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The ad coefficient was developed to measure the within-group agreement of ratings.
The underlying theory as well as the construction of the coefficient are explained. The
ad coefficient ranges from 0 to 1, regardless of the number of scale points, raters, or
items. With some limitations the measure of the within-group agreement of different
groups and groups from different studies is directly comparable. For statistical
significance testing, the binomial distribution is introduced as a model of the ratings’
random distribution given the true score of a group construct. This method enables a
decision about essential agreement and not only about a significant difference from 0 or
a chosen critical value. The ad coefficient identifies a single true score within a group. It
is not provided for multiple true score settings. The comparison of the ad coefficient
with other agreement indices shows that the new coefficient is in line with their
outcomes, but does not result in infinite or inappropriate values.

1. Introduction

In recent years, multi-level theory has been increasingly used for the analysis of
organizational processes since organizations are hierarchically structured systems with

different levels of analysis. Due to the nested structure of organizations, it is assumed

that the ongoing processes on one level influence the processes on another level. If this

aspect is not considered, statistical artefacts and contradictory results may easily be

obtained (Bliese, 2000). In multi-level theory, different models have been proposed for

the analysis of the relations within and across levels (Chan, 1998; Klein & Kozlowski,

2000; Kozlowski & Klein, 2000; Moritz & Watson, 1998). If the analysis is based on a

so-called bottom-up composition model, it is required to test the within-group
agreement of the individual ratings when aggregating the data at the group level. Given a

high within-group agreement, the mean of the individual data can be used as a measure

of the group-level construct such as group cohesiveness, group norms, or climate
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(Cohen, Doveh, & Eick, 2001; Klein & Kozlowski, 2000; Kozlowski & Hattrup, 1992;

Lance, Butts, & Michels, 2006; Lindell & Brandt, 1997; Moritz & Watson, 1998). Lüdtke

and Robitzsch (2009) list some further research areas using within-group agreement:

aggregating group perceptions, for example fairness, in industrial and organizational

psychology (Masterson, 2001); measuring the characteristics of a group by asking its

members, in small-group research; and pooling students’ answers to a class-level
measurement, in educational research.

For the estimation of the agreement among those ratings the rWG coefficient is

often proposed (Bliese, 2000; Chan, 1998; Klein & Kozlowski, 2000; Moritz &

Watson, 1998), which was originally developed by Finn (1970) and further studied

by James, Demaree, and Wolf (1984, 1993). The within-group agreement coefficient

rWG is defined in the case of a single item as rWGð1Þ ¼ 12 s2xj=s
2
E, where s2xj

corresponds to the sample variance in the ratings of the K judges on a single item

Xj. s
2
E refers to the expected variance (E) due to random response mostly based on a

uniform distribution (U) (Lüdtke & Robitzsch, 2009). The expected variance in the

uniform case is determined by the equation s2
E ¼ ðA2 2 1Þ=12, where A corresponds

to the number of scale points, which means that on a five-point scale A ¼ 5.

The term s2xj=s
2
E reveals the proportion of error variance in the ratings and so

12 s2xj=s
2
E represents the proportion of non-error variance (Finn, 1970; James et al.,

1984). The rWG coefficient represents an attempt to remove the variance expected

by chance from the observed variance. One less the proportion of variance in the

ratings corrected for chance corresponds to the degree of agreement in the
ratings. The coefficient may be extended to multiple items, referred to as rWG( J),

based on the same principles. A weakness of the rWG(1) coefficient is that it becomes

negative when s2xj . s2
E

�
rWG( J) becomes negative if s2

E , s2xj ,
J

J21
s2
E

�
.

James et al. (1984) proposed setting negative rWG to 0. According to Lüdtke and

Robitzsch (2009, p. 3) this method could cover ‘the fact that a target has multiple

true scores’. Cohen et al. (2001) analysed the statistical properties of rWG . They

pointed out the problems by testing the statistical significance when setting negative

values to 0 with the consequence of ‘a large proportion (.90) of zero values’ (p. 301)
in the one-item case.

Lindell and Brandt (1997) proposed replacing the uniform distribution with

maximum dissensus as reference distribution so that the coefficient lies within the

proper interval [0,1], referred to as rWG_MV. There are several parallels between

Lindell and Brandt’s work and the ad coefficient, presented in the present paper.

Subtle distinctions result from using distances instead of the variance. Using the

sample variance (with denominator n2 1) may again lead in extreme cases to

negative rWG_MV. The fact that the formula for the maximum variance does not
exactly fit with the formula for sample variance is due to the small differences in

the values of ad and rWG_MV.

As an alternative, Schmidt and Hunter (1989) proposed estimating the within-

group agreement with the standard deviation of ratings or the standard error of

the mean. But without a fixed reference point in these procedures, they do not

satisfy the aim of obtaining a measure delivering information about the extent of

agreement. The coefficient aWG proposed by Brown and Hauenstein (2005) uses the

maximum variance given the mean of the ratings. The values of aWG lie between
21 (maximum disagreement) and þ1 (maximum agreement). There is only a

problem modelling agreement when many ratings have the maximum or minimum

value on the scale.
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2. The ad coefficient for the estimation of the within-group inter-rater
agreement

To simplify matters, our theoretical remarks are explicated for the case of three raters
rating one object on a single item. These remarks can be readily extended to any number

of raters and items. The question is how similar ratings can be in order to conclude that

they agree to a substantial extent. Therefore, the degree of inter-rater agreement is a

function of the deviations in the judgements. Based on the assumptions of classical test

theory the observed score x can be decomposed into a true score t and an error score e;

the following three equations are obtained for the raters’ judgements: for rater 1,

x ¼ t þ ex; for rater 2, y ¼ t þ ey; for rater 3, z ¼ t þ ez. If the degree of inter-rater

agreement is understood as a function of deviations in the judgements, the observed
scores of the raters can be subtracted from one another:

Rater 12 Rater 2 : x 2 y ¼ ðt þ exÞ2 ðt þ eyÞ;
Rater 12 Rater 3 : x 2 z ¼ ðt þ exÞ2 ðt þ ezÞ;
Rater 22 Rater 3 : y2 z ¼ ðt þ eyÞ2 ðt þ ezÞ:

Since the same object underlies each rater’s judgment and therefore the same true score

t, the obtained deviations between the x-, y-, and z-scores are only caused by the error

score e, referred to as distance dk,l:

Rater 12 Rater 2 : x 2 y ¼ ex 2 ey ¼ d1;2;

Rater 12 Rater 3 : x 2 z ¼ ex 2 ez ¼ d1;3;

Rater 22 Rater 3 : y2 z ¼ ey 2 ez ¼ d2;3:

The distances dk,l between the observed scores reveal the degree of disagreement in the

ratings. The greater the deviations are, the lower the raters’ agreement is; as a

consequence, the ratings’ objectivity declines (Simon & Kreuzpointner, 2008). If one

were to add up only these deviations, the positive and negative deviations could yield a

value of zero. To prevent this and to be able to apply the coefficient in the case of

multiple items, the squared Euclidean distances d2
k;l are used. As greater deviations carry

more weight, a stricter criterion of objectivity results through squaring. This is useful
because great deviations are a sign of low agreement. By summing up the individual

squared Euclidean distances d2
k;l , a statistical value results for the extent of disagreement

among the raters, referred to as d2:

d 2 ¼
XJ
j¼1

XK
k¼1

XK
k0¼k

ðxkj 2 xk0jÞ2; ð1Þ

where K is the number of raters and J the number of items. However, without a

reference point the statistical value of d2 cannot be interpreted as being a large or a

small disagreement. The fact that rating scales are bounded now becomes an
advantage. Due to the restriction of a scale, the maximum possible disagreement among

the raters is known. Maximum disagreement results from the difference between the

maximum value b of a scale and the minimum value a of a scale which is squared

once again: d2
max ¼ ðb2 aÞ2. Given more than two raters or more than one item,

the calculation of the maximum possible disagreement on a scale must be adjusted.
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For the adjustment, the following two equations result depending on whether the

number of raters K is even or odd:

d2
max ¼ J�ðb2 aÞ2�ðK 2=4Þ; if K is even; ð2Þ

d2
max ¼ J�ðb2 aÞ2�ððK 2 2 1Þ=4Þ; if K is odd: ð3Þ

The mathematical proof for Equations (2) and (3) is described in Appendix A1. With

these two statistical values, the sum of the squared Euclidean distances between the

raters d2 and the maximum disagreement d2
max, a coefficient for the measurement of the

extent of inter-rater agreement can be constructed. Dividing d2 by d2
max delivers

information about the extent of disagreement in the ratings. Hence, 1 as the value of

perfect agreement minus the extent of disagreement delivers information about the
extent of inter-rater or within-group agreement:

ad U 12 d 2=d2
max: ð4Þ

According to its function as a descriptive measure of the agreement among ratings,

this coefficient is called the agreement coefficient. The subscript d symbolizes

that the coefficient is calculated from distances. The ad coefficient is an extension of the

Ü coefficient suggested by Fricke (1972) to measure the objectivity within mastery

testing. Fricke derived and used his index only for dichotomous data. Moreover, we have
derived precise results for d2

max for odd and even numbers of raters, not taken into

account by Fricke.

3. Features of the ad coefficient

The ad coefficient ranges from 0 to 1. This is because the ratio of d 2=d2
max can only vary

within the interval [0,1] since d2 as a deviation measure cannot be negative and is limited

by the maximum value d2
max (see Appendix A1). Given maximum agreement, ad ¼ 1

since in this case d 2 ¼ 0. Given maximum disagreement, d 2 ¼ d2
max and therefore

ad ¼ 12 d2
max=d

2
max ¼ 12 1 ¼ 0. Hence, the range of ad is limited between 0 and 1

regardless of the number of scale points, raters, or items (see Appendix A3).

A further feature of the ad coefficient is that the scores are interval-scaled. Given

equal numbers of raters, items, and scale points, the difference of .05 between two ad
values of .80 and .85 reflects the same difference in agreement as the difference between

two ad values of .90 and .95. This is true because the ad coefficient is based on

distances, which are by definition at least interval-scaled (see Appendix A4).

Additionally, under the condition of the same number of items and raters, two ad
coefficients based on different numbers of scale points can also be compared. The effect

of the scale points on the magnitude of the coefficient is eliminated by the ratio of

d 2=d2
max since the sum of the squared Euclidean distances d2 as well as the maximum

possible distances d2
max depend in the same manner on the number of scale points

(see Appendix A2). However, this is only true without restrictions when continuous

scales (such as visual or other analogue scales) are used. Given discrete scales, an

identical transformation of different scales is not always possible. In this case, whole

numbers only result when the upper bound of the broader scale represents an integer

multiple of the upper bound of the narrower scale. Therefore, in the case of discrete
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scales, one can only speak of an approximate independence of the number of scale

points (compare the critical values in Tables B1 and B2 or B3 and B4).

It is important to mention that the ad coefficient can also be expressed in terms of

the sum of squares (SS) since the squared Euclidean distances divided by the number

of raters is equal to the SS. Accordingly, d2 could be substituted by the SS between the

ratings and d2
max by the maximum SS. In cases of more than one item, d2 is equal to

the sum of SS for each item and d2
max corresponds to J times the maximum SS of one

item. Both procedures lead to the same values. However, squared Euclidean distances

were deliberately chosen for three reasons. First, the Euclidean distances better suit

the theoretical derivation of the coefficient from the concept of objectivity. Second,

the automatic calculation of d2
max is slightly easier to implement. Third, the description

in terms of SS spuriously implies a chi-square test. This test requires a normal

distribution of the ratings which is not given (cf. Dunlap, Burke, & Smith-Crowe,

2003). To avoid this fallacy, the ad coefficient builds on Euclidean distances which are,
from our point of view, clearer and intuitively more comprehensible, even if the SS is

much more familiar.

One issue which initially seems questionable is the fact that with the ad coefficient

the extent of disagreement is estimated on the basis of maximum disagreement.

Maximum disagreement implies that multiple true scores can be given within a group.

But for the calculation and application of the ad coefficient it is assumed that every

group has only one single true score (like Brown and Hauenstein’s (2005) aWG
coefficient). In contrast to aWG, ad does not include the estimation of the true score
value within the construction of the coefficient, but takes it into account while

testing the statistical significance (see Section 4). So the case of two (or more) true

scores is not a technical issue but rather a theoretical one. The solution lies in the

stated aim of measuring the amount of agreement of one group. When there are two

true scores in a group, which will lead to a low to very low value of ad, we suggest

interpreting this setting as two subgroups within a group when using the ad
coefficient for calculating the within-group agreement. A low value of ad implies no

significant agreement within the group. When there are two true scores within a
group there is no agreement of all members. A low value of ad could only serve as an

indication of more than one true score within the group. But it is not (yet) intended

to identify them.

4. Testing the statistical significance of the ad coefficient

The first assumption is that, according to composition models, a group-level construct

only exists when there is a perceptual consensus in the members’ ratings. Based on this,

the mean of the ratings is used as an estimate of the true score of a group construct.

A violation of this assumption would lead to a rejection of the hypothesis of within-

group agreement, as we will see later. The binomial distribution as a model for the

distribution of the ratings on a scale provides a basis for the determination of statistical

significance. The binomial distribution is constructed in such a manner that the ratings

around a group’s estimated true score are more likely than those farther away from the
true score. For this to be realized, the individual judgements are treated as the sum of

how often each binary variable occurs in n trials. In other words, each judgement is

interpreted as the sum over n random experiments of a binary random variable.

The number of trials n corresponds to the decremented number of scale points (A2 1),
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since the scale point one represents zero occurrences in the binomial distribution. The

probability p of a hit determines the expected value of the binomial distribution, which

corresponds to the also decremented estimated true value of the group construct

(see Figure 1). The probability p can easily be calculated as p ¼ ð 
X2 1Þ=ðA2 1Þ, since
the expected value of a binomial distribution is EðXÞ ¼ pn, with n ¼ A2 1 and

EðXÞ ¼ 
X2 1. Given a set of samples, p is therefore directly given by the mean, and this
is indeed also the best possible estimate of p in the maximum-likelihood sense. Thus, the

larger the mean of the ratings of one group, the larger is the hit probability p of the

binomial distribution used to model the distribution of the ratings for this group.

Figure 1 illustrates the procedure. An estimated true score of t ¼ 2:8 corresponds to

an average hit rate of EðXÞ ¼ 2:82 1 ¼ 1:8. Using a seven-point scale, this condition

results when the hit probability is p ¼ 1:8=6 ¼ :3. The range of the scale and the hit

probability together define the binomial distribution B(.3, 6), which determines the

probability of the seven possible results or ratings (see Figure 1a). Figure 1 presents
examples of histograms of an infinite number of Bernoulli experiments with specified

conditions. Thus, the binomial distribution provides the likelihood of the ratings under

the condition of the true score which is necessary for the calculation of the null

distribution of the ad coefficient.

By drawing 10,000 samples from such a binomial distribution B(p,n), the null

distribution of ad can be determined using the Monte Carlo technique. This distribution

is the basis for testing H0, the hypothesis that the ratings agree only by chance given the

mean rating as an estimate of a group’s true score. The following example illustrates
the method: if within a group of seven members with ratings {2, 3, 3, 3, 3, 4, 4} the mean

of 
X ¼ 3:14 is observed on a seven-point scale, for instance, measuring the construct of

group cohesion, then this value is used for estimating a group’s true cohesion score. The

mean implies p ¼ :4 since p ¼ ð3:142 1Þ=ð72 1Þ ¼ :36 < :4. Using random sampling

based on the binomial distribution B(.4, 6), the null distribution of ad can be

determined. The critical value of ad with an alpha level of 5% corresponds to the 95%

quantile of the resulting null distribution, which in this case equals .95 (see Table B3 in

Appendix B). As ad ¼ :954 is higher than this critical value, the ad coefficient obtained
is statistically significant. Of course, it is possible to calculate the distribution and the

critical value of ad more exactly by using p ¼ :36.

Figure 1. The binomial distribution as a model for the distribution of the ratings of a group on a

scale (two examples). Note. The numbers without brackets correspond to the binomial

distribution. The numbers in brackets correspond to the modelled rating scale. The ordinate

represents the probability of the results under the given conditions.
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In Appendix B, the critical values of the ad coefficient are listed for the often used

five-point and seven-point scales. The number of group members (raters) ranges from

k ¼ 3 to 12 since a small group is often understood as being composed of 3 to 12

persons (Wiendieck, 1994). The number of items ranges from 1 to 10. The critical values

correspond to an experimental accuracy of two decimal digits. For investigations with

more items, larger scales, or exact calculations for a specific setting a program to
calculate the critical values is available from the authors (http://www-cgi.

uni-regensburg.de/,krl02854/a-coef/). Based on these tables, the statistical

significance of a given ad value can easily be determined. First, it is necessary to

calculate the mean of the ratings, which is used to estimate the true value t and then

the underlying p. Afterwards, the desired significance level for testing ad must be

selected. Tables B1 and B3 provide the critical values for the significance test with an

alpha level of 5%; Tables B2 and B4 provide those with one of 1%. The next step consists

of identifying the scale used, the number of raters k, and the number of items j. In the
case of six raters on a five-point scale, the critical value with a level of 5% is .94 for a

single item where p ¼ :7, and .92 for five items where p ¼ :2. Moreover, the tables in

Appendix B also list the critical values of the ad coefficient under the assumption of a

(discrete) uniform distribution of ratings (see column U). This enables wider

application of the ad coefficient beyond multi-level theory if it is assumed that the

ratings are not similar.

With an underlying binomial distribution and the expectation that the data

agree considerably more than this, the significance test of the ad coefficient provides a
clear criterion for the question of how high the agreement has to be in order to treat it as

a substantial within-group agreement. In the construction of the significance test for the

ad coefficient we took Fowler’s (1985) proposal into account. The null hypothesis was

specified insofar as it corresponded to the distribution of the ratings expected by chance

under the assumption of a group’s true score. This specification ensures that statistically

significant ad values are also practically significant. We know that this criterion is a strict

one, but we think it is more appropriate than testing non-zero associations. Cohen et al.

(2001) compare this problem with the significance test of correlations which only
indicate that a statistically significant non-zero association is obtained which is not

necessarily practically significant.

Independent of the clear interpretation according to the statistical significance test,

the ad values are more difficult to interpret in comparison, for instance, with the

product moment correlation coefficient. At first sight, with only a low agreement,

the values of the ad coefficient are normally relatively high. This is due to the fact that

the sum of the distances in the ratings d2 merely corresponds to the maximum possible

disagreement d2
max. Therefore often values in the upper range of the scale from 0 to 1

will be obtained, which seem to be more difficult to interpret. For this reason, Burke,

Finkelstein, and Dusig (1999) criticized the usage of maximum dissensus as reference

point. On the other hand, it has to be considered that it is only an effect of usage and the

statistical significance test of the ad coefficient prevents misinterpretation.

5. Examples of the calculation of the ad coefficient

5.1. One item
Six judgements {5, 5, 4, 4, 3, 2} on a five-point scale were obtained for the

measurement of group cohesion. First, the sum of the squared Euclidean distances
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d2 has to be calculated using equation (1):

d 2 ¼ ð52 5Þ2 þ ð52 4Þ2 þ ð52 4Þ2 þ ð52 3Þ2 þ ð52 2Þ2 þ ð52 4Þ2 þ ð52 4Þ2

þ ð52 4Þ2 þ ð52 3Þ2 þ ð52 2Þ2 þ · · ·þ ð32 2Þ2 ¼ 41:

Second, d2
max must be calculated. Since the number of judges K is even, equation (2)

must be used:

d2
max ¼ J�ðb2 aÞ2� 1

4
K 2 ¼ 1�ð52 1Þ2� 1

4
62 ¼ 144:

Based on the two values of d2 and d2
max, the agreement coefficient ad can be calculated

using equation (4):

ad ¼ 12 d 2=d2
max ¼ 12 41=144 ¼ :72:

With K ¼ 6 judges on a five-point scale and a p of .7 for the binomial distribution, the

critical value of ad is .94 with an alpha level of 5% (see Table B1). Since the ad coefficient

obtained is less than the critical value, the null hypothesis cannot be rejected. This
means that the members do not show substantial agreement in their cohesion ratings.

5.2. Multiple items
Suppose we have a data matrix of three judges rating on five items for the measurement
of group climate with seven alternatives (see Table 1). Then d2 is given by the sum of the

squared Euclidean distances of the three answer vectors of the judges according to

equation (1):

d 2 ¼ d2
1 þ d2

2 þ d2
3 þ d2

4 þ d2
5 ¼

�ð12 2Þ2 þ ð12 2Þ2 þ ð22 2Þ2'¼d2
1

þ�ð22 2Þ2 þ ð22 3Þ2 þ ð22 3Þ2'¼d2
2 þ · · ·þ �ð12 2Þ2 þ ð12 2Þ2 þ ð22 2Þ2'¼d2

5 ¼ 10:

Since the number of judges K is odd, equation (3) is used for the calculation of the

maximum squared Euclidean distances d2
max:

d2
max ¼ J�ðb2 aÞ2� 1

4
ðK 2 2 1Þ ¼ 5�ð72 1Þ2� 1

4
ð32 2 1Þ ¼ 5�36� 8

4
¼ 360:

In this case, ad ¼ 12 10=360 ¼ :972. The p value of the binomial distribution for

the statistical significance test is .2 since p ¼ ð1:932 1Þ=ð72 1Þ ¼ :155. With K ¼ 3

judges on a seven-point scale and J ¼ 5, a critical value of .97 results with an alpha level

Table 1. Data matrix of three judges rating on five items each with seven alternatives

Judges Item 1 Item 2 Item 3 Item 4 Item 5 M

A 1 2 2 2 1 1.6

B 2 2 1 2 2 1.8

C 2 3 2 3 2 2.4
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of 5% (see Table B3). Therefore, there is a statistically significant within-group

agreement. For an easy calculation of the ad coefficient, a software program has been

written which is available from the authors (http://www-cgi.uni-regensburg.de/

,krl02854/a-coef/). The coefficient can also be calculated with SPSS which provides

a calculation of the squared Euclidean distances in the program of hierarchical cluster

analysis. d 2 is equal to the sum of one symmetrical half of the Euclidean distance matrix
provided by SPSS. d2

max can then easily be calculated by hand.

6. A comparison of the ad coefficient with other agreement indexes

Since there is no objective criterion for the evaluation of the validity of an agreement

index, the comparison can only be conducted with regard to considerations of
plausibility. The ad coefficient is compared to the rWG coefficient and its alternatives

discussed in the literature. The alternatives proposed by Schmidt and Hunter (1989) as

well as the average deviation index proposed by Burke et al. (1999) are not included,

because these coefficients are not interpretable with regard to the extent of agreement

due to a missing fixed reference point. Three arbitrary extreme examples were chosen as

comparison material showing at best the features of the different coefficients. Table 2

presents the raw data of these examples which are based on a five-point scale. The

coefficients are presented for each item separately and for all items of an example overall.
First, an example is presented in which all group members agree in their ratings.

Since the ratings correspond to the upper bound of the five-point scale, aWG is not

defined, while the other coefficients deliver the value of 1 for perfect agreement. In the

second item of this example, the fourth rater does not agree with the others and

chooses a value of 4. While the values of all coefficients are more or less reasonable,

the value of the aWG coefficient of .60 seems odd as there is only one disagreement.

According to the test statistic developed by Dunlap et al. (2003), rWG indicates

that there is no statistically significant agreement as well as the ad coefficient
(see Appendix B1, K ¼ 4, J ¼ 1, p ¼ :9) due to the low number of raters. A comparison

of the raw data of the second and third items shows that there is lower agreement

with regard to the third one while aWG delivers a higher value for this item, reflecting

its problems with sets of data including values on the limit of the scale. While in this

case ad with respect to all items yields almost the same value as rWGð JÞ, this example

shows a special characteristic of the former which is due to its feature as interval scale:

The ad coefficient for all items equals the mean of ad for every single item, which is

true in general (see Appendix A5).
The first item of the second example represents a case of maximum possible

disagreement, indicated by the ad coefficient with a value of zero and by the aWG
coefficient with a value of21. rWG and rWG_MV exceeds the supposed lower bound of 0.

The second item of this example makes clear that the ad coefficient also delivers

interpretable values with regard to the extent of disagreement which is slightly lower in

this case. Suchdifferences arenot detectablewith the rWGcoefficient as it is recommended

to replace negative values with zero. With regard to both items in this example, the

coefficients belonging to the rWG family deliver aberrant scores. How should a rWG( J) value
of 13.2 be interpreted? It seems to be an odd range of values which should all be set to

zero. Lindell, Brandt, and Whitney (1999) claimed that r�WGð JÞ would range between

½21; 1	 in the case of a five-point scale but in this – admittedly extreme– example the score

exceeds the lower bound. Similarly, rWG_MV does not show the purported features.
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For the first item in the third example the raw data indicate low agreement; ad yields

a relatively high value of .85, but the test shows that this value is not statistically

significant. On the other hand, the low rWG value of .65 achieves statistical significance.

However, this value is below the theoretical discussed cut-off value for practical

significance of .70 (Dunlap et al., 2003; Lance et al., 2006), showing that the statistical

significance test for the rWG coefficient provides no clear decision rule. Similarly to the
examples before, rWG yields negative values for items 2 and 3 which leads to the large

negative value of 26.14 for all three items. On the other hand, the ad coefficient for all

items of .39 takes into account that the raters slightly agreed with respect to item 1.

7. Discussion

In composition models, a perceptual convergence among group members is required

in order to aggregate the data at the group level. Therefore, an index is needed to

measure the agreement among ratings. With the ad coefficient a new index of within-

group agreement is available which addresses some of the deficiencies of other indices.

This coefficient fulfils the requirement of obtaining a comparable measure for the

agreement of different groups and groups from different studies. It ranges from 0 to 1,
regardless of the number of scale points, items, or raters. Its significance test provides an

unequivocal criterion to answer the question of how high the within-group agreement

must be in order to speak of a construct at the group level. This is due to the underlying

binomial distribution, which represents the distribution of the members’ ratings around

the estimated true score. This test ensures that only values with practical significance

yield statistical significance. If there is more than one true score within a group, the

result of ad is expected to be so low that no agreement could be assumed and so the

hypothesis of within-group agreement has to be rejected.
The tables in Appendix B show that the critical values are relatively high. This means

that only when slight deviations in the ratings are obtained a group construct does

actually exist. This is justified by the assumption that the mean of the ratings

corresponds to a group’s construct true score, even more so as the mean is used for

further analysis in the context of composition models. Even though the coefficient was

originally developed for the validation of group-level constructs in multi-level theory, it

can also be applied in other contexts where the question of the extent of agreement on

ratings arises. If it is not expected that the individual ratings are similar, the uniform
distribution can also be used for a statistical significance test. Although the critical values

cannot be determined by an analytical approach, the Monte Carlo technique delivers

satisfying adaptations. The comparison of the ad coefficient with other agreement

indices showed that it provides the best interpretable scores.
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Appendix A: Proofs

A1. Calculation of d2
max

By definition,

d 2 ¼ d 2ðXÞ ¼
XK
k¼1

XK
k0¼k

XJ
j¼1

ðxkj 2 xk0jÞ2 ¼
XJ
j¼1

XK
k¼1

XK
k0¼k

ðxkj 2 xk0jÞ2 ¼
XJ
j¼1

sj;

with the squared sum over the columns

sj ¼
XK
k¼1

XK
k0¼k

ðxkj 2 xk0jÞ2

and the observation matrix X ¼ ðxkjÞK ; Jk¼1; j¼1. Here J denotes the number of items and K

the number of raters. Assume that the values of X are from the interval [a, b ]. In the

following, we will assume continuous variables; however, it is easy to see that the claims

also hold for discrete variables.

First we show that for even K,

d2
max ¼ Jðb2 aÞ2 K

2

4
;

where d2
max ¼ maxX d

2ðXÞ for X with values from [a, b ]. For this, note that d2 is

maximal if and only if all sj are maximal. Hence, we only have to maximize sj. But this

is maximal if and only if X has K/2 times item a and K/2 times item b in each column.

Since the problem is symmetric, we may assume that sj ¼ a for j # K=2 and sj ¼ b for

j . K=2. Then

sj ¼
XK
k¼1

XK
k0¼k

ðxkj 2 xk0jÞ2 ¼
XK
k¼k=2

Xk=2
k0¼1

ðxkj 2 xk0jÞ2 ¼
XK
k¼k=2

Xk=2
k0¼1

ðb2 aÞ2 ¼ ðb2 aÞ2 K
2

4
;

which establishes the claim.

Similarly, if K is odd, sj is maximal if we have (K 2 1)/2 times item a and (K þ 1)/2
times item b or vice versa in each column of X. Again, we may assume that sj ¼ a for

j # ðK 2 1Þ=2 and sj ¼ b for j . ðK 2 1Þ=2. This guarantees that

sj ¼
XK
k¼1

XK
k0¼k

ðxkj 2 xk0jÞ2 ¼
XK

k¼ðKþ1Þ=2

Xðkþ1Þ=2

k0¼1

ðxkj 2 xk0jÞ2 ¼
XK

k¼ðKþ1Þ=2

Xðkþ1Þ=2

k0¼1

ðb2 aÞ2

¼ ðb2 aÞ2 ðK 2 1ÞðK þ 1Þ
4

¼ ðb2 aÞ2 K
2 2 1

4
;

as claimed.
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A2. Invariance under scaling
ad ¼ aðX) is independent of the interval boundaries a , b, i.e. invariant under scaling.

For this, assume another interval a0 , b0 is given, and let X 0U ðððb0 2 a0Þ=ðb2 aÞÞ�
ðxjk 2 aÞ þ a0Þij be the variable X rescaled onto [a0, b0]. Then aðXÞ ¼ aðX 0Þ as claimed,

because

d 2ðX 0Þ ¼
XK
k¼1

XK
k0¼k

XJ
j¼1

b0 2 a0

b2 a
ðxkj 2 aÞ þ a0 2

b0 2 a0

b2 a
ðxk0j 2 aÞ þ a0

� �2

¼ b0 2 a0

b2 a

� �2XK
k¼1

XK
k0¼k

XJ
j¼1

ðxkj 2 xk0jÞ2 ¼ b0 2 a0

b2 a

� �2

d 2ðXÞ

and, by definition,

d2
maxðX 0Þ ¼ b0 2 a0

b2 a

� �2

d2
maxðXÞ:

A3. Scaling with respect to item count J and number of raters K
12 aðX) is J-normal-interval-scaled, i.e. if X and X0 denote two observation matrices

of sizes K £ J and K £ J 0, respectively with values from [a, b ], and if (X,X0)
denotes the K £ ð J þ J 0Þ matrix generated by juxtaposition of X and X0, then ð J þ J 0Þ�
½12 aðX;X 0Þ	 ¼ J½12 aðXÞ	 þ J 0½12 aðX 0Þ	 or ð J þ J 0ÞaðX;X 0Þ ¼ JaðXÞ þ J 0aðX 0Þ.
In other words, this formula illustrates how to calculate the ad coefficient of

an experiment from the ad coefficients of two subexperiments in terms of item

number J. This follows directly from

12 aðX;X 0Þ ¼ d 2ðX; X 0Þ
d2
maxðX; X 0Þ ¼

PJþJ 0
j¼1 sjðX; X 0Þ
d2
maxðX; X 0Þ ¼

PJ
j¼1 sjðXÞ

JþJ 0
J
d2
maxðXÞ

þ
PJ 0

j¼1 sjðX 0Þ
JþJ 0
J 0
d2
maxðX 0Þ

¼ 1

J þ J 0
{ J½12 aðXÞ	 þ J 0½12 aðX 0Þ	}:

In the special case of X ¼ X 0, the above formula implies that

2J½12 aðX;XÞ	 ¼ J½12 aðXÞ	 þ J 0½12 aðXÞ	;

so aðX;XÞ ¼ aðXÞ, which means that the ad coefficient is invariant under ‘doubling’

the experiment.

The same holds with respect to the number of raters K. Let us assume even K for

simplicity, and let
X

X

� !
denote the matrix generated from X by doubling the number of

raters. This ðK þ KÞ £ J matrix has the same ad coefficient as X, because

sj
X

X

� !
¼

XKþK
k¼1

XKþK
k0¼k

ðxkj 2 xk0jÞ2 ¼ sjðXÞ þ sjðXÞ þ
XK
k¼1

XK
k0¼1

ðxkj 2 xk0jÞ2 ¼ 4sjðXÞ:
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Now, using the above formulas for d2
max, we get

12 a
X

X

� !
¼

d 2
X

X

� !

d2
max

X

X

� ! ¼

PJ
j¼1 sj

X

X

� !
4d2

maxðXÞ
¼

PJ
j¼1 4sjðXÞ
4d2

maxðXÞ
¼ 12 aðXÞ:

So, a
X

X

� !
¼ aðXÞ, which confirms the k-scalability of the index.

If two observation sets with different numbers of raters are compared, the ad
coefficients can easily be transformed into each other as follows (again assuming even

K and K0 for simplicity):

The squared column sums of the total ðK þ K 0Þ £ J observation matrix
X

X 0

� !
can

now be calculated as

sj
X

X 0

� !
¼

XKþK 0

k¼1

XKþK 0

k0¼k
ðxkj 2 xk0jÞ2 ¼ sjðXÞ þ sjðX 0Þ þ

XK
k¼1

XK 0

k0¼1

ðxkj 2 x0k0jÞ2:

If we define the cross sum of X and X0 to be d 2ðXkX 0Þ ¼ PJ
j¼1

PK
k¼1

PK 0
k0¼1 ðxkj 2 x0k0jÞ2,

then clearly d 2
X

X 0

� !
¼ d 2ðXÞ þ d 2ðX 0Þ þ 2d 2ðXkX 0Þ and therefore

12 a
X

X 0

� !
¼

d 2

X

X 0

� !

d2
max

X

X 0

� ! ¼ d 2ðXÞ
ðkþk0Þ2
k 2 d2

maxðXÞ
þ d 2ðX 0Þ

ðkþk0Þ2
k02

d2
maxðX 0Þ þ 2

d 2ðXkX 0Þ
ðkþk0Þ2
k 2 d2

maxðXÞ

¼ 1

ðkþ k0Þ2 k2
�
12 aðXÞ'þ k02

�
12 aðX 0Þ'þ 2k2dðXkX 0Þ=d2

maxðXÞ
. /

so

ðkþ k0Þ2 12 a
X

X 0

� !� !
¼ k2

�
12 aðXÞ'þ k02

�
12 aðX 0Þ'þ 2k2dðXkX 0Þ=d2

maxðXÞ;

or, for the sake of symmetry,

ðkþ k0Þ2 12 a
X

X 0

� !� !

¼ k2
�
12 aðXÞ'þ k02

�
12 aðX 0Þ'þ k2dðXkX 0Þ=d2

maxðXÞ þ k02dðXkX 0Þ=d2
maxðX 0Þ:

The fact that aðX; XÞ ¼ aðXÞ and a
X

X

� !
¼ aðXÞ shows that the ad coefficient

represents the agreement inherent in the data and that all ad coefficients can be

compared with one another regardless of the number of items or raters.
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A4. Interval scaling of ad
ad is interval scaled with constant K and J and identical scale points, i.e. if X, X0, and Y
denote three observation matrices of size K £ J , and aðXÞ2 aðY Þ ¼ aðY Þ2 aðX 0Þ, then
the difference in agreement between X and Y implies the same as the difference in

agreement between Y and X0, and is half the difference between X and X0 regardless of
the value of the ad, because

aðXÞ2 aðY Þ ¼ aðY Þ2 aðX 0Þ;

12
d2
X

d2
max

2 1þ d2
Y

d2
max

¼ 12
d2
Y

d2
max

2 1þ d2
X 0

d2
max

;

d2
Y 2 d2

X ¼ d2
X 0 2 d2

Y ;

d2
Y ¼ d2

X 0 þ d2
X

2
:

As d2
max is equal for each matrix, their agreement depends only on the squared Euclidean

distances (d2
X , d

2
X 0 , d2

Y ), which are interval scaled.

A5. ad for J items equals the mean of the ad of the single items
The mean of the ad of the single items can be transformed into the calculation of ad for

J items:

1

J

XJ
j¼1

adðj Þ ¼ 1

J
12

d 2ð1Þ
d2
maxð1Þ

þ 12
d 2ð2Þ
d2
maxð2Þ

þ · · ·þ 12
d 2ð JÞ
d2
maxð JÞ

� �
:

Since all items are based on the same scale and rated by every rater, d2
maxðj Þ of each item

is the same. For j ¼ 1 we can substitute d 2ðj Þ with sj (see Appendix A1). So

1

J

XJ
j¼1

adðj Þ ¼ 1

J
J 2

PJ
j¼1 sj

d2
maxðj Þ

� !
¼ 12

PJ
j¼1 sj

Jd2
maxðj Þ

¼ ad :
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Appendix B: Critical values for ad when testing the statistical significance

Table B1. Upper bound for the 95th percentile of the ad coefficient with A ¼ 5

p or 1 2 p p or 1 2 p

K J U .1 .2 .3 .4 .5 K J U .1 .2 .3 .4 .5

3 1 1.00 1.00 1.00 1.00 1.00 1.00 8 1 .88 .97 .95 .94 .94 .94

2 .94 1.00 .97 .97 .97 .97 2 .83 .97 .94 .91 .89 .89

3 .92 .98 .96 .96 .96 .94 3 .82 .96 .92 .89 .88 .87

4 .91 .98 .95 .94 .94 .94 4 .80 .96 .92 .88 .87 .86

5 .89 .98 .95 .94 .93 .93 5 .79 .95 .91 .88 .86 .85

6 .88 .98 .95 .93 .92 .92 6 .79 .95 .91 .87 .85 .85

7 .87 .97 .95 .92 .91 .91 7 .78 .95 .90 .87 .85 .84

8 .86 .97 .94 .92 .91 .90 8 .78 .95 .90 .87 .85 .84

9 .86 .97 .94 .92 .90 .90 9 .78 .95 .90 .86 .84 .84

10 .86 .97 .94 .91 .90 .89 10 .77 .95 .90 .86 .84 .83

4 1 .95 1.00 1.00 .95 .95 .95 9 1 .86 .97 .94 .94 .92 .92

2 .91 .98 .97 .95 .95 .95 2 .82 .97 .93 .90 .89 .88

3 .89 .98 .95 .94 .93 .92 3 .80 .96 .91 .89 .87 .86

4 .87 .98 .95 .93 .92 .91 4 .79 .95 .91 .88 .86 .85

5 .86 .97 .94 .92 .91 .91 5 .78 .95 .91 .87 .85 .84

6 .85 .97 .94 .91 .90 .90 6 .78 .95 .90 .87 .85 .84

7 .85 .97 .93 .91 .90 .89 7 .77 .95 .90 .86 .84 .83

8 .84 .96 .93 .91 .89 .89 8 .77 .95 .90 .86 .84 .83

9 .84 .96 .93 .90 .89 .88 9 .77 .94 .89 .86 .83 .83

10 .83 .96 .93 .90 .88 .88 10 .76 .94 .89 .85 .83 .82

5 1 .94 1.00 .96 .96 .96 .96 10 1 .85 .98 .95 .93 .91 .91

2 .89 .98 .95 .94 .93 .92 2 .81 .96 .92 .90 .88 .88

3 .85 .97 .94 .92 .91 .90 3 .80 .96 .91 .88 .86 .86

4 .84 .97 .93 .91 .90 .89 4 .79 .95 .91 .87 .85 .85

5 .83 .96 .93 .90 .89 .88 5 .78 .95 .90 .87 .85 .84

6 .82 .96 .92 .90 .88 .88 6 .77 .95 .90 .86 .84 .83

7 .82 .96 .92 .89 .88 .87 7 .77 .95 .90 .86 .84 .83

8 .81 .96 .92 .89 .87 .86 8 .77 .94 .89 .86 .83 .83

9 .81 .96 .91 .88 .87 .86 9 .76 .94 .89 .85 .83 .82

10 .80 .95 .91 .88 .86 .86 10 .76 .94 .89 .85 .83 .82

6 1 .92 1.00 .97 .94 .94 .94 11 1 .85 .98 .94 .92 .90 .90

2 .87 .97 .94 .93 .91 .91 2 .81 .96 .92 .89 .87 .87

3 .84 .97 .94 .91 .90 .89 3 .79 .95 .91 .88 .86 .85

4 .83 .96 .93 .90 .89 .88 4 .78 .95 .90 .87 .85 .84

5 .82 .96 .92 .89 .88 .87 5 .77 .95 .90 .86 .84 .83

6 .81 .96 .92 .89 .87 .87 6 .77 .95 .89 .86 .84 .83

7 .81 .96 .91 .88 .87 .86 7 .76 .94 .89 .85 .83 .82

8 .80 .95 .91 .88 .86 .86 8 .76 .94 .89 .85 .83 .82

9 .80 .95 .91 .88 .86 .85 9 .76 .94 .89 .85 .83 .82

10 .80 .95 .91 .88 .86 .85 10 .75 .94 .89 .85 .82 .82

7 1 .90 1.00 .95 .95 .94 .94 12 1 .84 .97 .94 .91 .90 .90

2 .84 .97 .94 .92 .90 .90 2 .80 .96 .92 .89 .87 .86

3 .82 .96 .93 .90 .89 .88 3 .79 .95 .91 .87 .85 .85

4 .81 .96 .92 .89 .87 .87 4 .77 .95 .90 .87 .85 .84

5 .80 .96 .91 .88 .86 .86 5 .77 .95 .90 .86 .84 .83

6 .80 .95 .91 .88 .86 .85 6 .76 .94 .89 .86 .83 .83

7 .79 .95 .91 .87 .85 .85 7 .76 .94 .89 .85 .83 .82

8 .79 .95 .90 .87 .85 .84 8 .76 .94 .89 .85 .83 .82

9 .78 .95 .90 .87 .85 .84 9 .75 .94 .89 .85 .82 .82

10 .78 .95 .90 .86 .84 .84 10 .75 .94 .88 .85 .82 .81

Note. K, number of raters; J, number of items; p, probability from the binomial distribution; U, critical values

according to the uniform distribution.
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Table B2. Upper bound for the 99th percentile of the ad coefficient with A ¼ 5

p or 1 2 p p or 1 2 p

K J U .1 .2 .3 .4 .5 K J U .1 .2 .3 .4 .5

3 1 1.00 1.00 1.00 1.00 1.00 1.00 8 1 .94 1.00 .97 .95 .95 .95

2 .97 1.00 1.00 1.00 .97 .97 2 .88 .98 .95 .94 .92 .92

3 .96 1.00 .98 .98 .96 .96 3 .85 .97 .94 .92 .90 .90

4 .94 .99 .97 .97 .95 .95 4 .83 .97 .93 .91 .89 .89

5 .93 .99 .96 .96 .95 .95 5 .82 .96 .93 .90 .88 .88

6 .92 .98 .96 .95 .95 .94 6 .81 .96 .92 .89 .88 .87

7 .90 .98 .96 .95 .94 .94 7 .81 .96 .92 .89 .87 .86

8 .90 .98 .95 .94 .93 .93 8 .80 .96 .91 .88 .87 .86

9 .89 .98 .95 .94 .92 .92 9 .80 .95 .91 .88 .86 .86

10 .89 .97 .95 .93 .92 .92 10 .79 .95 .91 .88 .86 .85

4 1 1.00 1.00 1.00 1.00 1.00 1.00 9 1 .92 1.00 .96 .96 .94 .94

2 .95 1.00 .98 .98 .98 .97 2 .86 .98 .95 .93 .92 .91

3 .93 .98 .97 .96 .95 .95 3 .84 .97 .93 .91 .90 .89

4 .91 .99 .96 .95 .95 .94 4 .82 .96 .93 .90 .88 .88

5 .90 .98 .96 .94 .93 .93 5 .81 .96 .92 .89 .88 .87

6 .89 .98 .95 .93 .93 .92 6 .80 .96 .91 .88 .87 .86

7 .88 .98 .95 .93 .92 .92 7 .80 .96 .91 .88 .86 .86

8 .87 .97 .95 .93 .91 .91 8 .79 .95 .91 .88 .86 .85

9 .86 .97 .94 .92 .91 .91 9 .79 .95 .91 .87 .85 .85

10 .86 .97 .94 .92 .91 .90 10 .78 .95 .90 .87 .85 .84

5 1 .96 1.00 1.00 1.00 .96 .96 10 1 .90 1.00 .96 .95 .95 .95

2 .93 1.00 .97 .96 .95 .95 2 .85 .97 .94 .92 .91 .91

3 .90 .99 .96 .94 .94 .93 3 .83 .97 .93 .91 .89 .89

4 .88 .98 .95 .93 .92 .92 4 .81 .96 .92 .89 .88 .87

5 .86 .97 .95 .93 .91 .91 5 .80 .96 .92 .89 .87 .86

6 .85 .97 .94 .92 .90 .90 6 .80 .96 .91 .88 .86 .86

7 .85 .97 .93 .91 .90 .89 7 .79 .95 .91 .88 .86 .85

8 .84 .97 .93 .91 .89 .89 8 .79 .95 .91 .87 .85 .85

9 .83 .97 .93 .90 .89 .88 9 .78 .95 .90 .87 .85 .84

10 .83 .96 .93 .90 .88 .88 10 .78 .95 .90 .87 .85 .84

6 1 .97 1.00 .97 .97 .97 .97 11 1 .89 .98 .95 .95 .94 .94

2 .91 .98 .97 .95 .94 .94 2 .84 .97 .94 .91 .90 .90

3 .88 .98 .95 .93 .92 .92 3 .82 .96 .93 .90 .88 .88

4 .86 .97 .94 .92 .91 .91 4 .80 .96 .92 .89 .87 .86

5 .85 .97 .94 .92 .90 .90 5 .79 .96 .91 .88 .86 .86

6 .84 .97 .93 .91 .89 .89 6 .79 .95 .91 .88 .86 .85

7 .83 .97 .93 .90 .89 .88 7 .78 .95 .90 .87 .85 .84

8 .83 .96 .93 .90 .88 .88 8 .78 .95 .90 .87 .85 .84

9 .82 .96 .92 .90 .88 .88 9 .77 .95 .90 .86 .84 .84

10 .82 .96 .92 .89 .88 .87 10 .77 .95 .90 .86 .84 .83

7 1 .95 1.00 .97 .97 .97 .97 12 1 .88 .98 .95 .94 .94 .94

2 .89 .98 .95 .94 .93 .93 2 .84 .97 .94 .91 .90 .89

3 .86 .97 .94 .92 .91 .91 3 .81 .96 .92 .90 .88 .87

4 .84 .97 .93 .91 .90 .90 4 .80 .96 .92 .89 .87 .86

5 .83 .97 .93 .90 .89 .89 5 .79 .96 .91 .88 .86 .85

6 .82 .96 .93 .90 .88 .88 6 .78 .95 .91 .87 .85 .85

7 .82 .96 .92 .89 .88 .87 7 .78 .95 .90 .87 .85 .84

8 .81 .96 .92 .89 .87 .86 8 .77 .95 .90 .87 .84 .84

9 .80 .96 .92 .89 .87 .86 9 .77 .95 .90 .86 .84 .83

10 .80 .96 .91 .88 .86 .86 10 .77 .95 .90 .86 .84 .83

Note. K, number of raters; J, number of items; p, probability from the binomial distribution; U, critical

values according to the uniform distribution.
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Table B3. Upper bound for the 95th percentile of the ad coefficient with A ¼ 7

p or 1 2 p p or 1 2 p

K J U .1 .2 .3 .4 .5 K J U .1 .2 .3 .4 .5

3 1 .97 1.00 1.00 1.00 1.00 1.00 8 1 .88 .98 .97 .96 .95 .95

2 .94 .99 .99 .99 .97 .97 2 .83 .98 .96 .94 .93 .93

3 .92 .99 .98 .97 .96 .96 3 .81 .97 .95 .93 .92 .92

4 .90 .99 .97 .97 .96 .96 4 .80 .97 .94 .92 .91 .91

5 .88 .98 .97 .96 .95 .95 5 .79 .97 .94 .92 .91 .90

6 .88 .98 .96 .95 .94 .94 6 .78 .97 .94 .92 .90 .90

7 .87 .98 .96 .95 .94 .94 7 .78 .97 .94 .91 .90 .90

8 .86 .98 .96 .95 .94 .94 8 .77 .96 .93 .91 .90 .89

9 .85 .98 .96 .94 .94 .93 9 .77 .96 .93 .91 .90 .89

10 .85 .98 .96 .94 .93 .93 10 .77 .96 .93 .91 .89 .89

4 1 .97 1.00 .98 .98 .98 .98 9 1 .86 .98 .96 .95 .95 .95

2 .92 .99 .98 .97 .96 .96 2 .82 .97 .95 .94 .93 .92

3 .89 .98 .97 .96 .96 .95 3 .80 .97 .94 .93 .91 .91

4 .87 .98 .97 .95 .95 .94 4 .79 .97 .94 .92 .91 .90

5 .86 .98 .96 .95 .94 .94 5 .78 .97 .94 .91 .90 .90

6 .85 .98 .96 .94 .94 .93 6 .77 .96 .93 .91 .90 .89

7 .84 .98 .96 .94 .93 .93 7 .77 .96 .93 .91 .90 .89

8 .84 .98 .95 .94 .93 .93 8 .76 .96 .93 .91 .89 .89

9 .83 .97 .95 .94 .93 .92 9 .76 .96 .93 .91 .89 .89

10 .83 .97 .95 .93 .92 .92 10 .76 .96 .93 .90 .89 .88

5 1 .94 .98 .98 .98 .97 .97 10 1 .86 .98 .96 .95 .95 .94

2 .88 .98 .97 .96 .95 .95 2 .81 .97 .95 .93 .92 .92

3 .85 .98 .96 .95 .94 .94 3 .79 .97 .94 .92 .91 .91

4 .84 .98 .96 .94 .93 .93 4 .78 .97 .94 .92 .90 .90

5 .83 .98 .95 .94 .93 .92 5 .77 .97 .93 .91 .90 .90

6 .82 .97 .95 .93 .92 .92 6 .77 .96 .93 .91 .90 .89

7 .81 .97 .95 .93 .92 .91 7 .76 .96 .93 .91 .89 .89

8 .81 .97 .94 .93 .91 .91 8 .76 .96 .93 .91 .89 .89

9 .80 .97 .94 .92 .91 .91 9 .76 .96 .93 .90 .89 .88

10 .80 .97 .94 .92 .91 .91 10 .75 .96 .93 .90 .89 .88

6 1 .91 .98 .98 .98 .97 .97 11 1 .84 .98 .96 .95 .94 .94

2 .86 .98 .96 .95 .94 .94 2 .80 .97 .95 .93 .92 .91

3 .84 .98 .96 .94 .93 .93 3 .78 .97 .94 .92 .91 .90

4 .82 .98 .95 .93 .93 .92 4 .77 .97 .94 .91 .90 .90

5 .81 .97 .95 .93 .92 .92 5 .77 .96 .93 .91 .90 .89

6 .81 .97 .94 .93 .92 .91 6 .76 .96 .93 .91 .89 .89

7 .80 .97 .94 .92 .91 .91 7 .76 .96 .93 .90 .89 .88

8 .80 .97 .94 .92 .91 .91 8 .75 .96 .93 .90 .89 .88

9 .79 .97 .94 .92 .91 .90 9 .75 .96 .93 .90 .89 .88

10 .79 .97 .94 .92 .91 .90 10 .75 .96 .92 .90 .88 .88

7 1 .89 .99 .97 .97 .95 .95 12 1 .84 .98 .96 .94 .94 .94

2 .84 .98 .96 .94 .94 .93 2 .80 .97 .95 .93 .91 .91

3 .82 .98 .95 .93 .92 .92 3 .78 .97 .94 .92 .90 .90

4 .81 .97 .95 .93 .92 .91 4 .77 .96 .93 .91 .90 .89

5 .80 .97 .94 .92 .91 .91 5 .76 .96 .93 .91 .89 .89

6 .79 .97 .94 .92 .91 .90 6 .76 .96 .93 .90 .89 .89

7 .78 .97 .94 .92 .90 .90 7 .75 .96 .93 .90 .89 .88

8 .78 .97 .94 .91 .90 .90 8 .75 .96 .93 .90 .89 .88

9 .78 .97 .93 .91 .90 .90 9 .75 .96 .92 .90 .88 .88

10 .77 .96 .93 .91 .90 .89 10 .75 .96 .92 .90 .88 .88

Note. K, number of raters; J, number of items; p, probability from the binomial distribution; U, critical

values according to the uniform distribution.
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Table B4. Upper bound for the 99th percentile of the ad coefficient with A ¼ 7

p or 1 2 p p or 1 2 p

K J U .1 .2 .3 .4 .5 K J U .1 .2 .3 .4 .5

3 1 1.00 1.00 1.00 1.00 1.00 1.00 8 1 .92 .99 .98 .97 .97 .97

2 .97 1.00 .99 .99 .99 .99 2 .87 .98 .97 .96 .95 .95

3 .95 .99 .99 .98 .98 .98 3 .85 .98 .96 .95 .94 .94

4 .94 .99 .98 .98 .97 .97 4 .83 .98 .95 .94 .93 .93

5 .92 .99 .98 .97 .97 .97 5 .82 .97 .95 .93 .92 .92

6 .91 .99 .98 .97 .96 .96 6 .81 .97 .95 .93 .92 .92

7 .90 .99 .97 .96 .96 .96 7 .80 .97 .94 .93 .91 .91

8 .90 .99 .97 .96 .95 .95 8 .80 .97 .94 .92 .91 .91

9 .89 .98 .97 .96 .95 .95 9 .79 .97 .94 .92 .91 .91

10 .88 .98 .97 .96 .95 .95 10 .79 .97 .94 .92 .91 .90

4 1 .98 1.00 1.00 1.00 1.00 1.00 9 1 .91 .99 .98 .97 .97 .97

2 .95 .99 .99 .98 .98 .98 2 .86 .98 .96 .95 .94 .94

3 .93 .99 .98 .97 .97 .97 3 .83 .98 .96 .94 .93 .93

4 .91 .99 .98 .97 .96 .96 4 .82 .97 .95 .93 .92 .92

5 .89 .99 .97 .96 .96 .95 5 .80 .97 .95 .93 .92 .91

6 .88 .98 .97 .96 .95 .95 6 .80 .97 .94 .92 .91 .91

7 .88 .98 .97 .95 .95 .95 7 .79 .97 .94 .92 .91 .91

8 .87 .98 .96 .95 .94 .94 8 .79 .97 .94 .92 .91 .90

9 .86 .98 .96 .95 .94 .94 9 .78 .97 .94 .92 .90 .90

10 .86 .98 .96 .95 .94 .94 10 .78 .97 .94 .91 .90 .90

5 1 .97 1.00 1.00 .98 .98 .98 10 1 .91 .99 .98 .97 .96 .96

2 .93 .99 .98 .98 .97 .97 2 .85 .98 .96 .95 .94 .94

3 .90 .98 .97 .96 .96 .96 3 .82 .98 .95 .94 .93 .93

4 .88 .98 .97 .96 .95 .95 4 .81 .97 .95 .93 .92 .92

5 .86 .98 .96 .95 .94 .94 5 .80 .97 .94 .93 .91 .91

6 .85 .98 .96 .95 .94 .94 6 .79 .97 .94 .92 .91 .91

7 .84 .98 .96 .94 .93 .93 7 .79 .97 .94 .92 .91 .90

8 .84 .98 .95 .94 .93 .93 8 .78 .97 .94 .92 .90 .90

9 .83 .98 .95 .94 .93 .92 9 .78 .97 .94 .91 .90 .90

10 .82 .97 .95 .93 .92 .92 10 .77 .97 .93 .91 .90 .89

6 1 .95 1.00 .98 .98 .98 .98 11 1 .89 .98 .97 .96 .96 .96

2 .91 .99 .98 .97 .96 .96 2 .84 .98 .96 .94 .94 .93

3 .88 .98 .97 .96 .95 .95 3 .81 .97 .95 .93 .92 .92

4 .86 .98 .96 .95 .94 .94 4 .80 .97 .95 .93 .92 .91

5 .85 .98 .96 .94 .94 .93 5 .79 .97 .94 .92 .91 .91

6 .84 .98 .96 .94 .93 .93 6 .78 .97 .94 .92 .91 .90

7 .83 .98 .95 .94 .93 .92 7 .78 .97 .94 .92 .90 .90

8 .82 .97 .95 .93 .92 .92 8 .77 .97 .93 .91 .90 .90

9 .82 .97 .95 .93 .92 .92 9 .77 .96 .93 .91 .90 .89

10 .81 .97 .95 .93 .92 .92 10 .77 .96 .93 .91 .89 .89

7 1 .94 1.00 .99 .98 .98 .98 12 1 .88 .98 .97 .96 .96 .95

2 .89 .99 .97 .96 .96 .95 2 .83 .98 .96 .94 .93 .93

3 .86 .98 .96 .95 .94 .94 3 .81 .97 .95 .93 .92 .92

4 .84 .98 .96 .94 .93 .93 4 .80 .97 .94 .92 .91 .91

5 .83 .98 .95 .94 .93 .92 5 .79 .97 .94 .92 .91 .90

6 .82 .97 .95 .93 .92 .92 6 .78 .97 .94 .92 .90 .90

7 .81 .97 .95 .93 .92 .92 7 .77 .97 .93 .91 .90 .90

8 .80 .97 .95 .93 .91 .91 8 .77 .96 .93 .91 .90 .89

9 .80 .97 .94 .92 .91 .91 9 .77 .96 .93 .91 .90 .89

10 .80 .97 .94 .92 .91 .91 10 .76 .96 .93 .91 .89 .89

Note. K, number of raters; J, number of items; p, probability from the binomial distribution; U, critical

values according to the uniform distribution.
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