JVI Accepted Manuscript Posted Online 15 November 2017 J. Virol. doi:10.1128/JVI.01154-17 Copyright © 2017 American Society for Microbiology. All Rights Reserved.

1	Human adenovirus infection causes the cellular MKRN1 E3 ubiquitin ligase degradation
2	involving the viral core protein pVII
3	
4	
5	Raviteja Inturi ^a , Kwangchol Mun ^a , Katrin Singethan ^b , Sabrina Schreiner ^b and Tanel
6	Punga ^a #
7	
8	Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala,
9	Sweden ^a ; Institut für Virologie, Technische Universität München/Helmholtz Zentrum
10	München, München, Germany ^b
11	
12	
13	Running Head: Inactivation of the MKRN1 protein by human adenovirus
14	
15	#Address correspondence to Tanel Punga, Tanel.Punga@imbim.uu.se
16	
17	Abstract word count: 223
18	Text word count: 5340
19	
20	

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

22 ABSTRACT

23	Human adenoviruses (HAdVs) are common human pathogens encoding a highly
24	abundant histone-like core protein VII, which is involved in nuclear delivery and
25	protection of viral DNA as well as in sequestering immune danger signals in infected
26	cells. The molecular details of how protein VII acts as a multifunctional protein have
27	remained to a large extent enigmatic. Here we report the identification of several cellular
28	proteins interacting with the precursor pVII protein. We show that the cellular E3
29	ubiquitin ligase MKRN1 is a novel precursor pVII interacting protein in HAdV-C5-
30	infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal
31	degradation during the late phase of HAdV-C5 infection in various human cell lines. The
32	MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6
33	proteins. We provide experimental evidence that the precursor pVII protein binding
34	enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is
35	deficient in this function. Based on these data, we propose that the pVII protein binding
36	promotes MKRN1 self-ubiquitination followed by proteasomal degradation of the
37	MKRN1 protein in HAdV-C5-infected cells. In addition, we show that measles virus and
38	vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the
39	recipient cells. Taken together, our results expand the functional repertoire of the HAdV-
40	C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential
41	common target during different virus infections.
12	

42

43

Journal of Virology

44 IMPORTANCE

45	Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases.
46	To achieve pathogenicity HAdVs have to counteract a variety of host cell antiviral
47	defense systems, which would otherwise hamper virus replication. In this study, we show
48	that the HAdV-C5 histone-like core protein pVII binds to and promotes self-
49	ubiquitination of a cellular E3 ubiquitin ligase named as MKRN1. This mutual
50	interaction between the pVII and MKRN1 proteins may prime MKRN1 for proteasomal
51	degradation because the MKRN1 protein is efficiently degraded during the late phase of
52	HAdV-C5 infection. Since the MKRN1 protein accumulation is also reduced in measles
53	virus and vesicular stomatitis virus infected cells, our results signify the general strategy
54	of viruses to target MKRN1.

55

56

57 INTRODUCTION

58	Human adenoviruses (HAdVs) are common pathogens and their infections cause a wide
59	range of diseases including respiratory illness, keratoconjunctivitis and gastroenteritis (1,
60	2). HAdVs are non-enveloped viruses with a linear double-stranded DNA genome
61	embedded in a protective viral core structure. Inside the core, HAdV DNA associates
62	with the viral proteins V, VII, Mu, terminal protein, and DNA-dependent adenovirus
63	proteinase (Avp) (3). Protein VII is expressed during the late phase of infection and it
64	accumulates as a precursor polypeptide, designated as the pVII protein (4). The precursor
65	pVII protein undergoes site-specific Avp-dependent cleavage to form the mature VII
66	protein during the final steps of virus maturation (5-9). This proteolytic cleavage step
67	assures proper condensation of viral DNA and proteins within the HAdV core (10, 11).
68	The Avp cleavage may also control protein stability, as compared to precursor pVII,
69	mature VII is resistant to proteasomal degradation by cellular Cullin-3-based E3 ubiquitin
70	ligase complexes (12).
71	Due to its histone-like characteristics, the mature VII protein is able to assemble
72	viral DNA into nucleosome-like structures (11, 13-16). Although protein VII is not
73	required to condense viral DNA within the capsid, lack of it blocks productive virus
74	infection (17). Several functions have been assigned to protein VII due to its interaction
75	with DNA. The mature VII promotes nuclear import of viral DNA (18-20) and protects
76	incoming viral DNA from the cellular DNA damage response (21). Protein VII can also
77	introduce changes into virus genome structure. This involves gradual loss of the mature
78	VII protein from virus DNA during the transition from the early to the late phase of
79	infection. Here, the reduced VII binding correlates with increased nucleosomal histone

80

81	activating factor TAF-1 β (also known as SET) to remodel the virus genome and to
82	increase accessibility to transcription factors (24-26). Since protein VII interacts with
83	DNA it can have both negative and positive effects on target gene expression (22, 27). In
84	addition to viral DNA, the mature protein VII also associates with host cell chromatin. By
85	binding to cellular nucleosomes, mature VII alters the cellular HMGB1 and HMGB2
86	protein functions on the host cell chromatin and thereby suppresses cellular inflammatory
87	signaling (28). Binding of mature VII to cellular chromatin can also inhibit the DNA
88	damage response on the host genome (29).
89	Covalent attachment of the ubiquitin moiety by the E3 ubiquitin ligases to
90	substrate proteins can lead to proteolytic degradation via the ubiquitin-proteasome system
91	(UPS) (30). Viruses, such as HAdV, often target UPS to achieve efficient replication in
92	host cells (reviewed in (31-33)). This is exemplified by HAdV E1B55K/E4orf6 protein
93	complexes, which by recruiting Cullin-based E3 ubiquitin ligases, promote proteasomal
94	degradation of the cellular p53, Mre11, DNA ligase IV, integrin α 3, Tip60, ATRX, Daxx
95	and SPOC1 proteins (34-40).
96	The Makorin ring finger protein 1 (MKRN1) gene was first reported as an intron-
97	containing source gene for the Makorin ring finger (MKRN) gene family. This conserved
98	protein contains several zinc finger motifs and a single RING finger domain (41).
99	MKRN1 functions as an E3 ubiquitin ligase since it contains a functional RING finger
100	domain at the C-terminus of the protein (42). Several cellular proteins, including hTERT,
101	p53, p21, PPARγ, p14ARF, FADD, PTEN, are known substrates for MKRN1-mediated
102	ubiquitination and proteasomal degradation (42-47). Also viral proteins, such as West

accumulation on viral DNA (22, 23). Protein VII can also recruit cellular template

 \sum

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

Journal of Virology

103

103	Nile virus (WNV) and porcine circovirus type 2 (PCV2) capsid proteins, interact with
104	MKRN1 (48, 49). Only WNV capsid protein (WNVCp) has been shown to be
105	ubiquitinated and degraded by the proteasome in a MKRN1-dependent manner (48). The
106	MKRN1 protein has also been characterized as an RNA-binding protein with potential to
107	regulate RNA metabolism in mouse embryonic stem cells (50). Further, MKRN1 can
108	repress transcription on different cellular promoters independently of its described E3
109	ligase activity (46, 51).
110	Even though protein VII has been extensively characterized as a virus DNA-
111	binding protein, not much is known about its interactions with cellular proteins.
112	Considering its essential role during productive infection (17), it is reasonable to assume
113	that protein VII interacts with a variety of cellular proteins. This study was undertaken to
114	identify novel precursor pVII interacting proteins and to elucidate the functional
115	consequences of these interactions.
116	
117	RESULTS
118	
119	Identification of precursor pVII interacting proteins
120	To identify cellular proteins specifically interacting with HAdV-C5 precursor pVII
121	protein, we performed a yeast two-hybrid (Y2H) screening experiment. The precursor

- 122 pVII protein (hereafter referred to as pVII(wt)) was used as the bait to screen the human
- 123 lung cancer cell line cDNA library. Sequencing of the cDNA clones identified 13
- 124 potential proteins interacting with the precursor pVII protein (Table 1). The identified
- 125 proteins were further grouped based on their Predicted Biological Score (PBS, see

 \leq

Materials and Methods). The proteins having the highest number of clones and the best
PBS score were C1QBP, SET, HMGB2, HMGB3. In addition, the Y2H screen recovered
clones with lower PBS scores, such as SETSIP, ZNF622, CHD3, MKRN1, BAZ1A,
CTPS1, RACK1. The specificity of our Y2H screen was strengthened by the observation
that the SET, HMGB2 and HMGB3 proteins have been previously shown to bind the
mature VII protein (hereafter referred to as $pVII(\Delta 24)$) in HAdV-infected cells (28, 52).
To validate the Y2H screen results, we performed a proximity ligation assay (PLA) in
HeLa cells expressing the precursor pVII-Flag protein (hereafter referred to as pVII(wt)-
Flag) after doxycycline treatment. PLA was performed with the antibodies against some
of the identified proteins (Table 1) and with an anti-Flag-antibody to detect protein-
protein interactions in cells. All the tested proteins showed detectable proximity ligation
in the pVII(wt)-Flag protein expressing cells (Fig. 1). Further quantification confirmed
that proximity ligation of the HMGB2, C1QBP, MKRN1, SET, BAZ1A, CHD3 proteins
with pVII(wt)-Flag protein was above the background signal obtained with an irrelevant
antibody in the control reaction.
Since the pVII(wt) protein stability can be controlled by UPS (12), we
concentrated our efforts on the identified E3 ubiquitin ligase MKRN1 and its interference
with the pVII(wt) protein.
The precursor pVII protein interacts with MKRN1 in HAdV-C5-infected cells
To study whether MKRN1 interacts with pVII(wt) during HAdV-C5 infection, we

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

147	generated a replication	n-competent HAdV-0	C5 virus expressing	Flag-epitope	containing
-----	-------------------------	--------------------	---------------------	--------------	------------

pVII protein (hereafter referred to as HAdV-pVII-Flag). This virus was used to infect

lournal of Virology

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszent	
ц Ц	

149	H1299 cells followed by immunoprecipitation of the pVII(wt)-Flag protein 20 h post
150	infection (hpi). The results confirmed that pVII(wt)-Flag interacts with the endogenous
151	MKRN1 protein in virus-infected cells and that this interaction was enhanced in the
152	presence of proteasome inhibitor MG132 (Fig. 2A, lanes 4 to 6). To show the assay
153	specificity, we confirmed that pVII(wt)-Flag interacted with HMGB2, a previously
154	established protein VII interactor (28) (Fig. 2A, WB:HMGB2). In contrast, an abundant
155	HAdV-C5 early protein, E1A, did not show detectable binding to the pVII-Flag protein in
156	our experimental system (Fig. 2A, WB:E1A). Both precursor pVII (pVII(wt)) and mature
157	VII (pVII($\Delta 24$)) (12) proteins are present in HAdV-C5-infected cells (53). Mature VII is
158	generated from precursor pVII after Avp proteolytic cleavage of the propeptide module
159	(7, 8). To study if the propeptide module (amino acids 1-24 in HAdV-C5) influences the
160	precursor pVII protein binding to MKRN1, we performed co-immunoprecipitation
161	experiments with H1299 cell lysates expressing the pVII(wt)-Flag or pVII($\Delta 24$)-Flag
162	proteins in presence of HA-MKRN1(wt). As shown in Fig. 2B, the lack of propeptide
163	sequence in pVII($\Delta 24$) reduced the protein binding to HA-MKRN1(wt) (lanes 5 and 6).
164	A similar result was observed with the GST pull-down experiment where GST-pVII($\Delta 24$)
165	showed reduced binding to Flag-MKRN1 when compared to GST-pVII(wt) (Fig. 2C). In
166	order to identify which region(s) of the MKRN1 protein interact with pVII, different HA-
167	tagged MKRN1 deletion mutant proteins were constructed (Fig. 2D). The GST pull-down
168	experiment with H1299 cell lysates expressing the HA-MKRN1 proteins revealed that
169	both N-terminal (amino acids 1-267) and C-terminal (112-482) MKRN1 regions were
170	able to bind to GST-pVII(wt) (Fig. 2E). Since the HA-MKRN1(112-267) protein was

deficient in binding to pVII (Fig. 2E, lane 11), it is likely that HA-MKRN1 amino acid
regions 1-111 and 268-482 provide interaction surface for the pVII(wt) protein.

173

174	The MKRN1 protein undergoes proteasomal degradation in HAdV-C5-infected cells
175	Since HAdV infections cause proteasomal degradation of several host proteins (reviewed
176	in (31-33)), it became of interest to evaluate the steady state level of the endogenous
177	MKRN1 protein in HAdV-C5-infected cells. H1299 cells were infected with HAdV-C5
178	and the endogenous MKRN1 protein was monitored during a 48 h infection time course.
179	The MKRN1 protein was undetectable from 20 hpi and onwards, overlapping with virus
180	capsid protein accumulation in the infected H1299 cells (Fig. 3A). To establish if the
181	MKRN1 protein disappearance was due to its proteasomal degradation, HAdV-C5-
182	infected H1299 cells were treated with MG132. The MKRN1 protein levels were restored
183	in the MG132 treated cells (Fig. 3B, lanes 3 and 4), indicating that the protein undergoes
184	proteasomal degradation in HAdV-C5-infected cells. This is further supported by the
185	observation whereby MKRN1 mRNA accumulation was not affected in infected H1299
186	cells (Fig. 3C). To test if the observed MKRN1 disappearance correlated with
187	accumulation of the pVII protein during infection, H1299 cells were infected with the
188	HAdV-pVII-Flag virus. As shown in Fig. 3D, expression of pVII from 16 hpi and
189	onwards correlated with reduced accumulation of the MKRN1 protein. MKRN1
190	disappearance was not H1299 cell line specific since similar effect was observed in
191	HAdV-C5-infected A549, U2OS and HEK293 cell lines (Fig. 3E). Taken together, our
192	results indicate that MKRN1 undergoes proteasomal degradation during the late phase of
193	infection in various HAdV-C5-infected cell lines.

 \leq

The MKRN1 protein degradation is independent of the E1B55K and E4orf6 proteins

197	HAdVs encode the E1B55K and E4orf6 proteins, which by binding to Cullin-based E3
198	ubiquitin ligases induce proteasomal degradation of cellular proteins in infected cells. To
199	investigate whether MKRN1 degradation is dependent on the E1B55K and E4orf6
200	proteins, Flag-tagged versions of both proteins were transiently overexpressed in H1299
201	cells. As shown in Fig. 4A, endogenous MKRN1 was not affected by expression of the
202	Flag-E1B55K and/or Flag-E4orf6 proteins. In the same experiment, a well-known
203	E1B55K/E4orf6 target protein, Mre11 (40), was downregulated (Fig. 4A, lanes 4 and 8,
204	see also the quantification). To further demonstrate that proteasomal degradation of
205	MKRN1 occurs independently of the E1B55K/E4orf6 complex, H1299 cells were
206	infected with wild-type HAdV-C5 and E1B55K-deleted, dl1520, virus (54). The MKRN1
207	protein levels were reduced by both virus infections, whereas the Mre11 protein was
208	affected only in wild-type virus-infected cells (Fig. 4B). Taken together, our data suggest
209	that proteasomal degradation of MKRN1 in HAdV-infected cells occurs independently of
210	the E1B55K/E4orf6 protein complex.
211	
212	The pVII(wt) protein enhances MKRN1 protein self-ubiquitination
213	The MKRN1 protein binds to the substrate proteins via the C-terminal RING finger

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

domain to promote target protein ubiquitination and proteasomal degradation (42, 48). In

215 addition, MKRN1 undergoes self-ubiquitination and proteasomal degradation, which may

216 control its activity in cells (42, 55). Since pVII(wt) interacts with MKRN1 via the RING

217

218

219	unable to detect MKRN1-dependent pVII(wt) ubiquitination (data not shown). The
220	observation that pVII(wt) binds also to N-terminal part of MKRN1 (Fig. 2E) urged us to
221	test whether this viral protein has any impact on the MKRN1 E3 ubiquitin ligase activity.
222	Expression of the precursor pVII(wt)-Flag protein enhanced MKRN1 ubiquitination in
223	His-ubiquitin expressing H1299 cells when analyzed with nickel pull-down experiment
224	(Fig. 5A, lanes 2 to 3). Enhanced MKRN1 ubiquitination was specific to the pVII(wt)-
225	Flag protein since basal MKRN1 ubiquitination remained the same in cells expressing the
226	mature VII (pVII($\Delta 24$)) protein (Fig. 5A, lanes 2 and 4). The inability of pVII($\Delta 24$) to
227	enhance MKRN1 ubiquitination is probably due to reduced binding of the pVII($\Delta 24$)
228	protein to MKRN1 (Figs. 2B and 2C). Further, the specificity of experiment was
229	confirmed by the lack of ubiquitination in cells expressing the MKRN1(1-267) protein
230	(Fig. 2D), which lacks the RING finger domain (Fig. 5A, lanes 5-8). Previous studies
231	have shown that mutation of the histidine residue at position 307 (H307E) in the RING
232	finger domain (Fig. 2D) blocks MKRN1 ability to ubiquitinate the substrate proteins (42,
233	46). The MKRN1(H307E) protein itself was ubiquitinated in our in vivo ubiquitination
234	experiment in H1299 cells (Fig. 5B, lanes 3 and 7), suggesting that MKRN1(H307E) can
235	serve as a substrate for ubiquitination. In contrast to HA-MKRN1(wt) (Fig. 5B, lanes 3 to
236	5), ubiquitination of the HA-MKRN1(H307E) protein was not enhanced by the pVII(wt)-
237	Flag protein (Fig. 5B, lanes 7 to 9). This discrepancy was not due to different affinity of
238	the MKRN1 proteins, as both HA-MKRN1(wt) and HA-MKRN1(H307E) bound equally
239	well to pVII(wt)-Flag (Fig. 5C). The observation that MKRN1(H307E) was ubiquitinated

finger domain (Fig. 2E), our initial logical follow-up was to test if the pVII(wt) protein

was ubiquitinated in an MKRN1-dependent manner. Despite several attempts we were

240	in our experiments urged us to further study the details of this particular mutation. We
241	performed in vitro ubiquitination experiments with the purified E1 (His-UbE1), E2
242	UbcH5a) and E3 (GST-MKRN1) proteins, which revealed that the MKRN1(H307E)
243	protein is defective in self-ubiquitination (Fig. 5D, lanes 2 and 4). Since the pVII(wt)
244	protein did not promote MKRN1(H307E) self-ubiquitination (Fig. 5B), we hypothesize
245	that this mutant protein might be more stable in HAdV-C5-infected cells when compar
246	to the wild-type protein. To test this hypothesis, we infected H1299 cells expressing
247	either the HA-MKRN1(wt) or HA-MKRN1(H307E) protein with HAdV-pVII-Flag vin
248	and blocked <i>de novo</i> protein synthesis with cycloheximide. As shown in Fig. 5E, the H
249	MKRN1(wt) protein showed faster decay in the presence of cycloheximide compared
250	the HA-MKRN1(H307E) protein suggesting that the latter is resistant to proteasomal

Accepted Manuscript Posted Online

Journal of Virology

251 degradation in virus-infected H1299 cells. Collectively, our data indicate that pVII(wt),

252 but not pVII($\Delta 24$), enhances the MKRN1 protein self-ubiquitination.

253

254 Downregulation of MKRN1 is not limited to HAdV-C5 infection

255 Considering the effective elimination of MKRN1 in HAdV-C5-infected cells (Fig. 3), we 256 hypothesized that MKRN1 might also be affected in cells infected with other pathogenic 257 viruses. Therefore, we analyzed MKRN1 accumulation in permissive cells infected with 258 HIV-1 (human immunodeficiency virus type 1), HCV (hepatitis C virus), MV (measles 259 virus), VSV (vesicular stomatitis virus) and HBV (hepatitis B virus). The MKRN1 260 protein levels were reduced in MV- and VSV-infected cells, whereas the HIV-1, HCV 261 and HBV infections did not considerably affect the MKRN1 protein levels (Fig. 6).

262

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

Accepted Manuscript Posted Online

264

265	The HAdV mature VII protein has long been considered as a virus genome organizing
266	factor (14). Although mature VII is not required to condense DNA within the capsid, it is
267	essential for productive infection (17). The present study along with the recent elegant
268	reports from Weitzman (28, 29) and Hearing laboratories (17), are the latest progressive
269	attempts to elucidate the important functions of pVII protein in HAdV-infected cells.
270	In this report, we aimed to identify novel precursor pVII(wt) interacting proteins
271	and to relate the identified interactors with yet uncharacterized functions of the pVII
272	protein. We found that the pVII(wt) protein interacts with the CHD3 and BAZ1A
273	proteins (Table 1 and Fig. 1), which are both involved in chromatin remodeling (56, 57).
274	Considering the reported activities of the protein VII on gene expression (22, 27) and
275	chromatin structure regulation (13, 15, 28), it is theoretically possible that pVII(wt)
276	interaction with the CHD3 and BAZ1A proteins is needed to achieve optimal pVII-
277	dependent chromatin remodeling in HAdV-infected cells. In addition, we identified two
278	other chromatin structure regulating proteins, HMGB2 and HMGB3, as the pVII(wt)
279	interacting proteins. This finding is in line with a recent report where the mature protein
280	VII was shown to interact with the HMGB1, HMGB2 and HMGB3 proteins in A549
281	cells (28). Even though the mature VII impacts on antiviral responses by altering the
282	HMGB1 and HMGB2 protein functions on the host cell chromatin, the functional impact
283	of the pVII(wt) protein on HMGB3 remains to be tested.
284	One of the identified pVII(wt) interacting proteins in the Y2H screen was the E3
285	ubiquitin ligase MKRN1 (Table 1). Since we have previously shown that the precursor

 $\overline{\leq}$

Journal of Virology

286	pVII protein is targeted for proteasomal degradation (12), we hypothesized that MKRN1
287	might be the E3 ubiquitin ligase mediating pVII(wt) ubiquitination and its subsequent
288	proteasomal degradation. Even though MKRN1 transient overexpression reduced
289	pVII(wt) protein levels in a proteasome-dependent manner, we were unable to confirm
290	that the pVII(wt) protein was directly ubiquitinated by MKRN1 (data not shown).
291	Instead, our detailed analysis revealed that MKRN1 undergoes proteasomal degradation
292	during the late phase of infection in various human cell lines (Fig. 3). In this regard,
293	MKRN1 degradation in HAdV-C5-infected cells is unusual as it does not rely on the
294	E1B55K and E4orf6 proteins (Fig. 4), which are well-characterized viral proteins
295	targeting multiple cellular proteins for proteasomal degradation in HAdV-infected cells
296	(31-33). Based on our protein-protein interaction experiments and observation that
297	MKRN1 degradation correlated with onset of the HAdV late protein accumulation (Figs.
298	2 and 3), we hypothesized that the pVII(wt) protein might be involved in MKRN1
299	stability regulation. Previous studies have revealed that MKRN1 interacts with its target
300	proteins, such as p53 and WNVCp, via the C-terminal RING finger domain to assure
301	substrate protein ubiquitination and subsequent proteasomal degradation (46, 48). Our
302	observation that pVII(wt) interacts with both MKRN1 N- and C-terminal regions
303	suggested that pVII(wt) interference with MKRN1 may not follow a typical enzyme-
304	substrate interaction leading to a substrate protein, such as pVII(wt), ubiquitination and
305	degradation. This was supported by the observation that the precursor pVII protein
306	enhanced MKRN1 self-ubiquitination, whereas the mature VII, which showed reduced
307	binding to MKRN1, was deficient in this function (Figs. 5A and 5B). Therefore, we
308	propose a model whereby during the late phase of infection the precursor pVII protein

Σ

309	saturates both the N- and C-terminal binding sites on MKRN1, which in turn leads to
310	MKRN1 self-ubiquitination. This dual binding mode can be due to the increased
311	pVII(wt) protein concentration during the late phase of infection. Alternatively, since the
312	pVII protein is extensively modified by phosphorylation and acetylation (28, 58), it is
313	possible that these post-translational modifications increase pVII(wt) affinity towards
314	MKRN1. Our model suggests that precursor pVII may display separate functions from
315	mature VII. This novel function assigned to precursor pVII may explain why the cleavage
316	of the propeptide module occurs only during the final steps of virus particle maturation.
317	Hypothetically, early cleavage of the precursor pVII to mature VII protein will not cause
318	MKRN1 proteasomal degradation as the mature VII is deficient in promoting MKRN1
319	self-ubiquitination. Although the precursor pVII induces MKRN1 self-ubiquitination,
320	expression of pVII(wt) alone, outside of the virus-infection context, was not sufficient to
321	cause MKRN1 proteasomal degradation (data not shown). This observation implies that
322	even though the precursor pVII protein enhances MKRN1 self-ubiquitination, there is a
323	need for an additional, yet-unknown factor in HAdV-C5-infected cells to achieve
324	MKRN1 proteasomal degradation.
325	We also found that two other pathogenic viruses, MV and VSV, affected MKRN1
326	protein accumulation in their respective recipient cells (Fig. 6). Three different virus
327	infections (HAdV-C5, MV, VSV) downregulate the MKRN1 protein accumulation
328	(present study) and at least two other viruses (WNV, PCV2) encode for the proteins
329	interacting with MKRN1 (48, 49). Further, the observation that MKRN3 restricts HIV-1
330	infection in human cells may indicate the involvement of different MKRN gene family
331	members in controlling virus infections (59). This broad targeting raises an important

 \sum

Σ

332	question why different viruses impede MKRN1 functions. It is theoretically possible that
333	downregulation of the MKRN1 protein is beneficial for optimal virus growth since
334	MKRN1 may affect viral protein ubiquitination, gene transcription and RNA metabolism.
335	Further studies are needed to reveal the exact role of the MKRN1 and its family members
336	in various virus infections.
337	In conclusion, our novel findings expand the functional repertoire of the precursor
338	pVII protein in lytic HAdV-C5 infection and highlight MKRN1 as a common target
339	protein during different virus infections.
340	
341	
342	MATERIALS AND METHODS
343	Plasmids, siRNAs and cell lines
344	Human MKRN1 (NM_013446) GenEZ ORF Clone (GenScript, Inc) was cloned into
345	pcDNA3.1-HA and pcDNA3.1-Flag plasmids to express HA- and Flag-tagged MKRN1
346	proteins. In the same plasmid background, MKRN1 point mutant (H307E) and deletion
347	mutants (1-267, 112-267, 112-482) were generated using QuikChange Lightning Site-
348	Directed Mutagenesis Kit (Agilent Technologies) and PCR-mediated DNA deletion,
349	respectively. To express the GST-MKRN1 proteins, the wild-type (1-482), point mutant
350	(H307E) and deletion mutant (1-267) sequences were cloned into the pGEX-6P-1 (GE
351	Healthcare Life Sciences) plasmid. The plasmid expressing Flag-E1B55K was generated
352	by recloning the HAdV-C2 E1B55K cDNA from the pCMVE1B55K plasmid (60) into
353	the pcDNA3.1-Flag plasmid. The plasmids expressing HAdV-C5 Flag-E4orf6 (61) and
354	6xHis-ubiquitin (62) were kindly provided by Drs. Paola Blanchette and Dimitris

Posted Online		
script	355	Xirodimas, respectively. The plasmids encoding codon-optimized GST-pVII(wt), GST-
anu	356	pVII($\Delta 24$), pVII(wt)-Flag and pVII($\Delta 24$)-Flag proteins have been described before (12)
X	357	The H1299, HEK293, A549 and U2OS cell lines were originally obtained from
otec	358	the American Type Culture Collection (ATCC). All cell lines were grown in Dulbecco's
	359	Modified Eagle Medium (DMEM, Invitrogen) supplemented with 10% fetal calf serum
Ă	360	(FCS, PAA) and penicillin-streptomycin (PEST) solution (Gibco) in a 7% CO_2
	361	containing cell incubator. Stable HeLa cell line expressing codon-optimized pVII(wt)-
	362	Flag was generated using the Flp-In [™] recombination system in the HeLa-Flp-In T-Rex
	363	cell line (63). All transfections were performed using Turbofect TM transfection reagent
	364	(Thermo Scientific) according to the manufacturer's instructions.
	365	
rology	366	HAdV-C5 infections
l of Vi	367	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof.
lourna	368	Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-compete

356	$pVII(\Delta 24)$, $pVII(wt)$ -Flag and $pVII(\Delta 24)$ -Flag proteins have been described before (12).
357	The H1299, HEK293, A549 and U2OS cell lines were originally obtained from
358	the American Type Culture Collection (ATCC). All cell lines were grown in Dulbecco's
359	Modified Eagle Medium (DMEM, Invitrogen) supplemented with 10% fetal calf serum
360	(FCS, PAA) and penicillin-streptomycin (PEST) solution (Gibco) in a 7% CO_2
361	containing cell incubator. Stable HeLa cell line expressing codon-optimized pVII(wt)-
362	Flag was generated using the Flp-In [™] recombination system in the HeLa-Flp-In T-Rex
363	cell line (63). All transfections were performed using Turbofect TM transfection reagent
364	(Thermo Scientific) according to the manufacturer's instructions.
365	
366	HAdV-C5 infections
367	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof.
367 368	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof. Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competent
367 368 369	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof. Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competent HAdV-C5 expressing the pVII-Flag fusion protein (HAdV-pVII-Flag) was generated
367 368 369 370	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof. Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competent HAdV-C5 expressing the pVII-Flag fusion protein (HAdV-pVII-Flag) was generated using pTG3602 as background viral DNA (64). The pTG3602 plasmid was co-
367 368 369 370 371	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof. Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competent HAdV-C5 expressing the pVII-Flag fusion protein (HAdV-pVII-Flag) was generated using pTG3602 as background viral DNA (64). The pTG3602 plasmid was co- transformed with linearized donor DNA containing the HAdV-C5 pVII sequence fused
 367 368 369 370 371 372 	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof. Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competent HAdV-C5 expressing the pVII-Flag fusion protein (HAdV-pVII-Flag) was generated using pTG3602 as background viral DNA (64). The pTG3602 plasmid was co- transformed with linearized donor DNA containing the HAdV-C5 pVII sequence fused in-frame with the Flag-epitope tag sequence and chloramphenicol resistance gene into <i>E</i> .
 367 368 369 370 371 372 373 	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof. Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competent HAdV-C5 expressing the pVII-Flag fusion protein (HAdV-pVII-Flag) was generated using pTG3602 as background viral DNA (64). The pTG3602 plasmid was co- transformed with linearized donor DNA containing the HAdV-C5 pVII sequence fused in-frame with the Flag-epitope tag sequence and chloramphenicol resistance gene into <i>E.</i> <i>coli</i> BJ5183 cells (Agilent Technologies). Following the recombination, the positive
 367 368 369 370 371 372 373 374 	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof. Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competent HAdV-C5 expressing the pVII-Flag fusion protein (HAdV-pVII-Flag) was generated using pTG3602 as background viral DNA (64). The pTG3602 plasmid was co- transformed with linearized donor DNA containing the HAdV-C5 pVII sequence fused in-frame with the Flag-epitope tag sequence and chloramphenicol resistance gene into <i>E.</i> <i>coli</i> BJ5183 cells (Agilent Technologies). Following the recombination, the positive clones were selected with chloramphenicol and analyzed with PCR and sequencing. After
 367 368 369 370 371 372 373 374 375 	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof.Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competentHAdV-C5 expressing the pVII-Flag fusion protein (HAdV-pVII-Flag) was generatedusing pTG3602 as background viral DNA (64). The pTG3602 plasmid was co-transformed with linearized donor DNA containing the HAdV-C5 pVII sequence fusedin-frame with the Flag-epitope tag sequence and chloramphenicol resistance gene into <i>E.</i> coli BJ5183 cells (Agilent Technologies). Following the recombination, the positiveclones were selected with chloramphenicol and analyzed with PCR and sequencing. Afterremoval of the chloramphenicol resistance gene with SwaI restriction enzyme cleavage,
 367 368 369 370 371 372 373 374 375 376 	The following viruses were used: wild-type HAdV-C5 (generously provided by Prof.Göran Akusjärvi) and E1B55K-deficient HAdV-C2 (dl1520) (54). Replication-competentHAdV-C5 expressing the pVII-Flag fusion protein (HAdV-pVII-Flag) was generatedusing pTG3602 as background viral DNA (64). The pTG3602 plasmid was co-transformed with linearized donor DNA containing the HAdV-C5 pVII sequence fusedin-frame with the Flag-epitope tag sequence and chloramphenicol resistance gene into <i>E.</i> coli BJ5183 cells (Agilent Technologies). Following the recombination, the positiveclones were selected with chloramphenicol and analyzed with PCR and sequencing. Afterremoval of the chloramphenicol resistance gene with SwaI restriction enzyme cleavage,the plasmid was amplified and cleaved with PacI restriction enzyme to remove the

 \sum

378

379

380 were done as described previously (65). The multiplicity of infection (FFU/cell; 381 fluorescence forming units/per cell) is indicated in the respective figure legends. 382 383 Other virus infections 384 HCV: Huh7.5 cells were infected in 12-well plates for 48 h using the HCV genotype 2a 385 strain clone pFK-JFH1/J6/C-846-dg (pFK-JC1) at MOI of 0.5. Cells were lysed in lysis 386 buffer (0.5 % NP-40, 5M NaCl, 0.5 mM EDTA, 1M Tris-HCl [pH 7.5], 0,075g EGTA, 387 1% Triton X-100, 10% Glycerol, 10mM Na₄P₂O₇ in 50 ml) containing cOmplete protease 388 inhibitors (Roche). HBV: HepaRG cells were cultured in Williams medium containing 389 10% FCS (ThermoFisher Scientific) and 1% PEST, 1% non-essential amino acids, 390 2mmol/L L-glutamine and 1% of sodium pyruvate (all from GIBCO), Insulin Rapid 391 (Sanofi Aventis), Gentamycin (Ratiopharm), Hydrocortison (Pfizer Inc.,). For

HEK293 cells using TurbofectTM reagent. The HAdV-pVII-Flag virus was amplified in

911 cells and purified by CsCl gradient centrifugation. Virus infections and titrations

392 differentiation 1.8% of DMSO was added to the growth media. HepaRG cells were

393 differentiated for a time period of four weeks. Infection was carried out using HBV at Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

394 MOI of 200 for 24 h and washed the following day. Cells were lysed as indicated above

395 12 days post-infection. MV: Vero cells were plated in 12-well plates and infected with

396 rMVrEdt-eGFP (kindly provided by Prof. Bert Rima, (66) and Prof. Jürgen Schneider-

397 Schaulies) at MOI of 0.1. Cells were lysed 48 hpi as indicated above. VSV: Huh7.5 cells 398 were plated in 12-well plates and infected with VSV* $\Delta G(LCMVgp)$ at MOI of 0.6 (kind 399 gift of Prof. Dr. Gert Zimmer, (67)). Cells were lysed 18 hpi as indicated above. As both 400 MVeGFP and VSV* $\Delta G(LCMVgp)$ express GFP, the infections were confirmed with

fluorescence monitoring using an inverted microscope CKX41 (Olympus) with an
LCachN/10X/0.40 Phc/1/FN22 UIS objective (Fig. S4). <u>HIV-1</u>: LC5-RIC cells were
infected with HIV-1 LAI Infectious Molecular Clone (pLAI.2) (68) and lysed 48 hpi as
indicated above.

405

406 Antibodies and chemicals

407 The following primary antibodies were used: anti-mouse Flag (Sigma, M2, F1804), anti-

408 rabbit Flag (Sigma, F7425), anti-rabbit HA (Santa Cruz, sc-805), anti-rabbit HMGB2

409 (Abcam, ab67282), anti-mouse C1QBP (Santa Cruz, sc-23885), anti-rabbit MKRN1

410 (Bethyl laboratories, A300-990A), anti-rabbit SET (Novus bio, NBP1-30888), anti-rabbit

411 ACF1(BAZ1A) (Novus bio, NB100-61042), anti-rabbit CHD3 (Novus bio, NB100-

412 60412), anti-mouse GAPDH (Ambion, Am4300), anti-mouse Mre11 (Abcam, ab214),

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

413 anti-mouse His (Clontech, 631212), anti-mouse ubiquitin (FK2, Enzo BML-PW8810),

414 anti-goat Actin (Santa Cruz, sc-1616), anti-rabbit GST (Santa Cruz, sc-33614), anti-

415 mouse E1A (EMD Millipore, DP11-UG100), anti-mouse E1B55K (2A6, (69)), anti-

416 rabbit GFP (Clontech, 632376), anti-HCV core, anti-mouse HIV-1 p24 (Chemicon

417 international, MAB880-A), anti-rabbit Measles virus nucleoprotein NP (Covalab,

418 pab0035) and anti-rabbit HAdV-5 Capsid (Abcam, ab6982). To inhibit proteasome,

419 MG132 (Sigma, C2211, dissolved in DMSO) was used at a final concentration of 25 μM

420 for 4 h unless otherwise specified in the figure legends. Control cells were treated only

421 with DMSO. To inhibit protein synthesis, cells were treated with cycloheximide (Sigma,

422 C4859, dissolved in DMSO) at a final concentration of 100 µg/ml.

424 Yeast Two-Hybrid Analysis

4	425	Yeast two-hybrid screening was performed by Hybrigenics Services, S.A.S., Paris,
4	426	France (http://www.hybrigenics-services.com). The codon-optimized coding sequence
4	427	for HAdV-C5 pVII (12) was PCR-amplified and cloned into the pB29 vector as an N-
	428	terminal fusion to LexA (N-pVII-LexA-C). The generated construct was used as bait to
	429	screen a random-primed Human Lung Cancer cDNA library constructed into the pP6
	430	vector. 104 million clones (10-fold the complexity of the library) were screened using a
	431	mating approach with YHGX13 (Y187 ade2-101::loxP-kanMX-loxP, mata) and
4	432	L40 Δ Gal4 (mat α) yeast strains as previously described (70). 253 His+ colonies were
4	433	selected on a medium lacking tryptophan, leucine and histidine. The prey fragments of
4	434	the positive clones were amplified by PCR and sequenced at their 5' and 3' junctions to
	435	identify the corresponding interacting proteins in the GenBank database (NCBI). A
	436	confidence score (PBS, for Predicted Biological Score) was attributed to each interaction.
	437	The PBS relies on two different levels of analysis. First, a local score takes into account
	438	the redundancy and independence of prey fragments, as well as the distribution of reading
	439	frames and stop codons in overlapping fragments. Second, a global score takes into
	440	account the interactions found in all the screens performed at Hybrigenics using the same
	441	library. This global score represents the probability of an interaction being nonspecific.
	442	For practical use, the scores are divided into four categories, from A (highest confidence)
	443	to D (lowest confidence).
	444	

445 In situ Proximity Ligation Assay (PLA)

 \sum

doxycycline (final concentration $0.2 \ \mu g/ml$) to induce pVII(wt)-Flag protein expression
(71). Thirty-six hours post-induction the cells were washed twice with PBS, fixed with
3% paraformaldehyde for 15 min and permeabilized with 0.05% Triton in PBS for 15
min at room temperature. After blocking the cells with Duolink II blocking solution
overnight at 4°C, the slides were incubated with primary antibodies in a humidity
chamber for 1 h. Due to the antibody specificity requirement in the PLA assay, the anti-
mouse Flag antibody was combined with anti-rabbit antibodies (HMGB2, MKRN1, SET,
BAZ1A, CHD3). An exception was anti-mouse C1QBP antibody, which was combined
with anti-rabbit Flag antibody. The slides were washed 3×5 min with TBS-T (TBS +
0.05% Tween 20) prior to incubation with anti-mouse and anti-rabbit secondary probes
(Duolink II) for 90 min at 37°C. The ligation solution containing the Duolink ligase
(Duolink II) was applied to the TBS-T washed slides for 30 min at 37°C. Further, the
slides were washed with TBS-T and 40 μ l of amplification solution was added to each
sample and incubated in a pre-heated humidity chamber for 90 min at 37°C. Thereafter,
the slides were washed once in TBS, stained with Hoechst dye and mounted with 10 μ l

Proximity ligation assay was carried out using reagents and instructions from Duolink II

kit (Olink Biosciences). Briefly, the HeLa-pVII(wt)-Flag cells were treated with

SlowFade mounting medium (Life Technologies). Labeled cells were visualized with a

Zeiss AxioPlan2 epi-microscope. Image analysis and signal quantification were

performed with the DuolinkImage Tool software (Olink Bioscience).

Cell lysates and Western blot

In general cells were lysed in RIPA buffer (12) for 20 min on ice, sonicated and

469	centrifuged at 15000 rpm, 4°C for 15 min. When the whole cell lysates were prepared
470	from H1299 cells expressing the Flag-E1B55K and Flag-E4orf6 proteins (Fig. 4), the
471	whole cell lysates were made as described in (61). Western blot membranes, either
472	nitrocellulose or PVDF, were incubated with primary antibodies overnight at 4°C
473	followed by incubation with the fluorescent-labeled secondary antibodies (IRDye®, LI-
474	COR). The membranes were scanned using the Odyssey scanner (LI-COR) and the
475	protein signals were quantified using Image Studio Software (LI-COR) (12).
476	
477	Immunoprecipitation
478	Approximately 8×10^{6} H1299 cells were either transfected or infected with HAdV-pVII-
479	Flag virus. The cells were lysed in lysis buffer (150mM NaCl, 1mM EDTA, 0.5% NP-40,
480	0.5% Triton X-100, 0.1% sodium deoxycholate, 50mM Tris-HCl [pH 7.5], 1mM DTT
481	and cOmplete protease inhibitors (Roche) for 30 min at 4°C. The soluble cell lysates
482	were incubated with an anti-Flag (M2) coupled Sepharose beads (Sigma) for 2 h at 4°C.
483	The beads were washed 3 \times 1ml in lysis buffer, bound proteins were eluted with 2 \times
484	SDS-Loading dye and separated on SDS-PAGE.
485	
486	GST pull-down assay
487	The GST pull-down assay was done as described previously (12). Approximately 2 μg of
488	Glutathione Sepharose beads-bound GST and GST-pVII(wt or $\Delta 24$) proteins were
489	incubated with H1299 whole cell lysates expressing the Flag-MKRN1(1-482), HA-
490	MKRN1(1-482), HA-MKRN1(1-267), HA-MKRN1(112-267), HA-MKRN1(112-482)
491	proteins at room temperature for 1 h. The beads were washed extensively with washing

Σ

lournal of Virology

buffer (25mM Hepes-KOH [pH 7.4], 12.5mM MgCl2, 200mM KCl, 0.1mM EDTA, 10%
glycerol, 0.1% NP-40). The bound proteins were separated on 12% SDS-PAGE, followed
by Western blot detection.

495

496 GST-MKRN1 purification

497 The BL21(DE3)-RIPL cells (Agilent Technologies) transformed with the pGEX-6P-

498 MKRN1(wt), pGEX-6P-MKRN1(1-267) and pGEX-6P-MKRN1(H307E) were grown at

499 37°C in LB medium to OD₆₀₀ 0.5-0.6. Protein expression was induced with 1mM IPTG

500 for 4 h at 37°C. The cell pellets were lysed in lysis buffer (50mM Tris-HCl [pH 7.5],

501 150mM NaCl, 0.05% NP40, 1mM DTT, 0.25mg lysozyme and protease inhibitors). Cell

502 lysates were sonicated, filtrated through 0,45 μm filter and purified using a GSTrapTM FF

503 column (GE Healthcare) in ÄKTAxpress system (GE Healthcare) according to the

504 manufacturer's recommendations. The column was equilibrated and washed in washing

505 buffer (50mM Tris-HCl [pH 7.5], 150mM NaCl) and the proteins were eluted in washing

506 buffer supplemented with 10 mM reduced glutathione (Sigma). Purified proteins were

507 dialyzed against storage buffer (PBS+20% glycerol).

508

509 In vivo ubiquitination assay

510 The experiments were performed as described before (62). Briefly, H1299 cells were

511 transfected with plasmids expressing the HA-MKRN1(wt), HA-MKRN1(1-267), HA-

512 MKRN1(H307E), 6xHis-ubiquitin, pVII(wt)-Flag and pVII($\Delta 24$)-Flag proteins. Thirty-

513 six hours post-transfection the cells were treated with MG132 (10μ M, 4h) followed by

514 cell lysis in buffer containing 6M guanidine, 10mM β-mercaptoethanol, 5mM N-

Journal of Virology

 \leq

515	ethylmaleimide and 5mM imidazole. The cell lysates were incubated with nickel-coupled
516	agarose beads (Ni-NTA beads, Qiagen) by rotating at 4°C overnight. The beads were
517	washed with buffer containing 8M urea, 10mM β -mercaptoethanol and 0.1% NP-40.
518	Finally, the proteins were eluted from the Ni-NTA beads with a sample buffer containing
519	0.72M β-mercaptoethanol and 200mM imidazole.
520	
521	In vitro ubiquitination assay
522	Equal amounts of the purified GST-MKRN1 (wt, H307E, 1-267) were mixed with
523	purified His-UbE1, His-UbcH5a, Ubiquitin-MAX [™] proteins (all from Viva Biosciences)
524	in a reaction buffer containing 40mM Tris-HCl [pH 7.5], 1mM DTT, 5mM MgCl ₂ , 2mM
525	ATP according to the manufacturer's recommendations. After incubation at 37°C for 2 h,
526	reactions were terminated with $2 \times$ SDS-Loading dye.
527	
528	RNA extraction and qRT-PCR
529	Total RNA extraction, cDNA synthesis with random primers and qRT-PCR reactions
530	were performed as previously described (65). The following MKRN1 primers were used:
531	tp575 (5'-GCAGCAAGGGATGACTTTGT-3) and tp576 (5'-
532	TGTATTTATGGAGACCGCTGC-3). Relative MKRN1 mRNA expression was
533	calculated after normalization to the HPRT1 mRNA levels using $2^{-\Delta\Delta CT}$ method (72).
534	
535	ACKNOWLEDGMENTS
536	This work was supported by Gösta Näslund Minnesfond (RI), Marcus Borgströms
537	Foundation (TP), Åke Wibergs Foundation (M14-0155, TP), the Swedish Cancer Society

539	RNA Research Centre (2006-5038-36531-16, TP). KM is supported by Erasmus Mundus
540	LOTUS+ program. SS is supported by the Else Kröner-Fresenius-Stiftung, the Deutsche
541	Forschungsgemeinschaft DFG (SFB TRR179), Deutsche Krebshilfe e.V. and the Dräger
542	Stiftung e. V. In situ PLA was performed by the PLA Proteomics facility, which is
543	supported by Science for Life Laboratory. We would also like to thank Drs. Anna Rostedt
544	Punga, Arnold Berk, Agata Zieba, Stephen Taylor, Paola Blanchette, Anders Sundqvist,
545	Melissa Navarro, Dimitris Xirodimas, Göran Akusjärvi, Bert Rima, Gert Zimmer, Ruth
546	Brack-Werner, Alexander Herrmann, Sawinee Masser, Jürgen Schneider-Schaulies for
547	kindly providing the reagents, Dr. Mårten Larsson for protein purification, Dr. Daniel
548	Öberg for generously designing the HAdV-pVII-Flag virus cloning strategy, and Dr.
549	Marta Lewandowska for proofreading the manuscript.
550	
551	REFERENCES
552	1. Lion T. 2014. Adenovirus infections in immunocompetent and
553	immunocompromised patients. Clin Microbiol Rev 27:441-462.
554	2. Assadian F, Sandstrom K, Bondeson K, Laurell G, Lidian A, Svensson C,
555	Akusjarvi G, Bergqvist A, Punga T. 2016. Distribution and Molecular
556	Characterization of Human Adenovirus and Epstein-Barr Virus Infections in
557	Tonsillar Lymphocytes Isolated from Patients Diagnosed with Tonsillar Diseases.
558	PLoS One 11: e0154814.

(CAN 2013/350, TP) and the Swedish Research Council through a grant to the Uppsala

559 3. Russell WC. 2009. Adenoviruses: update on structure and function. The Journal 560 of general virology 90:1-20.

538

 \sum

561

562

4.

563 chemistry 259:13980-13985. 564 5. Benevento M, Di Palma S, Snijder J, Mover CL, Reddy VS, Nemerow GR, 565 Heck AJ. 2014. Adenovirus composition, proteolysis, and disassembly studied by 566 in-depth qualitative and quantitative proteomics. J Biol Chem 289:11421-11430. 567 6. Blainey PC, Graziano V, Perez-Berna AJ, McGrath WJ, Flint SJ, San 568 Martin C, Xie XS, Mangel WF. 2013. Regulation of a viral proteinase by a 569 peptide and DNA in one-dimensional space: IV. viral proteinase slides along 570 DNA to locate and process its substrates. J Biol Chem 288:2092-2102. 571 7. Ruzindana-Umunyana A, Imbeault L, Weber JM. 2002. Substrate specificity 572 of adenovirus protease. Virus Res 89:41-52. 573 8. Sung MT, Cao TM, Lischwe MA, Coleman RT. 1983. Molecular processing of 574 adenovirus proteins. J Biol Chem 258:8266-8272. Webster A, Russell S, Talbot P, Russell WC, Kemp GD. 1989. 575 9. 576 Characterization of the adenovirus proteinase: substrate specificity. The Journal of 577 general virology 70 (Pt 12):3225-3234. 578 Ortega-Esteban A, Condezo GN, Perez-Berna AJ, Chillon M, Flint SJ, 10. 579 Reguera D, San Martin C, de Pablo PJ. 2015. Mechanics of Viral Chromatin 580 Reveals the Pressurization of Human Adenovirus. ACS Nano 9:10826-10833. 581 11. Perez-Berna AJ, Marion S, Chichon FJ, Fernandez JJ, Winkler DC,

Alestrom P, Akusjarvi G, Lager M, Yeh-kai L, Pettersson U. 1984. Genes

encoding the core proteins of adenovirus type 2. The Journal of biological

582 Carrascosa JL, Steven AC, Siber A, San Martin C. 2015. Distribution of

583 DNA-condensing protein complexes in the adenovirus core. Nucleic Acids Res
584 43:4274-4283.

- Inturi R, Thaduri S, Punga T. 2013. Adenovirus precursor pVII protein stability
 is regulated by its propeptide sequence. PLoS One 8:e80617.
- 587 13. Chatterjee PK, Vayda ME, Flint SJ. 1986. Adenoviral protein VII packages
 588 intracellular viral DNA throughout the early phase of infection. The EMBO
 589 journal 5:1633-1644.
- 590 14. Lischwe MA, Sung MT. 1977. A histone-like protein from adenovirus
 591 chromatin. Nature 267:552-554.
- 592 15. Vayda ME, Rogers AE, Flint SJ. 1983. The structure of nucleoprotein cores
 593 released from adenovirions. Nucleic acids research 11:441-460.
- 16. Corden J, Engelking HM, Pearson GD. 1976. Chromatin-like organization of
 the adenovirus chromosome. Proc Natl Acad Sci U S A 73:401-404.
- 596 17. Ostapchuk P, Suomalainen M, Zheng Y, Boucke K, Greber UF, Hearing P.
 597 2017. The adenovirus major core protein VII is dispensable for virion assembly
 598 but is essential for lytic infection. PLoS Pathog 13:e1006455.
- Komatsu T, Dacheux D, Kreppel F, Nagata K, Wodrich H. 2015. A Method
 for Visualization of Incoming Adenovirus Chromatin Complexes in Fixed and
 Living Cells. PLoS One 10:e0137102.
- 602 19. Wodrich H, Cassany A, D'Angelo MA, Guan T, Nemerow G, Gerace L. 2006.
 603 Adenovirus core protein pVII is translocated into the nucleus by multiple import
- 604 receptor pathways. Journal of virology **80:**9608-9618.

605	5 20.	Cassany A, Ragues J, Guan T, Begu D, Wodrich H, Kann M, Nemerow GR,
606	5	Gerace L. 2015. Nuclear import of adenovirus DNA involves direct interaction of
607	7	hexon with an N-terminal domain of the nucleoporin Nup214. J Virol 89:1719-
608	3	1730.
609	9 21.	Karen KA, Hearing P. 2011. Adenovirus core protein VII protects the viral
610)	genome from a DNA damage response at early times after infection. Journal of
611	L	virology 85: 4135-4142.
612	2 22.	Komatsu T, Haruki H, Nagata K. 2011. Cellular and viral chromatin proteins
613	3	are positive factors in the regulation of adenovirus gene expression. Nucleic acids
614	1	research 39: 889-901.
615	5 23.	Komatsu T, Nagata K. 2012. Replication-uncoupled histone deposition during
616	ó	adenovirus DNA replication. Journal of virology 86:6701-6711.
617	7 24.	Haruki H, Okuwaki M, Miyagishi M, Taira K, Nagata K. 2006. Involvement
618	3	of template-activating factor I/SET in transcription of adenovirus early genes as a
619)	positive-acting factor. Journal of virology 80:794-801.
620) 25.	Matsumoto K, Okuwaki M, Kawase H, Handa H, Hanaoka F, Nagata K.
621	L	1995. Stimulation of DNA transcription by the replication factor from the
622	2	adenovirus genome in a chromatin-like structure. The Journal of biological
623	3	chemistry 270: 9645-9650.
624	4 26.	Okuwaki M, Nagata K. 1998. Template activating factor-I remodels the
625	5	chromatin structure and stimulates transcription from the chromatin template. The
626	<u>5</u>	Journal of biological chemistry 273:34511-34518.

 \leq

627 27. Johnson JS, Osheim YN, Xue Y, Emanuel MR, Lewis PW, Bankovich A, Beyer AL, Engel DA. 2004. Adenovirus protein VII condenses DNA, represses 628 629 transcription, and associates with transcriptional activator E1A. Journal of 630 virology 78:6459-6468. 631 Avgousti DC, Herrmann C, Kulej K, Pancholi NJ, Sekulic N, Petrescu J, 28. 632 Molden RC, Blumenthal D, Paris AJ, Reyes ED, Ostapchuk P, Hearing P, 633 Seeholzer SH, Worthen GS, Black BE, Garcia BA, Weitzman MD. 2016. A 634 core viral protein binds host nucleosomes to sequester immune danger signals. 635 Nature 535:173-177. 636 Avgousti DC, Della Fera AN, Otter CJ, Herrmann C, Pancholi NJ, 29. 637 Weitzman MD. 2017. Adenovirus core protein VII down-regulates the DNA 638 damage response on the host genome. J Virol doi:10.1128/JVI.01089-17. 639 30. Chondrogianni N, Gonos ES. 2012. Structure and function of the ubiquitin-640 proteasome system: modulation of components. Prog Mol Biol Transl Sci 109:41-641 74. 642 31. Blanchette P, Branton PE. 2009. Manipulation of the ubiquitin-proteasome 643 pathway by small DNA tumor viruses. Virology **384:**317-323. 644 32. Schreiner S, Wimmer P, Dobner T. 2012. Adenovirus degradation of cellular 645 proteins. Future Microbiol 7:211-225. 646 Wimmer P, Schreiner S. 2015. Viral Mimicry to Usurp Ubiquitin and SUMO 33. 647 Host Pathways. Viruses 7:4854-4872.

64834.Baker A, Rohleder KJ, Hanakahi LA, Ketner G. 2007. Adenovirus E4 34k and649E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J650Virol 81:7034-7040.

35. Dallaire F, Blanchette P, Groitl P, Dobner T, Branton PE. 2009. Identification
of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton
E3 ubiquitin ligase complex. Journal of virology 83:5329-5338.

- Gupta A, Jha S, Engel DA, Ornelles DA, Dutta A. 2013. Tip60 degradation by
 adenovirus relieves transcriptional repression of viral transcriptional activator
 EIA. Oncogene 32:5017-5025.
- Guerido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin
 WG, Conaway RC, Conaway JW, Branton PE. 2001. Degradation of p53 by
 adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving
 a Cullin-containing complex. Genes & development 15:3104-3117.
- 38. Schreiner S, Burck C, Glass M, Groitl P, Wimmer P, Kinkley S, Mund A,
 Everett RD, Dobner T. 2013. Control of human adenovirus type 5 gene
 expression by cellular Daxx/ATRX chromatin-associated complexes. Nucleic
 acids research 41:3532-3550.
- 665 39. Schreiner S, Kinkley S, Burck C, Mund A, Wimmer P, Schubert T, Groitl P,
- Will H, Dobner T. 2013. SPOC1-mediated antiviral host cell response is
 antagonized early in human adenovirus type 5 infection. PLoS Pathog
 9:e1003775.
- 669 40. Stracker TH, Carson CT, Weitzman MD. 2002. Adenovirus oncoproteins
 670 inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418:348-352.

671	41.	Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, Rus K,
672		Marshall Graves JA, Stewart CL, Nicholls RD. 2000. The ancient source of a
673		distinct gene family encoding proteins featuring RING and C(3)H zinc-finger
674		motifs with abundant expression in developing brain and nervous system.
675		Genomics 66: 76-86.
676	42.	Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT, Chung IK. 2005.
677		Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a
678		proteolysis of hTERT. Genes Dev 19:776-781.
679	43.	Kim JH, Park KW, Lee EW, Jang WS, Seo J, Shin S, Hwang KA, Song J.
680		2014. Suppression of PPARgamma through MKRN1-mediated ubiquitination and
681		degradation prevents adipocyte differentiation. Cell Death Differ 21:594-603.
682	44.	Ko A, Shin JY, Seo J, Lee KD, Lee EW, Lee MS, Lee HW, Choi IJ, Jeong JS,
683		Chun KH, Song J. 2012. Acceleration of gastric tumorigenesis through MKRN1-
684		mediated posttranslational regulation of p14ARF. J Natl Cancer Inst 104:1660-
685		1672.
686	45.	Lee EW, Kim JH, Ahn YH, Seo J, Ko A, Jeong M, Kim SJ, Ro JY, Park KM,
687		Lee HW, Park EJ, Chun KH, Song J. 2012. Ubiquitination and degradation of
688		the FADD adaptor protein regulate death receptor-mediated apoptosis and
689		necroptosis. Nat Commun 3: 978.
690	46.	Lee EW, Lee MS, Camus S, Ghim J, Yang MR, Oh W, Ha NC, Lane DP,
691		Song J. 2009. Differential regulation of p53 and p21 by MKRN1 E3 ligase
692		controls cell cycle arrest and apoptosis. EMBO J 28:2100-2113.

 \leq

693	47.	Lee MS, Jeong MH, Lee HW, Han HJ, Ko A, Hewitt SM, Kim JH, Chun KH,
694		Chung JY, Lee C, Cho H, Song J. 2015. PI3K/AKT activation induces PTEN
695		ubiquitination and destabilization accelerating tumourigenesis. Nat Commun
696		6: 7769.
697	48.	Ko A, Lee EW, Yeh JY, Yang MR, Oh W, Moon JS, Song J. 2010. MKRN1
698		induces degradation of West Nile virus capsid protein by functioning as an E3
699		ligase. J Virol 84:426-436.
700	49.	Finsterbusch T, Steinfeldt T, Doberstein K, Rodner C, Mankertz A. 2009.
701		Interaction of the replication proteins and the capsid protein of porcine circovirus
702		type 1 and 2 with host proteins. Virology 386: 122-131.
703	50.	Cassar PA, Carpenedo RL, Samavarchi-Tehrani P, Olsen JB, Park CJ,
704		Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM,
704 705		Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL.
704 705 706		Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL. 2015. Integrative genomics positions MKRN1 as a novel ribonucleoprotein within
704 705 706 707		 Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL. 2015. Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Rep 16:1334-1357.
704 705 706 707 708	51.	 Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL. 2015. Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Rep 16:1334-1357. Omwancha J, Zhou XF, Chen SY, Baslan T, Fisher CJ, Zheng Z, Cai C,
704 705 706 707 708 709	51.	 Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL. 2015. Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Rep 16:1334-1357. Omwancha J, Zhou XF, Chen SY, Baslan T, Fisher CJ, Zheng Z, Cai C, Shemshedini L. 2006. Makorin RING finger protein 1 (MKRN1) has negative
704 705 706 707 708 709 710	51.	 Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL. 2015. Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Rep 16:1334-1357. Omwancha J, Zhou XF, Chen SY, Baslan T, Fisher CJ, Zheng Z, Cai C, Shemshedini L. 2006. Makorin RING finger protein 1 (MKRN1) has negative and positive effects on RNA polymerase II-dependent transcription. Endocrine
704 705 706 707 708 709 710 711	51.	 Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL. 2015. Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Rep 16:1334-1357. Omwancha J, Zhou XF, Chen SY, Baslan T, Fisher CJ, Zheng Z, Cai C, Shemshedini L. 2006. Makorin RING finger protein 1 (MKRN1) has negative and positive effects on RNA polymerase II-dependent transcription. Endocrine 29:363-373.
704 705 706 707 708 709 710 711 712	51.	 Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL. 2015. Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Rep 16:1334-1357. Omwancha J, Zhou XF, Chen SY, Baslan T, Fisher CJ, Zheng Z, Cai C, Shemshedini L. 2006. Makorin RING finger protein 1 (MKRN1) has negative and positive effects on RNA polymerase II-dependent transcription. Endocrine 29:363-373. Haruki H, Gyurcsik B, Okuwaki M, Nagata K. 2003. Ternary complex
704 705 706 707 708 709 710 711 712 713	51.	 Chang WY, Chen Z, Choey C, Delaney S, Guo H, Guo H, Tanner RM, Perkins TJ, Tenenbaum SA, Emili A, Wrana JL, Gibbings D, Stanford WL. 2015. Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Rep 16:1334-1357. Omwancha J, Zhou XF, Chen SY, Baslan T, Fisher CJ, Zheng Z, Cai C, Shemshedini L. 2006. Makorin RING finger protein 1 (MKRN1) has negative and positive effects on RNA polymerase II-dependent transcription. Endocrine 29:363-373. Haruki H, Gyurcsik B, Okuwaki M, Nagata K. 2003. Ternary complex formation between DNA-adenovirus core protein VII and TAF-Ibeta/SET, an

 \leq

715

53.

716 protein VII functions throughout early phase and interacts with cellular proteins 717 SET and pp32. Journal of virology 79:2474-2483. 718 Barker DD, Berk AJ. 1987. Adenovirus proteins from both E1B reading frames 54. 719 are required for transformation of rodent cells by viral infection and DNA 720 transfection. Virology 156:107-121. 721 Miroci H, Schob C, Kindler S, Olschlager-Schutt J, Fehr S, Jungenitz T, 55. 722 Schwarzacher SW, Bagni C, Mohr E. 2012. Makorin ring zinc finger protein 1 723 (MKRN1), a novel poly(A)-binding protein-interacting protein, stimulates 724 translation in nerve cells. J Biol Chem 287:1322-1334. 725 56. Torchy MP, Hamiche A, Klaholz BP. 2015. Structure and function insights into 726 the NuRD chromatin remodeling complex. Cellular and Molecular Life Sciences 727 **72:**2491-2507. 728 57. Lans H, Marteijn JA, Vermeulen W. 2012. ATP-dependent chromatin 729 remodeling in the DNA-damage response. Epigenetics Chromatin 5:4. 730 58. Bergstrom Lind S, Artemenko KA, Elfineh L, Zhao Y, Bergquist J, 731 Pettersson U. 2012. The phosphoproteome of the adenovirus type 2 virion. 732 Virology 433:253-261. 733 Liu L, Oliveira NM, Cheney KM, Pade C, Dreja H, Bergin AM, Borgdorff V, 59. 734 Beach DH, Bishop CL, Dittmar MT, McKnight A. 2011. A whole genome 735 screen for HIV restriction factors. Retrovirology 8:94.

Xue Y, Johnson JS, Ornelles DA, Lieberman J, Engel DA. 2005. Adenovirus

736	60.	Punga T, Akusjarvi G. 2003. Adenovirus 2 E1B-55K protein relieves p53-
737		mediated transcriptional repression of the survivin and MAP4 promoters. FEBS
738		Lett 552: 214-218.
739	61.	Cheng CY, Gilson T, Dallaire F, Ketner G, Branton PE, Blanchette P. 2011.
740		The E4orf6/E1B55K E3 ubiquitin ligase complexes of human adenoviruses
741		exhibit heterogeneity in composition and substrate specificity. J Virol 85:765-
742		775.
743	62.	Xirodimas D, Saville MK, Edling C, Lane DP, Lain S. 2001. Different effects
744		of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo. Oncogene
745		20: 4972-4983.
746	63.	Hewitt L, Tighe A, Santaguida S, White AM, Jones CD, Musacchio A, Green
747		S, Taylor SS. 2010. Sustained Mps1 activity is required in mitosis to recruit O-
748		Mad2 to the Mad1-C-Mad2 core complex. The Journal of cell biology 190:25-34.
749	64.	Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M. 1996.
750		Efficient generation of recombinant adenovirus vectors by homologous
751		recombination in Escherichia coli. J Virol 70:4805-4810.
752	65.	Inturi R, Kamel W, Akusjarvi G, Punga T. 2015. Complementation of the
753		human adenovirus type 5 VA RNAI defect by the Vaccinia virus E3L protein and
754		serotype-specific VA RNAIs. Virology 485:25-35.
755	66.	Duprex WP, McQuaid S, Roscic-Mrkic B, Cattaneo R, McCallister C, Rima
756		BK. 2000. In vitro and in vivo infection of neural cells by a recombinant measles
757		virus expressing enhanced green fluorescent protein. J Virol 74:7972-7979.

Σ

Berger Rentsch M, Zimmer G. 2011. A vesicular stomatitis virus replicon-based 758 67. 759 bioassay for the rapid and sensitive determination of multi-species type I 760 interferon. PLoS One 6:e25858. 761 Kremb S, Helfer M, Heller W, Hoffmann D, Wolff H, Kleinschmidt A, Cepok 68. 762 S, Hemmer B, Durner J, Brack-Werner R. 2010. EASY-HIT: HIV full-763 replication technology for broad discovery of multiple classes of HIV inhibitors. 764 Antimicrob Agents Chemother 54:5257-5268. 765 69. Sarnow P, Sullivan CA, Levine AJ. 1982. A monoclonal antibody detecting the 766 adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd 767 tumor antigen in adenovirus-infected and -transformed cells. Virology 120:510-768 517. 769 70. Fromont-Racine M, Rain JC, Legrain P. 1997. Toward a functional analysis of 770 the yeast genome through exhaustive two-hybrid screens. Nat Genet 16:277-282. 771 71. Krzywkowski T, Ciftci S, Assadian F, Nilsson M, Punga T. 2017. 772 Simultaneous Single-Cell In Situ Analysis of Human Adenovirus Type 5 DNA 773 and mRNA Expression Patterns in Lytic and Persistent Infection. J Virol 91. 774 72. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the 775 comparative C(T) method. Nat Protoc 3:1101-1108. 776 777 **FIGURE LEGENDS** 778 779 Fig. 1. Proximal association of the precursor pVII(wt)-Flag protein and its 780 interacting proteins. Proximity ligation assay (PLA) was performed in HeLa stable cell

781	line expressing the pVII(wt)-Flag protein after doxycycline treatment. The proteins
782	analyzed for pVII(wt)-Flag binding are shown above the images. In the control reaction
783	an irrelevant antibody (anti-HA) was used. Proximity ligation signals were amplified with
784	rolling circle amplification (RCA) and are shown in red, whereas blue is Hoechst dye
785	staining the nuclei. Quantification of the proximity ligation event is shown as RCA
786	signals/per cell analyzed in triplicates. Bars denote the mean \pm SD RCA signals/per cell.
787	Unpaired t-test indicated significantly (**** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05)
788	higher numbers of RCA signals/cell in specific antibody samples compared to the control
789	(anti-HA) sample.
790	
791	Fig. 2. The precursor pVII protein interacts with MKRN1 in vitro and in vivo. ${\rm A})$
792	H1299 cells were infected with HAdV-pVII-Flag virus (5 FFU/cell) for 20 h followed by
793	immunoprecipitation with an anti-Flag antibody (lanes 2 and 5). Cells were treated with
794	MG132 (4h, 25 μ M) at 16 hpi and collected at the same time as the non-MG132 treated
795	
	cells (lanes 3 and 6). Detection of the HAdV-C5 E1A and cellular HMGB2 proteins was
796	cells (lanes 3 and 6). Detection of the HAdV-C5 E1A and cellular HMGB2 proteins was used as the specificity control. The arrowhead points to migration of the MKRN1 protein,
796 797	cells (lanes 3 and 6). Detection of the HAdV-C5 E1A and cellular HMGB2 proteins was used as the specificity control. The arrowhead points to migration of the MKRN1 protein, whereas the asterisk indicates migration of the pVII-Flag protein. Western blot (WB). B)
796 797 798	cells (lanes 3 and 6). Detection of the HAdV-C5 E1A and cellular HMGB2 proteins was used as the specificity control. The arrowhead points to migration of the MKRN1 protein, whereas the asterisk indicates migration of the pVII-Flag protein. Western blot (WB). B) H1299 cell lysates transiently expressing the HA-MKRN1(wt) and pVII(wt)-Flag or
796 797 798 799	 cells (lanes 3 and 6). Detection of the HAdV-C5 E1A and cellular HMGB2 proteins was used as the specificity control. The arrowhead points to migration of the MKRN1 protein, whereas the asterisk indicates migration of the pVII-Flag protein. Western blot (WB). B) H1299 cell lysates transiently expressing the HA-MKRN1(wt) and pVII(wt)-Flag or pVII(Δ24)-Flag proteins were immunoprecipitated with an anti-Flag antibody. Relative
796 797 798 799 800	 cells (lanes 3 and 6). Detection of the HAdV-C5 E1A and cellular HMGB2 proteins was used as the specificity control. The arrowhead points to migration of the MKRN1 protein, whereas the asterisk indicates migration of the pVII-Flag protein. Western blot (WB). B) H1299 cell lysates transiently expressing the HA-MKRN1(wt) and pVII(wt)-Flag or pVII(Δ24)-Flag proteins were immunoprecipitated with an anti-Flag antibody. Relative binding of HA-MKRN1 from two independent experiments is shown below the image

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

- 801 after normalization to the input values. The asterisk indicates migration of the Flag
- antibody light chain. Note that HA-MKRN1 has some unspecific binding to Flag-coupled
- 803 beads (lane 4). C) GST-pVII(wt and $\Delta 24$) pull-down with H1299 whole cell lysates

804	expressing the Flag-MKRN1(wt) protein. The arrowhead indicates migration of full-
805	length GST-pVII proteins, whereas the asterisk marks migration of the GST protein. D)
806	Illustration of the MKRN1 mutant proteins. Labeling of zinc finger motifs (ZnF) and
807	RING finger (RING) domain is based on Uniprot (www.uniprot.org) annotation. E) GST-
808	pVII(wt) pull-down experiment with H1299 whole cell lysates expressing the indicated
809	HA-MKRN1 proteins. Quantitative binding of the respective HA-MKRN1 proteins to
810	GST-pVII(wt) is shown after normalization to input values (% of input). Arrowhead
811	indicates migration of the GST-pVII(wt) protein.
812	
813	Fig. 3. The MKRN1 protein undergoes proteasomal degradation in HAdV-C5-
814	infected cells. A) H1299 cells were infected with HAdV-C5 (10 FFU/cell). Whole cell
815	lysates were collected at indicated hours post infection (hpi) and analyzed by WB. The
816	arrowhead indicates migration of MKRN1, whereas the asterisk (*) marks an unspecific
817	protein occasionally detected with MKRN1 antibody. B) HAdV-C5-infected (10
818	FFU/cell) H1299 cells were treated at 20 hpi with MG132 (4h, 25μ M). All cell samples
819	were harvested 24 hpi and analyzed by WB. Detection of the HAdV-C5 E1A protein acts
820	as a positive control for MG132 treatment. C) H1299 cells were infected with HAdV-C5
821	(10 FFU/cell) for the indicated time points. Relative MKRN1 mRNA expression was
822	analyzed by qRT-PCR after normalization to HPRT1 mRNA. Bars denote the mean \pm SD
823	MKRN1 expression. D) H1299 cells were infected with HAdV-pVII-Flag virus (10
824	FFU/cell) and harvested at the indicated hpi. Expression of the HAdV-encoded pVII-Flag
825	was detected with an anti-Flag antibody. E) A549, U2OS and HEK293 cells were

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

Σ

 \leq

826 infected with HAdV-C5 (10 FFU/cell), harvested at the indicated hpi and analyzed for

827 protein expression as in panel A and D.

828

829	Fig. 4. The MKRN1 protein is degraded independently of the E1B55K and E4orf6
830	proteins. A) H1299 cells were transiently transfected with plasmids expressing the Flag-
831	E1B55K and/or Flag-E4orf6 proteins. Whole cell extracts were made at the indicated
832	hours post-transfection (hpt) and proteins were detected by WB. Detection of the Mre11
833	protein was used to confirm the functionality of the E1B55K/E4orf6 complex. Relative
834	quantification of the Mre11 and MKRN1 proteins in Flag-E1B55K and Flag-E4orf6
835	expressing cells (lanes 4 and 8) compared to control transfected cells (lanes 1 and 5) is
836	shown on the graph below the WB images. The Mre11 and MKRN1 protein levels were
837	normalized to GAPDH protein. B) H1299 cells were infected (10 FFU/cell) with HAdV-
838	C5 (wt) and HAdV-C2 (dl1520) viruses. Whole cell lysates were analyzed by WB at 24
839	hpi and 48 hpi. * denotes unspecific protein recognized with the anti-capsid antibody
840	after WB membrane stripping.
841	
842	Fig. 5. The precursor pVII protein enhances MKRN1 self-ubiquitination. A)
843	pVII(wt)-Flag enhances MKRN1 ubiquitination in vivo. H1299 cells were transfected
844	with plasmids expressing the 6xHis-ubiquitin, HA-MKRN1 (wt or 1-267), pVII-Flag (wt
845	or $\Delta 24$) proteins. Cells were treated 36 hpt with MG132 (10 μ M, 4h). Ubiquitinated

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

846 proteins were isolated using the nickel pull-down (Ni-NTA) approach and analyzed along

- 847 with the whole cell lysate input samples by WB. B) MKRN1(H307E) is resistant to
- 848 pVII(wt) enhanced ubiquitination. Ni-NTA pull-down in H1299 cells expressing HA-

849	MKRN1(wt or H307E), pVII(wt)-Flag and 6xHis-ubiquitin proteins. Cells were
850	harvested and treated as described for panel A. Ubiquitin signals were quantitated and the
851	relative level of HA-MKRN1 coupled His-ubiquitin (Ub-MKRN1) is shown below the
852	first panel ("Ni-NTA pull-down WB:HA"). C) The pVII(wt)-Flag protein co-
853	immunoprecipitates with HA-MKRN1 (wt, H307E, 1-267) in transiently transfected
854	H1299 cells. The asterisk indicates detection of unspecific protein with an anti-HA
855	antibody. D) MKRN1(H307E) is deficient in self-ubiquitination. In vitro ubiquitination
856	assay was performed with the indicated recombinant His- and GST-tagged proteins in the
857	presence of purified ubiquitin protein. Ubiquitinated GST-MKRN1 (Ub-MKRN1) was
858	detected with an anti-ubiquitin (FK2) antibody. E) MKRN1(H307E) degradation is
859	decelerated in virus-infected cells. H1299 cells were transiently transfected with plasmids
860	expressing the HA-MKRN1(wt) or HA-MKRN1(H307E) proteins followed by HAdV-
861	pVII-Flag infection (2 FFU/cell). Cells were treated at 48 hpi with cycloheximide and the
862	whole cell lysates were prepared from cells harvested at 90, 180, 285 and 390 min post-
863	treatment. The HA-tagged MKRN1 and actin proteins were quantified on WB and the
864	relative HA-MKRN1 protein levels were calculated after normalization to actin. Mean
865	±SEM from two independent experiments is shown.
866	
867	Fig. 6. The MKRN1 protein accumulation is downregulated in VSV and MV
868	infected cells
869	Total protein lysates of cells either infected (+) or non-infected (-) with the indicated
870	viruses were analyzed by WB. The arrowhead indicates migration of the endogenous

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

871 MKRN1 protein. Relative accumulation of the MKRN1 protein is shown after

- 872 normalization to actin (MKRN1/Actin). Virus infections were confirmed with the
- 873 following antibodies: anti-p24 (HIV-1), anti-core (HCV), anti-nucleoprotein NP (MV),
- 874 anti-GFP (VSV) and anti-core (HBV). HCV, MV and VSV infections were confirmed on
- the same WB membrane as the MKRN1 and actin proteins, whereas HIV-1 and HBV
- 876 infections were confirmed on a separate WB membrane.
- 877

Official gene	Official full name	Gene ID	Number	PBS ^a
symbol			of	
-			clones	
C1QBP	complement C1q binding protein	708	100	А
SET	SET nuclear proto-oncogene	6418	36	А
HMGB2	high mobility group box 2	3148	30	А
HMGB3	high mobility group box 3	3149	13	А
SETSIP	SET-like protein	646817	15	В
ZNF622	zinc finger protein 622	90441	4	С
CHD3	chromodomain helicase DNA	1107	4	D
	binding protein 3			
MKRN1	makorin ring finger protein 1	23608	2	D
BAZ1A	bromodomain adjacent to zinc	11177	1	D
	finger domain 1A			
CTPS1	CTP synthase 1	1503	1	D
RACK1	Receptor for activated C kinase 1	10399	1	D
PTGES3L-	PTGES3L-AARSD1 readthrough	100885850	1	D
AARSD1				
ARMCX2	armadillo repeat containing, X-	9823	1	D
	linked 2			

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

87 . . .

880 ^aPBS= Predicted Biological Score

Control

MKRN1

C1QBP

WB: GST % of input 7.3 2.6 0.2 2.4 8 9 10 11 12 1 2 3 4 5 6 7

 \sum

Α

Downloaded from http://jvi.asm.org/ on November 23, 2017 by GSF Forschungszentrum F

 \sum

Time (min)

+ 1.0 1.9 3.1 1.0 1.1 0.9 3 4 5 6 7 8 9 2 1 H307E 1-267 + + --Ub-MKRN1 WB: ubiquitin (FK2)

130

100

70

25

130

100 70

5.5

WB: His (His-UbcH5a) WB: His (His-UbcH5a) WB: His (His-UbE1) 1 2 3 4 5 6

