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Abstract

Background: The evidence for epigenome-wide associations between smoking and DNA methylation continues to
grow through cross-sectional studies. However, few large-scale investigations have explored the associations using
observations for individuals at multiple time-points. Here, through the use of the Illumina 450K BeadChip and data
collected at two time-points separated by approximately 7 years, we investigate changes in methylation over time
associated with quitting smoking or remaining a former smoker, and those associated with continued smoking.

Results: Our results indicate that after quitting smoking the most rapid reversion of altered methylation occurs
within the first two decades, with reversion rates related to the initial differences in methylation. For 52 CpG sites,
the change in methylation from baseline to follow-up is significantly different for former smokers relative to the
change for never smokers (lowest p-value 3.61 x 10-39 for cg26703534, gene AHRR). Most of these sites’ respective
regions have been previously implicated in smoking-associated diseases. Despite the early rapid change, dynamism
of methylation appears greater in former smokers vs never smokers even four decades after cessation. Furthermore,
our study reveals the heterogeneous effect of continued smoking: the methylation levels of some loci further
diverge between smokers and non-smokers, while others re-approach. Though intensity of smoking habit appears
more significant than duration, results remain inconclusive.

Conclusions: This study improves the understanding of the dynamic link between cigarette smoking and methylation,
revealing the continued fluctuation of methylation levels decades after smoking cessation and demonstrating that
continuing smoking can have an array of effects. The results can facilitate insights into the molecular mechanisms
behind smoking-induced disturbed methylation, improving the possibility for development of biomarkers of past
smoking behavior and increasing the understanding of the molecular path from exposure to disease.
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Background
Tobacco use causes up to 6 million deaths per year [1] –
10% of adult deaths [2] – primarily through cancer,
chronic obstructive pulmonary disease and cardiovascular
disease [3]. The link between smoking and adverse health
outcomes is well established but the precise causal mo-
lecular and cellular mechanisms are still under investiga-
tion [4–6]. Epigenetic modifications, such as DNA
methylation at cytosine-guanine dinucleotides (CpGs), are
thought to be potential mediators in the course from
exposure to disease.
The link between smoking and methylation is receiving

growing attention [7], with numerous recent cross-
sectional studies revealing epigenome-wide associations
[8–12]. The most recent, comprehensive analyses include
a systematic review of 17 studies [13], and a meta-analysis
of 16 cohorts [12], the latter revealing 2623 CpGs sites sig-
nificantly associated with smoking behavior at a strict
multiple testing threshold. However, longitudinal studies
– here defined as those examining methylation and smok-
ing habits in individuals at two or more time-points – are
scarce. These studies are an important next step in the un-
derstanding of the mechanisms of methylation [14]. To
our knowledge, there have been only three reports investi-
gating smoking and methylation with repeated measures:
two candidate locus studies, one focusing on a small
group of young women [15] and another on a small group
of individuals attempting to quit smoking [16]; and a
family-based study focused on maternal smoking [17].
Studies which cover larger sample sizes and different life
stages are needed to better understand the effect of smok-
ing on methylation.
A key question in the field of smoking-mediated methy-

lation is whether quitting smoking allows differentially
methylated CpG sites to return to levels found in individ-
uals who have never smoked. Previous evaluations of the
effect of time since smoking cessation have revealed CpG
sites that could be classified as reversible and sites that
could be classified as persistently differentially methylated
[8, 18–20]. Reversible sites are those that are differentially
methylated between smokers and non-smokers but with
the difference disappearing some time after cessation of
smoking. Persistently differentially methylated sites re-
main differentially methylated, perhaps indefinitely; this
persistence has been observed even up to 35 years after
cessation [20]. However, there is again a lack of longitu-
dinal studies with regard to reversion of methylation
levels; this lack impedes the identification of potential
long-term biomarkers of smoking [11, 21], and hinders in-
sights into the increased risk for disease faced by former
smokers decades after cessation [22, 23].
The focus of our investigation is the linking of expos-

ure – current and prior smoking behavior – to changes
in DNA methylation at CpG sites over time, i.e.

dynamism in methylation. Our previous study, a cross-
sectional epigenome-wide association study (EWAS),
compared the methylation of current, former and never
smokers at approximately 450,000 CpG sites, and re-
vealed an extensive effect of smoking across the methy-
lome [8]. Here, we extend this investigation to include
an earlier time-point for the same cohort, thus gaining
information on changes in smoking habits, health char-
acteristics and DNA methylation. Through a longitu-
dinal site-by-site analysis, our goals were to (i) examine
changes in methylation over time associated with quit-
ting smoking or remaining a former smoker; and (ii)
examine the effects of continued smoking on changes in
DNA methylation, including the effect of intensity of
smoking habit.

Methods
Study population
Our study population consisted of participants from the
KORA (Kooperative Gesundheitsforschung in der Re-
gion Augsburg) study [24], which has been collecting
clinical and genetic data from the general population in
the region of Augsburg, Germany for more than 20 years.
The cohort investigated in this paper is the S4 study,
carried out in 1999–2001 (baseline). The follow-up (F4)
took place in 2006–2008. At both assessments, partici-
pants completed a lifestyle questionnaire, including de-
tails on smoking habits, and underwent standardized
examinations with blood samples taken, as described
elsewhere [24, 25].
Individuals who were either regular or occasional (self-

declared as 1 cigarette per day or less) smokers at the
time of the interview were classified as current smokers
(CS); those who had never smoked were classified as
never smokers (NS); and those who had previously been
smokers but were no longer at the time of the interview
were former smokers (FS).
Since the analyses involve longitudinal data, smoking

status of an individual may change between the time-
points. The above-noted abbreviations separated by a
dash indicate smoking statuses at baseline and follow-up
interviews. For example, CS-FS refers to the category of
individuals who were smokers at the time of baseline
and former smokers at the time of follow-up.
We calculated duration of smoking habit as the

difference between age of smoking initiation and age
at interview for the current smokers, and age of ces-
sation for the former smokers. An individual’s time
since quitting smoking (TSQ) was calculated as the
difference between the age of cessation and age at the
time of the interview. Intensity of smoking is given as
the average number of cigarettes smoked per day at
the time of the interview; occasional smokers were
assumed to smoke 0.5 cigarettes per day.
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Of the 4261 baseline subjects, 3080 participated in the
follow-up. Of these, 1561 and 1802 had methylation
measurements, respectively. After methylation quality
control (see below), 1535 samples remained in S4 and
1727 remained in F4. 91 observations were lacking data
for one or more of the covariates and were excluded.
158 FS observations were eliminated due to lack of TSQ
data, inconsistent TSQ information given at S4 and F4
(TSQ varying by greater than 20% and more than
5 years), or re-starting and re-quitting between the times
of S4 and F4. This left a total 1344 individuals, each with
two observations.

Microarray data acquisition
DNA methylation was measured in the whole blood of the
participants using the Infinium HumanMethylation450K
BeadChip. The bisulfite conversion and genome-wide
methylation assessment were performed as previously de-
scribed [8]. All presented gene and position annotations
are based on the HumanMethylation450 v1.2 manifest file.

Methylation data preprocessing
Normalization of the methylation data was conducted
following the CPACOR pipeline [26], beginning with ex-
clusion of 65 single-nucleotide polymorphism markers
and background correction using the R package minfi
[27]. Probes were set to NA if the detection p-value
≥0.01 or number of beads ≤3. Samples were excluded if
the detection rate was ≤0.95. Quantile normalization
was then performed on the signal intensities.
The methylation of a given cytosine was first calcu-

lated as a β-value, the ratio of the methylated signal in-
tensity to the sum of the methylated and unmethylated
signal intensities. Due to the [0,1] boundedness of the β-
values, they were transformed to M-values using the bin-
ary logit transformation, M-value = log2(β/(1- β)), for all
analyses in this study, except where noted.
Following normalization, a per-CpG-site detection rate

of 95% was applied to the baseline and follow-up studies
separately. CpG sites with a detection rate below 95%
for either baseline or follow-up were excluded from all
analyses, resulting in a reduction from 485,512 to
459,472 sites; after exclusion of sites from the sex chro-
mosomes the final number analyzed was 449,102.
To reduce possible impact of non-biological effects,

specifically those differing between the experiments for
the S4 and F4 samples, and 86 individuals from S4 proc-
essed separately, we adjusted the methylation M-values
for technical effects prior to analysis. In detail, principal
component analysis was performed on the intensities of
all (non-negative, autosomal) control probes after back-
ground correction. We then modeled the methylation
M-values of each CpG site across all samples as a func-
tion of the first 20 principal components, plus a batch

indicator designating the n = 86 S4 subsample. Residuals
of these models were used as “technically adjusted”
methylation values for all analyses [26].
To eliminate potential outliers for each CpG site, the

residuals of all S4 and F4 individuals from a linear
regression model featuring methylation as response and
all potential confounders (see below) as covariates were
examined. Outliers were defined as those values more
than 5 standard deviations from the mean. Up to 5 out-
liers were removed per CpG site, 5 being chosen to
maintain sample size.

Statistical models and methods
Our analysis incorporates cross-sectional and longitu-
dinal models. For the cross-sectional models, the base-
line data is used alone. For all longitudinal models, the
baseline and follow-up data are used.

Confounding
For all regression models, sex, alcohol consumption (g/
day), body mass index, white blood cell count and esti-
mated white blood cell proportions (monocytes, B cells,
natural killer cells, CD4 T cells and CD8 T cells, esti-
mated using the method of [28]) at the time of the
examination were included as covariates to address po-
tential confounding. For the cross-sectional models, age
was included, while for the longitudinal models, age at
baseline was included for each observation along with a
time passed variable (0 for baseline, time difference be-
tween baseline and follow-up interviews for follow-up
observations) to account for the longitudinal nature of
the data; see model description below.

Confounder residualization for methylation beta value
analysis
In some analysis we examine methylation beta values ra-
ther than coefficients of regression models. In these
cases, to address potential confounding, we perform an-
other stage of residualization, similar that described to
remove technical effects. For each CpG site, we conduct
a linear regression model with the technically adjusted
beta values as outcome and all covariates as independent
variables. The residuals of these models are our final
‘methylation’ values for the analyses relying on beta
values rather than regression coefficients.

Cross-sectional analysis: Epigenome-wide association
analysis at baseline
We firstly conducted an EWAS on the baseline data to
investigate which CpG sites were differentially methyl-
ated between CS (N = 280) and NS (N = 615). For each
CpG site, the technically adjusted M-values were used as
outcome in a linear regression model with smoking sta-
tus (NS or CS) as the explanatory variable and covariates
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as above. A total of 449,102 CpG sites were tested; thus
a CpG site was considered significant if the coefficient of
smoking status for its model had a p-value below a
Bonferroni-corrected threshold of ~1.1 × 10−7.
The EWAS indicated 590 CpG sites were associated

with smoking behavior, and these sites were carried for-
ward to all other analyses. From this point results were
considered significant at a Bonferroni-corrected P of
8.47 × 10−5.

Longitudinal analyses: Baseline to follow-up
The longitudinal analyses involve data from the two
time-points, baseline and follow-up. We use models
adapted from Richmond et al. [17]. For each CpG site,
we used a linear mixed model with random intercept of
individual and the following structure for individual i at
time point j (j = 1 at baseline, j = 2 at follow-up) to
model the methylation:

methij ¼ β0 þ βcsmoking category þ β1age at baseline

þ βttime passed since baseline interview
þ βLsmoking category

� time passed since baseline interviewð Þ
þ confoundersij þ μ0i þ εij

μ0i∼N 0; σ2μ
� �

εij∼N 0; σ2ε
� �

;

where the smoking category depends on the model in
question (see below), and the time passed since baseline
is 0 at j = 1 and the time in years since the baseline
interview for j = 2. βC thus can be interpreted as the ex-
pected methylation difference between an individual of
the smoking category in question and the reference cat-
egory at baseline, given equality of all other covariates;
βt gives the expected change in methylation per year
from baseline to follow-up for the reference category; βL
gives the expected difference in change in methylation
per year from baseline to follow-up for the smoking
category in question vs the reference category, given
equality of the other covariates. We refer to βC as the
cross-sectional coefficient or effect and to βL as the longi-
tudinal coefficient or effect.
For each analysis, a “significant site” refers to a site

that is significant for the longitudinal effect.

Quitting smoking or remaining a former smoker
To investigate the effect of quitting smoking or
remaining a former smoker, we examined the change in
methylation over the time from baseline to follow-up for
FS (CS-FS and FS-FS) in comparison to the change for
the NS-NS individuals. To also capture those individuals

who quit smoking between the two time-points, we cal-
culated an individual’s TSQ as the number of years since
smoking cessation at the time of the follow-up interview.
Using break points chosen to match sample sizes across
categories, we categorized TSQ, which ranged from >0
to 70 years, into 7 categories (TSQL) (see Additional file
1: Table S1). These were compared to reference NS-NS
(n = 614) using a longitudinal model as described above,
with 8 total smoking categories (the 7 TSQL categories
and the reference NS-NS individuals). Further adjust-
ment for TSQ within each category was not performed.
The cross-sectional effect of this model indicates the

baseline difference between the methylation levels of the
given TSQL category and the NS-NS individuals. The lon-
gitudinal effect indicates the rate of change of methylation
per year between baseline and follow-up, relative to the
rate of change for the NS-NS over the same time period.

Continuing smoking
To investigate the effect of continued smoking, we com-
pared the change in DNA methylation from baseline to
follow-up for those individuals who were CS at both
time points (CS-CS, 181 individuals) to the reference
NS-NS (614 individuals) using a longitudinal model as
described above, with 2 total smoking categories (CS-CS
individuals and the reference NS-NS individuals).
The cross-sectional effect of this model indicates the

difference between the methylation levels of the CS-CS
category and the individuals of NS-NS at baseline. The
longitudinal effect indicates the rate of change of methy-
lation per year between baseline and follow-up for the
CS-CS, relative to NS-NS.
All statistical analyses were conducted with R statis-

tical software version 3.3.3 [29], with package lme4 [30]
version 1.1–12 and lmerTest version 2.0–32 [31] for the
linear mixed models, and figures created using ggplot2
version 2.0.0 [32].

Results
Population characteristics
The characteristics for the current smokers (CS), former
smokers (FS) and individuals who have never smoked
(NS) are given in Table 1. For both time-points, CS and
FS were more often male than female, were slightly
younger than NS and had heavier alcohol intake. FS
tended to have a slightly higher body mass index than
CS or NS. Between baseline and follow-up, the number
of FS grew, the number of CS fell and the number of NS
stayed roughly equal.

Cross-sectional analysis: Epigenome-wide association ana-
lysis at baseline
A total of 590 CpG sites were found to be associated
with smoking status (see Additional file 2: Table S2). For
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all following analyses, only these 590 significant CpG
sites were examined.

Longitudinal analysis of time since quitting smoking
The results, within our analysis framework, indicate that
for the FS the greatest alteration in methylation patterns,
relative to NS, occurs within the first 14 years after quit-
ting smoking (Fig. 1, Additional file 3: Figure S1). The
longitudinal coefficients are largest for the first two
TSQL categories, and are relatively small following this

point. For those who quit (>0)-4 years prior to the
follow-up exam (TSQL category 1) 32 CpG sites show a
significant differential change in methylation compared
to NS-NS. Of these, 10 remain significant for individuals
of TSQL category 2 (5–14 years TSQ) and none were
significant for individuals who quit more than 14 years
prior to the follow-up examination. Twenty additional
sites show differential change in methylation for individ-
uals of TSQL category 2 without being significant for in-
dividuals of category 1. All directions of change for these

Table 1 Population characteristics for baseline and follow-up studies. Mean ± standard deviation or N (%)

Baseline Follow-up

Current
smokers

Former
smokers

Never
smokers

P-value* Current
smokers

Former
smokers

Never
smokers

P-value*

N 280 449 615 – 207 523 614 –

Males (%) # 0.57 0.64 0.35 < 2.2e-16 0.55 0.64 0.35 < 2.2e-16

Age (years) ## 50.8 ± 7.8 54.7 ± 8.8 55.1 ± 9.0 < 1e-7 57.1 ± 7.0 61.5 ± 8.9 62.2 ± 9.0 < 1e-7

Body mass index (kg/m2) ## 27.1 ± 4.5 28.1 ± 4.5 27.6 ± 4.3 < 1e-3 27.2 ± 5.0 28.5 ± 4.9 27.9 ± 4.5 < 0.05

Alcohol consumption (g/day) ## 20.2 ± 25.9 20.5 ± 23.1 13.1 ± 18.2 < 1e-7 18.2 ± 24.3 19.1 ± 22.2 12.1 ± 17.1 < 1e-7

Duration of smoking (years) ## 31.4 ± 9.3 17.0 ± 10.6 – < 2.2e-16 36.8 ± 10.6 20.7 ± 12.9 – < 2.2e-16

Average intensity of smoking (cig/day) 14.9 ± 10.9 – – – 12.6 ± 9.0 – – –

Time since quitting smoking (years) – 19.9 ± 10.8 – – – 23.1 ± 13.6 – –

*P-value of test for equality between the groups (current smokers, former smokers, never smokers)
#P-value for equality between groups determined by the chi-square test for independence
##P-value for equality between groups determined by the Kruskall-Wallace test by ranks

Fig. 1 Longitudinal regression coefficients for each CpG site under investigation longitudinally. The three panels display the longitudinal coefficients
and coefficient p-values for TSQL categories 1, 2 and 3, respectively, for each CpG site under investigation. The longitudinal coefficients represent the
rates of change of methylation M-value per year relative to never smokers. The results for TSQL categories 4 through 7 are given in Additional file 3:
Figure S1. *Statistically significant: the longitudinal coefficient P falls below the Bonferroni-corrected threshold of 8.47 × 10−5
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52 significant CpG sites are consistent with regard to the
general effect of smoking seen in the EWAS for each
site, i.e. the effects are of opposite sign, indicating rever-
sion to NS levels. Considering all 590 sites, 82% of sites
show consistent direction of effect for TSQL category 1
(>0–4 years TSQ), 82% for category 2 (5–14 years TSQ),
and then falling to 46%, 59%, 49%, 47%, and 45% for the
respective remaining categories.

Biological relevance
Additional file 4: Table S3 details these 52 CpG sites,
which together cover 33 different genes or regions, gene
AHRR the most prominent (8 sites total, lowest overall
p-value 3.61 x 10-39 for cg26703534). Other loci showing
multiple significant sites include GFI1 (4 sites), MYO1G
(3 sites), 2q37.1 (3 sites), HIVEP3 (2 sites), 2p25.1 (2
sites) and ZNF668 (2 sites). Additional file 4: Table S3
also presents the results for all 590 sites.
All regions corresponding to the CpG sites significant in

this analysis, and all CpG sites themselves, have previously
been identified as being associated with smoking [8, 12,
33–36], and discussed with regard to their biological im-
plications in a number of publications, in particular
2q37.1 [8, 13, 37], AHRR [7, 38, 39], GFI1 [40], MYO1G
[41] and F2RL3 [7, 42]. Further, most of these loci have
been identified as associated with conditions or diseases
also related to smoking. Additional file 5: Table S4 pre-
sents a (non-exhaustive) list of the sites identified in this
analysis with their loci’s associations with disease, and
how these diseases have been previously linked to smok-
ing. As would be expected, the genes identified in this
study have been implicated in the smoking-associated
conditions osteoporosis (LRP5), inflammatory bowel dis-
ease (CPAMD8, GRP68), cognitive disorders (AVPR1B,
SYNJ2), male infertility (AHRR), Parkinson’s (HIVEP3,
HTRA2), rheumatoid arthritis (CD247), atherosclerosis
(AHRR) and a wide array of cancers (many genes). Specific
CpG sites identified here have been found to be associated
with lung cancer (cg05951221 and cg21566642 of 2q37.1,
cg05575921 of AHRR, cg03636183 of F2RL3), atheroscler-
osis (cg05575921 of AHRR), body mass index (cg23576855
of AHRR, cg09554443 of CD247), and mortality
(cg05575921 of AHRR).
Further biological insights can be achieved through

gene analysis using the WEB-based GEne SeT AnaLysis
Toolkit (WebGestalt) [43] (see Additional file 6: Table
S5). Using the list of genes annotated to any CpG site
significant for any TSQL category at a nominal p < 0.05,
we ran overrepresentation enrichment analysis based on
the GLAD4U disease functional database [44], the de-
fault parameters (5–2000 genes per category, Benjamini-
Hochberg multiple-testing correction) and the reference
set “illumina_human_methylation_450”. The results in-
dicate leukemia (as well as myeloid leukemia and acute

myeloid leukemia) is significantly associated with our list
of genes at a false discovery rate (FDR) of 1.11e-3. Using
lists of only the genes annotated to CpG sites significant
(p < 0.05) for TSQL category 2 or later, TSQL category 3
or later and TSQL category 4 or later, we see similar re-
sults. The disease category “mouth neoplasms” is bor-
derline significant for most of these analyses as well,
achieving its smallest FDR of 2.03e-02 for the list based
on TSQL category 3 or later. The implication of these
analyses is that the genes with CpG sites showing change
in methylation more dynamic than NS even up to 22–
27 years since cessation (TSQL category 4) are an over-
representation of genes associated with leukemia (and,
to a lesser extent, mouth neoplasms), a disease well
known to be more prevalent in smokers.
Using the same parameters, but instead focusing on

gene set enrichment analysis (KEGG pathway functional
analysis), “pathways in cancer” is found to be significant
(17 genes, FDR = 0.0114) if we consider all significant
genes from TSQL category 1 or later. It remains the top
pathway considering all genes from TSQL 2 or later and
TSQL 3 or later as well (14 genes, FDR = 0.10; 12 genes,
FDR = 0.11; respectively). These are further indications
that, for former smokers, even decades after smoking
cessation, dynamic methylation is apparent in genes in
cancer-related pathways.

Methylation dynamics on a finer scale
To investigate the dynamics of methylation for FS on a
finer scale, we calculate the change in (beta value)
methylation from baseline to follow-up for each individ-
ual for each CpG site, firstly employing confounder resi-
dualization, as described in the Statistical Methods. We
then divide the FS into TSQ categories of 2 years and,
within each category as well as within the NS-NS, calcu-
late each CpG site’s median change in methylation (visu-
alized as heat maps in Fig. 2 and Additional file 7: Figure
S2). Examining the results plotted in Fig. 3, we see that
the largest dynamism in methylation – here expressed as
the size of the interquartile range across all 590 CpG
sites of median change in methylation – occurs for indi-
viduals between approximately 5 and 18 years TSQ,
depending on subjective interpretation. The proportion
of CpG sites with consistent direction of change for the
median change, i.e. opposite in sign to the EWAS effect
of smoking for that site, is given also in Fig. 3, the results
indicating a relatively steady decrease over time of CpG
sites that have their methylation levels moving towards
those of NS. The same analysis, but for the original
TSQL categories, is given in Additional file 8: Figure S3.

Rate of reversion
Of particular interest is the effect of the absolute differ-
ence between methylation levels of FS and NS on the
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Fig. 2 Heat map of median changes in methylation beta value from baseline to follow-up. Displayed are the results for current smokers, former
smokers and never smokers. The color indicates direction of change in relation to the effect of smoking as found in the epigenome-wide analysis:
red is the same direction, blue is opposite. Presented are only those CpG sites with a median change greater than 0.025 in at least one smoking
category. Additional file 7: Figure S2 presents all sites

Fig. 3 Change in methylation beta values from baseline to follow-up, 2-year intervals. Displayed are the results for current smokers, former
smokers and never smokers. Upper panel: gives the length of the interquartile range over all CpG sites of the median change in methylation. A
larger interquartile range indicates greater fluctuation in methylation between baseline and follow-up over the 590 CpG sites. Lower panel: gives
the proportion of sites with consistent direction of change to the effect of smoking as found in the epigenome-wide analysis, “consistent” defined
here as opposite in sign to the baseline effect of smoking. For both panels, the red line indicates the value for the never smoking individuals, the
blue line is the smoothing loess curve as defined by the stat_smooth function with default values from the R package ggplot2, and the gray band
is its 95% confidence interval. Additional file 8: Figure S3 shows the same analysis but for the original TSQL categories
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rate of change of methylation for FS. In Fig. 4, we plot
the cross-sectional coefficients for the first four TSQL

categories vs the respective longitudinal coefficients, for
all 590 CpG sites. The absolute change in methylation
between baseline and follow-up, corresponding to the
longitudinal coefficient, tends to be larger for larger ini-
tial absolute differences in methylation, i.e. larger cross-
sectional coefficient. For the first two TSQL categories
there is a very high negative correlation between rate of
change (longitudinal coefficient) and starting methyla-
tion difference (cross-sectional coefficient) over all sites:
TSQL category 1, Spearman’s ρ = −0.65 (p < 2.2 × 10
−16); TSQL category 2, ρ = −0.69 (p < 2.2 × 10−16). The
absolute correlations are greater if we consider only

those sites which show significance in one or more
TSQL categories (Additional file 9: Table S6). The corre-
lations decrease in magnitude for further TSQL categor-
ies, but remain negative.

Longitudinal effect of continued smoking
Of the 590 CpG sites examined, 14 showed a Bonferroni-
corrected significant difference in change in methylation
over time (Table 2, see Additional file 10: Table S7 for all
results). Of immediate note is that the longitudinal effect
is in the opposite direction to the cross-sectional effect for
5 CpG sites: cg05575921 and cg09338136 of AHRR,
cg05875421 of GPR68, cg25512107 of RPTOR and
cg23079012 at 2p25.1. Additional file 11: Figure S4 pre-
sents boxplots of the methylation for both time points,
giving visual indication of the heterogeneous effects. An
insignificant Spearman ρ of −0.16 (p = 0.58) between the
longitudinal and cross-sectional coefficients for those sites
with significant longitudinal effect in this analysis further
highlights this lack of consistency. This correlation lies in
stark contrast to those for the TSQ analysis, which were
greater in magnitude, of consistent direction, and statisti-
cally significant. Of all 590 sites in the continued smoking
analysis, only 315 (53%) had the same direction for the
cross-sectional effect and the longitudinal effect (with
ρ = 0.08, p = 0.052).

Intensity vs duration of smoking habit
To explain this result one can examine the possibility
that intensity of smoking habit is the predominant factor
rather than duration of smoking habit for the sites in
question. If so, the fact that in our study the mean inten-
sity for CS-CS individuals decreased from 16.5 (sd = 11.4)
to 13.3 cigarettes/day (sd = 8.9) between baseline and
follow-up may provide clarity. To compare the effects of
current intensity of smoking (average number of ciga-
rettes smoked per day at the time of the interview) vs
duration of smoking habit, we ran a linear mixed model
of CS individuals (N = 181 × 2 time-points = 362 data
points), with methylation (technically adjusted M-values)
as outcome, intensity and duration as independent vari-
ables and individual as random intercept, adjusted for
the potential confounders detailed in the Statistical
Methods. Intensity was significantly associated with
methylation at 32 CpG sites (annotated to 24 genes or
regions), while duration of smoking was associated with
methylation at only 1 (Table 3, see Additional file 12:
Table S8 for all sites). The directions of effect for in-
creased intensity were consistent with the cross-
sectional effect for smoking found in the EWAS for each
of the 32 sites, i.e. the same direction; likewise for the
significant hit for duration. However of the 5 CpG sites
showing significant longitudinal effect in the continued
smoking analysis above with opposite cross-sectional

Fig. 4 Cross-sectional coefficient vs longitudinal coefficient for each
CpG site under investigation longitudinally. The panels display the
results for TSQL category 1, category 2, category 3 and category 4,
respectively. The longitudinal coefficients represent the rates of
change of methylation M-value per year relative to never smokers.
The cross-sectional coefficients represent the baseline difference in
methylation M-value compared to never smokers
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and longitudinal signs, only cg05575921 (AHRR) showed
significance for smoking intensity.

Discussion
We have used longitudinal data with repeated measures of
DNA methylation to examine changes in methylation over
time associated with quitting or continuing smoking.
For the smoking cessation analysis, site-specific

methylation changed the greatest (relative to changes
observed for NS) for people who quit within 20 years
prior to the follow-up examination. A total of 52 CpG
sites were significant in our primary analysis of FS vs
NS, with 32 significant for individuals quitting within
(>0)-4 years and 30 significant for those who quit within
5–14 years prior to the follow-up examination (10
shared between them). Only one site showed a signifi-
cant difference for individuals who had quit more than
14 years prior to the follow-up assessment.
Of the 52 significant sites, there were many from the

same chromosome regions or genes. AHRR (8 sites), the
aryl hydrocarbon repressor gene, located on chromosome
5, is involved in mediation of dioxin toxicity and functions
also in cell regulation and growth. It is theorized that al-
tered AHRR expression may have a deleterious effect on
the body’s ability to eliminate environmental chemicals
which may act as carcinogens [7]. MYO1G (3 sites), or un-
conventional myosin IG, is a plasma-membrane associated
class 1 myosin and is found in abundance in lymphocytes

[45]. It has been found to be related to cell death and a
potential factor in cancer [46]. HIVEP3 (2 sites) was found
to be the gene with the most strongly associated CpG site
(by p-value) in the meta-analysis of Joehanes et al. [12],
where they note its role in bone formation. GFI1 (Growth
Factor Independent 1 Transcriptional Repressor) (4 sites)
is a protein-coding gene, and its methylation was found to
be the most robust mediator of the association between
maternal smoking and birthweight in a recent study of
children and newborns exposed to maternal and paternal
smoking [47]. ZNF668 (2 sites) is a zinc finger protein
whose role in DNA repair, cell proliferation and cancer
has been investigated [48]. Chromosome region 1p36 (2
sites) has been investigated as a region containing a pos-
sible tumor suppressor [49]; with investigations including
the effects of methylation [50]. Methylation of regions on
chromosome 2, 2p25 (2 sites) and 2q37 (3 sites), has re-
cently been found to be associated with all-cause mortality
[51], as was methylation of many of the other genes sig-
nificant in this analysis, including F2RL3, AHRR, and re-
gion 14q32. LRP5 (2 sites) plays a role in the Wnt
signaling pathway, which influences bone formation and is
a factor in skeletal disorders [52].
A site that is significant longitudinally is properly

interpreted as one that is rapidly changing compared to
within NS. Non-significant change does not necessarily
imply that the methylation of FS has recovered to the
level of NS. If indeed there is no significant change, but

Table 2 Statistically significant results of the analysis of longitudinal effect of continued smoking

CpG site CHR Gene or region Cross-sectional
coefficient

Longitudinal
coefficient

Longitudinal coefficient
p-value

Median methylations (CS vs NS)
diverging or converging from
baseline to follow-up

cg13184736 1 GNG12 −0.339 −0.019 1.36E-05 Div.

cg25189904 1 GNG12 −0.507 −0.016 1.26E-06 Div.

cg23079012 2 2p25.1 −0.887 0.039 3.82E-09 Con.

cg05575921 5 AHRR −2.575 0.061 7.83E-05 Con.

cg09338136 5 AHRR −0.156 0.011 5.29E-18 Con.

cg06126421 6 6p21.33 −0.697 −0.017 1.23E-08 Con.a

cg14753356 6 6p21.33 −0.237 −0.012 7.94E-07 Div.

cg12147622 10 10q22.1 −0.125 −0.012 8.05E-05 Div.

cg05875421 14 GPR68 −0.211 0.017 1.23E-05 Con.

cg15022400 15 TRIM69 −0.112 −0.012 3.37E-06 Div.

cg23161492 15 ANPEP −0.306 −0.010 5.69E-05 Div.

cg07251887 17 LOC100130933 −0.132 −0.011 5.26E-07 Div.

cg25512107 17 RPTOR −0.336 0.037 2.48E-08 Con.

cg15187398 19 MOBKL2A −0.161 −0.010 8.51E-06 Div.

CHR: chromosome of the CpG site; CS: current smokers; NS: never smokers
amethylation levels are converging, but the longitudinal and cross-sectional coefficients are of the same sign
Legend: Presented are the 14 CpG sites significant for the longitudinal coefficient in the continued smoking analysis. The longitudinal coefficient represents the
difference in rate of change of methylation M-value between baseline and follow-up for the individuals who were smokers at both time points relative to the
individuals who were never smokers at both time points. Also presented is the cross-sectional coefficient, which represents the difference in methylation at
baseline for the same two groups. A CpG site is labelled as “diverging” if the median methylations between the two groups separate further from baseline to
follow-up; a CpG site is labelled as “converging” if the median methylations between the two groups approach one another from baseline to follow-up
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the methylation levels themselves remain different, it
may indicate that the levels are only very slowly return-
ing to those of NS, or not at all. Power considerations
are also important: those sites that were significantly dif-
ferent between CS and NS for the EWAS may never
show significant change in the TSQ analysis due to
much smaller sample size for each category, a model
that has fewer degrees of freedom and a smaller effect

size. This does not imply that the methylation of these
sites remains different to that of NS. This is most appar-
ent for the difference between TSQL categories 1 and 2,
where the difference between the significant cross-sec-
tional and longitudinal coefficients for TSQL category
1 (264 and 32, respectively, a difference of 232) is much
larger than the number of cross-sectionally significant
sites for TSQL category 2 (104).

Table 3 Statistically significant results for the model incorporating both intensity and duration of smoking

CpG site CHR Gene or position Intensity of
smoking coefficient

Duration of smoking
coefficient

Intensity of smoking
coefficient p-value

Duration of smoking
coefficient p-value

EWAS coefficient
for CpG site

cg09935388 1 GFI1 −1.15E-02 −1.85E-02 9.21E-06 5.83E-03 −5.18E-01

cg08709672 1 AVPR1B −5.78E-03 4.31E-04 1.01E-06 8.49E-01 −1.98E-01

cg03329539 2 2q37.1 −6.49E-03 −2.87E-03 3.11E-05 2.63E-01 −3.24E-01

cg05951221 2 2q37.1 −1.08E-02 −5.97E-03 3.75E-09 9.87E-02 −6.68E-01

cg21566642 2 2q37.1 −1.23E-02 −7.27E-03 5.54E-07 1.35E-01 −9.99E-01

cg01940273 2 2q37.1 −8.37E-03 −4.38E-03 2.28E-08 1.58E-01 −6.16E-01

cg00501876 3 CSRNP1 −5.33E-03 −1.89E-03 5.24E-06 3.29E-01 −1.57E-01

cg19859270 3 GPR15 −7.45E-03 −7.58E-03 4.19E-05 6.36E-03 −3.02E-01

cg02657160 3 CPOX −7.25E-03 −7.50E-03 2.45E-05 4.66E-03 −1.79E-01

cg23576855 5 AHRR −1.59E-02 −1.16E-02 9.81E-08 2.47E-01 −1.00E + 00

cg05575921 5 AHRR −4.32E-02 −1.78E-02 < 2e-16 8.51E-02 −2.38E + 00

cg26703534 5 AHRR −6.54E-03 −1.34E-03 2.61E-07 5.70E-01 −3.39E-01

cg25648203 5 AHRR −1.04E-02 −6.48E-03 1.75E-07 1.02E-01 −4.13E-01

cg21161138 5 AHRR −1.09E-02 −7.39E-03 8.01E-09 3.69E-02 −4.72E-01

cg02451831 7 KIAA0087 −6.99E-03 −2.85E-03 3.05E-05 3.34E-01 −1.74E-01

cg10750182 10 C10orf105 −3.78E-03 −2.89E-03 4.20E-05 5.33E-02 −1.27E-01

cg02743070 10 ZMIZ1 −4.56E-03 −4.68E-04 2.30E-05 7.80E-01 −8.71E-02

cg03450842 10 ZMIZ1 −4.54E-03 −2.07E-03 5.93E-05 3.01E-01 −1.52E-01

cg21611682 11 LRP5 −4.91E-03 −1.35E-03 6.35E-06 5.14E-01 −1.89E-01

cg11660018 11 PRSS23 −5.21E-03 −4.93E-03 5.94E-05 7.83E-02 −2.33E-01

cg13525276 14 TSHR 8.15E-03 4.73E-03 4.76E-05 1.68E-01 1.88E-01

cg18625627 14 TSHR 8.46E-03 4.39E-03 3.17E-05 2.08E-01 1.85E-01

cg01513913 14 14q32.33 −4.72E-03 −1.55E-03 3.25E-05 5.20E-01 −1.09E-01

cg23594345 14 14q32.33 −9.68E-03 −1.49E-04 6.14E-05 9.73E-01 −1.99E-01

cg01208318 14 14q32.33 −8.63E-03 −9.63E-04 4.21E-05 8.27E-01 −2.18E-01

cg23161492 15 ANPEP −7.55E-03 −9.10E-03 4.46E-05 3.95E-02 −2.73E-01

cg13500388 16 CBFB −6.27E-03 −2.77E-03 6.18E-06 2.16E-01 −1.16E-01

cg10062919 17 RARA −3.41E-03 −1.41E-03 1.84E-05 3.15E-01 −8.87E-02

cg00968616 17 CUEDC1 4.60E-03 −1.90E-04 2.56E-05 9.10E-01 7.15E-02

cg03636183 19 F2RL3 −9.68E-03 −7.95E-03 1.80E-06 1.18E-01 −6.63E-01

cg15159987 19 CPAMD8 −5.66E-03 2.20E-03 3.70E-06 2.97E-01 −1.66E-01

cg21473814 19 CRTC1 7.35E-03 4.00E-03 3.83E-05 2.16E-01 1.93E-01

cg11554391a 5 AHRR −5.25E-03 −1.58E-02 9.14E-03 2.13E-05 −2.20E-01

CHR: chromosome of the CpG site; EWAS: epigenome-wide association analysis
astatistically significant for duration of smoking
Legend: Intensity of smoking is given in average number of cigarettes per day, and duration of smoking is length of smoking habit in years. The EWAS coefficient
presented represents the methylation difference between smokers and never smokers at baseline, based on only the baseline information. It is presented to show
that for all significant coefficients, the effect directions of increased intensity or increased duration are consistent with the effect of smoking vs not smoking
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The sites that are not significant up to 4 years TSQ
but are for between 5 and 14 years are difficult to inter-
pret due to the implications of our categorization. It is
possible the sites maintain the methylation levels of CS
for years before rapidly changing later, a cascading effect
in which certain methylation changes occur prior to
others. Further possible explanations are attributable to
the fact that the individuals with TSQ up to 4 years
(TSQL category 1) are those who quit smoking between
baseline and follow-up. Firstly, we do not have their
methylation levels at cessation, only from some time
prior, at baseline, at which point they were CS. Had their
continued smoking to the time of cessation further
driven their methylation levels and those of NS apart,
the longitudinal effects seen would be diluted. Secondly,
for other TSQL categories, we are examining the change
in methylation for on average 7 years of non-smoking.
Even considering a theoretically more rapid yearly
change for individuals of TSQL category 1, the total ef-
fects measured (i.e., the regression coefficients) are based
on at most 4 years of non-smoking. This change could
thus be smaller in magnitude than a smaller per year
change totaled over 7 years of non-smoking. Future
studies could measure methylation directly before cessa-
tion to avoid these consequences.
The finer scale examination of reversion using me-

dians of methylation change seems to indicate that
methylation remains in general more dynamic for FS
than NS even up to 40 years after cessation. Figure 2
shows in detail greater fluctuating methylation levels
amongst FS than NS: after a certain length of time after
quitting, methylation levels are not necessarily moving
in opposite direction to the general effects of smoking,
and in general changes remain stronger in magnitude
than for NS. These indications, which warrant further
investigation, seem to concur with Philibert et al. [16]
that there can be overcorrection of methylation after
cessation of smoking.
Regarding overall rates of reversion of disturbed

methylation over time, it is of debate as to whether the
relative persistence of differential methylation following
cessation for certain CpG sites is due to slower reversion
rates, or comparable reversion rates but a larger initial
disturbance in methylation [8, 20]. Our results indicate
the rate at which the methylation levels change in FS is
related to the difference in methylation to NS, implying
perhaps a type of exponential decay in the difference in
methylation after cessation. Further investigation could
investigate if this would be an appropriate model for
some CpG sites, and if so, to determine a decay rate of
the difference. Of particular interest are those sites with
the largest absolute cross-sectional coefficient to longitu-
dinal TSQL coefficient ratios. The implication of such a
ratio being large is that these sites display an initially

large difference between FS and NS, and this difference
decays more slowly, relative to other sites. Of the 10
sites with the largest ratios in our study, 8 have been
found to be “persistently differentially methylated”
amongst FS in a previous study [20]. CpG sites which
remain differentially methylated for long periods after
cessation can aid us in understanding the course of
smoking-related diseases – and thus the ongoing in-
creased risk faced by FS – and act as biomarkers for past
smoking exposure. Other markers, such as cotinine, a
metabolite of nicotine, have short half-lives and their
usefulness is thus limited [53]. Past candidates for CpG
biomarkers of smoking include those at AHRR [11, 54],
F2RL3 [21] and the position 2q37 [11]. Our study con-
firms their utility in this regard, as our longitudinal re-
sults indicate that the methylation difference is large
enough that reversion can still be measured significantly
many years after cessation. Further, if multiple methyla-
tion measures per individual are available, both the
levels and change could be combined in a biomarker to
provide more accurate estimates of smoking history and
risk of disease.
In terms of future avenues of investigation with regard

to disease, additional further analysis could focus on the
biology pertaining to those sites persistently differentially
methylated, or even those sites with greater fluctuation
in methylation, and the implications in disease etiology.
We have presented here an array of diseases associated
with both the significant loci and with smoking, but did
not investigate incidence of these conditions in our
population.
The investigation into continued smoking reveals that

there are complex mechanisms behind the methylation
levels within the blood. The results that indicate the ef-
fects are not consistently positively correlated with the
effects of smoking in general – as seen through the sig-
nificant longitudinal effects not necessarily showing the
same direction with the cross-sectional effects – may be
surprising considering that methylation of some sites
has been found to be associated with cumulative smok-
ing exposure (often given as “pack-years”, the product of
average intensity of smoking and duration of smoking)
[9, 18, 21]. Although the decrease in smoking intensity
may partially explain the opposing longitudinal and
cross-sectional effects, we see no conclusive evidence.
Another explanation may lie in the fact that since our
cohorts are composed of mostly older individuals, most
have been smoking for many years (mean duration of
smoking at baseline: 31.4 years). They may have reached
or are approaching a methylation “peak” and changes at
this stage may be too small to notice. Zhang et al. [21]
show that for selected CpG sites annotated to the gene
F2RL3 the methylation response to dose of pack-years
flattens after a certain level is achieved: the methylation
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effect is saturated. If such a model is accurate, and since
many of the individuals in our sample are long-time
smokers, longitudinal effects may be incorporating many
individuals already at this stage, thus potentially “dilut-
ing” the contributions from earlier stage smokers. In-
deed, since a CpG site does indeed have minimum and
maximum methylation (0% - 100%) the effects cannot
continue to compound across time after a certain point.
The lack of significance results for duration (1 site), in-
tensity (32 sites) and pack-years (we found 66 CpG sites
of the 590 to be significant for pack-years, results not
shown) may indicate a lack of power, a complex mech-
anism not addressed by our simple model, or a true lack
of effect; this last possibility indicates that presence/ab-
sence of smoking habit (beyond a certain cut-off ) may
be the only relevant factor for certain CpG sites. A study
of very early stage smokers may help to address this
question. This lack of “new” smokers – either those that
have just begun to smoke, or those with a very short his-
tory of smoking – is a weakness of this study, as we can-
not examine the longitudinal effects within the early
years of a smoking habit. These “new” smokers would
likely be more informative than our long-term smokers
on progression of longitudinal change in methylation. A
further possibility for the seemingly conflicting results is
interaction with other molecular factors. Recent studies
[55, 56] have indicated that single-nucleotide polymor-
phisms influence the smoking-associated CpG sites.
These studies further highlight the complexity of mo-
lecular networks, and underline the need for functional
analysis.
The study has further limitations. Although longitu-

dinal, only two time points were used, separated by ap-
proximately seven years. It is thus difficult to capture
the shorter term, i.e. within the first few months, or lon-
ger term, i.e. decades, longitudinal effects of quitting
smoking. Further, smoking studies often suffer from
under-reporting, and a lack of data on consistency of
smoking habits, particularly with regard to smokers
attempting to quit.
Another weakness of the study is a type of selection

bias. By the nature of the study – two time-points
featuring identical individuals – we are likely excluding
individuals most strongly affected by smoking: those that
would have died, perhaps due to smoking-related ill-
nesses, in the years between baseline and follow-up.
Finally, the lack of independent replication data weakens

the reliability and generalizability of the results. It should
be noted, however, that all CpG sites identified in this
study as showing dynamism associated with continued
smoking or with past smoking (TSQ analysis) were identi-
fied as cross-sectionally associated with smoking behavior
in the extensive meta-analysis of Joehanes et al. [12], thus
providing additional confidence in the results.

Strengths of the study include the longitudinal data –
as mentioned, there is a scarcity of multiple time-point
methylation data – and a relatively large sample size.
The inclusion of well-documented covariates from the
extensive KORA study lessens the possibility we are
seeing confounded results.

Conclusions
Our results provide insights into the rates of reversion
of smoking-disturbed methylation levels and their con-
tinued fluctuation upon cessation of smoking. The re-
sults indicate that the most rapid reversion of
methylation occurs within the first two decades follow-
ing cessation of smoking, but that levels continue to
fluctuate more for former smokers than for never
smokers even beyond 30 years after cessation. Rates of
reversion are related to the initial disturbance of methy-
lation, with greater disturbance showing greater change
across time. Site-specific results, including those for the
previously identified genes AHRR, F2RL3, GFI1, and
MYO1G, and chromosome regions 1p36, 2p25 and 2q37,
have potential implications for both biomarkers and the
treatment of human disease. We note that before-and-
after studies on the short-term effects of smoking cessa-
tion would be beneficial to fuller understanding. We also
demonstrate that the effects of continued smoking on
methylation are complex, where duration and intensity
of smoking habit and range of possible methylation all
play interconnected roles.
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Additional file 1: Table S1. Category descriptions for the time since
quitting smoking analysis (TSQL categories). (XLS 24 kb)

Additional file 2: Table S2. Statistically significant results of the
baseline epigenome-wide association study (EWAS). Presented are all
CpG sites significant at a Bonferroni-corrected threshold of P < 0.05/
449102 ≈ 1.1e-7 (for a family-wise type I error rate of 0.05). The coefficient
represents the methylation difference in current smokers compared to
never smokers. (XLS 112 kb)

Additional file 3: Figure S1. Longitudinal regression coefficients for
each CpG site under investigation longitudinally, TSQL categories 4–7.
The four panels display the coefficients and coefficient p-values for TSQL

categories 4 through 7, respectively, for each CpG site under
investigation. The longitudinal regression coefficients represent the rate
of change of methylation M-value per year relative to never smokers. The
results for TSQL categories 1 through 3 are given in Fig. 1. *Statistically
significant: the longitudinal coefficient P falls below the Bonferroni-
corrected threshold of 8.47e-5. (TIFF 84 kb)

Additional file 4: Table S3. Results for the longitudinal time since
quitting analysis. The first sheet: Presents the sites statistically significant
for TSQL category 1 or TSQL category 2. The columns “Sign. for TSQL

category 1” and “Sign. for TSQL category 2” indicate whether the CpG site
is significant longitudinally (reference category individuals who have
never smoked) for TSQL category 1 (>0–4 years since quitting smoking at
the time of the follow-up) and for TSQL category 2 (5–14 years). In
addition to the longitudinal coefficients and p-values (representing the
rate of change of methylation between baseline and follow-up per year
relative to never smokers), cross-sectional coefficients are also given
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(representing the methylation difference to never smokers at baseline).
“Chromosome” is the chromosome of the CpG site and “Gene or region”
is based on the annotation file provided by Illumina (HumanMethylation450
v1.2 Manifest File). The remaining sheets: Results for all 590 CpG sites for
each TSQL category and for the time coefficient. (XLS 695 kb)

Additional file 5: Table S4. Previously examined associations with
disease for CpG sites and genes found significant in the time since
quitting analysis. Presented are the references for human diseases/
conditions for which i) an association has been found with smoking and
ii) an association has been found with a CpG site (or its gene or region)
that was found significant in the longitudinal time since quitting analysis
in this study. (XLS 59 kb)

Additional file 6: Table S5. Gene overrepresentation analysis results
based on the WebGestalt platform (webgestalt.org). For each TSQL

category we extracted the CpG sites that showed nominal significance
(p < 0.05) for that category or any later category and ran the WebGestalt
overrepresentation enrichment analysis (based on the GLAD4U disease
functional database, the default parameters (5–2000 genes per category,
Benjamini-Hochberg multiple-testing correction) and the reference set
“illumina_human_methylation_450”). Displayed are the top 10 diseases
based on p-value. C: the number of reference genes in the category. O:
the number of genes in the used gene list and also in the category. E:
the expected number in the category. R: ratio of enrichment. PValue: P-
value from the hypergeometric distribution. FDR: FDR from the
Benjamini-Hochberg adjustment (XLS 44 kb)

Additional file 7: Figure S2. Heat map of median changes in
methylation beta value from baseline to follow-up for current smokers,
former smokers and never smokers. The color indicates direction of change
in relation to the effect of smoking as found in the epigenome-wide analysis:
red is the same direction, blue is opposite. Presented are all CpG sites under
investigation. Figure 2 presents only those CpG sites with a median absolute
change greater than 0.025 in at least one smoking category. (TIFF 438 kb)

Additional file 8: Figure S3. Change in methylation beta values from
baseline to follow-up for current smokers, former smokers and never
smokers, original TSQL categories. Upper panel: gives the length of the
interquartile range over all CpG sites of the median change in methylation.
A larger interquartile range indicates greater fluctuation in methylation
between baseline and follow-up over the 590 CpG sites. Lower panel: gives
the proportion of sites with consistent direction of change to the effect of
smoking as found in the epigenome-wide analysis, “consistent” defined here
as opposite in sign to the baseline effect of smoking. For both panels, the
red line indicates the value for the never smoking individuals, the blue line
is the smoothing loess curve as defined by the stat_smooth function with
default values from the R package ggplot2, and the gray band is its 95%
confidence interval. (TIFF 89 kb)

Additional file 9: Table S6. Spearman correlations between
longitudinal coefficients and cross-sectional coefficients for each time
since quitting smoking category. The longitudinal coefficients represent
the rate of change of methylation M-value per year between baseline
and follow-up relative to never smokers. The cross-sectional coefficients
represent the methylation difference to never smokers at baseline. The
correlations and p-values are given when using only the sites that are
longitudinally significant for that smoking category, when using sites that
are longitudinally significant for any smoking category, and when using
all 590 investigated sites. (XLS 33 kb)

Additional file 10: Table S7. All results of the analysis of longitudinal
effect of continued smoking. The longitudinal regression coefficients
represent the rate of change of methylation M-value per year from baseline
to follow-up for continued smokers relative to never smokers. The cross-
sectional coefficients represent the methylation M-value difference
to never smokers at baseline. Also presented are the results for the time
coefficient from the model. “Chromosome” is the chromosome of the CpG
site and “Gene or region” is based on the annotation file provided by
Illumina (HumanMethylation450 v1.2 Manifest File). (XLS 179 kb)

Additional file 11: Figure S4. Boxplots of the methylation values for
the CS-CS individuals (current smokers at both baseline and follow-up)
and the NS-NS individuals (never smokers at both baseline and follow-

up). Figure S4a shows the technically adjusted beta values and Figure
S4b shows the methylation beta values after residualization to account
for confounding (see Statistical Methods). (PDF 23 kb)

Additional file 12: Table S8. All results for the model incorporating
both intensity and duration of smoking. Intensity of smoking is given in
average number of cigarettes per day, and duration of smoking is length
of smoking habit in years. The EWAS coefficient presented represents the
methylation difference between smokers and never smokers at baseline,
based on only the baseline information. It is presented to show whether
the effect directions of increased intensity or increased duration are
consistent with the effect of smoking vs not smoking. “Chromosome” is
the chromosome of the CpG site and “Gene or region” is based on the
annotation file provided by Illumina (HumanMethylation450 v1.2 Manifest
File). (XLS 132 kb)
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