euclidean distances better suit
the theoretical derivation of the coefficient from the concept of objectivity. Second,
the automatic calculation of d2__ is slightly easier to implement. Third, the description
in terms of SS spuriously implies a chi-square test. This test requires a normal
distribution of the ratings which is not given (cf. Dunlap, Burke, & Smith-Crowe,
2003). To avoid this fallacy, the a, coefficient builds on Euclidean distances which are,
from our point of view, clearer and intuitively more comprehensible, even if the SS is
much more familiar.

One issue which initially seems questionable is the fact that with the a, coefficient
the extent of disagreement is estimated on the basis of maximum disagreement.
Maximum disagreement implies that multiple true scores can be given within a group.
But for the calculation and application of the a, coefficient it is assumed that every
group has only one single true score (like Brown and Hauenstein’s (2005) dayw
coefficient). In contrast to ayg, a,; does not include the estimation of the true score
value within the construction of the coefficient, but takes it into account while
testing the statistical significance (see Section 4). So the case of two (or more) true
scores is not a technical issue but rather a theoretical one. The solution lies in the
stated aim of measuring the amount of agreement of one group. When there are two
true scores in a group, which will lead to a low to very low value of a, we suggest
interpreting this setting as two subgroups within a group when using the a,
coefficient for calculating the within-group agreement. A low value of a, implies no
significant agreement within the group. When there are two true scores within a
group there is no agreement of all members. A low value of a, could only serve as an
indication of more than one true score within the group. But it is not (yet) intended
to identify them.

4. Testing the statistical significance of the a4 coefficient

The first assumption is that, according to composition models, a group-level construct
only exists when there is a perceptual consensus in the members’ ratings. Based on this,
the mean of the ratings is used as an estimate of the true score of a group construct.
A violation of this assumption would lead to a rejection of the hypothesis of within-
group agreement, as we will see later. The binomial distribution as a model for the
distribution of the ratings on a scale provides a basis for the determination of statistical
significance. The binomial distribution is constructed in such a manner that the ratings
around a group’s estimated true score are more likely than those farther away from the
true score. For this to be realized, the individual judgements are treated as the sum of
how often each binary variable occurs in # trials. In other words, each judgement is
interpreted as the sum over n random experiments of a binary random variable.
The number of trials 7 corresponds to the decremented number of scale points (4 — 1),
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since the scale point one represents zero occurrences in the binomial distribution. The
probability p of a hit determines the expected value of the binomial distribution, which
corresponds to the also decremented estimated true value of the group construct
(see Figure 1). The probability p can easily be calculated as p = (X — 1)/(4 — 1), since
the expected value of a binomial distribution is E(X) = pn, with n=A — 1 and
E(X) = X — 1. Given a set of samples, p is therefore directly given by the mean, and this
is indeed also the best possible estimate of p in the maximum-likelihood sense. Thus, the
larger the mean of the ratings of one group, the larger is the hit probability p of the
binomial distribution used to model the distribution of the ratings for this group.

Figure 1 illustrates the procedure. An estimated true score of £ = 2.8 corresponds to
an average hit rate of E(X) = 2.8 — 1 = 1.8. Using a seven-point scale, this condition
results when the hit probability is p = 1.8/6 = .3. The range of the scale and the hit
probability together define the binomial distribution B(.3,6), which determines the
probability of the seven possible results or ratings (see Figure 1a). Figure 1 presents
examples of histograms of an infinite number of Bernoulli experiments with specified
conditions. Thus, the binomial distribution provides the likelihood of the ratings under
the condition of the true score which is necessary for the calculation of the null
distribution of the a, coefficient.

By drawing 10,000 samples from such a binomial distribution B(p,n), the null
distribution of a,, can be determined using the Monte Carlo technique. This distribution
is the basis for testing H, the hypothesis that the ratings agree only by chance given the
mean rating as an estimate of a group’s true score. The following example illustrates
the method: if within a group of seven members with ratings {2, 3, 3, 3, 3, 4, 4} the mean
of X = 3.14 is observed on a seven-point scale, for instance, measuring the construct of
group cohesion, then this value is used for estimating a group’s true cohesion score. The
mean implies p = .4 since p = (3.14 — 1)/(7 — 1) = .36 = .4. Using random sampling
based on the binomial distribution B(.4,6), the null distribution of a, can be
determined. The critical value of a, with an alpha level of 5% corresponds to the 95%
quantile of the resulting null distribution, which in this case equals .95 (see Table B3 in
Appendix B). As a,; = .954 is higher than this critical value, the a, coefficient obtained
is statistically significant. Of course, it is possible to calculate the distribution and the
critical value of a, more exactly by using p = .36.

@ B(3,6);6=28 ®) B(9,6);t=6.4

oM 12 23 3@ 4G 50 6(D 0 12 23 3@ 46G) 50 6D

Figure 1. The binomial distribution as a model for the distribution of the ratings of a group on a
scale (two examples). Nofe. The numbers without brackets correspond to the binomial
distribution. The numbers in brackets correspond to the modelled rating scale. The ordinate
represents the probability of the results under the given conditions.
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In Appendix B, the critical values of the a, coefficient are listed for the often used
five-point and seven-point scales. The number of group members (raters) ranges from
k =3 to 12 since a small group is often understood as being composed of 3 to 12
persons (Wiendieck, 1994). The number of items ranges from 1 to 10. The critical values
correspond to an experimental accuracy of two decimal digits. For investigations with
more items, larger scales, or exact calculations for a specific setting a program to
calculate the critical values is available from the authors (http://www-cgi.
uni-regensburg.de/~krl02854/a-coef/). Based on these tables, the statistical
significance of a given a, value can easily be determined. First, it is necessary to
calculate the mean of the ratings, which is used to estimate the true value ¢ and then
the underlying p. Afterwards, the desired significance level for testing a, must be
selected. Tables B1 and B3 provide the critical values for the significance test with an
alpha level of 5%; Tables B2 and B4 provide those with one of 1%. The next step consists
of identifying the scale used, the number of raters &, and the number of items j. In the
case of six raters on a five-point scale, the critical value with a level of 5% is .94 for a
single item where p = .7, and .92 for five items where p = .2. Moreover, the tables in
Appendix B also list the critical values of the a, coefficient under the assumption of a
(discrete) uniform distribution of ratings (see column U). This enables wider
application of the a, coefficient beyond multi-level theory if it is assumed that the
ratings are not similar.

With an underlying binomial distribution and the expectation that the data
agree considerably more than this, the significance test of the a, coefficient provides a
clear criterion for the question of how high the agreement has to be in order to treat it as
a substantial within-group agreement. In the construction of the significance test for the
a, coefficient we took Fowler’s (1985) proposal into account. The null hypothesis was
specified insofar as it corresponded to the distribution of the ratings expected by chance
under the assumption of a group’s true score. This specification ensures that statistically
significant a, values are also practically significant. We know that this criterion is a strict
one, but we think it is more appropriate than testing non-zero associations. Cohen et al.
(2001) compare this problem with the significance test of correlations which only
indicate that a statistically significant non-zero association is obtained which is not
necessarily practically significant.

Independent of the clear interpretation according to the statistical significance test,
the a, values are more difficult to interpret in comparison, for instance, with the
product moment correlation coefficient. At first sight, with only a low agreement,
the values of the a, coefficient are normally relatively high. This is due to the fact that
the sum of the distances in the ratings d¢” merely corresponds to the maximum possible
disagreement dZ . Therefore often values in the upper range of the scale from 0 to 1
will be obtained, which seem to be more difficult to interpret. For this reason, Burke,
Finkelstein, and Dusig (1999) criticized the usage of maximum dissensus as reference
point. On the other hand, it has to be considered that it is only an effect of usage and the
statistical significance test of the a, coefficient prevents misinterpretation.

5. Examples of the calculation of the a4 coefficient

5.1. One item
Six judgements {5, 5, 4, 4, 3, 2} on a five-point scale were obtained for the
measurement of group cohesion. First, the sum of the squared Euclidean distances
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d” has to be calculated using equation (1):
AP=6-5+G6-D+GC-D+GE -3 +GE -2 +G D' +G -9
+G -+ G- +GC -2+ +G -2 =41

2
Second, d7,,.

must be used:

must be calculated. Since the number of judges K is even, equation (2)

1 1
Qs =J (b = * 2 K* = 1.5 = D*~6 = 144.
Based on the two values of d” and d?

maxo the agreement coefficient a,, can be calculated
using equation (4):

aqg=1—d?*/d}, =1—41/144 = .72.

With K = 6 judges on a five-point scale and a p of .7 for the binomial distribution, the
critical value of a, is .94 with an alpha level of 5% (see Table B1). Since the a, coefficient
obtained is less than the critical value, the null hypothesis cannot be rejected. This
means that the members do not show substantial agreement in their cohesion ratings.

5.2. Multiple items

Suppose we have a data matrix of three judges rating on five items for the measurement
of group climate with seven alternatives (see Table 1). Then @ is given by the sum of the
squared Euclidean distances of the three answer vectors of the judges according to
equation (1):

Table 1. Data matrix of three judges rating on five items each with seven alternatives

Judges Item 1 Item 2 Item 3 Item 4 Item 5 M
A 1 2 2 2 1 1.6
B 2 2 1 2 2 1.8
C 2 3 2 3 2 2.4

A=+ d3+ Bt di= [ - 22+ (1 -2+ @22

+[2-22+2 -3+ @2 -3 N [aA-2*+a —2)2+(2—2)2]:"g =10.

Since the number of judges K is odd, equation (3) is used for the calculation of the
maximum squared Euclidean distances d2,:

1 1
di =J O — a)Z-Z(K2 — 1) =57 — 1)22(32 —-1= 536; = 360.

In this case, a; = 1 — 10/360 = .972. The p value of the binomial distribution for
the statistical significance test is .2 since p = (1.93 — 1)/(7 — 1) = .155. With K =3
judges on a seven-point scale and J = 5, a critical value of .97 results with an alpha level
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of 5% (see Table B3). Therefore, there is a statistically significant within-group
agreement. For an easy calculation of the a, coefficient, a software program has been
written which is available from the authors (http://www-cgi.uni-regensburg.de/
~krl02854/a-coef/). The coefficient can also be calculated with SPSS which provides
a calculation of the squared Euclidean distances in the program of hierarchical cluster
analysis. d? is equal to the sum of one symmetrical half of the Euclidean distance matrix
provided by SPSS. d?  can then easily be calculated by hand.

max

6. A comparison of the a4y coefficient with other agreement indexes

Since there is no objective criterion for the evaluation of the validity of an agreement
index, the comparison can only be conducted with regard to considerations of
plausibility. The a, coefficient is compared to the ryg coefficient and its alternatives
discussed in the literature. The alternatives proposed by Schmidt and Hunter (1989) as
well as the average deviation index proposed by Burke et al. (1999) are not included,
because these coefficients are not interpretable with regard to the extent of agreement
due to a missing fixed reference point. Three arbitrary extreme examples were chosen as
comparison material showing at best the features of the different coefficients. Table 2
presents the raw data of these examples which are based on a five-point scale. The
coefficients are presented for each item separately and for all items of an example overall.

First, an example is presented in which all group members agree in their ratings.
Since the ratings correspond to the upper bound of the five-point scale, ay is not
defined, while the other coefficients deliver the value of 1 for perfect agreement. In the
second item of this example, the fourth rater does not agree with the others and
chooses a value of 4. While the values of all coefficients are more or less reasonable,
the value of the ay, coefficient of .60 seems odd as there is only one disagreement.
According to the test statistic developed by Dunlap et al. (2003), rye indicates
that there is no statistically significant agreement as well as the a, coefficient
(see Appendix B1, K = 4, ] = 1, p = .9) due to the low number of raters. A comparison
of the raw data of the second and third items shows that there is lower agreement
with regard to the third one while ay delivers a higher value for this item, reflecting
its problems with sets of data including values on the limit of the scale. While in this
case a, with respect to all items yields almost the same value as rwg( ), this example
shows a special characteristic of the former which is due to its feature as interval scale:
The a, coefficient for all items equals the mean of a, for every single item, which is
true in general (see Appendix A5).

The first item of the second example represents a case of maximum possible
disagreement, indicated by the a, coefficient with a value of zero and by the ayg
coefficient with a value of —1. 7y and ryg_my €xceeds the supposed lower bound of 0.
The second item of this example makes clear that the a, coefficient also delivers
interpretable values with regard to the extent of disagreement which is slightly lower in
this case. Such differences are not detectable with the g coefficient as it is recommended
to replace negative values with zero. With regard to both items in this example, the
coefficients belonging to the 7y family deliver aberrant scores. How should a 7w , value
of 13.2 be interpreted? It seems to be an odd range of values which should all be set to
zero. Lindell, Brandt, and Whitney (1999) claimed that r&,G( n would range between
[—1, 1] in the case ofa five-point scale but in this - admittedly extreme - example the score
exceeds the lower bound. Similarly, 7w vy does not show the purported features.
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For the first item in the third example the raw data indicate low agreement; a,, yields
a relatively high value of .85, but the test shows that this value is not statistically
significant. On the other hand, the low 7y value of .65 achieves statistical significance.
However, this value is below the theoretical discussed cut-off value for practical
significance of .70 (Dunlap et al., 2003; Lance et al., 2006), showing that the statistical
significance test for the ryg coefficient provides no clear decision rule. Similarly to the
examples before, 1y yields negative values for items 2 and 3 which leads to the large
negative value of — 6.14 for all three items. On the other hand, the a, coefficient for all
items of .39 takes into account that the raters slightly agreed with respect to item 1.

7. Discussion

In composition models, a perceptual convergence among group members is required
in order to aggregate the data at the group level. Therefore, an index is needed to
measure the agreement among ratings. With the a, coefficient a new index of within-
group agreement is available which addresses some of the deficiencies of other indices.
This coefficient fulfils the requirement of obtaining a comparable measure for the
agreement of different groups and groups from different studies. It ranges from O to 1,
regardless of the number of scale points, items, or raters. Its significance test provides an
unequivocal criterion to answer the question of how high the within-group agreement
must be in order to speak of a construct at the group level. This is due to the underlying
binomial distribution, which represents the distribution of the members’ ratings around
the estimated true score. This test ensures that only values with practical significance
yield statistical significance. If there is more than one true score within a group, the
result of a, is expected to be so low that no agreement could be assumed and so the
hypothesis of within-group agreement has to be rejected.

The tables in Appendix B show that the critical values are relatively high. This means
that only when slight deviations in the ratings are obtained a group construct does
actually exist. This is justified by the assumption that the mean of the ratings
corresponds to a group’s construct true score, even more so as the mean is used for
further analysis in the context of composition models. Even though the coefficient was
originally developed for the validation of group-level constructs in multi-level theory, it
can also be applied in other contexts where the question of the extent of agreement on
ratings arises. If it is not expected that the individual ratings are similar, the uniform
distribution can also be used for a statistical significance test. Although the critical values
cannot be determined by an analytical approach, the Monte Carlo technique delivers
satisfying adaptations. The comparison of the a, coefficient with other agreement
indices showed that it provides the best interpretable scores.
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Appendix A: Proofs

Al. Calculation of d?
By definition,

K K ] K K J
P =dPX0=) Y D iy x =D D Y oy —xw)’ =,
- j=1

k=1 k'=k j=1 J=1 k=1 k'=k

max

with the squared sum over the columns

K K
E Xk] — X))’

k=1

and the observation matrix X = (xkj)f’:]l J=1- Here J denotes the number of items and K
the number of raters. Assume that the values of X are from the interval [a, b]. In the
following, we will assume continuous variables; however, it is easy to see that the claims
also hold for discrete variables.

First we show that for even K,

2

max _](b - 61) a

where d?_ = maxx d*(X) for X with values from [a, b]. For this, note that d’
maximal if and only if all s; are maximal. Hence, we only have to maximize s;. But this
is maximal if and only if X has K/2 times item @ and K/2 times item b in each column.
Since the problem is symmetric, we may assume that s; = a for j = K/2 and s; = b for

J > K/2. Then

K K K k2 K k2
=303 = Y > Gy m = Y > -t =6 @ty
k=1k'=k k=k/2 K'=1 k=k/2 =1

which establishes the claim.

Similarly, if K is odd, s; is maximal if we have (K — 1)/2 times item a and (K + 1)/2
times item b or vice versa in each column of X. Again, we may assume that s; = a for
J =@ — 1/2and s; = b for j > (K — 1)/2. This guarantees that

K (R+1)/2 K (R+1)/2

Z Z Cog —xep’ = >, >, Gy mxey= >, >, G-
=1 k'=, k=(K+1)/2 k=1 kR=(K+1/2 k=1
— 2 _
— o ar & 1)4(K+1):(b_d)21(4 L

as claimed.
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A2. Invariance under scaling

a; = a(X) is independent of the interval boundaries a < b, i.e. invariant under scaling.
For this, assume another interval @' < &’ is given, and let X":== ((0' — a")/(b — a)) x
(xjx — @) + a'); be the variable X rescaled onto [/, b]. Then a(X) = a(X") as claimed,
because

K K v —d b —d 2
A*xh=> 3> (b_a(xkj—a)Jra’— — (xk,j—a)+a’)

/N2 K K J I N\ 2
=(bb_;’) ZZZ(xkj—xkyf:(bb_Z) d>C0)

and, by definition,

b —d 2 5
max(X) - b— dmax(X)'
a

A3. Scaling with respect to item count ] and number of raters K

1 — a(X) is J-normal-interval-scaled, i.e. if X and X’ denote two observation matrices
of sizes KXJ and K XJ', respectively with values from [a,b], and if (X, X"
denotes the K X (J +J") matrix generated by juxtaposition of X and X', then (J +J") x
[1 — aX, X" =J[1 — aCOl +J'[1 —aX)] or (J +JHaX,X") = JaX) +J'aX).
In other words, this formula illustrates how to calculate the a, coefficient of
an experiment from the a, coefficients of two subexperiments in terms of item
number J. This follows directly from

43X, X IDYAC S STV RTTC ORND VT O
X, X’) max(X b.Q) ]+]’d2 e:s ]+J’d2 .0)

max

1—aX,X)=

max

]+J’ ——{J[1 —aO] +J'[1 — aXD]}.

In the special case of X = X, the above formula implies that
211 — aX, X)) = J[1 — aCOl +J'11 — a(X)],

so a(X,X) = a(X), which means that the a, coefficient is invariant under ‘doubling’
the experiment.
The same holds with respect to the number of raters K. Let us assume even K for

X
simplicity, and let (X ) denote the matrix generated from X by doubling the number of
raters. This (K 4+ K) XJ matrix has the same a, coefficient as X, because

X K+K K+K
Sj <X) Z Z r — xp)* = 55X + 5, + Z Z Ky — X)? = 4s,CX0.

k=1 Rk'=k k=1 k'=1
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2

max’

2 X J X
1- <X> = ’ <X> —Zj_lsj<X> _Z;:14SJ(X)_

Now, using the above formulas for d we get

- (X) BT INC S R 7o s B

X

2
max

So, a X = a(X), which confirms the k-scalability of the index.

If two observation sets with different numbers of raters are compared, the a,
coefficients can easily be transformed into each other as follows (again assuming even
K and K’ for simplicity): X

The squared column sums of the total (K 4+ K") X J observation matrix ( ) can
now be calculated as

!

X K+K' K+K' K K
8j ( X,> = Z Z (g — xp)* = 500 + 55X + Z Z (g — X%

=1 =k k=1k'=1

If we define the cross sum of X and X' to be d2(X || X") = Y_, Y5, S Gy — X))

X
then clearly d? <X’> = d*(X) + d*(X") + 2d*(X||X") and therefore
X
X a: X’
1 —a( ) — _ d*(X) n d*(X" 2 d*(X||xH
/ X - 7 /N2 /N2
X dz. < , (k_l:_]f)z dlznax(X) (k_]:# dﬁlaX(X/) (k_};# dﬁlax(jo
o |y

1

=G E {#?[1 — aO] + &*[1 — aX)] + 2k*dX||X"/d2, (X}

SO
X
k+E)(1-a vl = k*[1 — alO] 4+ &?[1 — aX))| + 2k*d(X||X")/d 2, (X,

or, for the sake of symmetry,

X
N2 _
(k+ k) (1 a(X/>>

=R%[1 — aCO| + K?[1 — aX)] + k2 d(X||X)/d 2 (XD + R 2d(X|| X/ d 2 (X).

X
The fact that a(X, X) = a(X) and a(X = a(X) shows that the a, coefficient

represents the agreement inherent in the data and that all a, coefficients can be
compared with one another regardless of the number of items or raters.
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A4. Interval scaling of a4
a, is interval scaled with constant K and J and identical scale points, i.e. if X, X', and Y’

denote three observation matrices of size K X J, and a(X) — a(Y) = a(Y) — a(X"), then
the difference in agreement between X and Y implies the same as the difference in
agreement between Yand X', and is half the difference between X and X’ regardless of

the value of the a,, because

aX) — a(y) = a(¥) — aX",

dx d? d? d?,
1_2 -1+ 2Y:1_ 2Y_1+ ZX’
dmax dmax dmd.X dmax

2 2 2 2
a: —d: =d> — d?,

dy, +dx

ds =
Y 2

< ax 1S €qual for each matrix, their agreement depends only on the squared Euclidean
distances (d5., d3., d3), which are interval scaled.

As d?

AS5. a4 for ) items equals the mean of the a4 of the single items
The mean of the a, of the single items can be transformed into the calculation of a,, for

J items:

J 2 2 2
}Zad(i)=]l<1—d(l) 1—d(2)+---+1—d(])>
=1

Since all items are based on the same scale and rated by every rater, dx,, () of each item
is the same. For j = 1 we can substitute dz(j ) with s; (see Appendix Al). So

_ Z] 5]__2{151_
,Zad(]) ( max(]) 1 ]dmax(])




Within-group agreement of ratings 357

Appendix B: Critical values for ag when testing the statistical significance

Table B1. Upper bound for the 95th percentile of the a, coefficient with A = 5

porl—p porl—p

K ] U 1 2 3 4 5 K U 1 2 3 4 S5
3 1 1.00 1.00 1.00 1.00 1.00 1.00 8 1 .88 97 .95 .94 .94 .94
2 94 1.00 97 .97 .97 97 2 .83 .97 .94 91 .89 .89

3 .92 .98 .96 .96 .96 94 3 .82 .96 92 .89 .88 .87

4 91 .98 95 .94 94 94 4 .80 .96 92 .88 .87 .86

5 .89 .98 95 94 93 93 5 .79 95 91 .88 .86 .85

6 .88 .98 95 93 .92 .92 6 .79 95 91 .87 .85 .85

7 .87 97 .95 92 91 91 7 .78 95 .90 .87 .85 .84

8 .86 97 .94 .92 91 .90 8 .78 95 .90 .87 .85 .84

9 .86 .97 94 .92 .90 .90 9 .78 .95 .90 .86 .84 .84

10 .86 97 94 91 .90 .89 10 77 95 .90 .86 .84 .83

4 1 95 1.00 1.00 .95 .95 .95 9 1 .86 .97 .94 .94 92 .92
2 91 .98 .97 95 .95 .95 2 .82 .97 93 .90 .89 .88

3 .89 .98 .95 94 .93 .92 3 .80 .96 91 .89 .87 .86

4 .87 .98 .95 .93 92 91 4 .79 .95 91 .88 .86 .85

5 .86 .97 94 92 91 91 5 .78 95 91 .87 .85 .84

6 .85 .97 .94 91 .90 .90 6 .78 .95 .90 .87 .85 .84

7 .85 .97 93 91 .90 .89 7 77 .95 .90 .86 .84 .83

8 .84 .96 93 91 .89 .89 8 77 95 .90 .86 .84 .83

9 .84 .96 93 .90 .89 .88 9 77 94 .89 .86 .83 .83

10 .83 .96 93 .90 .88 .88 10 .76 .94 .89 .85 .83 .82

5 1 .94 1.00 .96 .96 .96 .96 10 1 .85 .98 95 93 91 91
2 .89 .98 95 .94 .93 .92 2 .81 .96 92 .90 .88 .88

3 .85 97 94 92 91 .90 3 .80 .96 91 .88 .86 .86

4 .84 97 93 91 .90 .89 4 .79 .95 91 .87 .85 .85

5 .83 .96 93 .90 .89 .88 5 .78 95 .90 .87 .85 .84

6 .82 .96 .92 .90 .88 .88 6 77 95 .90 .86 .84 .83

7 .82 .96 92 .89 .88 .87 7 77 .95 .90 .86 .84 .83

8 .81 .96 92 .89 .87 .86 8 77 94 .89 .86 .83 .83

9 .81 .96 91 .88 .87 .86 9 .76 .94 .89 .85 .83 .82

10 .80 95 91 .88 .86 .86 10 .76 .94 .89 .85 .83 .82

6 1 .92 1.00 97 .94 94 94 11 1 .85 .98 .94 92 .90 .90
2 .87 97 94 .93 91 91 2 .81 .96 92 .89 .87 .87

3 .84 97 94 91 .90 .89 3 .79 95 91 .88 .80 .85

4 .83 .96 93 .90 .89 .88 4 .78 95 .90 .87 .85 .84

5 .82 .96 .92 .89 .88 .87 5 77 95 .90 .86 .84 .83

6 .81 .96 92 .89 .87 .87 6 77 .95 .89 .86 .84 .83

7 .81 .96 91 .88 .87 .86 7 .76 .94 .89 .85 .83 .82

8 .80 95 91 .88 .86 .86 8 .76 .94 .89 .85 .83 .82

9 .80 95 91 .88 .86 .85 9 .76 .94 .89 .85 .83 .82

10 .80 .95 91 .88 .86 .85 10 75 .94 .89 .85 .82 .82

7 1 .90 1.00 .95 .95 94 .94 12 1 .84 97 .94 91 .90 .90
2 .84 97 .94 92 .90 .90 2 .80 .96 92 .89 .87 .86

3 .82 .96 93 .90 .89 .88 3 .79 .95 91 .87 .85 .85

4 .81 .96 92 .89 .87 .87 4 77 .95 .90 .87 .85 .84

5 .80 .96 91 .88 .86 .86 5 77 95 .90 .86 .84 .83

6 .80 95 91 .88 .86 .85 6 .76 .94 .89 .80 .83 .83

7 .79 .95 91 .87 .85 .85 7 .76 .94 .89 .85 .83 .82

8 .79 .95 .90 .87 .85 .84 8 .76 94 .89 .85 .83 .82

9 .78 95 .90 .87 .85 .84 9 75 94 .89 .85 .82 .82

10 .78 95 .90 .86 .84 .84 10 75 94 .88 .85 .82 .81

Note. K, number of raters; J, number of items; p, probability from the binomial distribution; U, critical values
according to the uniform distribution.



358 Ludwig Kreuzpointner et al.

Table B2. Upper bound for the 99th percentile of the a, coefficient with 4 = 5

porl—p porl—p

K J U 1 2 3 4 5 K ] U 1 2 3 4 5
3 1 1.00 100 100 100 100 1.00 8 1 94 100 97 95 95 .95
2 97 1.00 1.00 1.00 .97 .97 2 .88 98 95 94 92 92

3 96 1.00 98 .98 .96 .96 3 85 97 94 92 90 .90

4 94 99 97 .97 95 95 4 .83 97 93 91 89 .89

5 93 .99 .96 .96 95 95 5 .82 96 93 90 88 88

6 92 .98 .96 95 95 .94 6 .81 96 92 89 88 87

7 .90 .98 .96 95 94 .94 7 .81 96 92 89 87 .86

8 .90 .98 95 94 93 93 8 .80 96 91 88 87 .86

9 .89 .98 95 94 92 92 9 .80 95 91 88 8 .86

10 .89 97 95 93 92 92 10 .79 95 91 88 8 .85

4 1 1.00 100 100 100 1.00 1.00 9 1 92 100 96 96 94 94
2 95  1.00 .98 .98 .98 97 2 .86 98 95 93 92 91

3 93 .98 .97 .96 95 95 3 .84 97 93 91 90 .89

4 91 .99 .96 95 95 .94 4 .82 96 93 90 88 88

5 .90 .98 .96 94 93 93 5 .81 96 92 89 88 .87

6 .89 .98 95 93 93 92 6 .80 96 91 88 87 .86

7 .88 .98 95 93 92 92 7 .80 96 91 88 8 .86

8 .87 97 95 93 91 91 8 .79 95 91 88 8 .85

9 .86 .97 .94 .92 91 91 9 .79 95 91 87 8 85

10 .86 97 .94 92 91 .90 10 .78 95 90 87 8 84

5 1 96 1.00 1.00 1.00 .96 96 10 1 9 100 96 95 95 95
2 93  1.00 97 .96 95 95 2 85 97 94 92 91 91

3 .90 .99 .96 94 .94 93 3 .83 97 93 91 89 .89

4 .88 .98 95 93 92 92 4 .81 96 92 89 88 87

5 .86 .97 95 93 91 91 5 .80 96 92 89 87 .86

6 .85 97 .94 92 .90 .90 6 .80 96 91 88 86 .86

7 .85 .97 93 91 .90 .89 7 .79 95 91 88 86 .85

8 .84 97 93 91 .89 .89 8 .79 95 91 87 8 85

9 .83 .97 93 .90 .89 .88 9 .78 95 90 87 8 84

10 .83 .96 93 .90 .88 .88 10 .78 95 90 87 8 84

6 1 97  1.00 .97 .97 .97 97 11 1 .89 98 95 95 94 94
2 91 .98 97 95 94 94 2 .84 97 94 91 90 .90

3 .88 .98 .95 93 .92 .92 3 .82 96 93 90 88 88

4 .80 97 .94 92 91 91 4 .80 96 92 89 87 86

5 .85 .97 .94 92 .90 .90 5 .79 96 91 88 8 .80

6 .84 97 93 91 .89 .89 6 .79 95 91 88 8 85

7 .83 97 93 .90 .89 .88 7 .78 95 90 87 8 84

8 .83 .96 93 .90 .88 .88 8 .78 95 90 87 8 84

9 .82 .96 .92 .90 .88 .88 9 .77 95 90 86 84 .84

10 .82 .96 92 .89 .88 .87 10 .77 95 90 86 84 .83

7 1 95  1.00 97 97 97 97 12 1 88 98 95 94 94 94
2 .89 .98 .95 .94 93 .93 2 .84 97 94 91 90 .89

3 .86 .97 .94 .92 91 91 3 81 96 92 90 88 .87

4 .84 97 93 91 .90 .90 4 .80 96 92 89 87 .86

5 .83 97 93 .90 .89 .89 5 .79 96 91 88 8 .85

6 .82 .96 93 .90 .88 .88 6 .78 9 91 87 8 85

7 .82 .96 .92 .89 .88 .87 7 .78 95 90 87 8 84

8 .81 .96 92 .89 .87 .86 8 .77 95 90 87 84 84

9 .80 .96 .92 .89 .87 .86 9 .77 95 90 86 84 .83

10 .80 .96 91 .88 .86 .86 10 .77 95 90 86 84 .83

Note. K, number of raters; /, number of items; p, probability from the binomial distribution; U, critical
values according to the uniform distribution.
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Table B3. Upper bound for the 95th percentile of the a, coefficient with A = 7
porl—p porl—p
K J U 1 2 3 4 5 K J U 1 2 3 4 5
3 1 .97 1.00 1.00 1.00 1.00 1.00 8 1 .88 .98 97 .96 95 .95
2 94 99 .99 .99 97 .97 2 8 98 9 94 93 93
3 92 99 .98 97 .96 .96 3 8 97 95 93 92 92
4 .90 .99 97 .97 .96 .96 4 .80 .97 .94 92 91 91
5 .88 .98 97 .96 95 .95 5 .79 97 94 92 91 .90
6 .88 .98 .96 95 .94 94 6 .78 .97 .94 .92 .90 .90
7 .87 .98 .96 .95 .94 .94 7 .78 97 .94 91 .90 .90
8 .86 .98 .96 95 94 .94 8 77 9 93 91 90 .89
9 85 .98 .96 .94 94 93 9 77 9 93 91 90 .89
10 .85 .98 .96 .94 93 .93 0 77 9% 93 91 89 .89
4 1 97 100 .98 .98 .98 98 9 1 8 98 96 95 95 95
2 92 .99 .98 97 .96 .96 2 82 97 95 94 93 92
3 .89 .98 .97 .96 .96 .95 3 80 97 94 93 91 91
4 .87 .98 97 95 95 94 4 .79 .97 .94 .92 91 .90
5 .86 .98 .96 .95 94 .94 5 78 97 94 91 90 .90
6 .85 .98 .96 .94 94 .93 6 77 9% 93 91 90 .89
7 .84 .98 .96 .94 93 93 7 77 9 93 91 90 .89
8 .84 .98 .95 .94 93 93 8 76 9 93 91 8 .89
9 83 .97 95 .94 .93 .92 9 76 9 93 91 8 .89
10 .83 97 .95 .93 .92 .92 10 76 9 93 90 89 88
5 1 94 .98 .98 .98 97 97 10 1 8 98 96 95 95 94
2 .88 .98 97 .96 .95 .95 2 81 97 9 93 92 92
3 85 .98 .96 95 94 .94 3 .79 97 94 92 91 91
4 84 .98 .96 .94 93 93 4 78 97 94 92 90 90
5 .83 .98 95 .94 93 .92 5 77 97 93 91 90 90
6 .82 97 .95 .93 .92 92 6 77 9 93 91 90 .89
7 .81 97 95 93 92 91 7 76 96 93 91 8 .89
8 .81 97 .94 .93 91 91 8 76 9 93 91 8 .89
9 .80 97 .94 .92 91 91 9 76 96 93 90 89 88
10 .80 97 .94 .92 91 91 10 75 .96 93 .90 .89 .88
6 1 91 .98 .98 .98 97 97 11 1 84 98 96 95 94 94
2 .86 .98 .96 95 94 94 2 80 97 9 93 92 91
3 84 .98 .96 .94 93 93 3 78 97 94 92 91 90
4 .82 .98 .95 .93 93 .92 4 77 97 94 91 90 90
5 .81 97 95 93 .92 .92 5 77 9 93 91 90 .89
6 .81 97 .94 .93 .92 91 6 .76 .96 93 91 .89 .89
7 .80 97 .94 .92 91 91 7 76 96 93 90 89 88
8 .80 .97 .94 .92 91 91 8 75 .96 93 .90 .89 .88
9 .79 97 .94 .92 91 .90 9 75 9 93 90 89 88
10 .79 97 .94 .92 91 .90 10 75 96 92 90 88 .88
7 1 .89 99 .97 97 95 95 12 1 .84 .98 .96 .94 .94 .94
2 84 .98 .96 94 94 93 2 80 97 9 93 91 91
3 .82 .98 95 .93 .92 .92 3 78 97 94 92 90 90
4 .81 .97 .95 .93 .92 91 4 77 9 93 91 90 .89
5 .80 .97 94 .92 91 91 5 .76 .96 .93 91 .89 .89
6 .79 97 .94 .92 91 .90 6 76 9 93 90 89 .89
7 .78 97 94 92 .90 .90 7 75 .96 93 .90 .89 .88
8 .78 97 .94 91 .90 .90 8 75 .96 93 .90 .89 .88
9 .78 97 93 91 .90 .90 9 75 .96 92 .90 .88 .88
10 77 .96 93 91 .90 .89 10 75 .96 .92 .90 .88 .88

Note. K, number of raters; J, number of items; p, probability from the binomial distribution; U, critical

values according to the uniform distribution.
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Table B4. Upper bound for the 99th percentile of the a,, coefficient with 4 = 7

porl—p porl—p

K J U 1 2 3 4 S5 K J U 1 2 3 4 S5
3 1 1.00 1.00 1.00 1.00 1.00 1.00 8 1 .92 .99 .98 97 97 .97
2 97 1.00 .99 99 99 99 2 .87 .98 97 .96 .95 .95

3 .95 .99 .99 .98 .98 .98 3 .85 .98 .96 .95 94 94

4 94 .99 .98 .98 97 .97 4 .83 .98 95 94 .93 93

5 .92 .99 .98 97 .97 97 5 .82 97 .95 .93 92 .92

6 91 .99 .98 .97 .96 .96 6 81 97 95 .93 .92 .92

7 .90 .99 97 .96 .96 .96 7 .80 .97 .94 93 91 91

8 90 .99 .97 .96 95 .95 8 .80 .97 94 .92 91 91

9 .89 .98 97 .96 .95 95 9 .79 97 94 .92 91 91

10 .88 .98 97 .96 95 95 10 .79 .97 94 .92 91 .90

4 1 .98 1.00 1.00 1.00 1.00 1.00 9 1 91 .99 .98 .97 97 97
2 .95 .99 .99 .98 .98 .98 2 .86 .98 .96 .95 .94 94

3 93 .99 .98 97 .97 97 3 .83 .98 .96 94 93 93

4 91 .99 .98 97 .96 .96 4 .82 .97 95 .93 .92 .92

5 .89 99 97 .96 .96 95 5 .80 97 .95 93 92 91

6 .88 .98 .97 .96 95 95 6 .80 97 94 .92 91 91

7 .88 .98 97 .95 .95 95 7 .79 97 94 .92 91 91

8 .87 .98 .96 .95 .94 .94 8 .79 .97 94 .92 91 .90

9 .86 .98 .96 .95 94 .94 9 .78 .97 94 .92 .90 .90

10 .86 .98 .96 .95 94 .94 10 .78 97 94 91 .90 .90

5 1 .97 1.00 1.00 .98 .98 .98 10 1 91 .99 .98 97 .96 .96
2 93 .99 .98 .98 97 97 2 .85 .98 .96 95 .94 .94

3 .90 .98 97 .96 .96 .96 3 .82 .98 .95 94 93 93

4 .88 .98 97 .96 95 95 4 .81 .97 .95 93 92 .92

5 .86 .98 .96 .95 94 .94 5 .80 97 94 93 91 91

6 .85 .98 .96 .95 .94 .94 6 .79 97 94 .92 91 91

7 .84 .98 .96 94 93 93 7 .79 97 94 .92 91 .90

8 .84 .98 95 .94 93 93 8 .78 97 94 .92 .90 .90

9 .83 .98 95 94 .93 92 9 .78 .97 94 91 .90 .90

10 .82 97 95 .93 .92 92 10 77 97 93 91 .90 .89

6 1 .95 1.00 .98 .98 .98 .98 11 1 .89 .98 .97 .96 .96 .96
2 91 .99 .98 .97 .96 .96 2 .84 .98 .96 .94 .94 93

3 .88 .98 97 .96 .95 .95 3 .81 .97 .95 93 92 .92

4 .86 .98 .96 .95 .94 .94 4 .80 .97 .95 93 92 91

5 .85 .98 .96 94 94 93 5 .79 97 94 .92 91 91

6 .84 .98 .96 .94 93 93 6 .78 97 .94 .92 91 .90

7 .83 .98 95 94 .93 92 7 .78 .97 94 92 .90 .90

8 .82 97 95 .93 .92 .92 8 77 97 93 91 .90 .90

9 .82 .97 95 93 .92 92 9 77 .96 93 91 .90 .89

10 .81 97 95 .93 .92 92 10 77 .96 .93 91 .89 .89

7 1 94 1.00 .99 .98 .98 .98 12 1 .88 .98 97 .96 .96 95
2 .89 .99 97 .96 .96 95 2 .83 .98 .96 .94 93 93

3 .86 .98 .96 95 94 .94 3 .81 .97 .95 93 92 .92

4 .84 .98 .96 .94 93 93 4 .80 97 .94 .92 91 91

5 .83 .98 95 94 .93 .92 5 .79 .97 94 .92 91 .90

6 .82 97 95 .93 .92 92 6 .78 97 .94 .92 .90 .90

7 .81 .97 95 93 92 .92 7 77 .97 .93 91 .90 .90

8 .80 97 95 93 91 91 8 77 .96 .93 91 .90 .89

9 .80 .97 .94 92 91 91 9 77 .96 93 91 .90 .89

10 .80 97 .94 .92 91 91 10 .76 .96 .93 91 .89 .89

Note. K, number of raters; /, number of items; p, probability from the binomial distribution; U, critical
values according to the uniform distribution.



