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Kai Kisand5, Zoltán Kutalik2,3‡, Pärt Peterson5‡, Hedi Peterson1,6‡
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Abstract

Elevated C-reactive protein (CRP) concentrations in the blood are associated with acute

and chronic infections and inflammation. Nevertheless, the functional role of increased CRP

in multiple bacterial and viral infections as well as in chronic inflammatory diseases remains

unclear. Here, we studied the relationship between CRP and gene expression levels in the

blood in 491 individuals from the Estonian Biobank cohort, to elucidate the role of CRP in

these inflammatory mechanisms. As a result, we identified a set of 1,614 genes associated

with changes in CRP levels with a high proportion of interferon-stimulated genes. Further,

we performed likelihood-based causality model selection and Mendelian randomization

analysis to discover causal links between CRP and the expression of CRP-associated

genes. Strikingly, our computational analysis and cell culture stimulation assays revealed

increased CRP levels to drive the expression of complement regulatory protein CD59, sug-

gesting CRP to have a critical role in protecting blood cells from the adverse effects of the

immune defence system. Our results show the benefit of integrative analysis approaches in

hypothesis-free uncovering of causal relationships between traits.

Author summary

Chronic inflammation is associated with chronic diseases, morbidity and mortality while

lower base inflammation levels are thought to be predictive of healthy aging. Thus, to pur-

sue a long and healthy lifespan, it is essential to understand the inflammatory regulatory

mechanisms. To that end, we studied the functional role of C-reactive protein (CRP)–an

inflammatory biomarker that is used to measure cardiovascular risk in clinical practice.

There is evidence for a strong genetic component of elevated CRP levels but it is still

unclear if it has a direct impact on the processes that lead to inflammatory diseases. In
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order to elucidate the function of CRP in the blood, we used statistical methods for causal

inference to infer causal relationships between changes in CRP and gene expression levels.

Our statistical analysis and cell culture experiments suggest that CRP drives the expression

of complement regulatory protein CD59. Thus, CRP can have a functional role in protect-

ing human blood cells from the adverse effects of the immune defence system.

Introduction

Increased levels of C-reactive protein (CRP) in the blood are associated with tissue injury,

infections and inflammation [1]. In addition to acute bacterial and viral infections, chronically

elevated CRP levels are predictive of multiple diseases associated with inflammatory processes,

e.g. cardiovascular disease (CVD). Therefore, CRP is used as a biomarker to diagnose CVD

and other inflammatory diseases [2–4]. Furthermore, a recent large-scale Mendelian randomi-

zation (MR) study has shown a possible causal relationship between CRP and several complex

traits, most notably a protective effect against schizophrenia [5]. However, little is known

about the mechanisms of the underlying inflammatory processes and the interactions between

different risk factors that either prevent or lead to a disease.

In the past years, genome-wide association studies (GWAS) have identified thousands of

disease-associated genetic loci, and a GWAS meta-analysis of CRP levels in over 80,000 indi-

viduals found a number of allelic variants in genes implicated in pathways related to metabo-

lism and immune system [6]. Altogether, these studies have demonstrated a strong genetic

component in chronic inflammatory processes. However, the identification of genetic variants

without knowing their functional relevance has not been sufficient to tackle disease-informed

genetics and provide intervention measures against complex diseases. Hence it is necessary to

integrate different omics data and move beyond associations. Causal inference methods and

multi-omics approaches have already been applied successfully in the analysis of complex

traits, e.g. obesity, cancer and coronary artery disease [7–10].

Recent methodological approaches in causal inference include finding the best-fitting

model from the set of previously defined possible causal models using maximum likelihood

[10–14], testing for partial correlation criteria based on the theory of d-separation [15, 16],

both of these techniques together [17, 18], and MR [19–22]. Especially MR has been increas-

ingly popular of late but requires thousands of samples to achieve adequate statistical power

even at nominal significance level 0.05 [22] and is therefore not feasible for hypothesis-free

testing in smaller samples. Model selection-based methods do not necessarily rely on p-values

and can have more power but are prone to false positive findings [15, 23]. To overcome this

trade-off, we propose a combined approach where we first identify a list of candidate causal

relationships using a model selection-based approach and then apply MR on this candidate list

to disentangle true positive findings.

Here we combined data on genotype, transcriptome and CRP levels to get further insight

into the molecular mechanisms regulating CRP concentration. We hypothesized that under-

standing the complex genetic architecture of the molecular functions behind CRP levels can

be aided by overlapping the genetic basis of CRP and the genetic basis of gene expression vari-

ability. To this end, we have performed a multi-step analysis procedure. We identified and

described the set of genes whose expression levels are associated with CRP levels and then used

genotype data to determine the potential causal structure between the expression of these

genes and CRP by maximum likelihood. We ensured that the proposed models satisfied all the

necessary partial correlation criteria, and then used MR and independent data to decide on
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true causal findings (Fig 1A). We identified a causal effect of CRP concentration on CD59
expression in whole blood which we validated experimentally. The main study was conducted

on 491 individuals from the Estonian Biobank cohort [24] whose genomes and transcriptomes

in whole blood have recently been profiled using whole genome sequencing (WGS) [25] and

RNA sequencing (RNA-seq) techniques (Fig 1B).

Results

CRP-associated genes are implicated in pathways related to immune

system

To find CRP-associated genes, we performed a differential expression analysis using the

limma-voom framework [26]. However, instead of dividing continuous CRP values into two

or more bins, we simply used the close-to-normally distributed log-transformed CRP values as

a continuous predictor. Binning a continuous variable would result in reduced power to detect

true associations [27]. The models were adjusted for age, sex, body mass index (BMI), blood

composition and principal components (PCs) both from the genotype and gene expression

data to account for population structure and hidden batch effects.

Controlling the false discovery rate (FDR) at 0.05, we identified 1,614 genes whose expres-

sion values were significantly associated with CRP concentrations in the blood (S1 Table). Of

all the CRP-associated genes, 1,108 were positively and 506 negatively correlated with CRP. As

expected, we observed a high proportion of interferon-stimulated genes, 738 in total (45.7%),

which are known to be induced by infections and inflammatory processes [28] (S1 Fig). By a

considerable margin, the most significant CRP-associated gene was FAM20A (adjusted

p = 7.5×10−17), followed by UPP1, FCGR1A, LDHA andMTHFD2 (Table 1). Similarly to the

CRP gene, FAM20A is most highly expressed in the liver. FAM20A is known to be involved in

biomineralisation of teeth and mutations in this gene have previously been linked to dental

defects and enamel renal syndrome [29, 30]. Pathway enrichment analysis with g:Profiler [31]

showed that CRP-associated genes are overrepresented in immune system processes, particu-

larly in innate immune system and interferon signalling pathways, as well as in NOD-like

receptor signalling pathway (S2 Table).

Cis-eQTL analysis of CRP-associated genes

To study the genetics influencing the expression of the CRP-associated genes, we performed

an expression quantitative trait locus (eQTL) analysis. We used the same set of covariates as

before with the addition of one dummy variable coding for different batches of WGS data. We

limited our search to single nucleotide polymorphisms (SNPs) located within 250 kb of the

genes. For each pair of SNP and gene expression values, we tested whether an additional

minor allele of the SNP has a significant additive effect to the level of gene expression. In total,

we performed 1,821,299 tests. We identified 39,507 eQTLs for 470 different genes (S3 Table).

To validate our findings, we compared the results against the cis-eQTLs reported in whole

blood by the GTEx Consortium (version V6p) [32]. We could replicate at least one eQTL for

313 out of the 470 genes (66.6%), altogether 20,536 SNP-gene pairs. This shows good concor-

dance, despite several differences in the study designs and the relatively low power of both

studies. Compared to the eQTLs reported by Westra et al. [33], we replicated at least one eQTL

in 273 genes (58.1%), altogether 8,998 SNP-gene pairs. The considerably smaller replication

rate here is likely to be due to the differences between array- and sequencing-based expression

profiling (e.g. lowly expressed genes are likely not replicable in microarray-based eQTL stud-

ies) [34].
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Causal relevance between CRP and gene expression by maximum

likelihood

In the previous steps, we established genes that are associated with CRP through their expres-

sion values and we also identified eQTLs for these genes, creating a set of SNP, gene expression

and CRP triplets. Assuming directed acyclic graphs, this leaves only a limited number of possi-

ble models that these triplets can be functionally acting by (Fig 1A). To determine the most

likely causal structure underlying these triplets, we performed likelihood-based causality

model selection [10]. That is, we modelled the joint distribution of all possible triplet models

by maximum likelihood and determined which was best supported by our data in terms of

minimal values of the Akaike information criterion (AIC). To eliminate the situations where

both CRP and gene expression were driven by known confounding factors, we performed the

analysis on covariate-adjusted CRP and expression values, using the same set of covariates as

Fig 1. Pairwise modelling pipeline of whole genome sequencing (WGS), RNA sequencing (RNA-seq) and C-reactive protein (CRP) data. (A) First,

we identified genes whose expression levels (denoted by E) were significantly associated with CRP. Second, we used these genes to perform a cis-eQTL

analysis and extract SNPs (denoted by G) that act on the expression of those genes. Third, for each triplet (G, E, CRP), we used maximum likelihood to select

the best supported model out of a limited number of possible models–given that G is correlated with E, E is correlated with CRP and assuming directed acyclic

graphs. The dashed edge in model IV indicates that either E acts on CRP or vice versa–these two models are Markov equivalent so we cannot differentiate

between them. Fourth, we ensured that the best candidate models fulfilled necessary partial correlation criteria. Fifth, we subjected the best candidates to MR

analysis where the instruments were chosen from published GWAS summary statistics. Finally, we validated the findings using cell culture stimulation assays.

(B) Venn diagram of available sample sizes.

https://doi.org/10.1371/journal.pcbi.1005766.g001
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before (except for gene expression PCs in the case of CRP). As many of the eQTL SNPs were

in high linkage disequilibrium (LD) with each other, we first identified independent eQTLs for

each gene using stepwise multiple regression, starting from the strongest cis-eQTL. This is a

standard approach for discovering independent loci [35]. In total, we found 536 independent

eQTLs for 470 different genes.

For 283 out of 536 triplets tested, the difference in AIC values between the causal and collid-

ing models (ΔAIC) was less than 2, which does not give enough evidence to support one model

over the other [36]. Among the remaining 253 triplets, 81 showed stronger evidence for the

causal model, 163 for the colliding model and 9 for the independent model. Unsurprisingly,

the reactive model never achieved the smallest AIC, due to the selection bias of the SNPs. Alto-

gether, 223 unique genes were represented in the 253 triplets. There were 21 genes with multi-

ple independent eQTLs and 15 of them were supported by a single model, showing good

consistency (S4 Table). On average, triplets supported by the colliding model showed higher

ΔAIC values (Fig 2A). This indicates that the colliding models are of higher quality in our analy-

sis. Genes best supported by these colliding models were enriched in Gene Ontology terms for

response to external stimulus and stress (S5 Table).

We could also observe that more significant association p-values between CRP and gene

expression do not necessarily translate to greater ΔAIC values (Fig 2B). This result reinforces

that many of the correlations resulting from ordinary differential expression analysis are likely

to rise due to unmeasured common confounding and care should be taken when interpreting

such results.

CRP upregulates CD59 expression in blood

To be able to clearly isolate genes whose expression with respect to CRP conforms to either the

causal or colliding model (i.e. whether gene expression drives CRP or vice versa), we would

expect a clear difference in the AIC values of corresponding triplet models, so we considered

only triplets with ΔAIC� 10 as candidates. This ΔAIC threshold corresponds to probability 1 –

e-5 > 0.99 that the model with the smaller AIC is more likely [36]. We further required that the

models suggested by the maximum likelihood procedure satisfied partial correlation criteria

(S4 Table). More specifically, for the causal models we expect to observe at least nominally sig-

nificant association between the SNP and CRP values, but not if we conditioned on gene

expression values. On the other hand, for the colliding models we expect to observe an associa-

tion between SNP and CRP conditional on gene expression, but not otherwise.

Table 1. Top 10 CRP-associated genes. CRP-gene expression association effect sizes (Beta) with 95% confidence intervals (CI) and p-values adjusted for

5% FDR (Adjusted p-value) are shown.

Gene Chromosome Beta 95% CI Adjusted p-value

FAM20A 17 0.51 0.40–0.61 7.5×10−17

UPP1 7 0.10 0.07–0.12 2.6×10−11

FCGR1A 1 0.28 0.21–0.36 5.6×10−10

LDHA 11 0.06 0.04–0.08 5.6×10−10

MTHFD2 2 0.08 0.06–0.10 8.7×10−10

MS4A4A 11 0.19 0.14–0.24 1.3×10−9

DUSP3 17 0.08 0.06–0.10 1.3×10−9

GYG1 3 0.12 0.09–0.15 1.3×10−9

FBXO6 1 0.14 0.10–0.18 4.0×10−9

IFI27 14 0.58 0.42–0.74 4.2×10−9

https://doi.org/10.1371/journal.pcbi.1005766.t001
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The ΔAIC and partial correlation criteria already provide evidence of causality but unmea-

sured common confounding can be an issue and lead to overconfident claims. Therefore, we

subjected all the best models to MR analysis using published CRP summary statistics [6]. For

causal models, we checked whether the eQTL was significantly associated with CRP in the

published data. For colliding models, we selected 16 out of 18 CRP-associated SNPs from the

CRP meta-analysis [6] (the remaining 2 SNPs had a minor allele frequency of 2.2% and no

individual in our sample had two minor alleles of these SNPs) and performed association tests

between these SNPs and gene expression in the Estonian data, looking for enrichment of small

p-values. To increase power, we also combined the 16 SNPs into a genetic risk score (GRSCRP)

using published effect sizes as weights. To estimate the causal effect, we used the two stage least

squares (TSLS) method which is standard in MR analysis [37].

Only ten triplets (1 causal, 9 collider) had ΔAIC at least 10 (Tables 2 and 3). Out of those,

FADS2 was the only gene best supported by the causal model. The corresponding SNP

(rs61897793) was not present in the CRP meta-analysis so we performed summary statistic

Fig 2. Analysis ofΔAIC values. (A) Differences in the Akaike information criterion values between the causal and colliding models (ΔAIC) in triplets best

supported by either model. On average, the colliding models have higher ΔAIC values. This indicates that we are more likely to identify genes whose

expression is in some way regulated by CRP. (B) Scatter plot of ΔAIC values against the CRP-expression association p-values with a linear trend and 95%

confidence interval. Despite a small positive trend, we can observe that higher correlation does not necessarily translate to more evidence of a causal effect.

https://doi.org/10.1371/journal.pcbi.1005766.g002

Table 2. Gene supported by the causal model withΔAIC� 10 using the strongest cis-eQTL.

Chr Gene SNP A1i NSNP ΔAIC Z-scoreii P-valueiii

11 FADS2 rs61897793 A 491 14.4 1.647 0.0996

i The effect allele.
ii Imputed Z-score of SNP-CRP association based on the CRP meta-analysis [6].
iii P-value from the CRP summary statistic imputation.

https://doi.org/10.1371/journal.pcbi.1005766.t002
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imputation [38] (with UK10K as reference panel) to infer the CRP-association statistic. It did

not reach nominal significance (p = 0.0996). However, SNPs in the FADS2 gene have been

associated with circulating phospholipid trans fatty acid and plasma phospholipid n-3 fatty

acid levels by the CHARGE Consortium [39–41]. CRP has been shown to bind phospholipids

through phosphorylcholine [42] and plasma CRP values have been reported to drop with

phospholipid-induced agglutination [43]. FADS2 has a known function in the synthesis of

Table 3. Genes supported by the colliding model withΔAIC� 10 for at least one of the independent cis-eQTLs.

Chr Gene SNP A1i NSNP ΔAIC Beta (SE)ii P-valueiii

12 C3AR1 rs2072448a A 491 23.0 0.19 (0.10) 0.06

9 HIATL1 rs10993177b G 491 17.0 0.09 (0.05) 0.09

rs7863391c C 491 2.6

8 NRG1 rs2466077 T 491 16.5 -0.04 (0.20) 0.83

1 SEMA4A rs7695 C 491 15.7 -0.01 (0.05) 0.83

9 PLGRKT rs2104175 C 491 15.4 0.09 (0.05) 0.06

11 CD59 rs2272064 A 491 15.4 0.20 (0.06) 0.0012

19 FCGBP rs4802064 T 491 14.8 -0.19 (0.14) 0.17

rs4803308d T 491 3.8

11 IFITM3 rs7942247 A 490 14.8 0.29 (0.20) 0.15

22 KREMEN1 rs134615 C 491 10.1 0.06 (0.13) 0.63

i The effect allele.
ii Causal effect estimate and standard error from the MR analysis using CRP-associated SNPs [6] as instruments.
iii P-value from the MR analysis using CRP-associated SNPs [6] as instruments.
a SNP rs2072449 has equivalent values in our data.
b SNPs rs138924760, rs141639969, rs147817734 and rs56062008 have equivalent values in our data.
c Weaker eQTL of HIATL1, independent from rs10993177 in our data.
d Strongest eQTL of FCGBP, independent from rs4802064 in our data.

https://doi.org/10.1371/journal.pcbi.1005766.t003

Fig 3. Analytical validation of the causal CRP and CD59 link. (A) QQ-plot of p-values from the association analysis between CRP-associated SNPs and

CD59 expression. The empirical quantiles are not in line with the theoretical quantiles of the uniform distribution (Kolmogorov-Smirnov p = 0.026) and there is

some enrichment of small p-values. (B) Funnel plot of minor allele frequency corrected genetic effects on CRP against causal effect estimates between CRP

and CD59 expression for each CRP-associated SNP. (C) Scatter plot of the genetic effect on CD59 expression against the genetic effect on CRP. Causal

effect slope estimates from the TSLS solutions with the GRSCRP instrument and with all the 16 CRP-associated SNPs as instruments (both forced through

zero) are coloured in blue and green, respectively. The bias-corrected slope from the MR-Egger regression is shown in red.

https://doi.org/10.1371/journal.pcbi.1005766.g003
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arachidonic acid that is relevant in inflammatory processes and has been associated with both

CRP and risk of CVD [44]. Furthermore, SNPs in FADS2 have also been associated with low-

density lipoprotein (LDL) and total cholesterol in European populations [45], in addition to

weight and BMI in Greenlanders [46]. LDL-cholesterol and BMI have in turn been causally

implicated with risk of CVD [47] and CRP [19]. These results are consistent with a mediated

causal indirect effect of FADS2 on CRP, even though a recent summary-level MR analysis did

not identify FADS2 expression causal to BMI [22]. We could not fully confirm a causal link

between FADS2 expression and CRP in this study, but together with evidence from other stud-

ies, our results could warrant further analysis with a larger sample size.

The top genes following the colliding model were C3AR1,HIATL1, NRG1, SEMA4A,

PLGRKT, CD59, FCGBP, IFITM3 and KREMEN1. Out of these, CD59was the only gene that

showed enrichment of low association p-values with the 16 individual CRP-related SNPs from

the CRP meta-analysis (Fig 3A, Kolmogorov-Smirnov test for uniform distribution p = 0.026).

The estimate of causal effect from CRP to CD59 expression using all the individual SNPs as

instruments (beta = 0.20, SE = 0.06, p = 0.0012) was similar to using only GRSCRP as a single

strong instrument (beta = 0.24, SE = 0.08, p = 0.0022), showing a similar positive slope in both

cases. None of the SNPs nor GRSCRP were correlated with CD59 expression conditional on

CRP values, satisfying the conditional independence assumption of MR. To detect and correct

for possible bias from pleiotropy, we calculated the causal effect estimate using each SNP as a

single instrument, visualized the individual causal estimates by a funnel plot and performed an

MR-Egger test proposed by Bowden et al. [21] (Fig 3B and 3C). There was very little direc-

tional pleiotropy present (the intercept coefficient from the MR-Egger test was -0.002) and the

MR-Egger-corrected causal effect estimate was similar to the TSLS estimates (beta = 0.21). For

the other genes, there is less evidence for a causal effect from CRP to expression and instead,

unmeasured confounding might be responsible for the elevated ΔAIC values.

Functionally, CD59 regulates the complement membrane attack complex (MAC) [48] and

has been reported to have a protective effect against atherosclerosis by restricting MAC forma-

tion [49]. CRP has also been shown to upregulate CD59 in endothelial cells [50] and although

some of the findings of this paper were later questioned by the effect of a common additive

sodium azide (NaN3), the upregulation of CD59 by CRP was not disproved [51]. To further

confirm that the expression of CD59 is upregulated in the blood by elevated CRP levels, we

performed cell culture experiments where we stimulated peripheral blood leukocytes with

increasing concentrations of CRP (Fig 4). We found a dose-dependent upregulation of CD59
on cell surface by flow cytometry after 48 hours, which importantly was not present when only

NaN3 was added to the cell cultures. The dose effect was most prominent in lower doses while

reaching a plateau at the concentration of 12.5 μg/ml. A similar trend in increased CD59 sur-

face levels, albeit slightly lower, was also present after 24 hours (S2 Fig). Altogether, our results

indicate a causal role of CRP on CD59 expression levels.

Discussion

We identified altogether 1,614 genes that are associated with CRP by their expression values in

the blood. Using pathway analysis, we have shown that these genes are enriched in immune

system related functions and thus are good candidates to be directly relevant in biological pro-

cesses concerning CRP. In agreement with their function in innate immune responses, ca 46%

of CRP-associated genes comprised interferon-stimulated genes, which have a wide range of

activities ranging from control of bacterial and viral infections, upregulation of chemokines

and chemokine receptors and regulating blood cellular homeostasis [52]. However, our results

suggest that the most significant CRP-associated genes should not be readily interpreted as the

C-reactive protein upregulates the whole blood expression of CD59

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005766 September 18, 2017 8 / 20

https://doi.org/10.1371/journal.pcbi.1005766


most important in terms of causal effects. To find causal relationships, we integrated gene

expression and CRP data with genotype data and used a combined analysis approach. First, we

applied integrative genomics techniques to filter out a list of candidate causal relationships and

then applied Mendelian randomization to determine the final outcome. We report the expres-

sion of CD59 as being causally affected by CRP concentration in the blood, and provide experi-

mental validation of the result.

Our finding of CRP-mediated induction of CD59 suggests a negative feedback mechanism

to protect blood cells against potentially damaging complement responses that are upregulated

during infections and inflammation. Ubiquitously expressed CD59 is a specific inhibitor of

complement membrane attack complex (MAC) formation, which is the main effector of com-

plement-mediated tissue damage and leads to osmotic lysis of targeted cells [48, 53]. Through

its inhibitory binding to complement members, CD59 blocks MAC formation and MAC-

induced cell lysis. For example, individuals having mutations in CD59 have decreased capacity

to inhibit the complement MAC formation and develop an early-onset hemolytic phenotype

associated with vascular disease [54]. Thus, our result provides a new insight into the molecu-

lar mechanism of CRP function in protecting human blood cells from the adverse effects of the

innate immune defence system, albeit the exact interplay between CRP and CD59 needs to be

determined in further experiments.

We also found that the expression of FADS2 can be potentially relevant in terms of CRP

regulation. There are many known associations between FADS2 genotypes, lipid levels, inflam-

matory markers and CVD that together are consistent with a mediated causal effect of FADS2
expression on CRP. We did not find conclusive evidence of this causal relationship in this

Fig 4. Upregulation of CD59 surface expression by CRP in cell culture experiments. Peripheral blood cells from two donors were treated with five

increasing doses of CRP protein. For negative controls, the cells were not treated with CRP or were treated with additive NaN3 only. The CD59 antigen values

were measured after 48 hours and are shown in mean fluorescent intensity units as the arbitrary values of flow cytometry. Black dots represent individual

measurements in different replicates, red dots are the averages and whiskers represent ±1 standard errors.

https://doi.org/10.1371/journal.pcbi.1005766.g004
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study but suggest further analysis to ascertain the interplay between these traits in terms of

inflammation and disease.

Our study has several limitations. By selecting candidate triplets using a stepwise analysis

approach, we make an implicit assumption that variation in DNA leads to variation in the phe-

notype in a linear manner. However, it is reasonable to believe that variation in the phenotype

values is determined by the combined variation of many factors in multiple omics layers [55].

Further, the triplet models that we considered (including the assumptions) are likely to be sim-

plistic representations of actual relationships between variables and although we accounted for

several known covariates and captured technical variation in the data, it is possible that

unmeasured variables are acting as confounders in some cases. These drawbacks can yield

false positive findings. However, ΔAIC of at least 10 provides strong evidence that the model

with the smaller AIC is considerably better supported by the data [36]. Also, triplet models

have shown good promise in distinguishing between competing models [10]. Moreover, we

make a causal claim only after comprehensive MR analysis.

A bigger limitation is a lack of statistical power to find more causal relationships, mostly

due to our small sample size. Assuming that a genetic instrument (e.g. GRS) describes 5% of

the variation of the exposure and a standardized causal effect size between the exposure and

the outcome is 0.1, we would need around 15,000 samples to detect an instrument-outcome

association with 80% power at nominal significance level 0.05 [56]. We would have to assume

a slightly larger causal effect to achieve only 20% power in the Estonian data. It shows that MR

is underpowered for hypothesis-free testing in smaller samples. On the other hand, relying on

likelihood-based methodology alone can give misleading results due to the number of false

positive findings [15, 23]. These can be expensive, time-consuming and difficult to experimen-

tally validate. We think that our approach of combining MR with prior filtering by maximum

likelihood modelling can be useful in such cases.

Our analysis strategy could be applied to any trait, but the available sample size in the Esto-

nian Biobank was not sufficient for more complex traits, like BMI and height. A recent MR

analysis on summary-level data implicated 68 causal genes for height and 9 for BMI [22],

which we attempted to replicate. For height, only 5 genes (out of more than 12,000 tested)

cleared the significance threshold at the first analysis step (i.e. significant trait-expression asso-

ciation) in the Estonian data, none of which are among the 68 published causal height genes.

Moreover, no gene passed the ΔAIC� 10 threshold filter to indicate a likely causal model. For

BMI, only one of the 9 reported causal BMI genes was correlated with BMI in the Estonian

data, with ambiguous results in terms of causality. There were again no likely candidates for

the causal model. Negative results here can partly be due to different technologies used in

quantifying gene expression levels (we used RNA-seq, [22] used microarrays) and partly

because BMI and height are far more complex than CRP and require more samples to analyse.

Parallel to experimental validation of the CRP-CD59 link, we also performed summary-level

MR in an attempt on an alternative validation of this relationship by using all association sum-

mary statistics (trans effects based on ~16,000 individuals) between CD59 expression and

CRP-associated SNPs (or their proxies due to data availability) provided by the eQTLGen

Consortium. We could not detect a causal effect here, probably again due to low power. Using

a single SNP as an instrument and assuming a standardized causal exposure-outcome effect of

0.1, we would need close to one million samples to detect an instrument-outcome association

with 80% power.

Our filtering approach is conceptually similar to that of Schadt et al. [10] but there is a key

difference. Notably, we use gene expression values as the central building blocks to be associ-

ated with the phenotype, instead of genotype data. As a result, we have to compute the likeli-

hoods of 4, not 3 possible models, but our approach also has several benefits. First, there are
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considerably fewer genes than genetic variants, reducing our multiple testing burden. Second,

we do not rely on identifying phenotype-associated genetic variants that can be difficult to

detect genome-wide due to small effects. The effects of gene expression on the phenotype are

likely to be much bigger compared to the effects that individual SNPs have, so in some cases it

could be possible to trace the variation in the phenotype back to the SNP only through gene

expression [57]. Third, we are able to detect a causal effect from phenotype to gene expression

if the colliding model holds. This would not be possible if we required an explicit SNP-pheno-

type association for the triplets, since under the colliding model that association would not

exist. In fact, only our modified approach could identify the CRP-CD59 link.

In summary, we have demonstrated that combining gene expression data with genotype

and phenotype data–and importantly using integrated modelling techniques–can give insight

to the causal molecular mechanisms underlying trait variation even if the sample size is lim-

ited. Using new RNA-seq data from the Estonian Biobank, we have presented genes that are

associated with CRP based on the expression values, identified genetic loci that guide this

expression, and provided evidence about the direction of causal effects between CRP and a few

genes. Most notably, we have shown by statistical analysis and cell culture stimulation assays

that CRP upregulates CD59 expression in whole blood and can thus have a role in protecting

human blood cells from the adverse effects of the immune defence system. We have also pre-

sented suggestive evidence of an indirect causal effect of FADS2 expression to CRP levels.

These findings can potentially provide deeper understanding of the functional roles of CRP,

but further investigations are required to evaluate these results in terms of chronic inflamma-

tion and disease.

Methods

Ethics statement

All participants have provided an informed consent for the use of their medical records (www.

biobank.ee).

Estonian Biobank cohort

This study is based on the Estonian Biobank cohort, developed and maintained by the Esto-

nian Genome Center, University of Tartu (EGCUT). This is a volunteer-based population

cohort with close to 52,000 participants, which is around 5% of the Estonian adult population.

All participants have donated blood samples, 2,700 of which are characterised by clinical bio-

chemistry measurements including the levels of C-reactive protein (CRP, mg/L), leukocytes,

erythrocytes and thrombocytes [24]. Recently, whole genomes were sequenced for 2,244 indi-

viduals in the EGCUT cohort [25]. Of those, 1,026 have biochemistry measurements and 586

also have RNA-seq data.

C-reactive protein data

The average CRP value in our data was 2.34 mg/L with standard deviation 3.84. The distribu-

tion of CRP measurements was skewed to the right and the maximum CRP value measured

was 53.8 mg/L. We have taken a natural logarithm of CRP in this study to bound the effect

of slightly outlying values. There was a noteworthy correlation between the levels of CRP

and different blood components, most notably white blood cells (p = 2.6×10−14), also BMI

(p = 6.9×10−45) and age (p = 6.5×10−13). One individual had missing CRP and blood compo-

nent values; these were imputed as the corresponding averages of the remaining 1,025 individ-

uals. Four individuals had missing BMI values but all of these originated from follow-up
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questionnaires so we imputed them from the values given on recruitment a couple of years

earlier.

RNA sequencing data

RNA was extracted from thawed Tempus tubes using TRIzol Reagent (Invitrogen) and further

purified using RNeasy Mini Kit (Qiagen). Globin mRNA was depleted using GLOBINclear Kit

(Invitrogen). RNA quality was checked using an Agilent 2200 TapeStation (Agilent Technolo-

gies). Sequencing libraries were prepared using 200 ng of RNA according to the Illumina Tru-

Seq stranded mRNA protocol. RNA sequencing was performed at the Estonian Genome

Center Core Facility using Illumina paired-end 50 bp sequencing technology according to

manufacturers specification.

We used Trimmomatic (version 0.36) [58] to remove the adapters and leading and trailing

bases with a quality score B. Quality control was done by FastQC (version 0.11.2) [59]. We

used STAR (version 2.4.2a) [60] to map the reads to a human genome reference version

GRCh37.p13. Concurrently, STAR also counted reads that mapped to each genomic feature

using the same algorithm as default htseq-count. In this study, only protein coding genes from

autosomal chromosomes were used as evidenced by the Ensembl BioMart (genome assembly

GRCh37.p13, release 75) database, the rest were filtered out.

Data pre-processing

The initial pre-processing and quality control of the WGS data was done by EGCUT as

reported in [25]. For our purposes, we performed some further filtering steps using Plink 1.9.0

[61]. We excluded chromosomes X and Y from the analysis and only included those individu-

als with RNA-seq and CRP data (N = 491). From the remaining sample, genetic variants with

minor allele frequency below 0.05 or missing call rates exceeding 0.01 were filtered out. We

performed identity by descent analysis (prior to that, we excluded SNPs that were in high pair-

wise linkage disequilibrium: r2 > 0.5 in a sliding window of 50 bases with 5 base increments)

which revealed 4 pairs and 1 trio of individuals related to each other (genetic relatedness >

0.1). Only one individual from each group was kept.

As a further quality control measure, we applied MixupMapper [62] to detect and in some

cases correct for sample mix-ups. We also performed principal component analysis on the

gene expression data and identified a batch of samples with a different gene expression struc-

ture compared to other samples. This was discovered to be due to a technical problem during

library preparation and affected samples were removed from the analysis.

We also removed non-expressed and lowly expressed genes from the analysis by including

only those genes that for at least ten individuals had a count per million (cpm) value greater

than 1. After all the filtering steps, the remaining sample size was 491 and the remaining num-

ber of genes was 12,619.

CRP-associated genes

RNA-seq count data is heteroscedastic and that remains the case after the log(cpm) transforma-

tion. One of the typical approaches in this case is using weighted linear regression where individ-

ual gene expression levels are attributed with weights that are inverse proportional to variance.

We thus performed the analysis in the limma framework (version 3.26.9) [63] and found gene

expression weights by the voom [26] method that has been shown to work well in differential

expression analysis; log(CRP) was used as an exploratory variable and gene expression levels as

dependent variables. We adjusted for possible confounding effects from age, BMI, sex and blood

components (neutrophils, eosinophils, basophils, lymphocytes, monocytes, erythrocytes and

C-reactive protein upregulates the whole blood expression of CD59

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005766 September 18, 2017 12 / 20

https://doi.org/10.1371/journal.pcbi.1005766


thrombocytes). The first four PCs on the genotype data were used to control for population

structure (PCs were again calculated on LD-pruned data) as established in [64]. To account for

batch effects in the gene expression data, we used the sequencing batch date as a covariate. Raw

RNA-seq counts were normalized with the weighted trimmed mean of M-values [65] method in

the edgeR package (version 3.12.1) [66]. Logarithm of count per million was used as the final

gene expression measure.

Principal component analysis on the gene expression data revealed hidden batch effects

despite controlling for the sequencing batch date. To increase power and the reliability of

results, we applied a simple algorithm to account for such hidden effects in a similar fashion to

surrogate variable analysis [67] and PEER [68]. We tested whether the top PCs were signifi-

cantly associated with CRP and decided to use the first two PCs as control variables in the fur-

ther analysis, because we could see strong associations with CRP starting from the third PC.

We adjusted the models for confounders such as age, gender and BMI but also the number of

different blood cells to account for differences in gene expression in these cells.

We used Benjamini-Hochberg correction to correct for the number of tests and control the

FDR at 0.05. Top genes were subjected to enrichment analysis by g:Profiler [31].

Cis-eQTL analysis

With each of the top genes that were significantly associated with CRP by their expression lev-

els, we performed a cis-eQTL analysis. An association between a SNP and a gene was deter-

mined only if the SNP resided not farther than 250 kb from the gene. We used the same set of

covariates as before, including a batch variable of the WGS data as an additional covariate. The

analysis was performed in Plink using ordinary least squares with gene expression measured as

log(cpm) as the dependent variable. To control for the number of tests, we used a two-step

procedure.

First, we controlled the family wise error rate for each gene by doing 10,000 permutation

tests in Plink. However, we did not want to limit our p-values with 1×10−4. For each gene, we

pulled the highest t-statistic value of every permutation (10,000 in total) and transformed them

to p-values. We used the minimum sample size of tested SNPs in the calculation of degrees of

freedom, because SNPs contained a variable amount of missing values (but at most 10%) and

the SNP that obtained the highest t-statistic was not specified in the Plink output. For each

gene, we transformed the 10,000 extreme p-values by −log10 and then fitted a Gumbel distribu-

tion G(μ, β) on them by estimating μ and β. Finally, nominal p-values pnom were transformed

to permutation p-values by pperm = P(X > −log10(pnom)) where X ~ G(μ, β). This procedure is

conceptually very similar to the one implemented in the FastQTL tool, where Beta distribution

is used to model the smallest non-transformed p-values [69].

Second, to control for the number of genes tested, we used the Bonferroni method. All SNP

and gene expression pairs with permutation p-values less than 0.05/N (N = 1,614 was the num-

ber of unique genes tested) were deemed significant.

Triplet models

We established genes whose expression was associated with CRP and SNPs that were QTL to

the expression of those genes. We called these intertwined components triplets. To determine

the most likely causal structure underlying these triplets, we performed maximum likelihood

modelling in similar fashion to Schadt et al. [10], albeit with some differences discussed above.

Assuming directed acyclic graphs and the correlation structure within each of the triplets, the

following models are possible (Fig 1B):
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1. causal: P(G, E, CRP) = P(G)P(E|G)P(CRP|E),

2. colliding: P(G, E, CRP) = P(G)P(CRP)P(E|G, CRP),

3. reactive: P(G, E, CRP) = P(G)P(CRP|G)P(E|CRP),

4. independent: P(G, E, CRP) = P(G)P(E|G)P(CRP|G, E) = P(G)P(CRP|G)P(E|G, CRP).

These models are not Markov equivalent like E -> CRP and CRP -> E in which case the

joint distributions would be equal: P(E, CRP) = P(E)P(CRP|E) = P(CRP)P(E|CRP). This

means that by calculating the model likelihoods we can determine, for each triplet, the most

likely model and hence identify the most plausible causal direction between E and CRP. We

found residual CRP from the model log(CRP) = Xb + e and residual expression values from

the model log(cpm) = Xb + e where X includes the confounders (age, sex, blood components,

PCs). We then used these residuals in the triplet models. We assumed normal distribution for

log(cpm) and log(CRP). Wherever necessary, we also assumed multivariate normal distribu-

tion and used the appropriate formulas for conditional distributions. We constructed likeli-

hood functions corresponding to each of the above models and maximized them by numerical

optimization (optim function in R). Finally, we chose the model with the minimal AIC as the

likeliest for each triplet.

Mendelian randomization analysis

Residual CRP and expression values were used for the analysis of colliding models with MR

principles in the Estonian data for consistency of the variables used in the maximum likelihood

modelling of triplets. The causal effect between CRP and CD59 expression was estimated using

the tsls function in the R sem package. Summary-level MR analysis was performed using the

inverse-variance weighted method [20].

Cell culture experiments

Human heparinized peripheral blood was diluted with OpTmizer cell culture medium 1:4.

The peripheral blood cells from two independent donors were cultivated in three repli-

cates with five increasing CRP (Sigma) doses (50×4−4, 50×4−3, 50×4−2, 12.5 and 50 μg/ml)

for 24 and 48 hours. Separate control experiments with 0.1% NaN3 in three replicates

were included. The cell cultures were stained with phycoerythrin-conjugated anti-human

CD59 antibody (Biolegend) and treated with Lysing solution (BD Biosciences) to elimi-

nate erythrocytes before analysis by flow cytometer (LSRFortessa) and FACSDiva soft-

ware. Granulocytes were gated according to their forward and side scatter characteristics

and CD59 staining intensity recorded as mean fluorescence index. Approval was obtained

from the ethics committee of the University of Tartu.

Supporting information

S1 Fig. Correlations between the expression of all the 1,614 significant CRP-associated

genes. A heatmap is shown, depicting correlation strength. Genes are annotated by the sign of

their association with CRP and whether they are interferon (IFN) regulated.

(TIF)

S2 Fig. Upregulation of CD59 surface expression by CRP in cell culture experiments after

24 hours. The CD59 antigen values in mean fluorescent intensity units measured 24 hours

after treating peripheral blood cells from two patients with CRP. For negative controls, the

cells were not treated with CRP or were treated with additive NaN3 only. Black dots represent
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individual measurements in different replicates, red dots are the averages and whiskers repre-

sent ±1 standard errors.

(TIF)

S1 Table. All the CRP-associated genes. Association effect sizes with 95% confidence inter-

vals and p-values adjusted for 5% FDR are shown.

(XLSX)

S2 Table. Results of the pathway enrichment analysis with g:Profiler. Separate analyses

using all the CRP-associated genes, only genes positively correlated with CRP and only genes

negatively correlated with CRP.

(XLSX)

S3 Table. All the significant cis-eQTLs. Association summary statistics from the cis-eQTL

analysis. The last two columns indicate whether the eQTL was also found in GTEx (V6p) or

Westra et al. (2013) studies, respectively.

(XLSX)

S4 Table. All the triplets with ΔAIC� 2. Summary results from CRP-gene expression associa-

tion, cis-eQTL and triplet model analyses, and p-values from the conditional correlation analy-

sis for triplets with ΔAIC� 10.

(XLSX)

S5 Table. g:Profiler results using genes with ΔAIC� 2 in favour of either the causal or col-

liding models. Each gene’s ΔAIC value was determined based on the triplet with the strongest

eQTL.

(XLSX)
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Habibul Ahsan, Isabel Alves, Anand Andiappan, Philip Awadalla, Alexis Battle, Frank Beutner,

Marc Jan Bonder, Dorret Boomsma, Mark Christiansen, Annique Claringbould, Patrick Dee-
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