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Abstract

Summary: Modelling biological associations or dependencies using linear regression is often complicated
when the analysed data-sets are high-dimensional and less observations than variables are available
(n ≪ p). For genomic data-sets penalized regression methods have been applied settling this issue.
Recently proposed regression models utilize prior knowledge on dependencies, e.g. in the form of graphs,
arguing that this information will lead to more reliable estimates for regression coefficients. However,
none of the proposed models for multivariate genomic response variables have been implemented as a
computationally efficient, freely-available library. In this paper we propose netReg, a package for graph-
penalized regression models that use large networks and thousands of variables. netReg incorporates
a priori generated biological graph information into linear models yielding sparse or smooth solutions for
regression coefficients.
Availability and implementation: netReg is implemented as both R-package and C++ commandline
tool. The main computations are done in C++, where we use Armadillo for fast matrix
calculations and Dlib for optimization. The R package is freely available on Bioconductor
https://bioconductor.org/packages/netReg. The command line tool can be installed using
the conda channel Bioconda. Installation details, issue reports, development versions, documentation
and tutorials for the R and C++ versions and the R package vignette can be found on GitHub
https://dirmeier.github.io/netReg/. The GitHub page also contains code for benchmarking
and example data sets used in this paper.
Contact: simon.dirmeier@bsse.ethz.ch

1 Introduction
The advent of high-throughput genomic methods provided a wealth of
novel biological data that allow the interpretation of previously scarcely
researched genetic and epigenetic processes. Many experiments aim at
establishing statistical dependencies between two different data-sets, for
example finding genotype-phenotype associations such as eQTL mappings
or medical cohort studies.
Linear regression models are attractive for these kinds of problems since
they explicitly describe the impact of a predictor onto a response. However,

for problems where the number of predictors p is larger than the number
of observations n unique analytical solutions for the parameters do not
exist. For example in eQTL-mapping studies typically hundreds of SNPs
are genotyped, but only few observations are available. Solutions for
these settings have already been proposed, e.g. by Tibshirani (1996) or
Zou and Hastie (2005), where penalization terms are introduced to the
likelihood of the model. Recent studies suggest to incorporate further
penalization terms, for example in the form of graph prior knowledge,
arguing that variables may be structured and related variables might have
a common or at least similar effect. For this either the regressors or
regressands are mapped to biological networks. Two nodes are connected if
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the variables have some biological relationship, for instance co-expression
or a protein-protein interaction. Regardless of the graph used, the rationale
is that biological processes might be regulated by two neighboring genes
rather than by two genes far apart. With these prior networks the biological
relations are directly incorporated in the objective function of the model.
Consequently a better model goodness-of-fit can be achieved. Examples
for network-regularized regression models include Li and Li (2008, 2010);
Kim (2013) or Veríssimo (2016).
Conceptually network-regularization differs from other network-based
approaches, such as network enrichment (Alcaraz, 2011; Alexeyenko,
2012) or correlation analysis (Langfelder and Horvath, 2008), by making
inference on the parameters of the regression of a set of dependent variables
on a set of predictors, and not making inference on significant or correlated
modules in a network itself.
Although network-regularized models for univariate responses have
already been efficiently implemented in R (Li, 2015b,a; Zhao, 2016), this
is to our knowledge not the case for multivariate response variables which
are however predominant in genomic studies. For many of the multivariate
regression models proposed in literature, the respective software either
lacks appropriate documentation, making the methods hardly usable, or
the code does not compile, or in the worst case implementations are not
available at all.
To our knowledge multivariate network-regularized linear models have
so far not been implemented in an efficient computational framework
that makes the proposed methodology usable in practice. Thus, in
this paper we propose netReg, an R/C++-package that implements
multivariate network-regression models, i.e. linear models with graph-
penalized likelihoods. With netReg it is possible to fit linear models that
employ large dense networks and use thousands of covariables. We hope to
establish a common framework with implementations of different network-
regularized regression models and by that unify the already proposed
methodology into one easily usable, maintained software package. This
should benefit the biological as well as the statistical community.

2 Methods

2.1 Model

Multivariate linear regression models describe a dependency f : X →
Y for a data-set D = {xi,yi}ni=1 of n observations. Every xi is
a p−dimensional covariable (or feature) vector and every yi is a q-
dimensional response vector. For scenarios where n ≪ p, solutions for
the coefficients are, however, not unique. An attractive solution is to add
an ℓ1-penalty to the likelihood of the model yielding a sparse solution
for the regression coefficients. In order to include biological graph-
prior knowledge the same procedure can be applied, i.e. by extending
the likelihood with penalization terms. netReg implements a modified
regularization term proposed by Cheng (2014). Two prior graphs for the
response and design matrices are included into an ℓ1-regularized likelihood
as:

B̂ = argmin
B
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where B is the matrix of coefficients, ||X||22 is the squared ℓ2-norm and
||X||1 the ℓ1-norm. Vectors βi,∗ and β∗,i are the i-th row or column of
B, respectively. λ, ϕ1 and ϕ2 are known shrinkage parameters. S0 and
T0 are two non-negative adjacency matrices for X and Y, encoding a

Table 1. Timings of a pure R vs netReg implementation. For each setting
measurements are averaged over 10 runs with q = 10 response variables.

n = p = 100 n = p = 1000 n = p = 10000

R 2009ms 578s > 3d

netReg 25ms 12s 2.5h

biological similarity measure as described above. The prior graphs can
be generated subjectively, i.e. reflecting a personal belief, from online
databases or be directly estimated from a biological data-set.

2.2 Implementation

We implemented the proposed models from Equation (1) as a freely
available package written in the R and C++ programming languages.
For the estimation of coefficients B̂ we use cyclic coordinate descent
that has recently been described elsewhere (Friedman, 2007, 2010).
Since linear models require extensive computation of costly matrix
multiplications, netReg uses Armadillo (Sanderson, 2010). Armadillo
uses an OpenBLAS (Xianyi, 2012) or BLAS, and Lapack backend
for efficient vectorized matrix-algebra, that, for modern computer
architectures, enables multiple floating point operations per register.
Table 1 shows the absolute speed-ups of our implementation vs. a pure
R implementation. netReg is considerably faster than the alternate
implementation.

2.3 Model selection

In order to select the optimal shrinkage parametersλ, ϕ1 andϕ2 we use the
BOBYQA-algorithm (Powell, 2009), a gradient-free convex optimization
method, implemented in Dlib-Ml (King, 2009). To assess the current
set of shrinkage parameters we apply 10-fold cross-validation. The mean
residual sum of squares of 10 cross-validation runs is computed and used
as minimization criterion for the BOBYQA algorithm yielding an optimal
solution for the shrinkage parameters λ, ϕ1 and ϕ2.

2.4 Application

Figure 1 shows a benchmark of the LASSO (ℓ1-penalization) vs. network-
based regularization (Equation (1)). For variable number of observations
n, covariables p and noise variance σ2 the network-based regularization
outperforms the LASSO consistently. Due to the integration of biological
prior graphs, the mean sum of errors is considerably lower than in the
version that uses ℓ1-penalization only.
We applied netReg on a yeast eQTL data-set of 112 yeast segregants

(Brem (2005); Storey (2005); similarly to Cheng (2014)). The filtered
dataset consists of 112 observations of 500 genetic markers and 231

expression profiles. We excluded genes that had a node degree of less
than 10 from a yeast protein-protein interaction network (BioGRID
https://thebiogrid.org/). Figure 2 shows that the LASSO and
netReg have almost identical estimates for the coefficients. This either
means that the graph was non-informative or the mapping from SNPs to
eQTLs contains little signal. In either case the model selection converges
to the same result such that the netReg solution can only improve model
fits but not worsen them.

3 Outlook
So far the library implements a single graph-regularized likelihood for
linear models with normally distributed responses. Next versions of the
package will include models for binomial, Poisson or categorial variables
and Cox-proportional hazard models; and other proposed regularizations,
such as in Li and Li (2010); Kim (2013). Furthermore, so far netReg
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Fig. 1. Mean residual sum of squares for LASSO vs. netReg (Equation (1)). netReg
outperforms the LASSO for different levels of number of observations n, covariables p and
different Gaussian noise with mean 0 and variance σ2 ∈ {1, 2, 5} (low , medium, high)
consistently. Boxes show 25%, 50% and 75% quantiles.
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Fig. 2. Mean residual sum of squares for LASSO vs. netReg (Equation (1)). netReg
and the LASSO have similar estimates for coefficients.
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excels on large, dense networks with high node degrees. For sparse (scale-
free) matrices, as they are common in biology, speedups can be gained by
working with adjacency lists instead of full graphs.
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