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� Abstract
Proliferating stem cells in the adult body are the source of constant regeneration. In the
brain, neural stem cells (NSCs) divide to maintain the stem cell population and gener-
ate neural progenitor cells that eventually replenish mature neurons and glial cells.
How much spatial coordination of NSC division and differentiation is present in a
functional brain is an open question. To quantify the patterns of stem cell divisions,
one has to (i) identify the pool of NSCs that have the ability to divide, (ii) determine
NSCs that divide within a given time window, and (iii) analyze the degree of spatial
coordination. Here, we present a bioimage informatics pipeline that automatically
identifies GFP expressing NSCs in three-dimensional image stacks of zebrafish brain
from whole-mount preparations. We exploit the fact that NSCs in the zebrafish hemi-
spheres are located on a two-dimensional surface and identify between 1,500 and 2,500
NSCs in six brain hemispheres. We then determine the position of dividing NSCs in
the hemisphere by EdU incorporation into cells undergoing S-phase and calculate all
pairwise NSC distances with three alternative metrics. Finally, we fit a probabilistic
model to the observed spatial patterns that accounts for the non-homogeneous distri-
bution of NSCs. We find a weak positive coordination between dividing NSCs irrespec-
tive of the metric and conclude that neither strong inhibitory nor strong attractive
signals drive NSC divisions in the adult zebrafish brain. VC 2017 International Society for

Advancement of Cytometry
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THE analysis of spatial patterns is prevalent in distinct disciplines such as ecology

(1,2), geostatistics (3), and developmental biology (4). Adult neural stem cells

(NSCs) have been found at specific locations within the brain of adult vertebrates

[reviewed in (5,6)], but the spatiotemporal regulation of NSC quiescence and prolif-

eration is only roughly understood. To investigate dividing NSCs and the mainte-

nance of stem cell pools, the zebrafish is an ideal model organism due to its high

neurogenic activity, its accessibility for imaging, and the availability of transgenic

lines.

In the adult zebrafish pallium (the dorsal telencephalon, see Fig. 1), the ventric-

ular zone containing the NSCs is located on the surface, as a result of an eversion

during development (7). The dorsal domain is a spatially clearly defined two-

dimensional (2D) surface at the border of the telencephalon. NSCs within this sur-

face repopulate mature neurons and glial cells via constant proliferation and differ-

entiation (8,9). This situation has been utilized in in vivo imaging studies to follow

the fate of labeled NSCs (10,11) over several weeks. To describe the spatial organiza-

tion of all cycling NSCs within the pool of NSCs, we used whole mount preparations

and labeled S-phase NSCs within three-dimensional (3D) images of the ventricular

zone.

1Institute of Computational Biology,
Helmholtz Zentrum M€unchen - German
Research Center for Environmental
Health, Ingolst€adter Landstr. 1, 85764
Neuherberg, Germany

2Research Unit Sensory Biology and
Organogenesis, Helmholtz Zentrum
M€unchen - German Research Center for
Environmental Health, Ingolst€adter
Landstr. 1, 85764 Neuherberg, Germany

Received 30 May 2016; Revised 30 August
2017; Accepted 6 September 2017

*Correspondence to: Carsten Marr; Insti-
tute of Computational Biology, Helmholtz
Zentrum M€unchen - German Research
Center for Environmental Health,
Ingolst€adter Landstr. 1, 85764 Neuher-
berg, Germany. E-mail: carsten.marr@
helmholtz-muenchen.de or Prisca
Chapouton; Research Unit Sensory
Biology and Organogenesis, Helmholtz
Zentrum M€unchen - German Research
Center for Environmental Health,
Ingolst€adter Landstr. 1, 85764 Neuher-
berg, Germany. E-mail: chapouton@
helmholtz-muenchen.de

Published online 00 Month 2017 in Wiley
Online Library (wileyonlinelibrary.com)

DOI: 10.1002/cyto.a.23260

VC 2017 International Society for
Advancement of Cytometry

Cytometry Part A � 00A: 00�00, 2017

Original Article



Identification and segmentation of single cells in 3D

image stacks is a challenging problem for quantitative bio-

imaging. To identify single nuclei in 3D, several methods were

recently proposed (12–17) that rely on nuclear staining. Such

automated methods normally start with separation of back-

ground and foreground, followed by the identification of sin-

gle objects, using, for example, k-means (12), water shedding

(13), or graph-cut segmentation (14). Notably, the application

of available methods to a specific data set requires adaptation

and manual fine-tuning of the parameters. For neural neuro-

nal cells, Schmitz et al. (18) recently stated that available

methods fail to properly identify single cells in 3D.

Here, we present a single-cell identification pipeline

(SCIP) that explicitly uses prior knowledge on the organiza-

tion of NSCs in the zebrafish brain. It exploits the fact that

NSCs in the zebrafish brain are located on a 2D surface to

accurately identify them in 3D. A polynomial regression

model as approximation to the hemisphere surface improves

the identification and is used to remove imaging artifacts. We

apply SCIP to six 3D image stacks of adult zebrafish hemi-

spheres, automatically identify thousands of NSCs, and apply

three different metrics to determine distances between all pairs

of cells. Within the six hemispheres, we then locate stem cells

in S-Phase labeled by the incorporated thymidine analogue

EdU. To assess a possible interaction between the dividing cells

quantitatively, we evaluate and later fit a simple interaction

model and find a weak positive coordination of S-Phase

NSCs.

MATERIALS AND METHODS

Animal Maintenance

Zebrafish (Danio rerio) were kept in the fish facility of

the Helmholtz Zentrum M€unchen at 288C with a light/dark

cycle of 14/10 h. We used four-month old zebrafish (Fig. 1A)

of the transgenic line gfap:GFP (19) in an AB background.

Experiments were performed in accordance with the

regulations of the Regierung von Oberbayern on animal wel-

fare (Animal protocol 55.2-1-54-2531-83-14).

Sample Preparation and Image Acquisition

In the transgenic gfap:GFP zebrafish strain (19) NSCs are

fluorescently labeled with GFP under the control of gfap

enhancer. Dividing cells were labeled by intraperitoneal injec-

tion of the thymidine analogue 5-ethynyl-2-deoxyuridine

(EdU, 1 mg/ml, 5 ll/0.1 g body weight), which incorporates

into replicating DNA, one hour before killing the animals and

brain fixation. Zebrafish were over-anesthetized and killed in

0.1% buffered MS222, the brains dissected and fixed overnight

in 4% PFA. After blocking in 10% normal goat serum

(Sigma), EdU was revealed by binding to azide-Alexa Fluor

555 through a click reaction (Invitrogen). Brains were

mounted in Vectashield medium (Vector Laboratories)

between two coverslips separated by parafilm spacers.

An inverted confocal laser scanning microscope (Leica

SP5) with a 203 glycerol immersion objective (HC PL APO

203/0.70 IMM CS), which corrects for field curvature astig-

matism, was used for image acquisition. The field of view cov-

ers one hemisphere of the pallium (dorsal telencephalon)

nearly completely (see Figs. 1B and 1C). All images were taken

with 2048 3 2048 pixel in x-y direction with a pixel size of

0.38 3 0.38 lm. Resolution in z direction differed between

the 6 hemispheres (Experiment 1: 49 and 62 slices with dis-

tance of 2.0 lm, Experiment 2: 72 and 84 slices with distance

of 2.2 lm, Experiment 3: 105 and 85 slices with distance of

1.3 lm) and was adapted to brain size. Visual inspection con-

firms that aberration effects are minimal and do not impinge

on cell identification.

Single-Cell Identification Pipeline

Starting from a 3D image stack (Fig. 2A) SCIP projects

the maximum intensity of every x-y coordinate in z-direction

to a 2D image (Fig. 2B). A Laplace of Gaussian (LoG) filter

followed by a local maximum/minimum search is used to

identify cell sized blobs of approximately b 5 8 lm in

Figure 1. NSCs in the zebrafish telencephalon. (A) In all experiments, four-month-old zebrafish of a gfap:GFP transgenic strain were used,

where green fluorescent protein (GFP) is expressed under the control of gfap enhancer elements. Average length of adult fish is �3 cm (B)

Top view on a zebrafish brain showing the telencephalon, optic tectum, and cerebellum. We image one hemisphere of the telencephalon

(marked with a green rectangle). Scale bar: 2 mm. (C) Reconstructed 3D image stack from confocal microscopy. [Color figure can be

viewed at wileyonlinelibrary.com]
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Figure 2.
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diameter as possible cell candidates (Fig. 2C). From every

detected blob, the x-y centroid is used for the determination

of the z-coordinate. To discard possible signals from neighbor-

ing cells, we use pixel information inside a cylinder with a

diameter of 4 lm around the centroids (Fig. 2D) and fit a

Gaussian curve to the mean intensity profile along z. This

allows to filter out false positives due to contaminations dur-

ing sample preparation. The argument of the maximum (arg

max) of the fitted Gaussian is used as the z-coordinate of the

cell centroid. Additionally, its standard deviation is used to fil-

ter real cells from image artifacts: Single pixel errors show a

strong intensity and a small standard deviation. We thus filter

out objects with a standard deviation in z below 1.5 lm. Anal-

ogously, a 2D Gaussian distribution is fitted in x-y direction

and objects with a standard deviation below 2 lm are

excluded.

As NSCs are only found on the edge of a hemisphere we

fit a third order polynomial to all 3D centroids to roughly

approximate the hemisphere surface and avoid overfitting of

single cells. The fitted model is used to exclude outliers by

repetitively removing the most distant cell candidate (see

arrows in Fig. 2E) and recalculating the polynomial model.

The procedure is repeated until all cells are closer than 16 lm

(�two cell diameters) to the polynomial surface (Fig. 2F).

As cells from the adjacent hemisphere, and image contami-

nations from the 3D image stack may overlap with real cells in

the 2D projection, we introduce an envelope in z-direction 20

lm above and below the polynomial (Fig. 2G). All pixels out-

side this envelope are set to background intensity, determined

via the median of the eight corner pixels of the 3D stack. Steps

(B) - (F) of the pipeline are then repeated on the filtered image

stack. The resulting 3D centroids (Fig. 2H) represent NSCs on

the zebrafish hemisphere and are used for further analyses.

Distance Measures

We define distances between pairs of cells using three

metrics (Fig. 3): (i) The Euclidean distance dE between two

points in the 3D space in lm. (ii) The surface distance dS is

the projection of the shortest path between two cells on the

polynomial in lm. (iii) The graph distance dG between two

cells is the number of edges connecting the cells in the shortest

path of a graph consisting of nodes (the NSCs identified) and

edges between them (see Fig. 3B) as calculated with a Delau-

nay triangulation (20). The shortest path is determined using

the Floyd-Warshall algorithm (21,22).

Identification of S-Phase NSCs

We gave a pulse of EdU 1 h prior to brain dissection, fix-

ation, fluorescent staining and imaging. Cells with a fluores-

cent EdU signal (see Fig. 4) were automatically identified with

SCIP. For optimal data quality, we manually verified S-phase

NSCs as EdU positive cells that are also positive for gfap:GFP.

Influence Model

From the observed patterns of S-phase NSCs (Fig. 4), we

ask whether specific rules underlie the spatial arrangement of

division events. To quantify the distribution of S-phase NSCs

within the set of all NSCs, we introduce Pi, the probability

that an NSC i is in S-phase at a particular time point, as a

function of S-phase NSCs in the neighborhood of cell i. In the

case of no influence between division events, this probability

is the same for all NSCs. To simulate a pattern with S S-phase

Figure 2. SCIP for NSCs in the adult zebrafish brain. Raw 3D data (A) is transformed into 2D images (B) via 2D maximum intensity projec-

tion. Cell somata are touching each other on the surface, without intermediate space. Cell centers display a high GFP intensity and are

used for identification. A blob detection using LoG identifies cell candidates (C). A Gaussian curve is fitted to the intensity profile of a cylin-

der with 4 mm diameter along z of every cell candidate (D). The mean of the Gaussian is taken as the z-coordinate of cell candidate cen-

troid. A surface based on a 3rd order polynomial regression model is fitted to all centroids (E). Cells that are further away than two cell

diameters (�16 mm) are excluded step by step by removing iteratively the most distant outlier and recalculate the surface (F). To remove

remaining image artifacts an envelope is placed in 20 mm distance around the surface (G). All pixels outside this envelope are set to back-

ground intensity. Afterwards the pipeline starts over again at (B) using the filtered image stack without image artifacts. (H) The resulting

cell centroids can now be used for further analyses. Scale bars: 50 mm. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Three metrics are defined on the hemispheres. NSCs are identified (A) and then used to calculate the Euclidean distance dE

(blue line), the surface distance dS (orange line) and the graph distance dG (red lines) between all pairs of identified cells on the 2D surface

(B). For the surface distance, the shortest path between two cells in 3D is projected on the surface fitted with SCIP. For the graph distance,

the shortest path in a network derived from a Delaunay triangulation is calculated. Identified NSCs are shown in green on top of the

gfap:GFP signal. [Color figure can be viewed at wileyonlinelibrary.com]
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NSCs, we randomly select S cells from all N NSCs, where the

probability for NSC i to be selected, Pi, can be normalized to

pi5 1=N : (1)

To account for an attractive or repulsive influence between S-

phase NSCs, we scale this probability with a positive parame-

ter g. The exponent of g is the number of S-phase NSCs within

a distance r (Fig. 5). The probability Pi for cell i to be selected

as an S-phase NSC then becomes

Pi5g

PS

j51;j 6¼i
I distði;jÞ�rð Þ

=Z (2)

where we evaluate the number of S-Phase NSCs within radius

r using the indicator function I, and

Z5
XN

k51

g

PS

j51;j 6¼k
I distðk;jÞ�rð Þ

is the normalization constant. To simulate a pattern with S

S-phase NSCs, we now select S cells one after the other and

update the probabilities Pi after each selection.

Without any influence between S-phase NSCs, g 5 1 and

Eq. (2) simplifies to Eq. (1). For g< 1 or g> 1 we induce a

repulsive or attractive influence within a distance r, leading to

visually distinct patterns of S-phase NSCs (Fig. 5).

Parameter Inference

From the division probability [Eq. (2)], we can calculate

the likelihood L for an observed S-phase pattern given the

interaction strength g and interaction radius r. The log-

likelihood for S cells in S-Phase within the set of N NSCs is

log Lðg ; rÞ5
XS

i51

log Pi: (3)

We can calculate the sum of log-likelihoods for all observed

brain hemispheres and find the maximum likelihood estimate

for our parameters g and r by optimizing Eq. (3): First, we

evaluated all combinations of g and r with g � {0.1, 0.2, . . .,

4} and r � {5, 6, . . ., 150} lm for Euclidean distance dE and

surface distance dS, and r � {1, 2, . . ., 20} cells for graph dis-

tance dG, respectively. From the parameter combination with

the largest L, we then start a gradient descent optimization

algorithm (using MATLAB’S Fmincon function).

To evaluate our inference algorithm, we repeatedly gener-

ated 30 data sets per tested influence parameter combination

with different influence strengths and radii and applied our

inference algorithm to them (see Fig. 6). In the box plots, the

boundary of the box closest to zero indicates the 25th percen-

tile (q1), a black line within the box marks the median, and

the boundary of the box farthest from zero indicates the 75th

percentile (q3). Whiskers above and below the box include

points that are not outliers. Points are considered as outliers if

they are bigger than q3 1 1.5(q3 – q1) or smaller than q1 –

1.5(q3 – q1).

Implementation

SCIP and the statistical analysis are implemented in

MATLAB and performed on a Windows 7 machine with 4

cores (i7–5500 U, 2.4 GHz) and 16 Gigabyte DDR3 memory.

The time to identify NSCs in one hemisphere took between 5

Figure 4. Spatial pattern of NSC divisions. NSCs are identified in the gfap:GFP channel (A) using SCIP. Cells in S-phase were automati-

cally identified by EdU signal and manually verified (B). S-phase NSCs are identified as cells that appear both in the gfap:GFP and in the

EdU channel (C). Scale bar: 100 mm. [Color figure can be viewed at wileyonlinelibrary.com]

Table 1. Evaluation of three NSC identification methods

SCIP 3D OBJECT COUNTER IMARIS

Precision 93 6 3% 91 6 5% 92 6 4%

Recall 91 6 6% 66 6 14% 91 6 3%

F1 score 92 6 2% 76 6 9% 91 6 1%

NSCs have been counted manually (by P.C.) in 5 different

regions in the 2D maximum intensity projection of three zebrafish

hemispheres (see Fig. 7). We show precision, recall, and F1 score

(mean 6 s.d., n 5 5 regions) for SCIP, the 3D object counter plugin

in ImageJ, and Imaris. Best mean values are indicated in bold.
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and 10 min. Parameter estimation for one hemisphere took

between 3 and 8 min. Code available at https://github.com/

QSCD/SCIP.

RESULTS

Identification of Neural Stem Cells Using SCIP

SCIP can be used to identify single NSCs on the 2D

hemisphere surface. We evaluate the quality of cell identifica-

tion via SCIP by comparing automatically derived cell counts

of NSCs in the 2D maximum intensity projection in five dif-

ferent regions of three hemispheres to those generated manu-

ally by a human expert on a 2D maximum intensity

projection (exemplarily shown as green circles in Fig. 7). We

manually count 94, 84, 118, 136, and 160 cells in the five

regions. SCIP identifies 85, 92, 123, 125, and 151 NSCs in the

same five regions. Pairs of manual (“true”) and automatically

identified NSCs were matched according to their x-y coordi-

nate, which allowed us to calculate precision (the fraction of

true NSCs within the set of NSCs identified by SCIP, Fig. 7A),

recall (the fraction of NSCs identified by SCIP within all true

NSCs) and the F1 score [an accuracy measure that considers

both precision and recall (23)]. We compare SCIP to two

other standard approaches for cell identification and segmen-

tation: The “3D object counter” plugin (24) in ImageJ (25)

where we carefully chose the intensity threshold as 75 to opti-

mally match our manual counts, and the commercial Imaris

software (version 8.4.1, Bitplane, Zurich, Switzerland; Fig.

7C), with target cell diameter of 5 lm and an intensity thresh-

old of 7.14.

The 3D object counter identifies only a fraction of the

manually annotated cells (recall 66 6 14%, mean 6 s.d., n 5 5

regions). Cells that are close to each other are often identified

as large single objects. SCIP and Imaris were able to identify

NSCs with the same recall but SCIP identifies less false posi-

tive cells resulting in a slightly higher precision and F1 score

compared to Imaris (see Table 1). Overall, we expect that the

manual counts underestimate the number of NSCs slightly

due to the inherent unidentifiability of nearby cells with a

small shift in z direction in the 2D maximum intensity

projection.

NSC Divisions in the Zebrafish Brain

We apply SCIP to six zebrafish hemispheres from three

different adult animals. In each hemisphere, we automatically

identify NSCs using SCIP. Moreover, we identify S-phase

NSCs via a fluorescently labeled EdU incorporation 1 h prior

to imaging (see Methods), stained in a second fluorescence

channel (Fig. 4).

In six hemispheres, we identify between 1458 and 3195

NSCs (Table 2). Furthermore, we identify between 42 and

67 S-phase NSCs. The ventricular zone contains dividing NSCs

[called type II progenitors (8,26)] as well as type III dividing

progenitors that do not express gfap:GFP. We consider in this

study specifically the dividing type II NSCs. The fraction of S-

phase NSCs is 2.6% 6 0.9% (mean 6 s.d., n 5 6 hemispheres).

This fraction is low compared to values obtained with PCNA

and MCM5 cell cycle markers (11,26) due to EdU labeling of S-

phase only within the small time window of one hour. Visually,

the S-phase NSCs (marked by red circles in Fig. 4C) form no

obvious cluster, but regions in the brain that show a depletion

of S-phase NSCs seem to appear.

Analysis of S-Phase Patterns

To quantify a potential spatial attraction or repulsion of

S-phase NSCs, we define a probabilistic spatial model, where

Figure 5. Simulated attractive spatial influence (A), no spatial influence (B), and repulsive spatial influence (C) of S-phase NSCs result in

visually distinct patterns. [Color figure can be viewed at wileyonlinelibrary.com]
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the division probability of NSCs is regulated by two parame-

ters: an interaction radius r, and the strength g of the interac-

tion within this radius r. For g 5 1, the probability to enter

S-phase is not changed, but it is increased or decreased for g

above or below 1, respectively (see Fig. 5 and Methods). We

simulate patterns of S-phase NSCs (same number as

observed) for an attractive (with r 5 50 mm and g 5 1.6), no

influence (g 5 1), and repulsive (r 5 50 mm and g 5 0.1, see

Fig. 5) model. Visually, the three different models can be dis-

criminated clearly via clustering of events (Fig. 5A), spatially

random events (Fig. 5B), and events that are evenly spaced

across the surface (Fig. 5C).

Formulating the likelihood of the observed spatial pat-

tern of S-phase NSCs [Eq. (3)] allows to infer the most likely

parameters r and g for the assumed probabilistic model. For

simulated data, both parameters are inferred reliably for real-

istic range of parameters (Fig. 6). Here, we simulated patterns

by drawing the same number of S-phase NSCs as observed in

the data one after the other, consecutively updating the proba-

bilities Pi for the next draw based on the chosen parameters g

and r. We determine the maximum likelihood estimate for the

two parameters by maximizing the log-likelihood, which sums

over all six hemispheres.

We finally apply our inference algorithm to the S-Phase

NSC patterns in the six hemispheres (see Table 2 and Fig. 4).

Using the surface distance dS, we identify the most likely

model with a weak positive influence (g 5 1.15) between

S-phase NSCs and an interaction radius of 100 lm. The most

likely model for the Euclidean distance dE has an interaction

radius of 89 lm with a weak positive influence (g 5 1.16).

Since the surface and Euclidean distances are ignorant of the

inhomogeneous density of NSCs on the brain, we also infer

the parameters of our probabilistic model for the graph dis-

tance dG. Here we identify again a weak positive influence

(g 5 1.17) to be most consistent with the observed data with

an influence radius of 6 cells (Table 3). Correlating graph dis-

tance dG with surface distance dS on the six hemispheres, we

find that a dG 5 6 corresponds to dS 5 100 6 44 lm (mean 6

s.d., n 5 100000 pairwise distances). The log-likelihoods of

these two models are comparable (–2467 vs. 22466), which

does not allow for model selection or rejection on the basis of

the observed data. However, the Euclidean distance model has

a considerably smaller log-likelihood (–2502) than the other

two models suggesting that a metric based on surface and

graph distance describes the weak interactions better.

DISCUSSION

Analyzing the patterns of dividing NSCs in adult zebra-

fish brains with a probabilistic model, we observe a preference

for the positive influence model with a rather large interaction

radius of 100 mm or 6 neighboring cells, respectively. The

weak influence strength of 1.15 and 1.17, respectively, (a

strength of g 5 1 corresponds to random patterns) fits to the

visual impression that S-phase NSCs are neither strongly clus-

tered, nor particularly regular spaced on the zebrafish hemi-

spheres. Our approach quantifies this impression, by taking

the heterogeneous distribution of NSCs into account. Ran-

dom spatial distributions of cells entering cell cycle have been

observed in other systems, such as the ear epidermis (27,28).

Individual stochastic cellular behavior resulting in a controlled

Table 2. We identify around 2.5% of S-phase NSCs in each of the

six hemispheres

HEMISPHERE ID NSCS S-PHASE NSCS

FRACTION OF

S-PHASE NSCS

Exp1L 2399 67 2.79%

Exp1R 2046 56 2.74%

Exp2L 3195 46 1.44%

Exp2R 3017 56 1.86%

Exp3L 1458 56 3.84%

Exp3R 1482 42 2.83%

NSCs have been automatically identified using SCIP,

S-phase NSCs have been additionally manually verified.

Figure 6. Model inference on simulated data works for a variety of radii r based on the surface distance dS (A) and strengths g (B). For

each parameter set, we simulated 30 spatial pattern on each of the six hemisphere and find the maximum likelihood estimate [Eq. (3)].

Box boundaries indicate the 25th and 75th percentile, respectively, the black line within the box marks the median. Whiskers above and

below the box include points that are not outliers.
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growth of organs has been also observed in the retina (29), in

the intestinal crypts (30), or in Arabidopsis sepals (31). The

emergence of tissue with regular size and organization from

unpredictable individual cell behavior, therefore, seems to be

a robust strategy for tissue maintenance. However, the mecha-

nisms regulating the amount of cycling NSCs have to be fur-

ther investigated. Based on our present analysis, we detect

randomness, but we cannot reject more complicated models

with, for example, a large heterogeneity in cell cycle times, or

a spatiotemporal dependence of NSCs entering cell cycle.

Our single-cell identification pipeline concatenates existing

bioimage informatics processing steps and implicitly fits a 2D sur-

face. While for the present study we compared our approach only

to two other basic cell identification methods, recently proposed

approaches could help identify single cells in challenging in vivo

setting [see e.g., Arteta et al. (32) or Cireşan et al. (33)]. In the

future, we would like to extend our approach to the segmentation

of single cells, supplemented by a morphological analysis that

might also allow for functional predictions (34). It would be

interesting to see if cells in S-Phase can be inferred from the mor-

phology of the GFP signal alone, and how strong cell positions

correlate with morphological features.

A more detailed analysis would require a spatiotemporal

analysis of division patterns also with other spatial statistics

methods like Ripley’s K (35) or the pair correlation function

(36) to test the existence of between-timepoint influence.

Overall it will be important in the future to decipher the

mechanisms of synchronization of stem cells activity, to

understand how groups of cells coordinate their recruitment.

In this regard, comparing patterns between young and old

animals might help to understand the mechanisms of stem

cell depletion during aging.
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Figure 7. Evaluation of SCIP. We use manually (by P.C.) identified NSCs in different image regions on the 2D maximum intensity projec-

tion as ground truth (green circles). We evaluate SCIP (A), the 3D object counter plugin in ImageJ (B), and Imaris (C) by comparison of the

identified cells to the manually detected ones. Scale bar: 30 mm. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. Parameter inference on 6 hemispheres finds a weak pos-

itive influence between S-phase NSCs for all three models with

surface, graph, and Euclidean distance

MODEL METRIC

RADIUS

(r)

STRENGTH

(g) LOG-LIKELIHOOD

Graph distance (dG) 6 (cells) 1.17 22466

Surface distance (ds) 100 (lm) 1.15 22467

Euclidean distance (dE) 89 (lm) 1.16 22502
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