
 1 

A comparative study of machine learning methods for time-to-event survival data for 

radiomics risk modelling 

 

Stefan Leger1,2, Alex Zwanenburg1,2,8,9, Karoline Pilz1,2,8,10, Fabian Lohaus1,2,8,10, Annett 

Linge1,2,8,10, Klaus Zöphel12,13, Jörg Kotzerke12,13, Andreas Schreiber14 Inge Tinhofer3,15, 

Volker Budach3,15, Ali Sak4,16, Martin Stuschke4,16, Panagiotis Balermpas5,17, Claus Rödel5,17, 

Ute Ganswindt18-20 Claus Belka6,18-20, Steffi Pigorsch6,21, Stephanie E. Combs6,21,22, David 

Mönnich7,23, Daniel Zips7,23, Mechthild Krause1,2,8,10,11, Michael Baumann1,2,8-11, Esther G.C. 

Troost1,2,8,10,11, Steffen Löck1,2,10 ,*  and Christian Richter1,2,10,11,* 

 

1 OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and 

University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum 

Dresden – Rossendorf, Dresden, Germany 

German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium 
(DKTK) partner sites: 

2 Dresden, 3 Berlin, 4 Essen, 5 Frankfurt, 6 Munich, 7 Tübingen, Germany 

8 National Center for Tumor Diseases (NCT), partner site Dresden, Germany 

9 German Cancer Research Center (DKFZ), Heidelberg, Germany 

10 Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University 

Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany 

11 Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology - OncoRay, 

Dresden, Germany 

12 Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav 
Carus, Technische Universität Dresden, Dresden, Germany 

13 Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical 
Cancer Research,  Dresden, Germany 
14 Clinic of Radiation Oncology, Teaching Hospital Dresden - Friedrichstadt, Technische 
Universität Dresden, Dresden, Germany 

15 Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, 

Germany 
16 Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, 
Germany 

17 Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany; 

18 Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of 
Heidelberg Medical School, Germany 

19 Department of Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany; 

20 Clinical Cooperation Group, Personalized Radiotherapy in Head and Neck Cancer, 
Helmholtz Zentrum, Munich, Germany 

21 Department of Radiation Oncology, Technische Universität München, Germany; 

22 Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, 
Germany 



 2 

23 Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, 
Eberhard Karls Universität Tübingen, Germany 

* These authors share senior authorship. 

 

Corresponding author:  Stefan Leger (email: Stefan.Leger@oncoray.de) 

 
 
 
 
Supplementary Table S1: Patient characteristics of exploratory and validation cohorts.  
 

Variable Exploratory           

cohort 

Validation cohort p-value 

Gender  
(male/female) 

 

181 / 32 70 / 10 0.58* 

Age  
(median, range, in years) 

 

59.0 (39.0 – 81.9) 54.0 (37.0 – 74.0) 0.005** 

TNM Staging    
T Stage 1 / 2 / 3 / 4 / missing 

 
3 / 24 / 53 / 133 / 0 3 / 9 / 27 / 40 / 1 0.19* 

N stage 0 / 1 / 2 / 3 / missing 
 

25 / 8 / 166 / 14 / 0 
 

10 / 8 / 57 / 4 / 1 0.19* 

UICC stage 2010 
I / II / III / IV / missing 

 

 
0 / 0 / 13 / 139 / 61 

 
1 / 2 / 9 / 68 / 0 

 
0.096* 

Tumor volume  
(median, range, in cm

3
) 

 

27.64  
(0.27 – 276.31) 

34.85  
(2.71 – 244.79) 

0.19** 

Dose 
(median, range, in Gy) 

72.0 (67.8 – 76.8) 72.0 (69.0 – 76.8) < 0.001** 

 
HPV16 DNA 

negative / positive / missing 

 
 

164 / 27 / 22 

 
 

39 / 5 / 36 

 
 

0.63* 

 

* 𝛸2
 test, ** Wilcoxon-Mann-Whitney test 

 

Supplementary Methods S2: Feature selection methods  

The mathematical notation for the selection methods and learning algorithms is defined as 

follows: An observed random variable is defined as  𝑍 = (𝑋, 𝑌) where 𝑋 = (𝑋1, … , 𝑋𝑝) defines 

the p-dimensional covariate (feature) vector and Y denotes the time-to-event survival 

outcome. The survival outcome 𝑌 = (𝑡, 𝛿) consists of a survival time 𝑡 at which an event 

occurred (𝛿 = 1) or the observation was censored (𝛿 = 0). 
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 Pearson correlation 

The Pearson correlation coefficient is a measure of linear dependency between two random 

variables. The correlation coefficient r for a feature 𝑥 ∈ 𝑋 and the corresponding outcome Y 

is defined as [1] 

𝑟 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

. 

 

(1) 

 

In the case of time-to-event survival data, only those times 𝑦𝑖 for which an event occurred 

(𝛿𝑖 = 1) are taken into account. The correlation coefficient r ranges from -1 and +1, where 1 

signifies perfect linear correlation, 0 no correlation, and −1 perfect anti-correlation. For the 

implementation in the radiomics modelling framework (RMF), the R package “stats” version 

3.3.1 was used. 

 

 Spearman correlation 

The Spearman correlation coefficient provides a non-parametric measure of correlation 

between two variables [2]. As with Pearson correlation, for time-to-event survival data the 

Spearman correlation is calculated using only those observations where an event occurred. 

For the implementation in the RMF, the R package “stats” version 3.3.1 was used. 

 

 Mutual information maximization 

The mutual information maximization (MIM) method estimates the relevance of feature 𝑥 ∈ 𝑋 

for the corresponding outcome Y using a linear approximation based on the correlation 𝜌 

such that the mutual information I is estimated as 

𝐼(𝑥, 𝑌) =  −
1

2
𝑙𝑛(1 − 𝜌(𝑥, 𝑌)2). 

 

(2) 

In the case of survival outcome data 𝜌(𝑥, 𝑌) = 2 ∙ (C-Index − 0.5) is based on the 

concordance index (C-Index) [3,4], including a correction for C-Index<0.5. For mutual 

information of continuous data, Spearman correlation is used. 
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 Mutual information feature selection 

The mutual information feature selection (MIFS) algorithm [5] is based on a greedy search 

and selects a subset of features 𝑆 ∈ 𝑋 which maximises the objective function Ω: 

Ω =  argmax 
𝑥∈𝑋 

𝐼(𝑥, 𝑌)  +  𝛽 ∑ 𝐼(𝑥, 𝑠𝑗)

𝑠𝑗𝜖 𝑆

. 
 

(3) 

Here 𝐼(𝑥𝑎 , 𝑥𝑏) is the mutual correlation between features 𝑥𝑎 and 𝑥𝑏, as before. We use the 

setting 𝛽 = 1 after recommendations by Battiti et al. 

 

 Minimum redundancy maximum relevance  

The minimum redundancy maximum relevance (MRMR) algorithm [6] combines two 

constraints: maximal mutual information between the features in feature subset 𝑆 ∈ 𝑋 and the 

outcome Y, combined with minimal redundancy between the features in S. This is done by 

selecting the feature that maximizes Ω by an incremental search method, which is based on 

the mutual information I, 

Ω = argmax 
𝑥∈𝑋\𝑆 

𝐼(𝑥, 𝑌) −
1

|𝑆|
∑ 𝐼(𝑥, 𝑠𝑗).

𝑠𝑗𝜖 𝑆

  

 

(4) 

 

 Univariate- and multivariate-Cox-regression 

The Cox proportional hazard regression model is trained for each feature (univariate) or a 

subset of features (multivariate) to predict outcome using a 2-fold cross validation scheme 

which was repeated 20 times on the exploratory cohort. The resulting features are ranked 

according to the concordance index of the predictive performance of the univariate or 

multivariate model. For the implementation in RMF, the R package “survival” [7] was used. 

 

 Random forest minimal depth 

The random forest minimal depth (RFMD) [8,9] is a variable importance algorithm that 

assesses feature importance by looking at the distance (depth) of each feature relative to the 

root node over all trees. The algorithm assumes that features, which occur at low depths, are 
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more important for the model than those in distant nodes. The R implementation of the 

package “randomForestSRC” in version 2.4.1 was used [10]. 

 

 Random forest variable hunting 

The random forest variable hunting RF-VH [10] algorithm uses training data from a stratified 

k-fold subsampling to fit a forest by m randomly selected features. The m features are 

ordered by increasing minimal depth and are added sequentially until the joint variable 

importance (VIMP) no longer increases. The VIMP is calculated by permuting a feature (i.e. 

noising it up) and then calculating the change in prediction error, between the original forest 

and the noised-up forest predictor. The process is repeated n times and features are ranked 

by average minimal depth. The R implementation of the package “randomForestSRC” in 

version 2.4.1 was used [10]. 

 

 Random forest variable importance 

The random forest variable importance (RF-VI) [10] algorithm is similar to the RF-VH. 

However, features are ranked by the VIMP score, described above. The R implementation of 

the package “randomForestSRC” in version 2.4.1 was used [10]. 

 

 Maximally selected rank statistics random forest variable importance  

The maximally selected rank statistics random forest variable importance (MSR-RFVI) [11] 

algorithm computes for each candidate covariate (i.e. feature) the maximally selected rank 

statistics, as follows. A split point is considered optimal if the separation of the survival 

curves in two groups is maximised. The linear rank statistic for a split point 𝜇 is the sum of all 

log-rank scores 𝑎1, … , 𝑎𝑛 in the group with  𝑥𝑖 ≤ 𝜇, 𝑥 ∈ 𝑋, 

𝑆𝑛𝜇 = ∑ ⥠{𝑥𝑖≤𝜇} 𝑎𝑖 ,

𝑛

𝑖=1

  

 

(5) 
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𝑎𝑖 = 𝛿𝑖 − ∑
𝛿𝑗

(𝑛 − 𝛾𝑗(𝑇) + 1)
.

𝛾𝑖(𝑇)

𝑗=1

  

 

(6) 

Here 𝑇 = (𝑡1, … , 𝑡𝑛) are the survival times, 𝛿 is the censoring indicator and 𝛾𝑗(𝑇) =

∑ ⥠{𝑇𝑖≤𝑇𝑗}
𝑛
𝑖=1  is the number of observations with survival time up to 𝑇𝑗. To compare different 

splits, the score test statistic is used, 

𝑇𝑛𝜇 =
𝑆𝑛𝜇 − 𝐸𝐻0

(𝑆𝑛𝜇|𝑎, 𝑋)

√𝑉𝑎𝑟𝐻0
(𝑆𝑛𝜇|𝑎, 𝑋)

,  

 

(7) 

where 𝐸𝐻0
and 𝑉𝑎𝑟𝐻0

 define the expectation and variance under the null hypothesis. The null 

hypothesis of no influence of a split by the cut point 𝜇 on the distribution of 𝑌 is 

𝐻0: 𝑃(𝑌 ≤ 𝑦|𝑋 ≤ 𝜇) = 𝑃(𝑌 ≤ 𝑦|𝑋 > 𝜇) for all 𝜇 and all 𝑦. The obtained p-value for the 

maximally selected rank statistic is used to rank each covariate. For the implementation, the 

R package “ranger”, version 0.6.0 [12] was used. 

 

 Permutation variable importance random forest  

The permutation variable importance random forest (PVI-RF) [13] algorithm partitions the 

data randomly into two sets of equal size. Each set is used to construct a random forest. The 

two forests are used to compute variable importance of the hold-out observations for each 

covariate. The null distribution �̂� is constructed afterwards based on variables that are likely 

non-relevant (i.e., with negative or zero importance scores). Based on �̂�, a p-value for a 

covariate 𝑥 ∈ 𝑋 is derived as, 

𝑝𝑥 = 1 − �̂�(𝑥).  
 

(8) 

Finally the VIMP are ranked according their corresponding p-value. For the implementation, 

the R package “ranger”, version 0.6.0 [12] was used. 
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Supplementary Methods S3: Learning algorithms 

 

 Cox proportional hazards model 

The hazard function 𝜆(𝑡|𝑋) of the Cox proportional hazards model (Cox) is defined as [14] 

𝜆(𝑡|𝑋) = 𝜆0(𝑡)𝑒𝑋𝛽 , (9) 

where 𝜆0(𝑡) is the baseline hazard function and 𝛽 the p-dimensional vector of regression 

coefficients. The regression coefficients 𝛽 are estimated by maximising the partial log-

likelihood: 

𝐿𝐿(𝛽) = ∑ 𝛿𝑖 (𝑋𝛽 − log ( ∑ exp (𝑋𝑘𝛽)

𝑘:𝑡𝑘≥𝑡𝑖

))

𝑛

𝑖=1

. 

 

(10) 

 

For the implementation in the RMF, the R package “survival” [7] with version 2.4-10 was 

used as well as the following parameters for the hyper-parameter optimization: 

Parameter Values 
signature size 2,3,4,5,7,10 

 

 

 Regularized Cox proportional hazard model 

The regularized Cox proportional hazard model (NET-Cox) is based on a Cox model and a 

convex combinations of 𝑙1 and 𝑙2 penalties [15]. The penalised constraint 𝑃𝛼(𝛽) is a mixture 

of the 𝑙1 (lasso) and 𝑙2 (ridge regression) penalty, which is used to maximise the scaled log 

partial likelihood 

𝐿𝐿(𝛽) = argmax
𝛽

[
2

𝑛
(∑ 𝛿𝑖 (𝑋𝛽 − log ( ∑ exp (𝑋𝑘𝛽)

𝑘:𝑡𝑘≥𝑡𝑖

))

𝑛

𝑖=1

) −  𝜆𝑃𝛼(𝛽) ], 

 

(11) 

𝜆𝑃𝛼(𝛽) = 𝜆 (𝛼 ∑|𝛽𝑗| +
1

2
(1 − 𝛼) ∑ 𝛽𝑗

2

𝑝

𝑗=1

𝑝

𝑗=1

). 

 

(12) 

The R package “glmnet” version 2.0-5 was used for the implementation [16]. For hyper-

parameter optimization the following parameters were used: 
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Parameter Values 
signature size 2,3,4,5,7,10 

𝛼 0.0-1.0, step size 0.2 

𝜆 lambda.min*,lambda.1se** 

   *minimum mean cross-validated error, ** Error within one standard error of the minimum 

 

 Boosting gradient linear and boosted tree models 

The aim of the boosting gradient linear models (BGLM) is to learn a functional mapping to 

find 𝑦 = 𝑓∗(𝑌|𝑋, 𝜆) from data  𝑋, 𝑌 and a set of model parameters 𝜆. The functional mapping 

is learned by minimising the loss function 𝛷 of the empirical risk: 

𝑓∗(𝑌|𝑋, 𝜆) = argmin
𝑓

∑ 𝛷(𝑌, 𝑓(𝑋, 𝜆))

𝑛

𝑖=1

, 
(13) 

where 𝑓 is called a base-learner. The gradient boosting algorithm estimates at each iteration 

𝑚 = 1, … , 𝑚𝑠𝑡𝑜𝑝 the negative gradient −
𝜕𝛷

𝜕𝑓
 of the loss function and evaluates it at 

𝑓[𝑚−1](𝑋, 𝜆), 𝑖 = 1, … , 𝑛, yielding the negative gradient vector 

𝑢[𝑚] ≔ (−
𝜕𝛷

𝜕𝑓
(𝑌, 𝑓[𝑚−1](𝑋, 𝜆)))

𝑖=1,…,𝑛

  for each base-learner. Typically one base-learner for 

each covariate is used, resulting in P vectors of prediction values. Afterwards, the best base-

learner is selected and �̇�[𝑚] is set equal to the fitted values from the corresponding best 

learner. Finally the function mapping 𝑓[𝑚] = 𝑓[𝑚−1] + 𝛼�̇�[𝑚] is updated, where 0 < 𝛼 ≤ 1 is a 

step-length factor. The loss function 𝛷 to be optimised can be specified by Cox’s partial 

likelihood (Cox), the concordance index (CIndex) as well as the Weibull distribution (Weibull). 

In the case of boosting tree models (BT), regression trees are used as base-learners. 

The R package “mboost” [17] version 2.7-0 was used in the RMF. For hyper-parameter 

optimisation the following parameter were set: 

Parameter Values 
signature size 2,3,4,5,7,10 

𝛼 0.001,0.01,0.05 

𝜆 lambda.min,lambda.1se 

mStop 200 
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 Random survival forest 

The random survival forest (RSF) [18] is an extension of Breiman’s random forest algorithm 

[19] for survival data. The basic idea is to draw ntree bootstrap samples from the exploratory 

cohort. For each sample, a survival tree is trained. For each node of the tree, mtry features 

are randomly selected as splitting candidates. For each splitting candidate, a maximum of 

nSplit split points are randomly chosen among the possible split points. The possible splitting 

rules for survival data are the logrank and the logrankscore splitting criteria. Selecting 

splitting candidates and split points is repeated until either the terminal nodes contains no 

less than nodeSize unique events or the maxDepth of the tree is reached. Based on the 

resulting tree ensemble, cumulative hazard estimates are calculated by combining all 

information from the ntree trees. The R package “randomForestSRC” in version 2.4.1 was 

used [10]. For hyper-parameter optimisation the following parameters were used: 

Parameter Values 
signature size 2,3,4,5,7,10 

ntree 2000 

mtry 100 

nodeSize 25-50 

maxDepth 10,15 

nSplit 1,2,100 

splitRule logrank,logrankscore 

 

 

 Maximally selected rank statistics random forest 

The maximally selected rank statistics random forest (MSR-RF) [11] algorithm is based on an 

improved split point criterion to reduce split point selection bias. In MSR-RF a split point is 

considered optimal if the separation of survival curves in the two groups is maximised. The 

standard split criterion for the RSF is the logrank or the logrankscore test statistic. In 

contrast, the MSR-RF uses either the maximally selected rank statistics (maxstat) or the 

Harrell’s C statistics (C) for split point selection. As described above, the covariate with the 

lowest p-value is selected as splitting candidate. If the adjusted p-value is not smaller than 

the threshold 𝛼, no splitting is performed. For the implementation, the R package “ranger”, 
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version 0.6.0  [12] and the following parameters for the hyper-parameter optimisation were 

used: 

Parameter Values 
signature size 2,3,4,5,7,10 

ntree 2000 

mtry 100 

nodeSize 25-50, step size 1 

minprop 0.1 

𝛼 0.1,0.5 

splitRule C, maxstat 

 

 Survival regression model 

The survival regression model (SurvivalReg) is a full-parametric model, which provides 

different survival functions, e.g., Weibull, Exponential, Gaussian. For instance, the Weibull 

probability density function is given by 

f(𝑡) =
𝜆𝑡𝜆−1

𝛼𝜆
∙ 𝑒

−(
𝑡
𝛼

)
𝜆

= ℎ(𝑡) ∙ 𝑆(𝑡), 
(14) 

 

which is a combination of the hazard function ℎ(𝑡) and the corresponding survival 

function 𝑆(𝑡). The free parameters 𝜆 and 𝛼 are called shape and scale of the Weibull 

distribution which were estimated during training. The hazard function is defined as [20], 

 

ℎ(𝑡, 𝑋, 𝛽, 𝜆) = 𝜆𝑒−𝜆𝑋𝛽 𝑡𝜆−1, (15) 

 

where the scale parameter 𝜆 = 1/𝜎 is defined. In contrast to the Cox model, for which the 

baseline hazard is unknown, this full-parametric regression allows for predicting the time-

dependent survival probability of each patient. For implementation, the R package “survival”, 

version 2.4-10 [7] and the following parameters for the hyper-parameter optimization were 

used: 

Parameter Values 
signature size 2,3,4,5,7,10 

distribution weibull, gaussian, exponential 
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Supplementary Figure S4: Heatmap depicting the concordance indices for every 

combination of feature selection method (rows) and learning algorithm (columns) for the 

exploratory cohort as well as the signature by Aerts et al. [21] for loco-regional control. 

 

Supplementary Figure S5: Heatmap depicting the concordance indices for every 

combination of feature selection method (rows) and learning algorithm (columns) for the 

exploratory cohort as well as the signature by Aerts et al. [21] for overall survival. 
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Supplementary Table S6: Average intra-class correlation coefficient for different image 

rotations and translations to measure feature robustness of the developed signatures for 

loco-regional tumour control and overall survival. 

 

Feature selection 

method 

LRC OS 

Pearson 0.88±0.019 0.96±0.006 

Spearman 0.69±0.043 0.94±0.007 

MIFS 0.76±0.025 0.93±0.013 

MIM 0.93±0.024 0.94±0.000 

MRMR 0.78±0.032 0.94±0.012 

uni-Cox 0.95±0.002 0.94±0.003 

multi-Cox 0.95±0.000 0.94±0.000 

RF-VH 0.89±0.006 0.94±0.000 

RF-VI 0.90±0.006 0.93±0.023 

RF-MD 0.87±0.025 0.93±0.010 

PVI-RF 0.90±0.053 0.92±0.019 

MSR-RFVI 0.89±0.035 0.86±0.000 

 

 

 

 

Supplementary Figure S7: Kaplan-Meier estimates of loco-regional tumour control for 

patients of the exploratory cohort stratified into a low and a high risk group. Both (a) the BT-
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Weibull model in combination with Spearman feature selection and (b) the Cox model in 

combination with Spearman feature selection showed a significant patient stratification. 

 

 

Supplementary Figure S8: Kaplan-Meier estimates of overall survival for patients of the 

exploratory cohort stratified into a low and a high risk group. Both (a) the RSF model in 

combination with RF-VI feature selection and (b) the BGLM-Weibull model in combination 

with random feature selection showed a significant patient stratification. 

 

Supplementary Figure S9: Kaplan-Meier estimates for (a) loco-regional tumour control and 

(b) overall survival for patients of the exploratory cohort stratified into a low and a high risk 
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group. The signature by Aerts et al. [21] in combination with the BT-Cox and the BGLM-

Weibull model showed a significant patient stratification. 

 

 

 

 

 

 

 

Supplementary Figure S10: p-values of the log-rank test for the considered feature 

selection methods and learning algorithms as well as the signature by Aerts et al. [21] for 

loco-regional tumour control. The cut-off values used for stratification were selected by 1000 

bootstrap samples based on the exploratory cohort. The fraction of significant stratification 

results was calculated for each cut-off, leading to the optimal value which has the largest 

power. Cut-off values calculated on the exploratory cohort were applied to the validation 

cohort unchanged. 

  



 15 

 

Supplementary Figure S11: p-values of the log-rank test for the considered feature 

selection methods and learning algorithms as well as the signature by Aerts et al. [21] for 

overall survival. The cut-off values used for stratification were selected by 1000 bootstrap 

samples based on the exploratory cohort. The fraction of significant stratification results was 

calculated for each cut-off, leading to the optimal value which has the largest power. Cut-off 

values calculated on the exploratory cohort were applied to the validation cohort unchanged. 
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