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Abstract
Purpose of review: The purpose of this review is to describe the most recent statistical approaches to estimate the effect of multi-pollutant mixtures or multiple correlated exposures on human health.
Recent findings: The health effects of environmental chemicals or air pollutants have been widely described. Often, there exists a complex mixture of different substances, potentially highly correlated with each other and with other (environmental) stressors. Single-exposure approaches do not allow disentangling effects of individual factors and fail to detect potential interactions between exposures. In the last years, sophisticated methods have been developed to investigate the joint or independent health effects of multi-pollutant mixtures or multiple environmental exposures.
Summary: A classification of the most recent methods is proposed. A non-technical description of each method is provided, together with epidemiological applications and operational details for implementation with standard software.

Introduction
Associations between environmental chemicals or air pollution and adverse health outcomes have been reported worldwide [1-4]. However, the population is exposed simultaneously to a large number of air pollutants or chemical contaminants. The exposome paradigm is an attempt to focus the attention to the multiple environmental factors affecting health. The exposome was defined as the totality of environmental (non-genetic) exposures, from conception onwards [5]. Thus, in its broad sense, it includes air pollutants and other contaminants, but also behavioral and socioeconomic characteristics. Environmental epidemiology studies are collecting data on an increasing number of exposures to try to capture parts of the exposome, which poses the challenge of analyzing the effects of mixtures of exposures. For example, in single- pollutant models, it is not clear if an observed association reflects the effect of the analyzed pollutant or if it acts as a surrogate for another pollutant possibly originating from the same source. Furthermore, single-pollutant models cannot capture the mixture and interplay of different exposures. Analyzing health effects of several pollutants by including them together in a regression model is in many cases not meaningful because of the usually high correlation between these air pollutants. This “naive” multi-pollutant model can result in unstable parameter estimates with large standard errors. Therefore, more sophisticated methods are needed to investigate the health effects of mixtures of exposures or simultaneous effects of multiple exposures. The National Institute of Environmental Health Sciences (NIEHS), the Health Effects Institute (HEI), the U.S. Environmental Protection Agency (EPA) and other experts in the field identified statistical approaches to address multi-pollutant mixtures and multiple exposures as an important area of ongoing research, also for regulatory purposes [6-11].

Several statistical approaches have been proposed in the last few years to correctly estimate the independent and joint effects of multiple correlated exposures on human health [12]. Most of the methods were borrowed from other disciplines (such as epigenetics) and transferred to the multi-pollutant case; however they can be easily adapted to the general setting of multiple correlated exposures. The purpose of this review is to present the latest advancements in this field, and to describe the main statistical approaches to the broader audience of environmental epidemiologists in a non-technical way, focusing on the pros and cons of each method, and providing software details for their implementation.

A classification of methods for the analysis of multiple correlated exposures
Broadly speaking, nearly all of the proposed methods can be classified into three groups: dimension reduction, variable selection and grouping of observations.

The aim of the first group of methods is to transform a large number of correlated variables (pollutants, exposures, etc.) into a smaller set of independent factors, to be related with the health outcome. Dimensionality reduction can be done in an unsupervised way, i.e. only taking into account the associations between exposures, or in a supervised way, which additionally takes into account the correlation between the exposures and the outcome. The disadvantage of unsupervised methods is that they may give a strong weight to pollutants that have no influence on the outcome, or vice versa. The disadvantage of supervised methods is that they lead to outcome-specific independent variables, which makes comparability of results across outcomes difficult. 

Methods belonging to the second group called variable selection methods aim to identify the “best” subset of exposure variables, either based on their mutual correlation (unsupervised), or on their relation with the study outcome (supervised). Compared with the methods in the first group, those in the second one do not produce transformations of variables but retain subsets of the original ones. The main advantage is that the estimated coefficients are directly interpretable as they are on the same scale as the original exposures. 

The methods in the third group aim to group observations (rather than variables) with similar exposure profiles, and use this grouping in the analysis on the health outcome. Grouping is generally achieved by simultaneously maximizing the intra-class and minimizing the inter-class similarity. Again, unsupervised and supervised methods to derive those groups have been proposed.

Figure 1 schematically displays the multi-pollutant/multiple exposure setting and the three groups of statistical approaches. Details of the methods, including references of the most relevant applications and R packages for their implementation, are displayed in Table 1.

Methods for dimension reduction
These methods aim at reducing the number of exposures to be used in a regression model for the health outcome by creating combinations of the original exposures. Unsupervised methods include principal component analysis (PCA) and positive matrix factorization (PMF). Supervised methods include supervised principal component analysis (SPCA), partial least squares (PLS) regression, sparse partial least squares (SPLS) regression, and weighted quantile sum regression (WQSR).
 
Principal component analysis
A common method for dimension reduction is principal component analysis (PCA). PCA searches for independent (i.e. not correlated with each other) linear combinations of the exposure variables which capture most of the variance of the initial exposure data [13]. Briefly, a decomposition of the covariance matrix is performed. Based on the resulting eigenvectors and eigenvalues, independent linear combinations of the exposure variables, so called principal components (PCs), are identified. A component represents a mixture of pollutants, each contributing with different weights. By estimating the effect of such component on a health outcome one obtains the effect of a pollution mixture on health. There are several approaches to choose the optimal number of PCs. A graphical possibility to choose the number of PCs is given by the Scree plot which reports the fraction of the total variance in the data explained by each PC. In general, the first one or two PCs capture most of the variability in the data. The main advantages of PCA are the ease of application and the efficiency (most of the variability in the original exposures retained by few factors). The major limitations include the difficulty to interpret the results, as the components are not on the same units as the original exposure variables, and the potential lack of relationship of the derived components with the study outcome, as they were derived in an unsupervised way.
PCA analysis has been applied, among others, by Yang et al. to investigate the association between ambient air pollution and daily mortality in Beijing after the 2008 Olympics. The authors applied conventional single-pollutant models first, and then they replaced individual pollutants with latent variables identified through PCA, which resulted in significant effects on mortality and hospital admissions, though smaller than those found with single-pollutant analysis [14].

Positive Matrix Factorization
Positive Matrix Factorization (PMF) is a variant of PCA applied in the context of multi-pollutant profiles to derive air pollution sources from PM individual chemical components [15]. Specifically, PMF decomposes a matrix of PM-speciated data into two matrices - source contributions and source profiles: source contributions represent the amounts of PM mass contributed by each source to the measurement, while source profiles reflect the types of emissions that originate from a given source. Source contributions are constrained to be non-negative, and the method can incorporate measures of uncertainty associated with the data to weight individual points. Algorithms such as Multilinear Engine (ME-2) allow incorporating any a priori knowledge, such as chemical ratios or profiles of involved sources, into the model [16]. Thus, this technique is particularly suitable for source apportionment studies. Several epidemiological studies have been conducted in the last years using source apportionment estimates based on PMF [17-23]. 

Supervised principal component analysis
In unsupervised analyses like PCA, some pollutants might receive a (strong) weight even if they are not associated with the outcome of interest. Supervised principal component analysis (SPCA) – a modified version of PCA – overcomes this problem by excluding pollutants which do not provide information directly related to the outcome [24]. After the selection of influential exposure variables, a PCA is performed using the reduced number of exposure variables. Roberts and Martin [25] adapted this method for air pollution analysis, suggesting a recursive algorithm which identifies the best predictors of the study outcome (variable selection) and combine them into a few relevant PCs. The procedure has been implemented for Poisson regression but can easily be adapted for other models.

Partial least squares regression
Partial least squares (PLS) regression takes the correlation between the outcome and exposure variables into account by combining PCA and multiple regression analysis [26]. Briefly, PLS regression searches for a linear decomposition of the exposure matrix which maximizes the covariance between the exposure and the outcome; the stronger the correlation between an exposure variable and the outcome the larger the weight for this exposure variable in the linear combination. In PLS regression, it is also possible to include several outcome variables. The mean squared error of prediction using cross-validation is used in order to choose the optimal number of components [27].
In a recent study, Sun and colleagues compared the performance of five statistical methods, among which SPCA and PLS, under two different simulated settings: continuous outcome from a cross-sectional study and daily event counts from a time-series study. They simulated data on different number of pollutants, from 4 to 20, and different degrees of multicollinearity, and designed “true” multivariate models with main effects of individual pollutants plus some pairwise interactions. All models displayed varying degrees of goodness-of-fit depending on the simulated scenario, with no clear superiority of one model over the others [28].

Sparse partial least squares regression
The disadvantage of PLS regression is the difficult interpretability of the linear combinations, especially in the case of a large number of original exposure variables. Chun and Keleş therefore introduced a method which incorporates variable selection and dimension reduction simultaneously [29]. This approach leads to linear combinations of a reduced number of exposure variables. Sparsity is introduced by a penalty term to the loadings of the exposure variables. The optimal number of components and the parameter for sparsity are chosen based on cross-validation.
The method has been recently applied in a simulation study on exposome-health association with 237 generated exposure covariates and realistic correlation structures [30].

Weighted quantile sum regression (WQSR)
In WQSR, all exposures are first categorized, e.g. using quartiles. Then, one finds a single index to summarize all exposures, obtained as a weighted average of the categorized exposures. The weights for each exposure are between zero and one, and they are chosen to maximize the likelihood of the regression model of the outcome variable against the exposure index, adjusted for covariates, using bootstrap samples [31]. This technique assumes that all exposures contribute in the same direction to the outcome, and therefore it should be used only with exposures that are hypothesized to act in the same direction on the investigated health outcome. The WQSR method was used in a study of the relationship between exposure to 27 chemicals and non-Hodgkin lymphoma [32].

Methods for variable selection
Methods for variable selection aim to identify the “best” subset of exposure variables either based on their mutual correlation (unsupervised) as is used in the cluster prototypes approach, or on their relation with the study outcome (supervised approach; examples include the deletion/substitution/addition (D/S/A) algorithm, Bayesian model averaging (BMA), penalized methods, and Bayesian variable selection methods). 

Cluster prototypes
The use of cluster prototypes is a novel approach for data with correlated variables [33]. The procedure first clusters the variables; clustering can be thereby done using any particular clustering method, e.g. hierarchical clustering methods using the minimax linkage [34]. Having identified several clusters, the next step is to choose a single representative - so-called prototype - for each cluster. A key feature of the approach is its use of post-selection inference theory provided by Tibshirani et al. [35] to compute exact p-values and confidence intervals that properly account for the selection of prototypes.

Deletion/Substitution/Addition algorithm
The Deletion/Substitution/Addition (D/S/A) algorithm is an iterative selection approach [36]. It builds a model space of candidate models based on the following three steps:  1) a deletion step which removes a term from the model, 2) a substitution step which replaces one term with another, and 3) an addition step which adds a term to the model. The choice of a move is based on a loss function-based estimation procedure (with the aim of minimizing a specific loss function). In the case of linear regression, the move which minimizes the sum of squared residuals is selected. The final model returned is identified via cross-validation. The algorithm also provides the possibility to include interaction terms. Compared to stepwise model selection procedures, D/S/A has the advantages of being less sensitive to outliers and of allowing the search to move between statistical models that are not nested.
Among other approaches, the D/S/A algorithm was applied in the context of cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) [28]. In this application, several environmental contaminants (e.g. phthalates) were found to be associated with systemic markers of oxidative stress. Further, the D/S/A algorithm has been used to select predictor variables for land use regression (LUR) models [37].

Bayesian model averaging
Bayesian model averaging (BMA) is a method which takes model uncertainty into account. BMA judges the importance of single exposure variables by estimating all possible models (i.e. all possible exposure combinations) and constructs a weight for each model [38]. For each possible model a prior probability has to be selected. A simple choice is the use of uniform prior probabilities reflecting a lack of prior knowledge. The final weights for the exposure variables are derived from posterior model probabilities and reflect the impact of this variable. BMA automatically shrinks the number of exposure variables by giving weights of zero for some variables. The final exposure effect is calculated as a weighted average of the exposure effects from each of the models. The importance of a specific exposure variable can be judged by the posterior inclusion probability. A low value indicates that the exposure effect was zero for many models. As the number of possible models increases quickly in case of many exposure variables it is not feasible to perform all models. Two main approaches have been proposed to overcome this problem – dimensionality reductions of the model space and stochastic searches through Markov Chain Monte Carlo (MCMC) [39]. The R package BMS uses MCMC samplers, applying the Metropolis-Hastings algorithm, to identify the most important part of the posterior distribution.
BMA has been applied in several environmental studies; for example, in a study using time series data from 105 U.S. cities to estimate the relative risk of mortality associated with heat waves [40].

Penalized methods  
The LASSO (Least Absolute Shrinkage and Selection Operator) is very similar to ordinary least squares, except that the coefficients are estimated by minimizing a slightly different quantity – it imposes a shrinkage penalty on the size of coefficients [41]. It penalizes the absolute size of the regression coefficients, based on the value of a tuning parameter λ. In doing so, the LASSO can drive the coefficients of irrelevant variables to zero, thus performing automatic variable selection. When the tuning parameter λ is small, the result is essentially the least squares estimates. 
Elastic net (ENET) combines the LASSO method and Ridge regression [42]. This model includes penalty terms of both first and second degree for the regression coefficients. Thus, not only the best subset of variables is selected by shrinking some effect estimates exactly to zero (LASSO) but groups of (highly) correlated variables are kept in the model with similar effect estimates (Ridge regression).
Using a later version of the LASSO, an example from the Veterans Affairs Normative Aging Study was able to select PM2.5 components associated with blood pressure [43]. Based on elastic net penalty regression, a recent study found that, among others, two phthalate metabolites were most consistently associated with impaired fetal growth [44].
There are many developments around the LASSO with potential relevance for environmental epidemiology studies [45]. For example, the GLINTERNET method extends the LASSO to select two-way interaction terms [46], and a recent development allows using the LASSO while controlling for the false discovery rate [47].
 
Bayesian variable selection methods
Several Bayesian variable selection methods have been proposed. These approaches incorporate a vector with the probability of each exposure having a zero (or non-zero) effect. Then, one assigns prior probabilities and lets the data inform on the value of such probabilities. One of such implementations is the GUESS method, available in the R package R2GUESS [48]. MacLehose et al. proposed a method that performed variable selection and also clustered regression coefficients into groups having similar effects based on prior knowledge and information in the data [49]. Hill et al. proposed one method to incorporate biological knowledge in the prior distributions, using available information from pathway maps [50].

Bayesian Kernel Machine Regression (BKMR) is a recent approach based on a popular tool in the machine learning literature – Kernel machine regression or Gaussian process regression [51]. The idea behind BKMR is to flexibly model the relationship between a large number of exposure variables/mixture components and a particular health outcome. This is done by using a smooth function of the exposure variables/mixture components represented using a Gaussian kernel function. The kernel machine representation allows the incorporation of non-linear effects and/or interaction among mixture components. To systematically handle highly correlated exposures, a hierarchical variable selection approach within BKMR is used which can incorporate prior knowledge on the structure of how the exposure variables/mixture components are related. The hierarchical variable selection approach allows estimating the posterior inclusion probability for each exposure. 
BKMR has been applied to a dataset on metal exposures and neurodevelopment in children in Bangladesh suggesting a non-additive and non-linear exposure-response function between the metals and a summary measure of psychomotor development [51].

Methods for grouping of observations
The techniques described in this third group attempt to cluster observations (i.e. rows in a dataset) so that each of the resulting groups has a distinctive profile in terms of the exposures. The outcome obtained from this clustering or grouping is a categorical variable indicating cluster membership. The clusters or groups of observations can then be compared in terms of the health outcome. Note the differences between this procedure and the techniques described in the first group, which grouped exposures (i.e. columns in the dataset), and synthesized the information of each group by creating a new set of continuous variables.

As in the first group of methods, the grouping of observations can be done in an unsupervised or a supervised way, depending on whether the health outcome is used to form the clusters. The unsupervised option involves a two-step process. First, the groups of observations are formed using only exposure data. Second, the categorical variable that identifies the groups is used as predictor in a regression model for the health outcome. Examples of unsupervised analyses include cluster analysis or building groups based on an exposure score. In a supervised analysis, the grouping of observations is done taking the health outcome into account, favoring groupings that result in marked differences between the groups in terms of the outcome of interest. Examples of supervised techniques include Bayesian Profile Regression or recursive partitioning techniques.

Cluster analysis
This approach first fits a cluster analysis technique to the exposure data in order to define the groups, and then includes the indicators of group membership as predictors in a regression model for the health outcome. There are hundreds of clustering techniques, and none of them can be considered to outperform the others in all situations [52]. Clustering techniques can be classified into different groups. The most widely used fall into the partitioning-based, of which k-means [53] or partitioning around medoids (PAM) are two of the most popular; the hierarchical-based, in which observations are sequentially grouped (agglomerative clustering) or separated (divisive clustering) according to a proximity measure; and the model-based, which assumes that the data were generated by a model and it estimates its parameters (this category includes finite mixture model, latent class model or probabilistic self-organizing maps) [54].

Clustering has been used in several papers assessing the effects of multiple pollutants. For example, in the context of time series analyses of air pollution, one study used k-means to classify days into 5 clusters, indicating days of low pollution levels, days with high concentrations of crustal particles, days with high levels of particles from traffic and oil combustion, days affected by regional sources, and days with high levels of particles from wood burning or combustion of heating oil [55]. Some of the clusters were associated with pulse amplitude.

Groups obtained through a cumulative score
Another analysis option is to derive the groups of observations based on a score that accumulates the levels of all the exposures under study. This could be done through creating a principal component from PCA, in which case each exposure will contribute to the score with a different weight, or through other options. For example, some studies have summed the ranks of each exposure [56] or the number of exposures with values in the top decile [57]. By categorizing the resulting score, the different groups represent participants exposed to a large or small number of exposures simultaneously. Using one of these approaches, one study found that the group exposed simultaneously to high levels of 6 PCBs had a much higher prevalence of diabetes than those with lowest levels for all PCBs [58]. This type of analysis can be useful in situations in which populations are exposed to low levels of a large number of exposures, and even if exposure to low levels of one of the compounds can be considered safe, simultaneous exposure to many of them can result in some health effects.

Bayesian Profile Regression
Bayesian Profile Regression (BPR) is a model-based technique that aims at finding clusters of subjects sharing similar exposure profiles that at the same time show differences in the health outcome [59]. Unlike the clustering techniques described above, the clustering part and the regression of the outcome on the clusters are done in a single step. BPR is quite flexible, as it allows continuous and categorical exposures, it automatically handles missing data, it calculates the optimal number of clusters, and the assignment to clusters is done probabilistically, i.e. it takes into account uncertainty in cluster assignment. In addition, one can incorporate variable selection into the algorithm, which can facilitate the interpretation of the clusters and can lead to better performance in studies with a large number of exposures relative to sample size [60]. BPR has been used in several studies. One of them identified a cluster of participants characterized by living close to a main road, having high exposure to PM10 and nitrogen dioxide, and carrying out manual work as being at high risk for lung cancer [61]. It has also been used in the context of time series analysis in a study that identified days with high concentrations of nitrate and sulphate as having higher risk of respiratory mortality [62].

A regression profile analysis can capture complex interactive effects of several exposures while producing an output that is more interpretable than the output of a regular regression model with several high-order interaction terms [63]. In addition, it has the advantage that it directly directs attention to patterns of values that are most characteristic of the data and that it does not assumes a pre-specified form for the association. 

Recursive Partitioning Techniques
The most basic techniques of recursive partitioning are classification and regression trees (CART). CART is a supervised technique in which a sequence of binary splits based on a subset of exposures creates groups of observations in a way that - within each group - observations have similar values of the outcome. The sequence of binary splits creates a tree structure. At each node of the tree, the observations are split into two groups based on one exposure, i, and a statement of the form exposurei<c vs. exposureic, for a value of c chosen by the CART algorithm [64]. The tree structure, usually based on a small set of exposures, facilitates the interpretation of the clusters. CART can easily capture complex interactions and may facilitate their interpretation. In particular, any asymmetries in the tree encompass underlying interactions. In a time series setting, a study used CART to characterize the joint effects of CO, NO2, O3, and PM2.5 on asthma admissions [65]. 

There are other techniques closely related to CART which create trees based on “and” and “or” statements, such as logic regression or partDSA [66]. Cross-validated CARTs usually include a few terminal nodes, with limited explanatory power. Random forests and boosting are two techniques that have been used to combine the results of several CARTs in order to achieve better predictive performance [64, 67]. The drawback of those techniques is that the easy interpretability of single CARTs is lost, and one has to rely on measures of variable importance that do not directly link the exposure with the outcome. Lampa et al. offer some tools on how to assess if interactions are present and how to visualize them within boosted regression trees [67].

Conclusion
Humans are exposed to multiple environmental stressors simultaneously. Especially in urban settings, where most of the population lives, air pollution, environmental chemicals, noise, temperature extremes, lack of green space, but also social inequality and detrimental lifestyle habits are likely to negatively affect health and quality of life. A better understanding of the independent and synergistic/antagonistic effects of these risk factors is mandatory for: a) designing effective public health prevention strategies especially targeted on vulnerable population subgroups, and b) promoting urban policies aimed at reducing air pollution and environmental chemical concentrations as well as noise and heat levels at the same time.

In this review we proposed a classification of the statistical methods recently applied to jointly estimate the effects of multiple correlated exposures on human health, or to disentangle the effects of the components to the multipollutant mixture. While the list is not presumed to be exhaustive, it categorizes all methods into one of three different groups (some of the methods overlapping more groups): dimension reduction, variable selection and grouping of observations. Each class is characterized by different pros and cons, and its applicability depends on the available data and the degree of multicollinearity among exposures. For each of the proposed methods, specific R packages have been developed, and studies have been conducted in the last years with environmental epidemiology applications, especially in the multipollutant case.

The existing literature, despite being limited up to now, shows the high potential of these approaches for disentangling individual and joint effects, often non-linear, of multiple correlated exposures on human health. Further studies are needed, especially in the context of multiple exposures other than air pollution, to improve our understanding of the complex interrelationship among environmental, socio-economic and lifestyle risk factors on human health.
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ier han 3 years old worth highlighting. Maybe the following:



Figure 1. A schematic representation of the statistical methods used for the analysis of the health effects of multiple correlated exposures
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Table 1. Overview of statistical methods, with details, applications and R packages for implementation
	Method
	Supervised
	Theory
	Application in
environmental
epidemiology
	R package

	Dimension reduction
	
	
	
	

	PCA
	No
	Anderson [13]
	Yang et al. [14]
	stats

	PMF
	No
	Paatero and Tapper [15]
	Krall and Strickland [17]
	ad-hoc software (example: EPA PMF 5.0)

	SPCA
	Yes
	Bair et al. [24]
	Roberts and Martin [25]
	superpc

	PLS
	Yes
	Wold [26]
	Sun et al. [28]
	stats, pls

	SPLS
	Yes
	Chun and Keleş [29]
	Agier et al. [30]
	spls

	WQSR
	Yes
	Carrico et al. [31]
	Czarnota et al. [32]
	wqs

	Variable selection
	
	
	
	

	Cluster prototypes
	No
	Reid and Tibshirani [33]
	-
	protoclust and prototest

	D/S/A algorithm 
	Yes
	Sinisi and van der Laan [36] 
	Beckerman et al. [37]
	modelUtils, DSA

	BMA
	Yes
	Amini and Parmeter [38]
	Bobb et al. [40]
	bms

	LASSO
	Yes
	Tibshirani [41]
	Sun et al. [28]
	glmnet

	ENET
	Yes
	Zou and Hastie [42]
	Lenters et al. [44]
	glmnet

	GLINTERNET
	Yes
	Lim and Hastie [46]
	Agier et al. [30]
	glinternet

	R2GUESS
	Yes
	Liquet et al. [48]
	Agier et al. [30]
	R2GUESS

	BKMR
	Yes
	Bobb et al. [51]
	Bobb et al. [51]
	bkmr

	Grouping of observations
	
	
	

	k-means
	No
	Steinley [53]
	Ljungman et al. [55]
	stats

	Groups based on score
	No
	Lee et al. [58]
	Lee et al. [58]
	-

	BPR
	Yes
	Molitor et al. [59]
	Papathomas et al. [61]
	PReMiuM

	CART
	Yes
	Strobl et al. [64]
	Gass et al. [65]
	party



PCA principal component analysis, PMF positive matrix factorization, SPCA supervised principal component analysis, PLS partial least squares, SPLS sparse partial least squares, WQSR Weighted quantile sum regression, D/S/A Deletion/Substitution/Addition, BMA Bayesian model averaging, LASSO Least Absolute Shrinkage and Selection Operator, ENET Elastic net, GLINTERNET Group-Lasso INTERaction-NET, BKMR Bayesian Kernel machine regression, CART Classification and regression trees.
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