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Mittagessen, die stets eine sehr amüsante Abwechslung für mich darstellten. Stefan Lang

und Andreas Brezger danke ich für die Hilfestellung bei der BayesX-Implementierung.
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Zusammenfassung

In der vorliegenden Arbeit werden Modellansätze vorgestellt und entwickelt, die einen

zeitlich variierenden Effekt von Kovariablen durch die Verwendung von zeitvariieren-

den Koeffizienten erlauben. Die Methoden werden in ausführlichen Simulationsstudien

miteinander verglichen. Dabei wird untersucht, wie gut verschiedene Komponenten in

den simulierten Modellen erkannt werden. Im Anschluss werden die Ansätze, die sich

in den Simulationsstudien als am Besten geeignet gezeigt haben, auf Daten angewen-

det, die im Rahmen der Studie ”Improved Air Quality and its Influences on Short-Term

Health Effects in Erfurt, Eastern Germany” über den Zeitraum von 1991 bis 2002 er-

hoben wurden. In dieser Analyse wird auch auf statistisches Testen bezüglich des zeitlich

variierenden Einflusses eingegangen.

Des Weiteren beschäftigt sich diese Arbeit mit der Schätzung von zeitvariierenden Koef-

fizienten Modellen mit fehlerbehafteten Expositionsvariablen. Hierzu wird ein geeignetes

Messfehlermodell spezifiziert. Zudem werden Methoden vorgestellt, die die Schätzung

der Modellparameter und -varianzen unter Berücksichtigung von zeitlicher Korrelation

in der latenten Variablen sowie in den Messfehlern erlauben. Im Anschluss werden zwei

Korrekturverfahren entwickelt. Eine dieser Methoden basiert dabei auf einem hierar-

chischen Bayesianischen Modell und einem Bayesianischen Messfehler-Korrekturansatz.

Außerdem wird das im Zusammenhang mit messfehlerbehafteten Kovariablen gängige

Verfahren der Regressionskalibrierung für den Fall von zeitlicher Korrelation erweitert.

Beide Korrekturansätze werden zum Schluss wiederum auf Daten aus Erfurt angewendet

und verglichen.





Abstract

This thesis is concerned with presenting and developing modeling approaches which allow

for a time-varying effect of covariates by using time-varying coefficients. The different ap-

proaches are compared in simulation studies. Thereby, we investigate how well different

components of the simulated models can be identified. The models performing best in

the simulation study are then applied to data collected within the study ”Improved Air

Quality and its Influences on Short-Term Health Effects in Erfurt, Eastern Germany”.

One specific aspect in this analysis is to assess the necessity of a time-varying estimate

compared to a more parsimonious, time-constant fit.

A further topic is the estimation of time-varying coefficient models in the presence of

measurement errors in the exposure variable. We specify a measurement error model

and present methods to estimate parameters and measurement error variances of the

model in the case of autocorrelated latent exposure as well as measurement errors. Fur-

thermore, two methods adjusting for measurement errors in the context of time-varying

coefficients are developed. The first one is based on a hierarchical Bayesian model and

the Bayesian error correction principle. The second method is an extension of the well-

known regression calibration approach to the case of autocorrelated data. The obtained

estimated true values can then be included into the main model to assess the effect of

the variable of interest. Finally, the approaches are again applied to the Erfurt data.
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Chapter 1

Introduction

Parametric generalized linear regression models play a fundamental role in statistics.

Although these models allow for simple interpretation and estimation, the assumption

of a parametric linear predictor may often be too restrictive in applications. Therefore,

various non- and semiparametric extensions have been proposed.

One such extension is the class of varying coefficient models. In these models, a response

variable is allowed to depend linearly on some regressors, with coefficients as smooth

functions of some other predictor variables, called effect modifiers. The varying coefficient

model is useful for exploring complicated non-linear interactions between covariates while

avoiding the ’curse of dimensionality’ problem. A special case of the varying coefficient

model is given for time series data, where the effect modifier variable usually is calendar

time, hence, resulting in time-varying coefficient models (TVCM). No restrictions other

than smoothness are placed on the coefficient functions in order to allow for enough

flexibility.

Time series data arise in a variety of applications including modeling the effects of

ambient air pollution on human health. These time-series analysis may, for example,

assess whether daily concentrations of ambient air pollutants are associated with daily

numbers of deaths in a certain geographical region. In such applications, the common

assumption of a time-constant effect of environmental pollution may be too restrictive

and simplifying, and more general forms are required. It seems, therefore, natural to

analyze regression models that allow for a time-varying association between response

and the covariates of interest.

Furthermore, there often exist covariate measurement errors in such applications. For

example, it has been well documented in the literature that exposure to pollutants is often

subject to measurement errors, and covariate measurement errors may cause difficulties

and complications in conducting statistical analysis.

1



2 1. Introduction

In this introduction, we first give a short historical overview of the statistical approaches

used in the context of time series studies of air pollution and mortality. Additionally, the

most important findings regarding the association between air pollution and mortality are

resumed. We further present the motivating example for this thesis, a study conducted

in Erfurt, Germany over a 10.5-year period, and give an overview over the extensions

and topics considered in this thesis.

1.1 Background and Motivation

The potential health effects of ambient air pollution are a major public health issue that

has received much attention over the past several decades. Results of many epidemio-

logical time series studies have suggested an association between air pollution and daily

mortality. The relative risks of the observed effects are small; however, as exposure af-

fects a large population, the public health impact is substantial.

1.1.1 Historical background and important findings of time se-
ries studies on air pollution and mortality

Much of the concern about the health effects of air pollution originated from dramatic

and severe air pollution episodes. Three prominent episodes occurred in Meuse Valley,

Belgium, in 1930 (Friket (1931)); Donora, PA, USA, in 1948 (Schrenk et al. (1949);

Ciocco & Thompson (1961)); and London, England, in 1952 (Ministry of Health 1954).

For these episodes, analysis consisted of a simple comparison of death counts for several

days or weeks before, during, and after the episodes. Nevertheless, exposures to high

peak concentrations of air pollutants such as sulfur dioxide (SO2) and total suspended

particles (TSP ) were consistently found to be strongly associated with mortality.

”In the 1970s and 1980s, research on air pollution and health largely involved the use

of cross-sectional designs comparing the morbidity and mortality rates across cities with

different ambient air pollutant concentrations” (Bell, Samet & Dominici (2004)). Fur-

ther, researchers used linear models with transformations or linear autoregressive models

(Özkaynak & Spengler (1985)). Adjustment for confounding effects was mainly done by

using moving averages of confounder variables or stratification. Despite the different

analysis methods as well as different measures of air pollutants, generally these studies

found associations between air pollution and mortality, with higher levels of mortality

accompanying higher levels of air pollution (Bell et al. (2004)).
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At the beginning of the 1990s, several studies used more advanced statistical modeling

techniques. The primary statistical approach was formal time-series modeling of mortal-

ity data using Poisson regression. These models further allowed for potential confounders

such as trend, season, and meteorological variables using trigonometric functions, poly-

nomials and, later, nonparametric smoothers (Fairly (1990); Schwartz & Dockery (1992);

Pope, Schwartz & Ransom (1992); Schwartz (1993); Spix et al. (1993) Schwartz (1994)).

Since the mid-90s, most of the studies use generalized linear models (GLM) with poly-

nomials or natural cubic regression splines as well as generalized additive models (GAM)

with nonparametric smooth functions (smoothing splines or loess smoothers), or, more

recently, penalized splines as statistical approaches for time-series analysis. Alternative

approaches used are case-crossover methods (Neas, Schwartz & Dockery (1999), Bateson

& Schwartz (1999), Janes, Sheppard & Lumley (2005), Forastiere et al. (2005)).

Although the air pollution concentrations were much lower in the last decade compared

to the 1930s to 1950s, there have been hundreds of single-city studies that have found

associations between mortality and air pollutants. The most common and consistent

association has been found with particulate matter (PM) (see for example Pope, Dockery

& Schwartz (1995) or Health Effects Institute (2003)). But associations have also been

reported with gaseous pollutants such as carbon monoxide (CO) (Burnett et al. (1998),

Wichmann et al. (2000), Forastiere et al. (2005)).

Moreover, in studies where ambient particle mass concentrations below aerodynamic

diameters of 10 micrometres (PM10, inhalable particles which are deposited in the upper

airways) as well as below 2.5 �m (PM2.5, particles mainly deposited in the lung) were

available, there were indications that PM2.5 was more strongly associated with mortality

than PM10 (Dockery, Schwartz & Spengler (1992); Schwartz, Dockery & Neas (1996)).

Larger particles, also called coarse particles (PM10 − PM2.5), showed no effect.

Currently, ultrafine particles (UFP ; smaller than 0.1 micrometres) are discussed to be

another important fraction of ambient particles. However, evidence on associations of

UFP number concentrations and mortality is still limited. A study conducted in Erfurt,

Germany, from 1995 to 1998 showed comparable effects of PM2.5 and UFP (Wichmann

et al. (2000)). Forastiere et al. (2005) and Stölzel et al. (in press) also find significant

associations between UFP and mortality.

More recently, large multi-center studies have been conducted using uniform methods for

assembling and analyzing data. Examples are the Air Pollution and Health: A European

Approach (APHEA I and II) projects (Katsouyanni et al. (2001)) and the US National

Morbidity and Mortality Air Pollution Study (NMMAPS) (Samet et al. (2000a); Samet

et al. (2000b)). These multi-city studies have confirmed the findings of earlier studies in
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single cities of an association between daily mortality and elevated concentrations of PM

and other pollutants. A 10 �g/m3 increase in the concentration of PM10 is associated

with an increase in mortality by 0.27% in the US (Health Effects Institute (2003)) or by

0.6 % in Europe (Katsouyanni et al. (2002)), respectively.

A number of studies have furthermore allowed for an air pollution effect as a non-linear

function (Daniels et al. (2000), Schwartz et al. (2001), Dominici et al. (2002), Samoli

et al. (2005)).

Yet, time series studies relating short-term changes in air pollution levels to daily mor-

tality counts have, so far, typically assumed that the effects of air pollution on the log

relative risk of mortality are constant over time. The following section introduces a

motivating example for the necessity of more flexible regression models.

1.1.2 A motivating example

Drastic improvements of air quality have been observed in Eastern Germany comparing

the mid-80s to today. These improvements are mainly the consequences of the unifi-

cation of East and West Germany in 1990, which brought major social and political

changes particularly affecting East Germany. The restructuring process resulted in a

reorganization of East German industrial structures and in the implementation of air

pollution controls between 1992 and 1996. These processes further led to remarkable

changes in emission sources of air pollutants. Sources that have undergone significant

changes in East Germany since 1990 include energy production by power plants and

local heating. Lignite and coal have been exchanged for natural gas in power plants and

in domestic heating. Concurrent with the changes in energy production, mobile sources

have undergone transitions. The old car fleet was gradually replaced by vehicles with

modern engine technology including three-way catalysts, while the overall number of

vehicles increased (Peters et al. (2007)). All these processes resulted in major changes

in the amount of emissions as well as in the concentrations of measured air pollutants.

It has further been suggested that ambient concentrations of specific air pollutants may

be surrogate markers of exposure to other agents or of specific pollution sources and that

those are in fact responsible for the observed effects. An example are ultrafine particles

(UFP ) which are mainly released from vehicle exhausts. UFP are supposed to be one

of the most likely causes of adverse health effects, but they are usually not measured.

Instead, studies have shown effects of CO as well as nitrogen dioxide (NO2). However, in

many cities all three are being emitted by the same source, namely combustion processes

and, hence, are highly correlated. This high correlation, though, makes it impossible to
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distinguish their effects in epidemiological studies. Seaton & Dennekamp (2003), for

example, argued that ”if NO2 ... is measured as an index of pollution and is shown to be

associated with health effects, these effects could equally be due to the numbers of (ultra-

fine) particles”. The observed effects of CO and NO2 are, therefore, often interpreted as

potential surrogate effects of unmeasured ultrafine particles. This view is supported by

some source apportionment analyses including gaseous pollutant measurements. How-

ever, along with changing pollution sources and emissions there could also be a changing

surrogate status of the measured pollutants.

The main objective of the study ”Improved Air Quality and its Influences on Short-Term

Health Effects in Erfurt, Eastern Germany” (Peters et al. (2007)), which is the moti-

vating example for this thesis, was to assess the impact of such changes in ambient air

pollution on mortality during the period 1991 to 2002 in Erfurt, East Germany.

1.1.3 Time-varying coefficient models in air pollution analysis

There are only a few publications that allowed the effects of air pollution to change

smoothly over time. Peng et al. (2005), for example, allowed the effect of particulate

matter to change seasonally forcing the seasonal effect to be a sinusoidal function with

a period of one year. This constraint ensures a smooth time-varying effect, but the size

and location of the seasonal effect are forced to be constant over the years of the study.

A more flexible approach is proposed by Chiogna & Gaetan (2002) who apply a dynamic

generalized linear model (DGLM) based on a likelihood analysis using the iteratively re-

weighted Kalman filter and smoother. They allow the effect of air pollution to change,

in principle, freely over time; however, to enforce smoothness of the time-varying effect,

the amount in which the effect could change is restricted by constraining it to follow

a first order random walk. This approach is extended by Lee & Shaddick (2005), who

replace the assumption of a first order random walk with an autoregressive process of

higher order and base their inference on Markov Chain Monte Carlo (MCMC) simulation

methods.

1.1.4 Time-varying coefficient models and measurement error

Measurement error models are appropriate in cases when the variable of interest ξ is not

measured directly, but for which information is available through recording of a surrogate

X. It is well-known that ignoring measurement errors on the explanatory variable X

in regression analysis may induce bias in the effect estimates and can, therefore, be

misleading.
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The effect of measurement errors in predictor variables on regression analysis have been

carefully studied in the statistical and epidemiological literature for several decades.

Among many others, Fuller (1987) summarized early research on linear regression with

so-called errors-in-variables. Carroll et al. (2006) provide recent illustrations of statistical

approaches to measurement error in epidemiologic research.

The measurement error problem that we consider in this thesis is concerned with the

situation of air pollution time-series studies. A systematic overview of measurement

errors in such kind of studies is given by Zeger et al. (2000). They find three sources

of measurement error to be relevant. The first one is the instrument error, that means

the accuracy and precision of the monitoring instrument. The second one is the error

resulting from the non-representativeness of a monitoring site (reflected by the spatial

variability of the pollutant measured). The third source is given by differences between

the average personal exposure to a pollutant and the true ambient pollutant level. Most

of the literature in the air pollution context is concerned with errors resulting from using

centrally measured data as a surrogate for personal exposure (see Sheppard & Damian

(2000), for example). Dominici, Zeger & Samet (2000) proposed an approach correcting

for the consequences of this kind of measurement error.

Recently, Schwartz & Coull (2003) have developed an approach that deals with mul-

tiple exposures and, under certain conditions, is resistant to measurement error. An

application of this approach is presented by Zeka & Schwartz (2004).

To frame the general problem discussed here, consider a situation in which two envi-

ronmental monitoring systems are collecting data on the same variable ξt. We define

the variable of interest, ξ, as the (true) mean ambient level of an air pollutant in a

city. It is further assumed that ξt may be temporally correlated. Instead of ξt, one now

observes perturbed versions Xtj from the two different measurement systems at regular

time points

Xt1 = ξt + εt1 t = 1, . . . , T,

Xt2 = ξt + εt2,

where εtj is the corresponding measurement error of the two monitoring devices. Our

aim is to estimate the time-varying association between ξ and health outcomes such as

mortality.

Varying coefficient models and, in particular, time-varying coefficient models without

measurement error have been studied in Hastie & Tibshirani (1993), for example.

Regarding measurement error, Liang, Wu & Carroll (2003) studied a longitudinal linear

model with random intercepts and slopes which are allowed to depend on time. Regres-
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sion splines are used to approximate the coefficient functions, and the error correction

algorithm is similar to regression calibration. Recently, You, Zhou & Chen (2006) pro-

pose a corrected local linear estimator for varying coefficient models with measurement

errors.

1.2 Overview of the thesis

The outline of this thesis is as follows. The second chapter gives a short introduction

into the basic concepts of generalized linear and additive models. This is followed by an

overview of varying coefficient models, in general, as well as of one of their special cases,

time-varying coefficient models.

In the third chapter, we present five approaches for estimating time-varying coeffi-

cients. The five approaches are: Time-varying coefficient models using regression splines;

Bayesian time-varying coefficient models with P-splines; Time-varying coefficient mod-

els with penalized linear splines based on a generalized linear mixed model framework;

Time-varying coefficient models with P-splines based on empirical Bayes inference; and

Adaptive generalized TVC models. We will describe the models and discuss inference.

The proposed methods are investigated in an extensive simulation study, which is de-

scribed in Chapter 4. This is done by re-estimating various models typically used in the

air pollution analysis context. The simulated response is based on real data obtained

in the study ”Improved Air Quality and its Influences on Short-Term Health Effects in

Erfurt, Eastern Germany”.

In Chapter 5, the main results of an air pollution data analysis are presented. Especially,

the results of the application of those methods selected based on the simulation study

are shown and contrasted. This chapter is also concerned with an extensive sensitiv-

ity analysis. We further present a bootstrap test procedure for investigating whether a

time-varying coefficient term is indeed required.

Chapter 6 focusses on the formulation of a measurement error model in the context of

time-varying coefficient models. As the observed time series are assumed to be tem-

porally correlated, a further aspect is given by an appropriate selection of the latent

variable’s distribution. In addition, we deal with methods for estimating the measure-

ment error model parameters in this special context.

Chapter 7 introduces two methods adjusting for measurement errors in the context of

time-varying coefficients. One is a hierarchical Bayesian model based on MCMC in-

ference. The second approach is a variant of the well-known regression calibration.

Applications of these correction methods on air pollution data are illustrated in Chapter
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8, including an comparison with the results obtained by the ’naive’ analysis.

Finally, in Chapter 9, a summary of the presented work leads to possible directions for

future research.



Chapter 2

Generalized models

The general aim of regression models is to explore an association between dependent and

independent variables to identify the impact of these covariates on the response.

The classical linear regression model is an important statistical tool, but its use is limited

to those settings where the normal distribution is valid and the assumption of a linear

function relating the response to the predictors is given.

Generalized linear models (GLM), introduced by Nelder & Wedderburn (1972), expand

the well known linear model to accommodate non-normal response variables in a single

unified approach. It is common to find response variables which do not fit the stan-

dard assumptions of the linear model (normally distributed errors, constant variance,

etc.). Examples are count data, dichotomous variables and truncated data. In GLMs,

the influence of each covariate is modeled parametrically and the covariate effects are

additively combined in the so-called linear predictor.

However, the identification of appropriate polynomial terms and transformations of the

predictors to improve the fit of a linear model can be tedious and imprecise. Generalized

additive models (GAM, Hastie & Tibshirani (1990)) extend generalized linear models by

replacing the linear predictor with an additive sum of smooth functions. The following

sections are intended to give an informative overview of generalized linear and gener-

alized additive models. A detailed overview of these two types of models is given by

McCullagh & Nelder (1989) and Hastie & Tibshirani (1990).

2.1 Generalized linear models

Let y1, . . . , yT denote observations on a response, measured over T independent time

points. We treat yt as a realization of the random variable Yt, t = 1, . . . , T . The p

9
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dimensional vector zt of independent variables contains continuous or discrete values,

which are either fixed by design or which are realizations of sets of random variables Zt.

A generalized linear model is composed of three parts:

� A random component specifying the response distribution:

In a generalized linear model it is typically assumed that, conditional on the co-

variates, the responses yt are independent. The conditional distribution of the

responses yt follows a one-dimensional exponential family with density

f(yt|zt, θt, φ) = exp

{
ytθt − b(θt)

φ
+ c(yt, φ)

}
, (2.1)

where the functions b(.) and c(.) are known and specific for the distribution of the

exponential family. φ denotes an additional scale or dispersion parameter, whereas

θt is the so-called natural parameter.

� A systematic component ηt specifying the expectation of yt accounted for by known

covariates. The linear predictor ηt combines the covariate effects

ηt = z′tβ = β0 + β1zt1 + · · ·+ βpztp. (2.2)

� A monotonic differentiable link function which links the mean E(yt|zt) = μt and

the linear predictor ηt by

g(μt) = ηt

The inverse function h = g−1 is referred to as response function such that μt =

h(ηt).

The function b(θ) is important because it relates the natural parameter to the mean μt

as well as the variance of yt: Var(yt|zt) = σ2(μt). These parameters can be explicitly

determined by

μt = b′(θt) = ∂b(θt)/∂θ,

σ2(μt) = φv(μt),

v(μt) = b′′(θt) = ∂2b(θt)/∂θ
2.

Therefore, the natural parameter θt can be expressed as a function of the mean, i.e. θt =

θ(μt). If g(μt) = θ(μt), g(.) is called the natural or canonical link function. This is a

special, but important case of a link function which yields θt = ηt. It is frequently the

link function of choice, because it generally has mathematical advantages.
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In the following, we consider the example of a Poisson distributed response. Due to

the count nature of the data considered in the motivating example, this is the most

appropriate distribution from the exponential family. This leads to

yt|zt ∼ Poisson(μt)

f(yt|zt) = exp{yt log(μt) − μt − log(yt!)},

where

θt = log(μt), b(θt) = exp(θt) = μt, φ = 1.

As the mean μt has to be strictly positive, the logarithmic function is chosen as link

function

log(μt) = ηt,

which also means that we do not need further restrictions on the parameters β. The

present model is also referred to as a log-linear model. Note that the logarithmic function

is the natural link function for the Poisson distribution.

To make inference, the vector β̂ that maximizes the whole likelihood of the model has

to be found. In practice, β̂ is the solution of the estimating equations obtained by

differentiating the log-likelihood in terms of β and solving them to zero. Nelder &

Wedderburn (1972) proposed a solution using a modified Newton-Raphson technique.

This is based on the idea of using a linear approximation to these equations using the

second derivatives of the log-likelihood. The modification is that these second derivatives

are replaced by their expected values (using the current estimate of the distribution),

which results in a simpler form. This general procedure is referred to as Fisher scoring.

For a GLM, this procedure can be framed as equivalent to weighted multiple regression

with a constructed dependent variable and weights that change at each iteration. Thus,

this is often called Iterative (Re-) Weighted Least Squares (IWLS; see Fahrmeir & Tutz

(2001), Section 2.2).

2.2 Generalized additive models

Identifying appropriate polynomial terms or transformations of the predictor variables to

improve the fit of a (generalized) linear model can be difficult and imprecise. Therefore,

the introduction of models that automatically identify appropriate transformations was

a further important step forward in regression analyses. It led to an extension of GLM
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known as generalized additive models (GAM, Hastie & Tibshirani (1990)). The only

underlying assumptions made are the additivity of the functions and that the components

are smooth. Like a GLM, a GAM uses a link function to establish the relationship

between the mean of a response variable and a ’smoothed’ function of the explanatory

variable(s). The strength of these models is their ability to deal with highly non-linear

and non-monotonic relationships between the response and the explanatory variables.

The predictor is then specified as

ηt = β0 + f1(zt1) + · · ·+ fp(ztp) = β0 +
∑

j

fj(ztj) (2.3)

where each fj , j = 1, . . . , p is an arbitrary smooth function that is to be estimated.

Estimation of the additive terms for generalized additive models is accomplished by re-

placing the weighted linear regression for the adjusted dependent variable by the weighted

backfitting algorithm, essentially fitting a weighted additive model. The algorithm used

in this case is called the local scoring algorithm. It is also an iterative algorithm and

starts with initial estimates of the fj. During each iteration, an adjusted dependent vari-

able and a set of weights are computed, and the smoothing components are estimated

using a weighted backfitting algorithm. The scoring algorithm stops when the deviance

of the estimates ceases to decrease. Overall, the estimating procedure for generalized

additive models consists of two separate iterative operations which are usually labeled

the outer and inner loop. Inside each step of the local scoring algorithm (outer loop), a

weighted backfitting algorithm (inner loop) is used until convergence. Then, based on

the estimates from this weighted backfitting algorithm, a new set of weights is calculated

and the next iteration of the scoring algorithm starts (see Hastie & Tibshirani (1990)

and Fahrmeir & Tutz (2001) for details).

Suppose now that we have data (yt, z
′
t, x

′
t), t = 1, . . . , T , and vectors xj = (x1j , . . . , xTj)

′

and zj = (z1j , . . . , zTj)
′, which are column vectors of continuous and categorical covari-

ates, respectively. The predictor is then a sum of linear combinations of the observed

categorical covariates zj and some unknown parameters, denoted by βj , and some non-

linear smooth functions, denoted by fj of xj . One obtains a semiparametric model with

the following predictor

η = β0 + Z β +
∑

j

fj(xj). (2.4)
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2.3 Varying coefficient models

In contrast to GLMs or GAMs, where the regression coefficients are assumed to be con-

stant, varying coefficient models (VCM), systematically introduced by Hastie & Tibshi-

rani (1993), accommodate situations in which the effects of one or more of the covariates

are allowed to vary (interact) more or less smoothly over the values of other variables.

The additive-linear structure enables simple interpretation and avoids the so-called ’curse

of dimensionality’ problem in high dimensional cases.

Varying coefficient models (VCM) have, in general, a predictor of the form

log(μ) = f1(r1) x1 + . . .+ fp(rp) xp, (2.5)

where r1, . . . , rp are additional covariates and f1, . . . , fp are unspecified functions to be

estimated. Model (2.5) says that the so-called effect modifiers r1, . . . , rp change the coef-

ficients of the x1, . . . , xp through the (unspecified) functions f1, . . . , fp. The dependence

of fj(.) on rj implies a special kind of interaction between each rj and xj . Typically, the

effect modifiers r1, . . . , rp are continuous covariates, whereas the interacting variables xj

can be either continuous or categorical.

Varying coefficient models arise from various statistical contexts in slightly different

forms. The vast amount of literature includes, among many others, approaches based on

local regression (Kauermann & Tutz (1999), Fan & Zhang (1999), Fan & Zhang (2000)),

smoothing spline regression (Eubank et al. (2004)), functional data analysis (Ramsay

& Silverman (1997), Ramsay & Silverman (2002)) and generalized linear models with

varying coefficients (Cai, Fan & Li (2000), Galindo et al. (2001))

2.4 Time-varying coefficient models

As an important special case of the general varying coefficient formulation, time-varying

coefficient models (TVCM) are considered in the following, with the effect modifier being

time t.

Most of the literature about time-varying coefficient models has been on models for lon-

gitudinal data. For example, Hoover et al. (1998) consider a time-varying coefficient

model for continuous longitudinal data and use smoothing splines and local polynomial

estimators. Huang, Wu & Zhou (2002) propose a basis function approximation method

to estimate the time-varying coefficients, whereas Tutz & Kauermann (2003) use gen-

eralized local likelihood estimation. Another type of models that has been suggested is
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the dynamic generalized linear model (DGLM). For example, West, Harrison & Migon

(1985) consider this model and use a linear Bayes estimation and the discount method.

More recently, fully Bayesian analysis of DGLMs based on Markov Chain Monte Carlo

approaches is proposed, among others, by Gamerman (1998) and Lee & Shaddick (2005).

The basic model to be considered here assumes that we have

log(μ) = f0(t) + f1(t) x1 + . . .+ fp(t) xp. (2.6)

Further, we assume that some of the functions fj(.) are constant, that means fj(.) = βj ,

thus, resulting in terms with simple linear effects. Another specification is given by the

fact that the confounders are typically modeled as nonlinear time-invariant functions. In

this case the j-th term is simply fj(xj), an unspecified function in xj . Altogether, this

leads to a semiparametric time-varying coefficient model with a predictor of the following

form:

log(μ) = η = β0 +

l∑
j=1

βxj +

k∑
j=l+1

fj(xj) +

p∑
j=k+1

fj(t) xj. (2.7)



Chapter 3

Modeling approaches for
time-varying coefficients

In this chapter, five different approaches for fitting time-varying coefficient models are

introduced and discussed. The five approaches are:

a) Time-varying coefficient models using regression splines,

b) Bayesian time-varying coefficient models with P-splines,

c) Time-varying coefficient models with penalized linear splines based on a generalized

linear mixed model framework,

d) Time-varying coefficient models with P-splines based on empirical Bayes inference,

and

e) Adaptive generalized TVC models.

3.1 TVCM using regression splines

One possibility, mentioned in Hastie & Tibshirani (1993), is estimating an interaction

term, fj(t) xj, where the unknown function fj(t) is approximated by a polynomial spline

in time.

Polynomial (regression) splines are piecewise polynomials with the polynomial pieces

joining together smoothly at a set of interior knot points. More precisely, suppose that

the domain of a variable x is divided by a set of (equally spaced) knots

ξ0 < ξ1 < . . . < ξM−1 < ξM ,

15
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where ξ0 and ξM are the two end points of x, that means ξ0 = x(min) and ξM = x(max).

Then, a polynomial spline of degree l, l ∈ N is a function that

� consists of a polynomial of degree l within each of the intervals [ξm, ξm+1), 0 ≤
m ≤ M − 1, and

� has (l − 1)-times continuous derivatives.

The collection of spline functions of a particular degree and knot sequence forms a linear

function space and it can be shown that a spline with the above properties can be

represented in terms of a linear combination of D = M + l basis functions Bd in the

following way

f(x) =

S∑
d=1

γdBd(x), (3.1)

where γ = (γ1, . . . , γS)′ corresponds to the vector of unknown regression coefficients.

There are several popular basis functions, for example truncated power series bases

(Ruppert, Wand & Carroll 2003) or B-spline bases functions (Eilers & Marx 1996).

Here, the focus is on truncated power series bases. A polynomial spline for fj(t) can be

constructed using the truncated polynomials

B1(t) = 1, B2(t) = t, B3(t) = t2, . . . , Bl+1(t) = tl,

Bl+2(t) = (t− ξ1)
l
+, . . . , BM+l(t) = (t− ξM−1)

l
+,

where l is the degree of the spline, (t − ξm)l
+ = max(0, (t − ξm))l, and ξ1, . . . , ξM−1 are

fixed knots. Thus, a time-varying coefficient term can be modeled by

fj(t) xj =

(
γj,1 + γj,2 t+ . . .+ γj,l+1 t

l +

M−1∑
m=1

γj,l+1+m (t− ξm)l
+

)
xj , for l = 0, 1, 2, . . . .

(3.2)

One special case, which will be considered in this work, is the cubic regression spline.

The functions fj(t) can be parameterized in terms of a linear combination of M+3 basis

functions, which can be denoted as

Φ(t) = [1, t, t2, t3, (t− ξ1)
3
+, . . . , (t− ξM−1)

3
+].

Likewise, the corresponding coefficients can be denoted by γj = (γj,1, . . . , γj,M+3)
′. Then

the time-varying coefficient term can be written in matrix formulation as

fj(t) xj = diag(xj)Φ(t)′γj.
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If polynomial splines are also used for all of the other nonlinear functions fj , then the

analysis is completely parametric, so that estimation can be done by using the methods

considered for generalized linear models (see Chapter 2 or Section 2.2 of Fahrmeir &

Tutz (2001)).

3.2 Bayesian TVCM with P-splines

A second approach is the use of Bayesian varying-coefficient models with penalized splines

(Lang & Brezger (2004)).

In the frequentist paradigm, parameters in a statistical model (for example the regres-

sion coefficients) are treated as unknown, but fixed quantities. In Bayesian statistics,

however, all these unknown parameters are considered as random variables which follow

a certain probability distribution. Another important difference is the use of the pos-

terior distribution, that means the conditional distribution of the parameters given the

observed data y.

Let, in general, φ denote the vector of all unknown parameters. Then, the posterior

distribution p(φ|y) is, by Bayes theorem, proportional to the likelihood L(φ) times the

prior distribution p(φ)

p(φ|y) ∝ L(φ|y) p(φ).

All statistical inference can be deduced from the posterior distribution by reporting

appropriate summaries. For example, point estimates for unknown parameters are given

by the posterior means.

3.2.1 Observation model

Bayesian-type models are defined hierarchically: in the first step, an observation model

for responses given covariates is specified. Here, we consider the predictor (2.7) as

observation model, that is

log(μ) = η = β0 +

l∑
j=1

βxj +

k∑
j=l+1

fj(xj) +

p∑
j=k+1

fj(t) xj.

3.2.2 Prior assumptions

The Bayesian model formulation is completed by assumptions about priors for param-

eters and functions. Prior distributions should account for available information and
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reflect our prior knowledge about the parameters. Often, these priors will depend on

further parameters, called hyperparameters, for which additional hyperpriors have to be

defined.

3.2.2.1 Continuous covariates

Priors for the unknown functions fl+1, . . . , fp depend on the type of the covariates as

well as on prior beliefs about the smoothness of fj. Several alternatives have been

proposed for specifying smoothness priors for continuous covariates or time scales. These

are random walk priors or, more generally, autoregressive priors (see Fahrmeir & Lang

(2001)), Bayesian smoothing spline (Hastie & Tibshirani (2000)) and Bayesian P-spline

priors (Lang & Brezger (2004)), which are assumed here. For notational simplicity we

will drop the index j in the following discussion.

Analogous to Section 3.1, we assume here that an unknown function f of a covariate x

can be approximated by a polynomial spline of degree l and with knots

ξ0 = x(min) < ξ1 < . . . < ξM−1 < ξM = x(max)

within the domain of x. However, the basic idea of P-splines (Eilers & Marx 1996)

is that the polynomial spline can be constructed in terms of a linear combination of

D = M + l B(asic)-spline basis functions (de Boor (1978), Dierckx (1993)). Denoting

the d-th B-spline basis function by Bl
d, one then obtains

f(x) =
S∑

d=1

γdB
l
d(x). (3.3)

The vector of function parameters now contains the regression coefficients or weights of

the individual B-spline basis functions: γ = (γ1, . . . , γS)′.

The B-spline basis functions of degree l can be defined using the Cox-de Boor recursion

formula:

B0
d(x) :=

{
1, if ξd ≤ x < ξd+1

0 otherwise

}

Bl
d(x) :=

x− ξd
ξd+l − ξd

Bl−1
d (x) +

ξd+l+1 − x

ξd+l+1 − ξd+1
Bl−1

d+1(x), l ≥ 1. (3.4)

For equidistant knots, equation (3.4) simplifies to

Bl
d(x) =

1

l · Δξ [(x− ξd)B
l−1
d (x) + (ξd+l+1 − x)Bl−1

d+1(x)],
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since ξd+l − ξd = ξd+l+1 − ξd+1 = l · Δξ, where Δξ is the distance between two adjacent

knots. Note that one needs an extension beyond the domain of x for l knots in each

direction to generate a complete B-spline basis of degree l. More information about B-

splines can be found in the mentioned literature. Figure 3.1 shows a small set of B-spline

basis functions for the degrees l = 1, 2, and 3. B-spline basis functions of degree one,

for example, are non-zero within an area spanned by 1 + 2 = 3 knots. Further, they are

generated by linear functions within each interval [ξd, ξd+1), as shown in the top row of

Figure 3.1. Correspondingly, B-splines of degree two are only positive over the range of

four subsequent knots and are polynomials of degree two within each interval (Figure 3.1,

middle row), whereas cubic B-spline functions (Figure 3.1, bottom row) are generated

by four polynomials of degree three and are non-zero within the range of five knots.

Knot specification and penalization

A crucial problem in spline theory is the appropriate choice of the number of knots. For

a small number of knots, the resulting spline may not be flexible enough to capture the

variability of the data, whereas for a large number of knots, the estimated curve tends

to overfit the data; as a result, a wigglier function is obtained. To meet the opposite

requirements, that is enough flexibility without large overfitting, Eilers & Marx (1996)

suggest the use of a moderately large number of equally spaced knots (between 20 and

40). Additionally, they introduce a roughness penalty on adjacent B-spline coefficients in

their frequentist approach to reduce high variation of the curves leading to a penalization

of the likelihood with difference penalty terms

λ

S∑
d=u+1

(Δu γd)
2, (3.5)

where λ is a smoothing parameter and Δu is the difference operator of order u.

Usually, first or second order differences are enough. In general, first order differences

penalize too big jumps between successive parameters γd − γd−1, whereas second order

differences penalize deviations from the linear trend 2γd−1 − γd−2. Therefore, a second

order difference imposes a smoother function f than a first order difference does.

The smoothness of the function is now regulated by the smoothing parameter

λ. The method recommended by Eilers & Marx (1996) is to minimize the Akaike infor-

mation criterion (AIC). Details about this criterion can be found in Hastie & Tibshirani

(1990). However, the computation of AIC for many values of λ is very time-consuming

and becomes intractable in higher dimensions. Moreover, this procedure often fails in

practice, since no optimal solutions for the λ can be found (Lang & Brezger 2004).
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Figure 3.1: Illustration of B-spline basis functions of degree 1 (top), degree 2 (middle)
and degree 3 (bottom). Each Figure exemplarily shows the different polynomials of one
B-spline.
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τ2

τ2

d − 1 d

E(ξd|ξd−1) = ξd−1 τ2

τ2

d−2 d−1 d

ξd−2

ξd−1

E(ξd|ξd−1,ξd−2)

Figure 3.2: Trends induced by first (top) and second order (bottom) random walk priors.

To solve the problem of the choice of an optimal value for the smoothing parameter,

a Bayesian approach to P-splines is suggested. Following Lang & Brezger (2004), the

Bayesian version of P-splines allows for considering the smoothing parameters as ran-

dom and, hence, for simultaneous estimation together with the other model parameters.

Starting from the general formulation in (3.3), the difference penalty terms on adjacent

B-spline coefficients given by (3.5) are replaced by their stochastic analogues: first order

random walks (RW1) and second order random walks (RW2). Thus, we obtain

γd = γd−1 + ud (3.6)

and

γd = 2γd−1 − γd−2 + ud (3.7)

respectively, with Gaussian errors ud ∼ N(0, τ 2). Diffuse priors p(γ1) ∝ const and

p(γ2) ∝ const are chosen for initial values.

Alternatively, the above assumptions can be replaced by using the conditional distribu-

tions of γd given the preceding neighboring parameters

γd|γd−1 ∼ N(γd−1, τ
2)

and

γd|γd−1, γd−2 ∼ N(2γd−1 − γd−2, τ
2).

The amount of smoothness or penalization is controlled by the additional variance param-

eters τ 2 = Var(ud). These parameters correspond to the inverse smoothing parameters

in the classical approach.

An illustration of this concept is given in Figure 3.2. In case of a first order random walk,
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coefficient γd is restricted to deviate by τ 2 from the preceding coefficient γd−1 (Figure

3.2 left panel), or alternatively from the interpolating line between γd−2 and γd−1, in the

case of a second order random walk (Figure 3.2 right panel).

Matrix formulation

By defining the T × S design matrices Xj , where the element in row t and column d is

given by Xj(t, d) = Bjd (xtj), that means

Xj =

⎛
⎜⎝

X11 . . . X1S
... Xtd

...
XT1 . . . XTS

⎞
⎟⎠ ,

we can rewrite the P-spline formulation in matrix notation

fj(xj) = Xjγj. (3.8)

As the splines are non-zero functions in a defined interval and zero elsewhere, the matrix

Xj has some sort of band structure that can be used to improve the computational

implementation.

3.2.2.2 Time-varying coefficients

The models discussed so far are not suitable for modeling interactions between covariates.

As introduced above, in a TVCM, the interaction terms are of the form

fj(t, xj) = fj(t)xj ,

where the interacting variables xj are continuous or categorical. Regarding the varying

coefficient terms, we can use the priors already defined above for the nonlinear functions

fj, adapting them to the variable time t:

fj(t) = X∗
j γj, j = k + 1, . . . , p. (3.9)

Only the design matrices X∗
j in (3.9) have to be redefined by multiplying each element

in row t of X∗
j with xtj . Hence, the overall matrix formulation for the varying terms is

given by

fj(t, xj) = fj(t)xj = diag(x1j , . . . , xTj)X
∗
j γj = Xj γj,

where X∗
j is the usual design matrix for splines composed of the basis functions evaluated

at the observations t as given above.
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General form of the priors for γj

Both the priors for continuous covariates and those for interactions can be equivalently

written in a general form, which is given by

p(γj|τ 2
j ) ∝ exp

(
− 1

2τ 2
j

γ′jKjγj

)
, (3.10)

where Kj is the precision matrix of the multivariate Gaussian distribution. This precision

matrix is of the form Kj = D′D, where D is a difference matrix of order u. For second

order random walks, for example, the difference matrix is given by

D2 =

⎛
⎜⎜⎜⎝

1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1

⎞
⎟⎟⎟⎠ .

Concerning second order random walks, we then obtain the precision matrix

KRW2
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1
−2 5 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In general, P-spline precision matrices Kj are rank deficient, that means they have rank

rj = Sj − 1 and rj = Sj − 2 for first and second order random walk priors, respectively.

Hence, the priors are partially improper.

Instead of using equidistant knots for the Bayesian P-splines, one could also utilize a

non-equidistant knot setting by defining weighted random walks. However, due to their

construction, P-splines should be rather insensitive to the position and number of knots

as long as a sufficiently large number of knots is used (Eilers & Marx 2004).

3.2.2.3 Fixed effects

We assume that we have no prior knowledge about the fixed parameters. In the absence

of any prior knowledge, diffuse priors are the appropriate choice for these parameters,

i.e.

p(βj) ∝ const,

where the priors are supposed to be independent for each j = 0, . . . , l.
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3.2.2.4 Hyperparameters

Additionally, for a fully Bayesian inference, the variance parameters τ 2
j are also consid-

ered as random. Therefore, priors for these variances have to be adopted in a further stage

of the hierarchy by highly dispersed but proper inverse gamma priors p(τ 2
j ) ∼ IG(aj, bj).

This allows for simultaneous estimation of the unknown functions and the amount of

smoothness. The probability density of a IG(aj, bj) distribution is given by

τ 2
j ∝ (τ 2

j )−aj−1exp

(
− bj
τ 2
j

)
.

The parameters aj and bj have to be chosen appropriately. A common choice is aj = 1

and bj equaling a small value, e. g. bj = 0.005, as proposed by Besag et al. (1995).

The choice of such highly vague but proper priors prevents problems associated with

noninformative priors. Alternatively, we may set aj = bj , e.g. aj = bj = 0.001, leading

to an almost noninformative prior for τ 2
j . For a detailed discussion about the propriety

of the posteriors see Fahrmeir & Kneib (2006). Based on experience from extensive

simulation studies, we use aj = bj = 0.001 as our standard choice.

3.2.3 MCMC inference

Let γ = (γ′l+1, . . . , γ
′
p)

′ denote the vector of all regression coefficients of the B-spline

bases, β the vector of all fixed effects, and τ 2 = (τ 2
l+1, . . . , τ

2
p ) the vector of all vari-

ance parameters. As mentioned above, full Bayesian inference is based on the posterior

distribution which is given by

p(γ, τ 2, β|data) ∝ L(γ, τ 2, β)p(γ, τ 2, β),

where L() denotes the likelihood which is the product of individual likelihood contribu-

tions. Under usual conditional independence assumptions for the parameters, the joint

prior p(γ, τ 2, β) can be factorized, yielding

p(γ, τ 2, β|data) ∝ L(γ, τ 2, β)

p∏
j=l+1

(p(γj|τ 2
j ) p(τ 2

j )) p(β), (3.11)

where the last factor can be omitted, as we have chosen diffuse priors for the fixed effects.

In many practical applications, this high dimensional posterior will not have a known

closed form, but rather a complicated high dimensional density only known up to the

proportionality constant. Estimation of the unknown parameters is therefore done by

simulation of the posterior (3.11) with Markov Chain Monte Carlo (MCMC) techniques.
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The main idea of MCMC is to establish a Markov chain whose stationary distribution

is the posterior distribution of interest, and then to collect samples from that chain. In

this way, a sample of dependent random numbers from the posterior is obtained.

Full Bayesian inference via MCMC simulation is based on updating full conditionals

of single parameters or blocks of parameters, given the rest of the data. For updating

the parameter vectors γj and the fixed effects β, a Metropolis Hastings (MH)-algorithm

based on IWLS proposals is used. The concept of IWLS updates has been introduced by

Gamerman (1997) in the context of the estimation of generalized linear mixed models

and extended to a more general setting by Brezger & Lang (2006). A more detailed

description of this algorithm will be given in the context of measurement error correction

methods (Section 7.1).

3.3 TVCM with penalized linear splines based on a

generalized linear mixed model framework

Recent applications in spline smoothing make use of a convenient connection between

penalized splines and mixed models (Brumback, Ruppert & Wand 1999).

In contrast to the fully Bayesian approach, where the unknown functions were approxi-

mated by penalized B-spline basis functions, we consider here the truncated power series

basis, similar to Section 3.1.

Mixed model approaches to penalized splines based on truncated power series represen-

tation have been described in Coull, Schwartz & Wand (2001), Wand (2003), Ruppert

et al. (2003) and Ngo & Wand (2004). The latter also describes the estimation of vary-

ing coefficient models, but only for the case of Gaussian distributed responses and two

covariates.

In this section, we extend this estimation approach to a generalized setting; however, we

follow the suggestions of Ngo & Wand (2004) and use penalized linear splines.

Before addressing the estimation of regression coefficients as well as variance parameters

in a (generalized) mixed model in detail, we will first show how to reformulate model

(2.7) as generalized linear mixed model.
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3.3.1 Mixed model representation

The linear spline estimator for a function fj is of the form

fj(xj) = αj0 + αj1xj +

Mj−1∑
m=1

uj,m(xj − ξj
m)+,

where

(xj − ξj
m)+ =

{
0, xj ≤ ξj

m

xj − ξj
m, xj > ξj

m

,

and ξ1, . . . , ξMj−1 are fixed knots. Equivalently, a linear spline version of a (time-) varying

coefficient term is given by

fj(t) xj =

(
αj0 + αj1 t+

Mt−1∑
m=1

uj,m(t− ξm)+

)
xj ,

where ξ1, . . . , ξMt−1 are fixed knots over the range of t.

Using these two formulae, model (2.7) can be written as

ηt = β0 +
l∑

j=1

βxtj +
k∑

j=l+1

⎛
⎝αjxtj +

Mj−1∑
m=1

uj,m(xtj − ξj
m)+

⎞
⎠ (3.12)

+

p∑
j=k+1

(
αj0 + αj1 t+

Mt−1∑
m=1

uj,m(t− ξm)+

)
xtj , t = 1, . . . , T.

To implement spline smoothing in practice, the coefficient vectors α = (αl+1, . . . , αp1)
′

and u = (ul+1,1, . . . , up,Mt−1) have to be estimated. In principle, we could apply the

usual methods as described in Section 3.1, but we expect that this tends to result in a

rather rough estimate of the function. A greater degree of smoothing can be achieved

by shrinking the estimated coefficients towards zero. This is now achieved by regarding

the uj,m as random coefficients, distributed independently as

ul+1,1, . . . ul+1,Ml+1−1 iid N(0, σ2
l+1), . . . up,1, . . . , up,Mt−1 iid N(0, σ2

p),

as suggested by Brumback et al. (1999), with σ2
j controlling the amount of smoothing.

Constraining the coefficients uj,m to come from a common distribution has the effect of

damping changes in the gradient of fitted line segments from one knot point to the next.

Thus, the resulting estimator is a type of penalized spline smoother.

Now, we set the design matrix X to take the following form

X =

⎡
⎢⎣

1 x1 1 . . . x1,k−1 1 x1,k+1 1 x1,k+1 . . . x1 p 1 x1 p
...

...
...

...
...

...
...

1 xT 1 . . . xT,k−1 T xT,k+1 T xT,k+1 . . . xT p T xT p

⎤
⎥⎦ .
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The random effects matrix Z is constructed as

Z = [ (xt,l+1 − ξl+1
m )+

1≤m≤Ml+1−1

. . . (t − ξk
m)+

1≤m≤Mk−1
xt,k+1 (t − ξk+1

m )+
1≤m≤Mk−1

. . . xtp(t − ξp
m)+

1≤m≤Mk−1

]1≤t≤T .

By defining

b = [ul+1,1, . . . ul+1,Ml+1−1, . . . , up,1, . . . , up,Mt−1]
′ and

D = Cov(b) =

⎛
⎜⎜⎜⎝

σ2
l+1I 0 . . . 0
0 σ2

l+2I . . . 0
...

...
. . .

...
0 0 . . . σ2

pI

⎞
⎟⎟⎟⎠ ,

we can then write model (3.12) in matrix notation as

η = Xβ + Zb.

Having divided the functions f(xj) and the varying coefficient terms f(t)xj into a fixed

effects and into a random effects part, we get the following generalized linear mixed

model:

y|b ∼ Poisson(μ)

log(μ) = Xβ + Zb+ ε

b ∼ N(0, D).

Fitting the linear splines therefore amounts to minimization of the penalized spline cri-

terion.

Knot specification

The location of the knots must be pre-specified before fitting the penalized spline model.

However, following Wand (2003) knot specification is ”very much a minor detail for

penalized splines”. We therefore follow Wand’s suggestion that a reasonable default rule

for the location of the knots is given by

us =
(s+ 1)

S + 2
th sample quantile of the unique xt, 1 ≤ s ≤ S,

where S = min
{

1
4
× number of unique xt; 35

}
. Some additional algorithms, empirical

results and further comments on the topic of knot selection are supplied in Ruppert

(2002).
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3.3.2 Estimation

The marginal likelihood is given by

L(β, θ, y) =

∫
f(y|b)f(b)db (3.13)

=

∫ [
T∏

t=1

−μt + ytlog(μt) − log(yt!)

][
p∏

j=l+1

(2πσj)
−Sj

2 exp

{
−b

′
jbj

2σ2
j

}]
db,

where f(y|b) is the conditional distribution of y and f(b) is the multivariate normal

density of b. In contrast to linear mixed models, the likelihood above involves intractable

integrals whose dimension depends on the specific problem at hand.

Therefore, solutions are proposed where the integrand in equation (3.13) is approximated

by a normal density such that the integral can still be calculated analytically (see Wolfin-

ger & O’Connell (1993) and Breslow & Clayton (1993), who arrived independently at an

IWLS procedure for fitting generalized linear mixed models). The process of computing

the linear approximation must be repeated several times until some criterion stabilizes.

Fitting methods based on linearizations are usually doubly iterative. The generalized

linear mixed model is approximated by a linear mixed model based on current values of

the covariance parameter estimates. The resulting linear mixed model is then fit, which

is itself an iterative process. On convergence, the new parameter estimates are used to

update the linearization, which results in a new linear mixed model.

3.3.2.1 Linearization

The linearization method first constructs a pseudo-model and pseudo-data. Following

Wolfinger & O’Connell (1993) and Breslow & Clayton (1993), we suppose that the con-

ditional mean satisfies

E(y|b) = μ = h(η) = h(Xβ + Zb)

with b ∼ N(0, D) and

Var(y|b) = V 1/2
μ RV 1/2

μ ,

where V
1/2
μ is a diagonal matrix with elements equal to the variance functions. R contains

the dispersion parameter, if one exists.

For the first analytic approximation, let β̂ and b̂ be known estimates of β and b. Then,

we define μ̂ = h(Xβ̂ + Zb̂), which is a vector with elements consisting of evaluations of
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the conditional mean μ at each component of Xβ̂ + Zb̂. Further, we have a diagonal

matrix consisting of evaluations of the first derivatives of the conditional mean

Δ̃ =

(
∂h(η)

∂η

)
β̂,b̂

.

Now, let

ε̃ = y − μ̂− Δ̃(Xβ −Xβ̂ + Zb− Zb̂),

which implies that ε̃ is a Taylor series approximation to ε = y − μ about β̂ and b̂.

Following Lindstrom & Bates (1990), the conditional distribution of ε̃ given β and b is

approximated with a Gaussian distribution having the same first two moments as ε|β, b;
in particular, we assume that ε|β, b ∼ N(0, V ).

A further approximation is the substitution of μ̂ for μ in the variance matrix. Since

Δ̃t =
1

g′(μ̂t)

for each component t, where g′(μ̂t) = ∂g(μ̂)
∂μ̂

, one can then write

Δ̃−1(y − μ̂)|β, b ∼ N(Xβ −Xβ̂ + Zb− Zb̂, Δ̃−1V Δ̃−1).

Using the definition ỹ = Xβ̂ + Zb̂+ Δ̃−1(y − μ̂) results in the specification

ỹ|β, b ∼ N(Xβ + Zb, Δ̃−1V Δ̃−1),

which is a weighted linear mixed model with pseudo-response ỹ, (unknown) fixed effects

β, random effects b ∼ N(0, D), and pseudo-error ε̃ ∼ N(0, Δ̃−1V Δ̃−1). The weight

matrix in this linear mixed model takes the form W̃ = Δ̃V −1 Δ̃, where V is defined as

above. For canonical link functions, as is the case in our Poisson models, W̃ = Vμ.

In this linearized model, we observe ỹ, X, and Z, while β and b as well as D and

W are generally unknown. Thus, mixed-model analysis involves two complementary

estimation issues: (1) estimation of the vectors of fixed and random effects, β and b, and

(2) estimation of the covariance matrices W and D.

Now, we define Λ̃(θ∗) = Λ̃ = W−1 + ZD∗Z ′, as the marginal variance in the linearized

mixed model for y, where θ∗ is a vector of variance-component parameters consisting

of all unknown parameters in D∗ and V ∗. Here, θ∗, D∗ and V ∗ are re-parameterized

versions of θ, D and V in terms of ratios with the scale or dispersion parameter φ. W is

the diagonal matrix of weights. Then, the following Gaussian log-likelihood function is

corresponding to the linearized mixed model for ỹ:

l(β, φ, θ∗) = −T
2

log(2π) − 1

2
log |φΛ̃| − 1

2
φ−1(ỹ −Xβ)′Λ̃−1(ỹ −Xβ). (3.14)
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By including φ, a quasi-likelihood-style extension of the generalized linear model is pro-

vided, which can be omitted if desired.

3.3.2.2 Estimation of regression coefficients

As shown above, the new pseudo-response ỹ is a Taylor series approximation to the

linked response g(y). It is analogous to the modified dependent variable used in the

IWLS algorithm of Nelder & Wedderburn (1972).

To solve for (β̂, b̂), the Fisher scoring algorithm is employed which leads to iteratively

solving the system of equations

(
X ′W−1X X ′W−1Z
Z ′W−1X Z ′W−1Z +D−1

)(
β̂

b̂

)
=

(
X ′W−1ỹ
Z ′W−1ỹ

)
. (3.15)

The equation system (3.15) is Henderson’s mixed model equation from the normal theory

model but with (pseudo-) error ε̃ and (pseudo-) dependent variable ỹ. This is equivalent

to the best linear unbiased estimation of β and best linear unbiased prediction of b based

on the linearized mixed models

β̂ = (X ′ΛX)−1X ′Λỹ (3.16)

b̂ = D−1Z ′Λ(ỹ −Xβ). (3.17)

A relatively straightforward extension of Henderson’s mixed-model equations provides

estimates of the standard errors of the fixed and random effects. Let the inverse of the

leftmost matrix in Equation (3.15) be

H =

(
X ′W−1X X ′W−1Z
Z ′W−1X Z ′W−1Z +D−1

)−1

.

Using the definition

H0 =

(
X ′W−1X X ′W−1 Z
Z ′W−1X Z ′W−1Z

)
,

the approximate covariance matrix of β̂ and b̂ is obtained as

Cov

(
β̂

b̂

)
= HH0H.
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These expressions allow us to compute approximate covariance matrices for the estimates

f̂j(xj) and f̂j(t)

Cov(f̂) = (Xj , Zj) Cov

(
β̂j

b̂j

)
(Xj , Zj)

′, (3.18)

where Cov(β̂ ′
j , b̂

′
j) can be obtained from the corresponding blocks of Cov(β̂ ′, b̂′).

3.3.2.3 Estimation of variance parameters

Denoting the estimates β and b by β̂ and b̂ and plugging them back into the log-likelihood

(3.14) yields the so-called profile log-likelihood

l(θ∗) = constant − 1

2
log |φΛ̃| − 1

2
log( r′ Λ̃−1 r),

where r = ỹ −X(X ′ Λ̃−1X)−1XΛ̃−1ỹ.

However, it is well known that maximization of the log-likelihood with respect to θ∗ yields

biased estimates, since the estimation does not take into account the loss of degrees of

freedom due to the estimation of β. Therefore, for the estimation of variance parameters

the usage of restricted maximum likelihood (REML) is preferred. The restricted log-

likelihood is given by

lr(θ
∗) = constant − 1

2
log |φΛ̃| − T − p

2
log (r′ Λ̃−1 r) − 1

2
log |X ′Λ̃−1X|, (3.19)

where p denotes the rank of X. Hence, the restricted log-likelihood mainly differs from

the log-likelihood by an additional component; in particular, one has

lr(θ
∗) ≈ l(θ∗) − 1

2
log |X ′Λ̃−1X|.

To obtain REML-estimates for the variance components, we have to maximize (3.19)

over the parameters in θ∗. This requires numerical methods such as the Fisher-Scoring

algorithm. A detailed description of REML-estimation by Fisher-Scoring can be found

in Kneib (2006).

Upon obtaining θ∗, estimates for φ are computed as

φ̂ = (r′ Λ̃−1 r)/(T − p). (3.20)
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3.3.3 Estimation algorithm

As described in Wolfinger & O’Connell (1993), the estimation algorithm for the restricted

pseudo-likelihood (REPL) technique is as follows:

1. Obtain an initial estimate μ̂ of μ.

2. Compute

ỹ = Xβ̂ + Zb̂+ g′(μ̂)(y − μ̂).

3. Fit a weighted linear mixed model using REML with pseudo-response ỹ, fixed

effects model matrix X, random effects model matrix Z and weight matrix

W̃ = Δ̃V −1 Δ̃.

Convert the yielding estimates D̂∗ and V̂ ∗ to D̂ and V̂ by using an estimate φ̂ of

φ as given in (3.20).

4. The old estimates of D̂ and V̂ are then compared to the new ones. If there is a

sufficiently small difference, stop; otherwise, go to the next step.

5. Obtain updated estimates β̂ and b̂ for the regression coefficients given the current

variance parameters by solving the mixed model equation system

(
X ′Ŵ−1X X ′Ŵ−1Z

Z ′Ŵ−1X Z ′Ŵ−1Z + D̂−1

)(
β̂

b̂

)
=

(
X ′Ŵ−1ỹ

Z ′Ŵ−1ỹ

)
.

6. Compute a new estimate of μ̂ by substituting β̂ and b̂ in the expression

μ̂ = h(Xβ̂ + Zb̂).

Then go back to step 2.

3.4 TVCM with P-splines based on empirical

Bayes inference

An alternative approach is the use of varying coefficient models with P-splines based

on empirical Bayes inference (Fahrmeir, Kneib & Lang (2004) and Kneib (2006)). This

approach is similar to the one of Section 3.3, the differences being that, firstly, smooth

estimation of the unknown functions is achieved here using penalized splines based on

B-spline bases and, secondly, this approach is seen from a Bayesian perspective.
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3.4.1 Observation model and prior assumptions

Similar to the fully Bayesian approach, we have to specify an observation model, for

which we suppose again a model as defined in (2.7), that is

log(μ) = η = β0 +

l∑
j=1

βxj +

k∑
j=l+1

fj(xj) +

p∑
j=k+1

fj(t) xj.

As noted above, in a Bayesian approach, the unknown functions fj(xj) and fj(t) in the

observation model as well as the parameter vectors β and γ are considered as random

variables and must be supplemented by appropriate prior assumptions. We choose here

the same prior distributions as given in Section 3.2.

3.4.2 Mixed model representation

As shown in Section 3.2.2, the functions fj(xj), j = l + 1, . . . , k and fj(t)xj , j = k +

1, . . . , p can be expressed as the matrix product of a design matrix Xj and a vector of

unknown parameters γj, i.e.

fj(xj) = Xj γj and fj(t)xj = diag(x1j , . . . , xTj)X
∗
j γj = Xj γj,

respectively.

Similar to Section 3.3, we want to express the functions fj(xj) and fj(t) as the sum of

a fixed and a random component. To achieve this, we need to decompose the vectors

of regression coefficients γj, j = l + 1, . . . , p into an unpenalized and a penalized part.

Consider, therefore, the precision matrices Kj corresponding to P-splines (see Section

3.2.2.1). As the matrix Kj is rank deficient with rank rj , the decomposition of γj is of

the form

γj = ψunpen
j γunpen

j + ψpen
j γpen

j , (3.21)

with the dimensions of ψunpen
j and ψpen

j given as Sj × (Sj − rj) and Sj × rj, respectively.

Following Fahrmeir et al. (2004) and Kneib (2006), the matrices ψunpen
j contain a (Sj−rj)-

dimensional basis of the null space of Kj . More specifically, we define new matrices

ψunpen
j , depending on the dimension of Kj, by

⎛
⎜⎝

1 ξ1 . . . ξ
rj−1
1

...
...

...

1 ξSj
. . . ξ

rj−1
Sj

⎞
⎟⎠ .
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For example, for P-splines with a second order random walk prior, ψunpen
j is specified

as a two-column matrix, where the first column is the identity vector and the second

column is composed of the (equidistant) knots of the spline:

⎛
⎜⎝

1 ξ1
...

...
1 ξSj

⎞
⎟⎠ .

Matrices ψpen
j can be constructed as ψpen

j = L′(LL′)−1, where L is a full column rank

matrix with Kj = LjL
′
j . For P-splines, a suitable choice is given by Lj = D′

j, where Dj

is the corresponding difference matrix.

Using the decomposition (3.21), we get for the general prior (3.10)

p(γj|τ 2
j ) ∝ exp(− 1

2τ 2
j

γ′jKjγj) = exp(− 1

2τ 2
j

γpen ′
j γpen

j ), (3.22)

which implies that γunpen
j has a flat prior, p(γunpen

j ) ∝ const, and the random components

p(γpen
j ) are assumed to be

γpen
j |τ 2

j ∝ N(0, τ 2
j Irj

). (3.23)

In the next step, we define the matricesX∗
j = Xjψ

unpen
j and Z∗

j = Xjψ
pen
j , j = l+1, . . . , p.

Using these matrices, equation (2.7) can be rewritten as

η = X β +

p∑
j=l+1

(X∗
j γ

unpen
j + Z∗

j γ
pen
j ).

This, however, can be further simplified by defining the matrix X∗ = (X∗
l+1, . . . , X

∗
p , X)

as well as the vector γunpen = ((γunpen
l+1 )′, . . . , (γunpen

p )′, β ′)′. Similarly, we make the specifi-

cations Z∗ = (Z∗
l+1, . . . , Z

∗
p) and γpen = ((γpen

l+1)
′, . . . , (γpen

p )′)′. Using these specifications,

we obtain a generalized linear mixed model

η = X∗γunpen + Z∗γpen, (3.24)

with fixed effects γunpen and random effects γpen, where γpen ∼ N(0,Λ), and Λ =

diag(τ 2
l+1, . . . , τ

2
l+1, . . . , τ

2
p , . . . , τ

2
p ).

3.4.3 Empirical Bayes Inference

Bayesian inference is based on the posterior of the model. The analytic form of the

posterior depends on the specific parameterization of the model. Based on the generalized



3.4. TVCM based on empirical Bayes inference 35

mixed model representation (3.24), we get the following posterior distribution:

p(γunpen, γpen|y) ∝ L(y, γunpen, γpen)

p∏
j=l+1

(p(γpen
j |τ 2

j )), (3.25)

where p(γpen
j |τ 2

j ) is defined in (3.23) and L() denotes the likelihood which is the product

of individual likelihood contributions. Note that for empirical Bayes inference, no priors

p(τ 2
j ) for the variances are specified, since the variances τ 2

j are considered to be fixed;

but the τ 2
j are estimated from the data.

Using the approximation (3.22), the posterior distribution (3.25) can be transformed to

p(γunpen, γpen|y) ∝ L(y, γunpen, γpen)exp

(
−1

2
γpen′

Λ−1γpen

)
.

The corresponding log-posterior is then given by

lp(γ
unpen, γpen|y) ∝ l(y, γunpen, γpen) −

p∑
j=l+1

1

2τ 2
j

γpen′
γpen.

Updated estimates for the unknown functions and covariate effects are obtained using

IWLS, resulting in posterior mode estimates. Updated estimates for the variance param-

eters τ 2
j given the regression coefficients are obtained by a Fisher-Scoring-type algorithm

that maximizes the (approximate) marginal likelihood of the variances. Note that this

marginal likelihood is equivalent to the REML in Section 3.3.2.3. Consequently, we have

again a data driven smoothing parameter selection.

Estimation begins by assigning arbitrary starting values to the model parameters. These

values are iteratively updated by the following steps:

1. Assuming the variance parameters to be known and equal to their current esti-

mates, τ̃ 2
l+1, . . . , τ̃

2
p , the fixed and random effects γunpen and γpen are updated by

maximizing Green’s (1987) PQL criterion. Applying Fisher scoring, the estimates

are computed as the iterative solution to the following system of equations (see

also Section 3.3.2.2):

(
X∗′ W X∗ X∗′ W Z∗

Z∗′ W X∗ Z∗′ W Z∗ + Λ−1

)(
γ̂unpen

γ̂pen

)
=

(
X∗′ W ỹ
Z∗′ W ỹ

)
. (3.26)

The symbol ỹ = (ỹ1, . . . , ỹT ) in the above equation represents the vector of usual

working observations. The T × T diagonal matrix of working weights is denoted

by W , where the working weights are, except for the dispersion parameter, given

similar to Section 3.3.2.2.
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2. Assuming the fixed and random effects to be equal to their current estimates, γ̂unpen

and γ̂pen, estimators of the variance parameters τ 2 = (τ 2
l+1, . . . , τ

2
p ) are obtained.

To accomplish this, the (approximate) restricted log likelihood

lr(τ
2) = −1

2
log(|Σ|) − 1

2
log(|X∗′Σ−1X∗)

−1
2
(ỹ −X∗γ̂unp)′Σ−1(ỹ −X∗γ̂unp)

is maximized with respect to the variance parameters τ 2
l+1, . . . , τ

2
p . Here, Σ =

W−1 + Z∗ ΛZ∗′ is an approximation to the marginal covariance matrix of ỹ|γpen.

Updated estimates τ̂ 2 are then obtained by

τ̂ 2 = τ̃ 2 + F̃ (τ̃ 2)−1s̃(τ̃ 2),

where F̃ is the expected Fisher information and s̃ is the score vector (see Kneib

(2006) for the exact formulas).

The two estimation steps are iterated until convergence. A more detailed description of

the empirical Bayes inference can be found in Fahrmeir et al. (2004) or Kneib (2006).

Similar to Section 3.3.2.2, the system of equations (3.26) can be used to derive standard

errors for the functions fj and fj(t). Again, we denote the inverse of the matrix on the

left hand side of (3.26) by H−1. The approximate Bayesian covariance matrix of γ̂unpen

and γ̂pen may be derived as

Cov

(
γ̂unpen

γ̂pen

)
= H, (3.27)

which has a simpler form than its frequentist counterpart in equation (3.18) (see also

Lin & Zhang (1999)). The covariance matrices of f̂j and f̂j(t) are then given by

Cov(f̂j, f̂j(t)) = (X∗
j , Z

∗
j ) Cov(γ̂j

unpen, γ̂j
pen) (X∗

j , Z
∗
j ), (3.28)

where Cov(γ̂j
unpen, γ̂j

pen) can be obtained from the corresponding blocks of (3.27).

3.5 Adaptive generalized TVC models

In contrast to the approaches described in the last sections, which were based on spline

estimation, in this chapter a method based on local likelihood estimation will be consid-

ered.

Fan, Yao & Cai (2003) propose a class of adaptive varying-coefficient linear models of

the form

Yt =

p∑
j=0

gj(β
T
0 Xt)xt j + εt, (3.29)
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where Xt = (x0, . . . , xt p) and x0 = 1. In such models, the parameter vector β0 is

unknown, and the functions gj are also unknown. Such a model is called ”adaptive” by

Fan et al. (2003) to indicate ”that the coefficients are functions of an unknown index

βT
0 X”, in contrast to, for example, the generalized varying coefficient models proposed

by Cai et al. (2000). Formally, model (3.29) also includes the popular single-index model

as well as the partially linear single-index models as special cases; see Chapter 8 of Fan

& Yao (2003) and the references therein.

To be applicable in a more general context, this approach is extended to allow, for

example, for a Poisson response. Then, the following predictor is obtained:

log(μ) =

p∑
j=0

gj(β
T
0 X) xj = g0(β

T
0 X) +XT g(βT

0 X). (3.30)

The estimation procedure can be formally split into two parts: Estimation of functions

gj with given β0 and estimation of the index coefficient β0 with given functions gj; unlike

Fan et al. (2003), however, we do not apply backward deletion to choose locally significant

variables.

The algorithm for practical implementation will be summarized at the end of this section.

3.5.1 Estimation

Model (3.30) is not identifiable, as we may replace the (g0, g) by (g0 + cβT
0 X, g− cg0) for

any c ∈ R. Therefore, the model may be represented in a reduced form

p−1∑
j=0

gj(β
T
0 X) xj , (3.31)

see Theorem 1 of Fan et al. (2003). Note that (3.30) may always be expressed in the

form of (3.31), provided the last component of β0 is non-zero.

More comments about the identifiability of models such as (3.31) are given in Fan et al.

(2003) and Lu, Tjøstheim & Yao (2007).

We now turn to the estimation of the functions fj(.). The method described here uses a

given estimator of β0, which is called β̂0. We therefore write for the index Ẑ = β̂T
0 X.

3.5.1.1 Estimation of the functions gj(.) with given Z

Estimation of the varying coefficients gj(.) is done by local smoothing techniques. Local

polynomial smoothers have become one method of choice in nonparametric regression
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in recent years. We refer to Fan & Gijbels (1996) and Hastie & Tibshirani (1990) for a

detailed review.

The general idea of local regression is the following: Suppose that the (k+1)-th derivative

of a function gj(.) at point z exists. We can approximate the unknown function gj locally

at z by a polynomial of order l. The theoretical justification is that we can approximate

gj(.) for data points Z in a neighborhood of z via a Taylor expansion by a polynomial

of degree l:

gj(.) ≈
l∑

k=0

ajk(Ẑ − z)k,

where

ajk =
f (k)(z)

k!
.

For various practical applications, Fan & Gijbels (1996) recommend using the local linear

modeling scheme, that means l = 1. This specification is also used here to get an estimate

for the functions gj(Ẑ), j = 0, . . . , p− 1. Suppose, therefore, that the second derivative

of gj exists and is continuous. For each given z, gj(Ẑ) is approximated locally by a linear

function gj(Ẑ) ≈ aj0 + aj1(Ẑ − z) for Ẑ in a neighborhood of z. Note that aj0 and aj1

depend on z.

Then, for given β0 with β0 p �= 0, the local likelihood is given by

l(a0, a1) =
1

T

T∑
t=1

l

[
g−1

{
p−1∑
j=0

(âj0 + âj1(Ẑ − z))xtj

}
, Yt

]
Kh(Ẑ)w(Ẑ) (3.32)

where h is the so-called bandwidth, which is a non-negative number controlling the size

of the local neighborhood

Ih(z) = [z − h, z + h],

and, hence, the degree of smoothing. Kh(.) = h−1K(./h), where K is the kernel function.

We opted for using the Epanechnikov kernel

K(u) =
3

4
(1 − u2)I[−1,1](u).

Other kernel functions that are widely used are the triangle kernel

K(u) = (1 − |u|)I[−1,1](u)

or the Gaussian kernel

K(u) = 2π− 1
2 exp(−u

2

2
).
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Further, in expression (3.32), w(.) = I[−L,L](.) is a bounded weight function controlling

the edge effect in the estimation. Maximizing the local likelihood function l(a0, a1) gives

estimates âMLE(z), where a(z) = (a0,0, . . . , ap−1,0, a0,1, . . . , ap−1,1).

Unlike the least-squares setting used in Fan et al. (2003), the solution for (3.32) generally

does not have a closed form. Hence, one usually uses an iterative algorithm to obtain the

solution, such as the Newton-Raphson method. Computing the local maximum likeli-

hood estimate using an iterative method can, however, be very time-consuming. This is

especially true for more complex models such as varying coefficient models as one needs

to maximize the local likelihood (3.32) for many distinct values of z, with each maxi-

mization requiring an iterative algorithm. To reduce the computational cost, we follow

Cai et al. (2000) who proposed to replace iterative local maximum likelihood estimation

by an explicit non-iterative estimator, the so-called one-step Newton-Raphson estimator,

which has been frequently used in parametric models.

Suppose that âMLE is the maximum likelihood estimator and â0 = â0(z) = (â0(z)
′, â1(z)

′)′

is an initial estimate with a reasonable good precision. Let, further, l′(a) and l′′(a) be

the gradient and Hessian matrix of the local likelihood l(a), respectively. Then, using a

Taylor expansion yields

0 = l′(âMLE) ≈ âOSE = l′(â0) + l′′(â0) (âMLE − â0). (3.33)

Hence, the one-step local maximum likelihood estimator is obtained as

âOSE = â0 − [l′′(â0)]
−1l′(â0). (3.34)

We can further estimate the standard error of the resulting estimator by using the sand-

wich formula

cov(âOSE) = [l′′(â0)]
−1cov(l′(â0))[l

′′(â0)]
−1,

following conventional techniques in the likelihood setting. The accuracy of this formula

is tested by Cai et al. (2000).

In the case of a Poisson-distributed response, the updated estimator is then obtained by

âOSE = â0 +

(
Ht,0 Ht,1

Ht,1 Ht,2

)−1

+

(
ut,0

ut,1

)
, (3.35)

where the Hessian matrix has the form

Ht,l =

T∑
t=1

Kh(Ẑ)w(Ẑ)μ̂t0(Ẑ − z)l XtXt
′,
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with μ̂t0 = exp{∑p−1
j=0[âj0 + âj1(Ẑ − z)]Xtj} for l = 0, 1, 2.

Furthermore, ut,j is given by

ut,l =
T∑

t=1

Kh(Ẑ)w(Ẑ)(Yt − exp{
p−1∑
j=0

[âj0 + âj1(Ẑ − z)]Xtj})(Ẑ − z)l Xt,

for l = 0, 1.

A problem associated with the local quasi-likelihood estimator is that the matrix in

(3.35) can be ill-conditioned. This may occur in certain local neighborhoods, if there

are only a few data points. A commonly used technique to deal with this singularity

problem is via ridge regression, as proposed by Seifert & Gasser (1996) or Fan & Chen

(1999). In this case, an issue arises as how to choose the ridge parameter. Here, we

follow the suggestions of Cai et al. (2000) and use the following ridge parameter,

rl,e =

(
1

T

T∑
t=1

x2
te

)
exp(ĝ′0x̄)h

l−1

∫
zlK(z)dz,

for the e-th diagonal element of the matrix Ht,l, l = 0 or l = 2 to attenuate a potential

singularity.

We now turn to the choice of the initial estimator. Cai et al. (2000) show that such an

estimator can be found as follows: Let zg, g = 1, . . . , Tgrid be a number of grid points.

Further, we specify by zo distinct points within the range of the grid points. At these

distinct points, the local maximum likelihood estimators âMLE(zo) are computed. The

corresponding estimates are used as initial estimates for the points zo+1. Applying the

one-step algorithm (3.34) leads to âOS(zo+1), which is then used as the initial estimate

at point zo+2, and so on. Likewise, âOS(zo−1), ... can be computed.

3.5.1.2 Estimation of the index β0 with gj(.) fixed

Again, a one-step estimation scheme is used to estimate the index coefficient β0. We

search for β0 to minimize

R(β0) =
1

T

T∑
t=1

[
Yt − exp

(
p−1∑
j=0

g(βT
0 X − z)xtj

)]2

w(βT
0 X).

For any initial value β
(0)
0 close to β̂0, one has the approximation

R′(β̂0) ≈ R′(β(0)
0 ) +R′′(β(0)

0 ) (β̂0 − β
(0)
0 ), (3.36)
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where R′ is the derivative and R′′ is the Hessian matrix of R(.).

Thus, we get the one-step iterative estimator

β
(1)
0 = β

(0)
0 −R′′(β(0)

0 )−1R′(β(0)
0 ). (3.37)

Similar to the matrix in (3.35), the matrix R′′(.) can be singular or nearly so. If this is

the case, one has to add again a ridge regression parameter (see Fan et al. (2003)).

3.5.1.3 Estimation algorithm

The estimation algorithm is outlined as follows:

1. Standardize the data Xt such that they have sample mean 0 and the sample vari-

ance and covariance matrix Id. This ensures that βT
0 X has sample mean 0 and

sample variance 1 for any β0. Specify an initial value of β0.

2. For each prescribed bandwidth value hk, k = 1, . . . , q, the following two steps

a) For a given index β0, the functions gj(.) are estimated by (3.35),

b) For given functions gj(.), index coefficients β0 are searched using algorithm

(3.37),

are iterated until the change in two successive values of R(β0) is smaller than the

pre-specified measure of tolerance (ε = 0.00001).

3. For k = 1, . . . , q the optimal bandwidth value hopt is calculated using the GCV

criterion (see Fan et al. (2003) for more details).

4. For h = ĥopt selected in 3., the steps (a) and (b) of 2. are repeated until convergence

of R(β0).

Remarks To make the search for β0 in part b) of step 2. more stable, an estimate of

gj(.) on a grid point is replaced by a weighted average on its five nearest neighbors. The

edge points are adjusted correspondingly.

Finally, we make some remarks about the properties of the one-step algorithms. Cai

et al. (2000) carefully study the properties of the local one-step estimator for the un-

known functions gj. They demonstrate on a theoretical basis that the one-step estimator

and the fully iterative local maximum likelihood estimator share the same asymptotic

distribution, provided that the initial estimate used for the one-step algorithm is good
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enough. Consequently, the local one-step estimator does not loose efficiency compared

to the local maximum likelihood estimator. Regarding the one-step estimator for the

unknown index, convergence aspects require further research. Fan et al. (2003) only

state that ”In practice, we may detect whether an estimated β0 is likely to be the global

minimum by using multiple initial values”.



Chapter 4

Simulation Study

To evaluate which of the approaches considered in Chapter 3 performs best in the context

of air pollution data, we conducted a simulation study. Thereby, we focused on scenarios

comparable to situations found in real data. We investigated models with one or several,

but not all coefficients time-varying. Further, a model under the null hypothesis was

estimated by time-varying estimation methods, that means the true effect was, in fact,

time-constant. We further examined how well different components in the predictor can

be identified and separated from one another.

4.1 Simulation setup

Our simulated time series of mortality counts were based on data collected within the

study ”Improved Air Quality and its Influences on Short-Term Health Effects in Erfurt,

Eastern Germany”. Data were available for the period October 1, 1991 to March 31,

2002 (the data will be described in more detail in Chapter 5).

The simulated time series were constructed using on the following general model:

Yt ∼ Po(μt)

log(μt) = log(μ0) ∗ (β1 relhumt + f(t) + f(tempt) + fCO(t)COt). (4.1)

The variables used in the simulated model consisted of time series of daily 24-h average

relative humidity (relhum), trend (t), daily 24-h average temperature (temp) and daily

24-h average air pollution measurements (poll), respectively. As air pollution measure-

ment, we considered carbon monoxide (CO) with a lag of four days. The lag structure as

well as the range of the pollutant effects were chosen based on the results of a previous

study in Erfurt from 1995-1998 (Wichmann et al. 2000). The average daily mortality

43
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count, μ0, in Erfurt over the study period was found to be 4.62.

Relying on simulated data, we investigated different cases:

1 Constant effect of fCO(t) = 0.1 and no confounders were included. Hence, this case

can be regarded as a model under the null hypothesis.

2 The effect of fCO(t) is assumed to be curvilinear. We make the following specifi-

cation (Bateson & Schwartz (1999)):

fCO(t) = 0.05 · (1 +
2t

T
− t2

T 2
). (4.2)

The corresponding plot is shown in the top row of Figure 4.1. No additional

confounders are considered in this case.

3 The effect of fCO(t) is modeled as a cosine function, which is specified as

fCO(t) = 0.12 · cos (0.002 t). (4.3)

The simulated effect is displayed in the bottom row of Figure 4.1. No additional

confounders are included.

Another question is whether the methods are able to distinguish time-varying from time-

invariant coefficients, when several, but not all coefficients are time-varying. Further, we

investigated a time-constant model with additional confounder variables. These ques-

tions are considered in the following cases.

4 fCO(t) is assumed to be curvilinear, as in (4.2). Additionally, the trend f(t), a

typical confounder variable, is simulated as the product of a sine function with

constant amplitude and a linear pattern:

f(t) = 0.04 ·
[(

1 +
t

T

)(
1 +

{
0.6 · sin

(
π · t

365

)})]
, (4.4)

which is a slightly modified version of the formula used by Bateson & Schwartz

(1999). The simulated trend effect is shown in Figure 4.2.

5 The effect of fCO(t) is assumed to be constant. The effect of calendar time f(t) is

again simulated as a sine function, similar to (4.4). Further, effects of temperature

and relative humidity are included. The effect of temperature is defined as sine

function:

f(temp) = −0.02 · sin (0.1 temp), (4.5)

as shown in Figure 4.2, middle row. A linear, constant-coefficient effect relhum =

−0.0015 is considered for relative humidity.
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Figure 4.1: Simulated effect of fCO(t) was curvilinear (top) or followed a cosine function
(bottom).
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Figure 4.2: Simulated effect of the confounder trend f(t) (upper panel), of temperature
f(temp) (middle panel) and simulated time-varying effect of temperature ftemp(t) (lower
panel) for the example CO.
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6 The effect of fCO(t) is specified as in (4.3), the effect of calendar time f(t) is similar

as in (4.4) and both, simulated temperature and relative humidity effects are the

same as in Case 5.

7 In the last case, the effect of fCO(t) is specified as in (4.3), the effect of calendar

time f(t) is assumed as in (4.4) and the effect of relative humidity is again linear

and time-invariant. Additionally, we include a time-varying effect of temperature,

specified as

ftemp(t) =

{ −0.00001 t+
[
0.02 · cos

(
2π · t

365

)]
, for t < 1720,

−0.033 + 0.00001 t+
[
0.02 · cos

(
2π · t

365

)]
, for t ≥ 1720.

(4.6)

The seven simulated scenarios are summarized in Table 4.1. For each of the cases listed

above, we generated counts Y
(n)
t , t = 1, . . . , 3835, using expression (4.1) for simulation

runs n = 1, . . . , N = 250. We assessed the performance of the different time-varying

estimation procedures using the following specifications (see also Chapter 3):

a) Time-varying coefficient models using regression splines. For estimation, we first

chose the optimal degrees of freedom of the splines by using the AIC.

b) Bayesian time-varying coefficient models with P-splines. The MCMC specification

for each model was 20000 iterations, whereby the first 4000 iterations were dis-

carded as burn-in. Every 15th subsequent sample point was saved for estimation

of posterior means. We specified the number of knots for the unknown functions

to be 20.

c) Time-varying coefficient models with penalized linear splines based on a generalized

linear mixed model framework.

d) Time-varying coefficient models with P-splines based on empirical Bayes inference.

In case of no convergence in the empirical Bayes approach, we used the final values

after the maximum number of iterations (400) to compute empirical root mean

squared errors. Fahrmeir et al. (2004) found in their simulation analysis that ”a

closer inspection of estimates with and without convergence showed that differences

in terms of MSE are negligible and the choice of the final values leads to reasonable

estimates”. Comparable to the fully Bayesian approach, the number of knots was

specified to be 20.

e) Adaptive generalized TVC models. For estimation, an Epanechnikov kernel was

used. Further, the number of the bandwidth values was chosen to be q = 15 and
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Table 4.1: Simulation scenarios for the example CO.

Case fpoll(t) f(t) f(temp) β1 relhum

1 constant ( = 0.1) – – –
2 curvilinear – – –
3 cosine function – – –
4 curvilinear sine function – –
5 constant sine function sine function constant ( = −0.0015)
6 cosine function sine function sine function constant ( = −0.0015)
7 cosine function sine function ftemp(t) constant ( = −0.0015)

the range was hk = 0.2 × 1.2k − 1. To speed up computation, the functions fj(.)

were estimated on 200 grid points.

As there were some highly oscillating functions under consideration in case 7, we

allowed for a larger number of knots, in the approaches a) to d). Further, the

bandwidth value in approach e) was changed accordingly.

All approaches were compared based on the empirical root mean squared error (RMSE)

defined as

RMSE(f̂CO(t)) =

√√√√ 1

T

T∑
t=1

(fCO(t) − f̂CO(t))2,

for the time-varying air pollution effect,

RMSE(f̂temp(t)) =

√√√√ 1

T

T∑
t=1

(ftemp(t) − f̂temp(t))2,

for the time-varying temperature effect,

RMSE(f̂ (t)) =

√√√√ 1

T

T∑
t=1

(f(t) − f̂(t))2,

for the trend effect f(t), and

RMSE(f̂ (temp)) =

√√√√ 1

T

T∑
t=1

(f(tempt) − f̂(tempt))2,
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for the time-constant, but non-linear temperature effect, where T is the number of ob-

servations.

Note that our simulation framework did not address the issue of measurement error in

the pollutant variable. This problem will be investigated in more detail in Chapters 6

to 8.

4.2 Results

In this section, we present the results of the comparison of the five approaches. Each

Figure shows boxplots of the empirical root mean squared errors (RMSE) of approaches

a) TVCM with an interaction term between the pollutant and a regression spline in

time (REGSPLINE);

b) Bayesian TVCM with P-splines (MCMC);

c) TVCM with penalized linear splines based on a mixed model framework

(MIXEDLIN);

d) TVCM with Bayesian P-splines based on empirical Bayes inference (MIXEDB) and

e) Adaptive varying coefficient generalized linear models (AGVCM).

Additionally, the corresponding averaged estimates are shown for each case. For com-

parison the true functions are always included in the plots (solid black lines).

Case 1 The first case investigated the consequences of estimating a time-varying co-

efficient, although the true effect is constant. This case can be regarded as a model

under the null hypothesis. If one wrongly estimates a time-varying coefficient model,

there is the danger of deriving time-variation in the coefficients; however, they are in

fact time-constant.

The boxplots of the RMSE for this case are given in the top row of Figure 4.3. The time-

varying estimates for fpoll(t) were relatively stable for approaches a) (REGSPLINE), b)

(MCMC) and d) (MIXEDB). Hence, estimating a time-varying coefficient instead of the

true time-invariant model defined in Case 1 did not seem to produce relevant coeffi-

cient variation for these three estimation methods. The RMSE values of approaches c)

(MIXEDLIN) and e) (AGVCM) suggest that the estimates of these methods are more

biased.

The bottom row of Figure 4.3 shows the corresponding plot of the averaged estimated
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time-varying coefficients. It can be seen that averaged estimated coefficients of ap-

proaches c) (MIXEDLIN) and e) (AGVCM) deviate from the true function (solid black

line) especially at the end of the study period. These deviations might also have caused

the larger RMSE values for the two methods.

Cases 2 and 3 The simulated time-varying coefficients in the cases 2 and 3 were as-

sumed to be curvilinear or to follow a cosine function, respectively.

Boxplots of the RMSE values of the five estimation methods for these cases are shown in

Figures 4.4 and 4.5. While the results obtained for method a) (REGSPLINE) in case 2

were comparable to those in case 1, this approach had the largest RMSE values in case 3.

This finding is corroborated by the corresponding averaged estimated time-varying coef-

ficients, shown at the bottom row of Figures 4.4 and 4.5. Figure 4.5 shows considerable

bias in the averaged estimated time-varying coefficients obtained by approach a).

Case 4 In this case, we examined whether the methods are able to distinguish time-

varying from time-invariant coefficients. In particular, we assumed fpoll(t) to be curvi-

linear and additionally included a time trend, which was simulated as a sine function

(see Figure 4.2, upper panel).

Boxplots of the RMSEs of fCO(t) for this case are shown in Figure 4.6, top left panel.

The two Bayesian approaches showed the smallest RMSE values.

For method c) (MIXEDLIN), there were large convergence problems in this case, which is

reflected in the large RMSE values as well as the averaged time-varying estimates (Figure

4.6, top right). Further, approaches a) (REGSPLINE) and e) (AGVCM) showed con-

siderable deviations from the true simulated curve (Figure 4.6, top right). For approach

a) (REGSPLINE), the time-varying estimates even seemed to absorb the sine pattern of

the trend.

The corresponding boxplots of the RMSE values for the time trend f(t) are shown on

the bottom row of Figure 4.6. Again approaches b) (MCMC) and d) (MIXEDB) had

the smallest RMSE values. However, the plot of the averaged trend estimates revealed

that all approaches estimated much smoother effects than assumed and, hence, had large

bias.

Case 5 This case extends the model of case 1, as we further included a number of

confounders. The aim of this case was to see if the considered approaches were able

to detect the time-invariant air pollution effect in the presence of other time-invariant

covariates.

The plots on the left-hand side of Figure 4.7 show the RMSE of the different simulated

functions. Regarding the time-constant air pollution effect, approach d) (MIXEDB)
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showed the smallest RMSE values, followed by method b) (MCMC). Again, approaches

a) (REGSPLINE) and e) (AGVCM) showed considerable deviations from the true sim-

ulated curve (Figure 4.7, top right). Further, the time-varying estimates obtained by

approach a) (REGSPLINE) again seemed to absorb the sine pattern of the trend, as can

be seen in the wiggly averaged estimate.

Averaged estimates of the trend revealed that, again, all approaches estimated a smoother

curve compared to the true simulated trend effect (Figure 4.7, middle right). How-

ever, the two Bayesian approaches obtained the average of the true effect, and therefore

revealed the smallest RMSE values. Regarding the time-constant temperature effect,

method d) (MIXEDB) gave the smallest RMSE values (Figure 4.7, bottom left), whereas

approaches a) (REGSPLINE) and e) (AGVCM) showed some deviations from the true

simulated function (Figure 4.7, bottom right).

Case 6 The sixth case describes a model which is of particular interest in applied work

of air pollution analysis, since it contains trend and meteorological confounders.

With respect to the time-varying coefficient fCO(t), the estimates from methods b)

(MCMC) and d) (MIXEDB) seemed to exploit the variation quite well, although there

were a number of outliers for the latter approach (4.8, top left).

The boxplot of the RMSE for the time trend f(t) is given in the middle row of Figure

4.8. Method d) (MIXEDB) performed best in terms of RMSE, followed by approach b)

(MCMC). The corresponding averaged estimates show again that all approaches esti-

mated a much smoother curve for the time trend (Figure 4.8).

Finally, the boxplots of the RMSE and the averaged estimates for f(temp) are given on

the bottom panels of Figure 4.8. Again, method d) (MIXEDB) performed best.

Case 7 Finally, case 7 considers a model with more than one time-varying coefficient

term. As the functions f(t) and ftemp(t) were both assumed to be highly oscillating,

we allowed for more knots or a smaller bandwidth, and, hence, more variability in the

functional form.

Boxplots of the RMSE as well as averaged estimates of the time-varying effect fCO(t) and

of the trend showed results comparable to case 6 (see Figure 4.9, top and middle row).

Overall, method d) (MIXEDB) performed slightly better than approach b) (MCMC) in

terms of RMSE; however, the empirical Bayes method showed a number of spikes. In

general, all approaches besides method a) (REGSPLINE) detected the functional form of

the simulated time-varying temperature effect (Figure 4.9, bottom right). The estimates

obtained by approach c) (MIXEDLIN) show some deviations from the true curve caused

by the modeling with linear splines (Figure 4.9, bottom right).
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Summary

Taken together, the simulations suggested that

� Fully Bayesian models with P-splines (method b)) and models with P-splines based

on empirical Bayes inference (method d)) performed quite well in terms of RMSE

within all simulated cases and mostly outperformed the other approaches.

� The two methods furthermore seemed to be able to distinguish time-varying from

time-invariant coefficients when some, but not all coefficients were time-varying.

� Method a) (REGSPLINE), which does not use any form of shrinkage, mostly per-

formed inferior compared to the approaches using a penalty (methods b) to d)).

This corroborates the well known observation that, on general principles, shrinkage

is desirable in estimation problems with many parameters.

� The approaches using B-spline basis functions outperformed the two approaches

based on truncated power series bases, as could have been expected. Reasons

might the use of penalized linear splines for method c) (MIXEDLIN), but also

better numerical properties of the B-spline bases. For example, Eilers & Marx

(2004) show in the case of generalized additive models that penalized B-splines

have improved numerical properties compared to splines based on the truncated

power series basis.

� The assumption of global variances (or smoothing parameters) may be inappro-

priate in cases with rapidly-varying curvature and might be replaced by locally

adaptive variances (or smoothing parameters) to improve the estimation of func-

tions. This aspect is discussed in detail for Gaussian responses by Lang, Fronk &

Fahrmeir (2002), for binary responses by Jerak & Lang (2005) and in a general

context by Krivobokova, Crainiceanu & Kauermann (2006). A further possibility

could be given by increasing the number of knots for the corresponding functions

(as it was done in case 7).

� Based on the simulation results, we additionally investigated the coverage of point-

wise credible intervals obtained by the two Bayesian approaches. We therefore

computed empirical coverage probabilities, that means, we calculated relative fre-

quencies indicating how often the true simulated functions were covered by the

credible intervals of the corresponding estimates. In the fully Bayesian approach

credible intervals are obtained by computing the respective quantiles of the sam-

pled function evaluations. For empirical Bayes estimates, credible intervals are

computed as described in Section 3.4.2. Considering the coverage properties of
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Table 4.2: Average empirical coverage probabilities for a nominal level of 95% obtained
for the two Bayesian approaches.

Case Method fpoll(t) f(t) f(temp) or ftemp(t) β1relhum

1 MCMC 0.968 – – –
1 EB 0.948 – – –
2 MCMC 0.956 – – –
2 EB 0.930 – – –
3 MCMC 0.956 – – –
3 EB 0.916 – – –
4 MCMC 0.984 0.968 – –
4 EB 0.924 0.914 – –
5 MCMC 0.976 0.988 0.952 0.951
5 EB 0.956 0.860 0.984 0.960
6 MCMC 0.972 0.968 0.952 0.953
6 EB 0.924 0.916 0.976 0.940
7 MCMC 0.98 0.972 0.976 0.952
7 EB 0.936 0.928 0.968 0.960

pointwise credible intervals for a nominal level of 95%, average coverage rates

obtained for the fully Bayesian approach were always at least slightly above the

nominal level, ranging from 95.1% up to 98.8%, see Table 4.2. This indicates that

the fully Bayesian approach yields rather conservative credible intervals, an obser-

vation already found in other Bayesian applications (see for example Fahrmeir et al.

(2004) or Lang & Brezger (2004)). While the average coverage probabilities ob-

tained by the empirical Bayes approach revealed coverage rates above the nominal

level of 95% for temperature and relative humidity effects, they are in part slightly

below the nominal level for the time-varying effect of CO and, in particular, for

the trend.

As a consequence, we considered the use of fully Bayesian models with P-splines (method

b)) and time-varying coefficient models with P-splines based on empirical Bayes inference

(method d)) for the analysis presented in the next chapter.
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Figure 4.3: Case 1): RMSE of fCO(t) (top) and averaged estimates (bottom) for the
example CO.
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Figure 4.4: Case 2): RMSE of fCO(t) and averaged estimates (bottom) for the example
CO.
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Figure 4.5: Case 3): RMSE of fCO(t) and averaged estimates (bottom) for the example
CO.
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Figure 4.6: Case 4): RMSE of fCO(t) (top left) and averaged estimates (top right), and
RMSE of f(t) (bottom left) and averaged estimates (bottom right), for the example CO.
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Figure 4.7: Case 5): RMSE of fCO(t) (top left) and averaged estimates (top right),
RMSE of f(t) (middle left) and averaged estimates (middle right), and RMSE of f(temp)
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Figure 4.8: Case 6): RMSE of fCO(t) (top left) and averaged estimates (top right),
RMSE of f(t) (middle left) and averaged estimates (middle right), and RMSE of f(temp)
(bottom left) and averaged estimates (bottom right), for the example CO.
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Figure 4.9: Case 7): RMSE of fCO(t) (top left) and averaged estimates (top right),
RMSE of f(t) (middle left) and averaged estimates (middle right), and RMSE of ftemp(t)
(bottom left) and averaged estimates (bottom right), for the example CO.



Chapter 5

Analysis of the Erfurt data

In this Chapter, those two methods selected based on the simulation study (Chapter

4), that is Bayesian varying coefficient models with P-splines (method b)) and varying

coefficient models with P-splines based on empirical Bayes inference (method d)) are

applied to time-series data. The analysis is based on data collected within the study

”Improved Air Quality and its Influences on Short-Term Health Effects in Erfurt, Eastern

Germany”. We analyze the time-varying dependence of the daily counts of deaths on

air pollution. However, it is known that air pollution effect estimates on mortality could

be affected by observed and unobserved confounders such as weather variables or season

that vary in a similar manner as the air pollution and mortality time series. To account

for these, smooth functions of calendar time, influenza epidemics, and weather are also

included.

In the following, we first present and describe the data, as well as the models applied.

Secondly, we describe the most important results and draw some conclusions.

5.1 Data and confounder model description

Daily mortality (daily counts of deaths), 24-h average air pollution concentrations as well

as additional confounder variables were collected in Erfurt for the time period October

1991 to March 2002.

Daily mortality Copies of death certificates without the names and addresses of the

deceased were obtained from the local health authorities to comply with the rules of the

German data privacy law. Daily counts of deaths of Erfurt residents, who died within the

city, were calculated for total non-trauma deaths, that means for ICD-9 (International

Classification of Diseases, 9th revision) codes below 800, and for ICD-10 (10th revision)

61
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Table 5.1: Summary statistics for daily mortality, air pollution concentrations and key
meteorology.

Variable Period Mean (SD) Min 25% Median 75 % Max
Daily counts of death 1991 - 2002 4.6 (2.2) 0 3 4 6 15
Daily counts of death 1995 - 2002 4.90 (2.3) 0 3 5 6 15
CO (mg/m3) 1991 - 2002 0.63 (0.54) 0.08 0.29 0.48 0.78 5.77
UFP (cm−3) 1995 - 2002 12888 (8661) 717 6800 10400 16218 63181
PM2.5 (μg/m3) 1995 - 2002 21.9 (18.7) 1.6 10.5 16.0 26.8 212.0
Temperature (�) 1991 - 2002 8.3 (7.6) -16.9 2.7 8.4 14.3 27.8
Relative humidity (%) 1991 - 2002 79.5 (11.2) 34.3 72.4 80.7 87.5 100

codes less than S00. Infants (less than one year) were excluded.

Due to an administrative reform in 1994, a number of autonomous communities were

incorporated into the city of Erfurt. Before this date, all death certificates of the inhabi-

tants of these communities were stored in these villages and were therefore not available.

More details can be found in Peters et al. (2007). For the time series analysis considering

the gaseous pollutants as exposure, data were available from 1991 onwards. Therefore,

only deaths occurring within the old city limits of Erfurt were considered. For the analy-

sis of particle number and mass concentrations, which were available from 1995 onwards,

also deaths in the incorporated communities were included.

Ambient air pollution Ambient gaseous pollutant concentrations were obtained from

a state-run network monitoring station in Erfurt for the whole study period from October

1991 to March 2002. Data were available for CO, NO, NO2, SO2 and ozone (O3), from

which CO was used in this application. Particles in different size ranges were measured

at a research site from September 1995 to March 2002. Data were available for mass and

number concentration of ultrafine particles (UFP ), fine particles (less than 2.5 microns

aerodynamic diameter (PM2.5)), and coarse particles (less than 10 microns aerodynamic

diameter (PM10)). In this application, we considered UFP number concentrations and

PM2.5 mass concentrations. Missing pollution values were imputed, where possible (see

Peters et al. (2007)), and otherwise discarded.

Confounder variables Data on influenza epidemics were obtained from the ”Arbeits-

gemeinschaft Influenza” (German Influenza Working Group, AGI 2005). They consist of

a weekly doctor’s practice index (piwinter) for each winter season (October through April)

indicating the relative deviation of the number of doctor visits due to acute respiratory

symptoms in comparison to a background level (of value 100), averaged for the whole of

Germany. We used the doctor’s practice index for the whole of Germany since only very

few doctor’s practices in Thuringia participated in the survey system, especially during

the first winters.
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Figure 5.1: Time series of mortality counts in Erfurt, Germany, from October 1991 to
March 2002 (a), old city limits) and September 1995 to March 2002 (b), new city limits).

Daily means of air temperature (temp) and relative humidity (rh) were obtained from

a site of the German Meteorological Service (DWD, Deutscher Wetterdienst) located at

the airport 5 km west of the research measurement station.

Table 5.1 includes summary statistics for daily counts of deaths, air pollution concen-

trations of carbon monoxide (CO), ultrafine particle counts (UFP ) and PM2.5 as well

as key meteorology during the study period.

The differences between the two mortality series were due to the administrative reform

in 1994 (as described above), which can also be seen in Figure 5.1. CO concentrations

were available on 3761 days (98.1%), UFP number concentrations on 2403 days (91.3%)

and PM2.5 on 2351 days (97.8%). Daily average concentrations for the pollutants are

shown in Figure 5.2.

A clear seasonal pattern could be observed for all these pollutants; peak pollutant con-

centrations occurred in winter. Further, a decreasing trend in the pollutant concentration
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Figure 5.2: Time series of CO concentration (a) from October 1991 to March 2002, UFP
number concentration (imputed) (b) and PM2.5 mass concentration (imputed) (c) from
September 1995 to March 2002.
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Figure 5.3: Doctor’s practice index for all study winters

could be observed. For example, ambient CO levels decreased by 55% over the study

period.

Figure 5.3 shows the doctor’s practice index for all study winters except 1991/92, where

no data were available. The relative deviations ranged from 100 to a maximum of 276

in the winter of 1995/1996.

Model building The models used in the application are given by

Yt ∼ Po(μt)

log(μt) = log(pop) + confounder + fpoll(t) poll. (5.1)

Confounder model building was done in a similar way as in the APHEA II study

(Touloumi et al. (2004) and Touloumi et al. (2006)) and is described in detail in Pe-

ters et al. (2007), Stölzel et al. (in press) and Stölzel et al. (submitted).

We fitted the confounders trend, season, major influenza epidemics, air temperature,

and relative humidity by smooth functions. These terms were included step-by-step into

the model, which, in turn, was assessed by the partial autocorrelation function (PACF)

and the AIC. Furthermore, only terms with plausible dose-response-relationships were

selected; for example, we assumed a priori a positive association of the doctor’s practice

index indicating the severity of an influenza epidemic and mortality. Lags of up to plus

or minus three weeks were tested, because the peak of an influenza epidemic may hit

Erfurt at another date than the whole of Germany. In the last step, potential calendar
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effects were considered. Table 5.2 contains a description of all variables that were pur-

sued in the regression analysis.

As UFP number concentrations and PM2.5 mass concentrations were only available be-

tween September 1995 and March 2002, we built separate models for the time periods

from 1991 to 2002 and from 1995 to 2002.

Following this procedure, a final confounder model was built. In this final model the

shape of the effect of temporal trend was double checked. This is necessary after other

confounders, particularly meteorological variables, have been included into the model.

Many of these variables exhibit seasonal patterns themselves and, thus, capture part of

the observed seasonal trends in the outcome.

The final confounder model for the whole study period consisted of

log(μt) = log(pop) + f(t) + f(pi9394l0) + f(pi9495l−3) + f(pi9596l−1) (5.2)

+f(pi9900l2) + f(pi0001l3) + so+ f(templ0) + templ1 + f(rhl2),

whereas the confounder model for the period 1995 to 2002 was given by

log(μt) = log(pop) + f(t) + f(pi9596l−1) + pi9899l2 + pi9900l2 (5.3)

+f(pi0001l3) + so+ f(templ0) + templ1 + f(rhl2).

Cubic P-splines with 20 knots were estimated for calendar time (t) and depending on the

model for the doctor’s practice index during the winters 1993/94 with lag 0 (pi9394l0),

1994/95 with a lag minus three weeks (pi9495l−3), 1995/96 with lag minus one week

(pi9596l−1), 1999/2000 with lag 2 weeks (pi9900l2), and 2000/01 with a lag of three

weeks (pi0001l3). Further, splines were estimated for the meteorological confounders

temperature with lag 0 days (templ0) and relative humidity, lag 2 days (rhl2).

Air pollution models In the last step of the model building process, air pollution

variables were included as in (5.1). Air pollution was first assessed linearly to select the

best time lag (see Stölzel et al. (submitted)). For this analysis, a lag of four days was

chosen for CO as well as a four-days lag for UFP number concentrations and same-day

PM2.5 mass concentrations.

For the fully Bayesian approach, the first 10,000 iterations were discarded as burn-in.

Further 50,000 iterations were then completed for the chain, which were thinned by 40

to reduce autocorrelation.
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Table 5.2: Erfurt air pollution data: List of variables.

Variable Description

y daily counts of deaths
pop population numbers per year
trend calendar time (continuous)
piwinter doctor’s practice index per winter (continuous)
so indicator for Sundays
temp temperature in � (continuous)
rh relative humidity in % (continuous)
CO carbon monoxide concentrations in mg/m3 (continuous)
UFP ultrafine particle number concentrations (cm−3) (continuous)
PM2.5 particulate matter (continuous)

5.2 Results

We first present some exemplary results of the associations between confounders and

mortality. Figure 5.4 displays the estimates of the time trend and one typical exposure-

response-relationship for the doctor’s practice index of the winter 1995/1996 obtained

with the fully Bayesian (top panel) and the mixed model based empirical Bayes (lower

panel) approach. Both methods lead to comparable estimates for the time trend, with a

somewhat smoother trend for the empirical Bayes (EB) estimates. There was a rapidly

decreasing trend in mortality until the beginning of 1996, followed by a slight increase

up to mid 2000. In contrast, quite different results were obtained for the doctor’s prac-

tice index. With the EB method a much smoother, basically linearly increasing effect

was obtained. With the fully Bayesian approach, however, the piwinter effect for the

winter 1995/1996 was slightly increasing up to a relative deviation of 140, followed by

a sharp increase until values of 200. Afterwards, it was slightly decreasing, and finally

remained constant from a relative deviation of 230 upwards. Regarding the meteorol-

ogy effects, again, much smoother posterior mode effects were obtained by applying the

EB approach, resulting, for example, in a linearly increasing temperature effect. The

posterior mean estimate of the nonlinear temperature effect also showed an overall in-

creasing effect, however with some wiggles between temperatures of 0 and 15 �. The

nonlinear relative humidity effects exhibited a different shape. Starting from a positive

value, they decreased over most of the humidity range before showing a slight increase

from a relative humidity of 90 % onwards.

The time-varying estimated effects of CO with a four-days lag, fCOl4
(t), using the two

Bayesian methods are shown in Figure 5.6. The plot on the top shows the time-varying
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Figure 5.4: Posterior mean estimates (top) and posterior mode estimates (bottom) for
the nonlinear effects of trend (left panel) and the doctor’s practice index (right panel).
All estimates are shown with pointwise 95% credible intervals.

posterior mean estimated using fully Bayesian method b) (MCMC) together with 95%

pointwise credible intervals, whereas the plot for empirical Bayes method d) (EB, bot-

tom) gives the time-varying posterior mode, again with 95% pointwise credible intervals.

Both estimates have very similar shapes, showing a long-term trend with an effect that

is increasing until mid 1997 and is afterwards decreasing. The MCMC estimate shows

slightly more curvature over the study period.

The quantiles of the estimated time-varying CO effects for the two methods are shown in

Table 5.3. It can be seen that the posterior mode of the empirical Bayes approach has a

larger value than the posterior mean of the fully Bayesian model. This also holds true for

the medians. The MCMC estimates have a greater range of values, which corroborates

the visual assessment of more curvature in the time-varying coefficients.

In contrast to the long-term trend in the association of CO and daily mortality, the time-

varying effect estimates of ultrafine particles showed some seasonal patterns (Figure 5.7).

The increases at the end of the study period should be evaluated in view of the wide 95%

credible intervals. Furthermore, especially on days with missing values, the 95% credible
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Figure 5.5: Posterior mean estimates (top) and posterior mode estimates (bottom) for
the nonlinear effects of the temperature of the same day (left panel) and relative humidity
with a two-days lag (right panel).

intervals are wider due to the uncertainty incorporated into corresponding estimates.

Again, both estimates have very similar functional shapes, where the MCMC estimates

have a greater range of curvature.

Evaluating the quantiles of the estimated time-varying effects, the posterior mode of the

empirical Bayes approach has, similar to the results for CO, a larger value than the

posterior mean (Table 5.3).

Figure 8.4 shows the time-varying association of PM2.5 for lag 0. The largest time-

varying coefficients were observed for the years 1998 and 1999. Afterwards, the effect

estimates decreased until mid 2001 and increased again hereafter.

In contrast to CO and UFP , EB estimates for PM2.5 showed slightly more curvature,

which is also reflected in Table 5.3. Further, applying the EB method to PM2.5 resulted

in more wiggly time-varying coefficients compared to the ones obtained by MCMC.
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Figure 5.6: Time-varying effect of carbon monoxide (CO) with a four-day lag estimated
using the MCMC (top) and the mixed model based EB method (bottom).
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Figure 5.7: Time-varying effect of ultrafine particles (UFP ) with a four-day lag estimated
using the MCMC (top) and the mixed model based EB method (bottom).
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Figure 5.8: Time-varying effect of fine particle mass (PM2.5) of the same day estimated
using the MCMC (top) and the mixed model based EB method (bottom).
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Table 5.3: Quantiles for the estimated time-varying coefficients of CO (lag 4), UFP
number concentrations (lag 4) and PM2.5 (lag 0), using the two methods that performed
best in the simulation study.

Variable Method Mean/Mode Min 25% Median 75% Max
CO MCMC 0.032 -0.050 0.009 0.031 0.067 0.1133

Empirical Bayes 0.039 -0.041 0.027 0.035 0.065 0.083
UFP MCMC 2.39e-6 -9.38e-6 -7.93e-7 1.57e-6 5.30e-6 1.88e-5

EB 2.75e-6 -1.21e-5 -6.01e-7 2.99e-6 5.70e-6 1.69e-5
PM2.5 MCMC -0.0007 -0.0076 -0.0017 0.0006 0.0012 0.0034

EB -0.0005 -0.0068 -0.0017 0.0000 0.0016 0.0038

We also calculated relative risks (RR) for mortality per increase in one interquartile

range (IQR) of the respective pollutant to be able to compare the pollutant effects.

Relative risks of mortality per increase of CO in one IQR (IQR: 0.48 mg/m3) ranged

from 0.98 with a 95% credible interval of (0.89, 1.07) in 2001 to 1.06 (95% CI: 1.02,

1.10) in 1997 for the fully Bayesian approach. For the empirical Bayes approach, the RR

varied from 0.98 (95% CI: 0.89, 1.08) to 1.04 (95% CI: 1.01, 1.08). Relative risks per

IQR increase in the UFP number concentration (IQR: 9418) ranged between 0.92 with a

95% credible interval of (0.70, 1.20) and 1.19 (95% CI: 0.95, 1.50) for the fully Bayesian

approach and between 0.90 (95% CI: 0.71, 1.13) and 1.17 (95% CI: 0.98, 1.40) for the

empirical Bayes approach. Hence, the effects of the UFP number concentration showed

a slightly greater range compared to CO. In contrast, for PM2.5, relative risks per an

interquartile range increase (IQR: 16.3 μg/m3) varied from 0.88 with a 95% credible

interval of 0.80 and 0.97 to 1.06 (95% CI: 0.92; 1.23) for the fully Bayesian method

and from 0.90 (95% CI: 0.82; 0.98) to 1.07 (95% CI: 0.95; 1.19). Comparing all three

pollutants, UFP number concentrations showed the largest effect estimates.

5.2.1 Sensitivity within MCMC estimation

The estimated nonlinear functions fj may in some situations be very sensitive to the

particular choice of hyperparameters, e.g. the parameters aj and bj defining the inverse

gamma prior of the variances of nonparametric effects. This may be the case for very low

signal to noise ratios and/or sparse data situations. Therefore, it is often recommended

to re-estimate the models under consideration using a (small) number of different choices

aj and bj to assess the dependence of results on minor changes in the model assump-

tions. We assessed the sensitivity of our inferences to the choice of hyperparameters

by repeating the analyses with different choices for the parameters a and b for each ef-

fect in the model. The values of choice were: a = 0.001, b = 0.001 (standard choice);
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a = 0.00001, b = 0.00001; a = 1, b = 0.005. As an example, Figure 5.9 shows the results

for the time-varying effect of CO depending on different choices of hyperparameters. Ob-

viously, the estimated function using a = 0.00001, b = 0.00001 was somewhat smoother,

whereas for a = 1, b = 0.005, a slightly curvier time-varying coefficient was obtained;

but it did not differ that much from the estimates with the standard choices.

5.2.2 Time-varying effect or dose-response?

In principle, two competing factors may explain a change in effect estimates. The first

possibility is that there is a linear exposure response relationship, but because the mea-

sured pollutant serves as an indicator for changes in source composition or air pollution

mixtures, associations with the outcome vary. The second possibility is that there is a

non-linear exposure-response relationship which converts to changes in the effect esti-

mates over time as concentrations in the exposure change. We therefore assessed the

exposure-response functions of the three pollutants considered. We used model (5.1),

but included nonlinear functions of the pollutants instead of a time-varying coefficient

term

log(μt) = log(pop) + confounder + f(poll).

Figure 5.10 shows the exposure-response-relationships of the three air pollutants and

mortality. The dose-response curve of CO, lag 4 was clearly linear (Figure 5.10, a)),

suggesting that there was indeed a time-varying association between CO and mortality.

The dose-response curve of PM2.5 of the same day and mortality also suggested a linear

relationship (Figure 5.10, c)). This, however means, that changes in the effect estimates

over time were not caused by a conversion of a non-linear exposure-response relation-

ship. The dose-response curve of UFP , lag 4 reveals a slightly non-linear dose-response

relationship of UFP and mortality, shown in Figure 5.10, b). We therefore assessed a

number of sensitivity plots; a plot showing the time series of the lagged UFP concen-

trations and the time-varying association of UFP , lag 4, and mortality (Figure 5.11,

middle row); and a scatterplot of the UFP concentrations versus the product of the

time-varying coefficient times the UFP concentrations, which is shown in the bottom of

Figure 5.11. Both plots suggest that the highest time-varying coefficient estimates were

not obtained while concentration levels were highest.
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Figure 5.9: Time-varying association of carbon monoxide (CO) at lag 4 with different
choices of the hyperparameters: a = b = 0.001 (top, standard choice); a = 0.00001, b =
0.00001 (middle) and a = 1, b = 0.005 (bottom).
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Figure 5.10: Exposure-response-relationships of CO concentrations with lag 4 (a), of
UFP concentrations with lag 4 (b) and of PM2.5 concentrations of the same day (c).



5.2. Results 77

Figure 5.11: Exposure-response-relationship of UFP with lag 4 (top); Time series of
UFP concentrations with lag 4 and time-varying association of UFP , lag 4 (middle);
and scatterplot of UFP concentrations versus the product of the time-varying coefficient
times the UFP concentrations (bottom).
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5.2.3 Inference

To get a clear indication whether the time-varying coefficient approach in the applica-

tions is really necessary, a test of the fixed-parameter hypothesis against a time-varying

coefficient alternative is called for. For the application considered here, this results in

testing, for example, the hypotheses

H0 : fCOlag4
(time) = constant ↔ H1 : fCOlag4

(time) �= constant . (5.4)

There are only a few proposals for tests in the context of generalized varying coefficient

models, mainly using local likelihood modeling and spline smoothing. Zhang (2004) pro-

poses a scaled chi-squared test in the context of generalized longitudinal data to examine

whether a varying coefficient is a polynomial of certain degree. Smoothing splines are

used in this approach to estimate the smooth varying coefficient functions. Kauermann

& Tutz (1999) and Kauermann & Tutz (2001) present tests of a general fixed-coefficient

hypothesis against a varying-coefficient alternative, estimating the alternative model by

local likelihood smoothing. Fan, Zhang & Zhang (2001) present a method focusing on the

comparison of a nonparametric estimate of the whole regression function with its para-

metric counterpart. Based on their results, Cai et al. (2000) proposes a nonparametric

maximum likelihood ratio test procedure for generalized varying coefficient models which

can also be used for identifying whether each of the coefficient functions, but not the

whole regression function, of a varying-coefficient model is constant. A corresponding

test within the Bayesian framework has been provided by Fahrmeir & Mayer (2001),

however only in the context of Kalman filtering and EM algorithms.

Similar to Cai et al. (2000) and Fahrmeir & Mayer (2001), we propose to use a likelihood

ratio test that is based on the following test statistic

T = 2{l(H1) − l(H0)}, (5.5)

where l(H1) and l(H0) are the corresponding log-likelihood functions under the null and

the alternative hypothesis, respectively.

In contrast to parametric models, where the likelihood ratio statistic follows asymptoti-

cally a χ2-distribution, the analytic form of the null distribution of the above proposed

test is hard to find. Therefore, we apply a bootstrapping procedure which makes it

possible to mimic the distribution of a test statistic under the hypothetical model. The

testing procedure can be summarized as follows:

1. Fit the observed data with the model under H0, that means for example

η̂t =

l∑
j=0

βjxj +

p−1∑
j=l+1

fj(xj) + βpCOlag4,
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using empirical Bayes (EB) inference methods.

2. Generate a bootstrap sample Y ∗
t from the above model under H0.

3. Estimate the fixed as well as the time-varying coefficient model for this sample,

again using empirical Bayes inference methods. In each bootstrap replicate, choose

the smoothing parameter using a REML estimate to incorporate the variability of

estimating the smoothing parameter in the bootstrap as well.

4. Calculate the corresponding test statistic (5.5) for each of the bootstrap samples.

5. Calculate the empirical p-value.

Given the covariates, Y ∗
t is generated 500 times for CO and 1000 times for UFP and

PM2.5. Further the test statistic T ∗ in (5.5) is computed. The distribution of T ∗ can

then be used as an approximation to the distribution of T. For power considerations

of the proposed test, we refer to the empirical work conducted by Cai et al. (2000)

and Fahrmeir & Mayer (2001). They show that this testing procedure may indeed be

powerful.

An application of this testing procedure to the model estimated with empirical Bayes

inference revealed that the test statistic based on 500 bootstrap samples is T = 15.64

and the p-value is 0.03, which suggests that the model with a time-varying term for CO

is a better fit. For UFP and PM2.5, the testing procedure revealed a p-value of 0.11

and 0.09, respectively. Hence, in both cases, the assumption of a constant effect of air

pollution cannot be rejected.

5.3 Discussion of the (time-varying) air pollution ef-

fects

The time-varying models revealed variation in the effect estimates over time, which was

reflected in seasonal variation as well as overall variation of the effect estimates over time.

A test procedure further showed that the long-term trend shape in the time-varying co-

efficient of CO was even significant. CO might therefore be a marker of slowly-varying

sources. Although not significant, the results of UFP and PM2.5 showed some seasonal

variation. Studies in a number of locations have shown a change in the characteristics

of the particulate matter mixture throughout the year and that the relative and abso-

lute contributions of particular components to particulate matter mass may be different

during different times of the year (see for example Bell et al. (in press)).

The changing effects over time could have been induced by a non-linear dose-relationship.
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However, an examination of the size of effect with relation to the magnitude of the pol-

lution level showed this not to be the case.

A striking observation was that the effect estimates were largest for CO during the pe-

riod 1995 to 1997. Also, PM2.5 and UFP showed positive effect estimates during these

years (see also Wichmann et al. (2000)). In this period, changes in source characteristics

took place. The two main changes were: Energy production (by power plants and by

local heating) and the number and type of vehicles. To be able to give more insight on

these changes, additional data about the changes in the sources were collected.

For example, the proportion of stove heating in Erfurt decreased in the time period 1992

- 2001 from 95% to 5%, whereas during the same time period, the proportion of homes

heated by central heating increased from 12% to 51%. Also the mobile sources have

undergone modernization after the German unification. Since 1990 the old car fleet was

gradually replaced by vehicles with comparatively modern engine technology including

three-way catalysts. The number of cars in Erfurt equipped with a three-way catalyst

increased from 50% to 96% during the study period. Although air pollution concen-

trations were already reduced (see Figure 5.2) during the years 1995 to 1997, it seems

that the benefits of ambient air quality were not yet completely achieved. One might,

therefore, speculate that the oxidative stress potential was markedly increased during

this period leading to more toxic air pollution mixtures.

Evidence on smooth time-varying associations of air pollution with mortality is very lim-

ited and no direct evaluation of time-varying effects of CO, PM2.5 and UFP is possible.

The only evidence of time-varying associations with mortality has, so far, been given for

PM10 data.

Chiogna & Gaetan (2002) investigate a potential time-varying effect of PM10 on mor-

tality over a four-year period. They detect, as in other studies, ”a positive effect of

particular matter on mortality, but find that the significance of this effect might change

in time”. In an extended version of the Dynamic Generalized linear model approach, Lee

& Shaddick (2005) analyze PM10 data from the Greater London area. In their study, the

effects of PM10 show little change over the first two years of the study, and then a marked

increase in 1997. However, the possibility of a constant effect could not be excluded,

as the credible intervals were wide. Finally, Peng et al. (2005) find a seasonally-varying

effect of PM10 throughout the U.S. with a higher effect on mortality during summer.

However, it is important to note that in the U.S. maximum particle mass concentrations

are observed in summer due to regionally transported secondary sulphates. In contrast,

European ambient particle concentrations peak during winter time and this is caused by

increased source emissions and a decrease of air mixture. Therefore, the apparent differ-

ences between the results of Peng et al. (2005) and our study might be due to different
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seasonal variations in particle concentrations rather than a fundamental difference.
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Chapter 6

A measurement error model for
time-varying coefficient models

So far, we have assumed that all of the covariates are obtained without any error. How-

ever, a more realistic view is to allow, for example, for an error-prone air pollutant

variable, where sources of error include, among others, imperfect monitoring devices.

In this chapter, we first specify a measurement error model for time-varying coefficient

models as they were considered in Chapter 5. Having described this measurement error

model, we then turn to presenting methods to estimate parameters and measurement

error variances of the model in the case of an autocorrelated latent exposure variable.

These methods are based on a representation of the measured surrogate variables as

autoregressive moving average processes.

6.1 Measurement error model formulation

Measurement error models generally have a common structure, consisting of three sub-

models (Clayton 1992). The three parts are:

1. A model for the true, but latent exposure variable ξ. This is often also called

exposure model ;

2. An outcome or disease model relating the response y to the true latent covariate

ξ; and

3. A measurement model linking the unobservable true exposure ξ to an observable

surrogate variable X.

83
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6.1.1 Model for the latent exposure variable

In general, there are two approaches to a measurement error analysis, depending on

how ξ is treated. In the so-called functional variant of an error-in-variables model, ξ

is assumed to be an unknown parameter pertaining to the observation X. The second

possibility is the so-called structural variant. In this model, ξ is considered as a random

variable. Further, the structural variant of a regression model with measurement error

is characterized by the assumption of an underlying (known) distribution of the latent

covariate.

We use the structural variant in this work, as it can be assumed that the true air pollution

values are random variables. Therefore, we have to specify a distribution of the latent

exposure variable.

Past experience suggests that daily air pollution measurements are temporally correlated.

Therefore, a potential distribution of ξ that will be investigated thoroughly is given by

a multivariate normal distribution with an autoregressive covariance structure of order

p (AR(p)):

ξ ∼ NT (μ,Ω), (6.1)

where μ is a column vector of length T and Ω is a T × T covariance matrix which is

symmetric and positive definite and has the following form

Ωtt′ = Cov(ξt, ξt′) = σ2
ξρ

|t−t′|
ξ . (6.2)

This formulation assumes the stationarity of the mean and variance over time, but in

general it is more reasonable to assume that the mean of ξ follows a linear trend which

can be expressed as

E(ξ) = κ0 + κ1 t, (6.3)

where t denotes the calender time, κ0 is an intercept term and κ1 is the slope of the

long-term time trend. An extension of model (6.3) could also include, for example, a

seasonal indicator or a harmonic component such as

E(ξ) = β0 + β1 t+ β2 cos(2πt/365) + β3 sin(2πt/365) (6.4)

for the seasonality effect.
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6.1.2 Disease model

As in Chapter 5, we use a Poisson model as outcome or disease model, with daily mortality

as response, that means we assume

y|ξ, z ∼ Po(μ) (6.5)

and the predictor to have the following form

log(μ) = η = β0 +

l∑
j=1

βzj +

p−1∑
j=l+1

fj(zj) + fp(t) ξ,

where zj , j = 1, . . . , p−1 denote additional covariates. Instead of an observed surrogate

measure (as in (5.1)), now the true exposure ξ is included in the predictor. We further

assume that both response and additional covariates are measured or obtained without

error and that there are no dependencies between the covariates zj and the true exposure

variable ξ - strong restrictions indeed. While a more flexible model is desirable, we use

these restrictions to ease the illustration and simplify the estimation procedures.

6.1.3 Measurement model

The measurement model relates the observed error-prone surrogate X to the true, but

unobservable variable ξ. Broadly, there are two different types of error structures (see,

for example, Carroll et al. (2006) for more details).

The classical measurement model assumes that the observed variable X is the sum of

the true variable ξ and an additive random error with mean zero, which is independent of

ξ. A classical model is, for example, reasonable for the difference between the measured

levels of an environmental exposure and the true level of that agent.

An alternative is the so-called Berkson model, where the true variable is assumed to

be the result of the observed variable plus some independent random deviation. In this

model the error is independent of X. This error type is reasonable, for example, when

the individual exposure to a certain air pollutant is measured by a monitoring device,

which is on a fixed location. The measured level is then assigned to all persons living in

a certain radius of that monitor.

In this thesis, we consider the situation in which two environmental monitoring systems

are observed which are abbreviated Xt1 and Xt2, hereafter. The two devices collect data

on the same variable ξ at regular time points t, t = 1, . . . , T . We further treat the

measurements of the two monitoring systems as replicate measurements of ξ. Hence, the
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assumption of a classical error model is appropriate, since we want to model the true

ambient level of an air pollutant in a city or region, but the monitoring devices do not

allow for a correct measurement.

Specifically, the relationship between the true and perturbed observed series is given by

the following models

Xt1 = ξt + α1 + εt1 (6.6)

Xt2 = ξt + α2 + εt2, i = 1, 2,

where αi are measurement biases associated with the two monitoring devices and

εti ∼ N(0, σ2
εi
)

Cov(ξt, εt′i) = 0 ∀t, t′
Cov(εt1, εt′ 2) = 0 ∀t, t′

A further essential assumption is that, conditional on the latent covariate ξ, the sur-

rogates Xi do not contain additional information on the response y. This is known as

non-differential measurement error and can be expressed as

yt ⊥ Xti|ξt for all t.

The measurement error may also be correlated over time. The dependence structure

of measurement errors can be caused by common disturbing factors. Conceivable is an

influence of season or other exogenous variables as temperature on the measurement

error. A potential model then could be

εti ∼ N(μt, σ
2
εi
)

Cov(εti, εt′i) = σ2
εi
ρ
|t−t′|
i .

Another possibility could be to take logarithmic values into consideration. Therewith,

one allows a multiplicative structure of the model; however, in this thesis, we only regard

the case of an additive measurement error structure.

6.2 Identifiability of parameters

Before we can estimate parameters of models such as (6.6), there are some assumptions

necessary for the identifiability of the parameters. This is due to the fact that ξ is latent.
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One possible identifiability condition is given by

α1 + α2 = 0. (6.7)

This means that none of both measurement series is favored concerning the systematic

bias. Correspondingly, such considerations may be required for potential other effects in

the measurement error model.

A further possibility to ensure identifiability is to set one of the αi, i = 1, 2 to zero,

which implies

α1 = 0 or α2 = 0. (6.8)

Note, however, that adding a constant to one exposure variable only affects the intercept

and, therefore, does not affect the regression results in any interesting way.

6.3 Estimating the measurement error model pa-

rameters

To adjust for the bias in the estimated coefficients in a measurement error analysis, an

estimate of the measurement error variance is needed. In the following, we describe

several techniques for obtaining these estimated variances. We first present a simple

estimation procedure without accounting for autocorrelation. Then, we consider an

approach for obtaining the autoregressive parameter and corrected variance estimates

for the case of autocorrelated true values, but temporally independent measurement

errors. Finally, we present a method when both, ξ and εi, follow autoregressive processes.

Both methods are based on a representation of the surrogate variables as autoregressive

moving average processes. We conclude with some remarks about the identifiability and

the estimation of the intercept and linear trend coefficients of the exposure model.

6.3.1 Simple Estimation

A simple estimate of the parameters in models such as mentioned above can be obtained

by applying assumption (6.7) or (6.8) and using the mean, xm, of the two observed

variables, with

xm :=
x1 + x2

2
, (6.9)
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where

E(xm) = μ

Var(xm) = σ2
ξ +

1

4
(σ2

ε1
+ σ2

ε2
)

Var(x1) = σ2
ξ + σ2

ε1

Var(x2) = σ2
ξ + σ2

ε2.

Using (6.9) and the corresponding assumptions, the parameters can be estimated from

the data using the appropriate moments.

6.3.2 Models allowing for an autoregressive

structure of the observations

As we assume that the true concentrations are temporally correlated, the simple esti-

mation procedure might not lead to ’correct’ estimated parameters. To account for the

dependence between successive observations, we assume that the autocorrelation struc-

ture of the ξt follows an autoregressive process of order p. This means that observations

close in time are more correlated than those far away. Furthermore, the measurement

errors might also be temporally correlated.

6.3.2.1 AR(p) + white noise case

In this section, we consider a model in which the observed surrogate variables are assumed

to be the sum of an autoregressive series ξt plus a white noise error εt. Such a model is

also known as ’signal plus noise’ model in engineering (see for example Pagano (1974)

or Granger & Morris (1976)).

In general, an autoregressive model for ξ is specified as:

ξt = μt + ρξ,1 ξt−1 + . . .+ ρξ,p ξt−p + et, (6.10)

where the ρξ,1, . . . , ρξ,p denote the autoregressive parameters and μt is the mean of ξt.

The et are iid distributed with mean 0 and variance σ2
e .

Instead of ξt which is not observable, we now take the observed measurement values

Xti = ξt + εti, i = 1, 2 with εti ∼ N(0, σ2
εi
) and

Cov(εti, εt′i) = 0 ∀t �= t′.

Following Pagano (1974) and Granger & Morris (1976), it is known that if ξt is an

autoregressive process of order p with parameters ρξ,1, . . . , ρξ,p, and εti is white noise
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with (constant) variance σ2
εi
, then the sum Xti = ξt + εti, follows an autoregressive

moving average (ARMA) process of order (p, p). The corresponding proof is given in

Appendix B.

In general, an stationary ARMA(p,p) process for Xti is given by

ρ(B)Xti = θ(B) γti.

The model consists of two parts, an autoregressive (AR) part ρ(B)Xti, and a moving

average (MA) part θ(B)γti. ρ(B) and θ(B) are defined as p-th order lag polynoms,

where ρ(B) = 1−ρ1 B− . . .−ρp B
p, θ(B) = 1+ θ1B+ . . .+ θp B

p and B is the so-called

Backward-Shift operator, such that Bj Xt = Xt−j . γti is a white noise series with mean

0 and variance σ2
γi

.

Applying the definition of Xti as sum of ξt and εti results in an ARMA(p,p) process of

the form

ρ(B)Xti = ρ(B) (ξt + εti) = et + ρ(B) εti.

Having specified the representation of Xti as ARMA process, we now show how to obtain

the estimates for the parameters of interest. As an example, a zero-mean AR(1) process

for ξt is chosen.

In the case of a zero-mean AR(1) process for ξt, we are seeking a model

Xti = ξt + εti ξt = ρξ,1 ξt−1 + et, and εti ∼WN(0, σ2
εi
). (6.11)

Using the definition of the lag polynoms, the ARMA (1,1) process for Xti is obtained as

(1 − ρξ,1B)Xti = (1 − ρξ,1B) ξt + (1 − ρξ,1B) εti (6.12)

= et + (1 − ρξ,1B) εti,

and applying the definition of the Backward-Shift operator then yields

Xti − ρξ,1Xt−1 i = et + εti − ρξ,1 εt−1 i.

Suppose now that we estimate parameters for a given ARMA(1,1) process

(1 − ρARMAi
B)Xti = (1 + θ1iB)γti, (6.13)

where γti is defined as above and is uncorrelated with et.
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For the ARMA(1,1) processes (6.12) and (6.13) to be equivalent, the autoregressive

parameter ρARMAi
in (6.13) has to be the same as in model (6.12); however, this also

means that the AR parameter is the same as ρξ,1 in (6.11).

Further, the moving averages θ1i as well as the variances σ2
γi

obtained by (6.13) can be

related to ρξ,1, σ
2
e and σ2

εi
by equating the auto-covariance functions of Xi and ξ + εi

σ2
γi

(1 + θ1iz)(1 + θ1iz
−1)

(1 − ρξ,1 z)(1 − ρξ,1 z−1)
=

σ2
e

(1 − ρξ,1 z)(1 − ρξ,1 z−1)
+ σ2

εi
, (6.14)

where z is a complex scalar. After some transformations, this results in

σ2
γi

(1 + θ2
1i) + σ2

γi
θ1i(z + z−1) = σ2

e + σ2
εi

(1 + ρ2
ξ,1) − σ2

εi
ρξ,1 (z + z−1). (6.15)

For an equivalence of the processes (6.12) and (6.13), one needs

σ2
γi

(1 + θ2
1i) = σ2

e + σ2
εi

(1 + ρ2
ξ,1), (6.16)

that means equal variances. Using this equivalence in (6.15) finally leads to

σ2
γi
θ1i = −σ2

εi
ρξ,1. (6.17)

Hence, in summary, for the two ARMA models (6.12) and (6.13) to be equivalent, one

needs the conditions

ρARMAi
= ρξ,1

σ2
γi

(1 + θ2
1i) = σ2

e + σ2
εi

(1 + ρ2
ξ,1)

σ2
γi
θ1i = −σ2

εi
ρξ,1.

The last equation can be solved for σ2
γi

, yielding

σ2
γi

= −σ
2
εi
ρξ,1

θ1i
.

This can then be substituted into (6.16) to deduce

−σ
2
εi
ρξ,1

θ1i
(1 + θ2

1i) = σ2
e + σ2

εi
(1 + ρ2

ξ,1).

Under the condition σ2
e > 0, we get after some transformations realizability conditions

in the form

| 1

1 + ρ2
ξ,1

| > | θ1i

(1 + θ1i)ρξ,1

| ≥ 0.
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Note that the processes that were added together in this special case were assumed to

have zero mean. However, Hamilton (1994) states that ”adding constant terms to the

processes will not change the results in any interesting way”.

As a result of this, an approach to estimating ρξ,1 is to fit an ARMA(1,1) model to the

observed time series of measurements Xi, i = 1, 2 and to use the resultant estimates of

the autoregressive parameters ρ̂ARMA. Note that, as only one autoregressive parameter

ρξ,1 in the measurement error correction methods is needed, we always use the mean of

the two estimated autoregressive parameters obtained for each observed series.

Having obtained estimates of ρ̂ARMAi
, θ̂1i and σ̂2

γi
, one can then solve equation (6.17) to

get an estimate of σ2
εi
. Substitution of σ̂2

εi
into equation (6.16) finally leads to an estimate

of σ2
e .

6.3.2.2 AR(p) + AR(q) case

Suppose now, that not only the time series ξt of true values, but also the measurement

errors are autocorrelated. We further assume that the autocorrelation structure of the εti

follows an autoregressive process of order q (AR(q)). This dependence structure of the

measurement errors may be caused by common disturbing factors such as meteorological

influences.

Again, the time series of observed measurement values Xti = ξt + εti, i = 1, 2 is taken,

which, however, is now the sum of two autoregressive processes of order p and q,

φ(B) ξt = et, (6.18)

and

π(B) εti = uti, (6.19)

where et ∼ N(0, σ2
e) and uti ∼ N(0, σ2

ui
).

In general, it is likely that the autoregressive parameters of the two processes are different.

In this case, adding an AR(p) process (6.18) to an AR(q) process (6.19) under the

assumption that the two processes are uncorrelated produces an ARMA(p+q,max{p, q})
process of the following form

φ(B) π(B)Xti = π(B)et + φ(B)uti.

Corresponding to the AR(p) + white noise case, we again show exemplarily for AR(1)

processes how to obtain the parameters of interest.
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For the special case of AR(1) processes for ξt

ξt = φ1ξt−1 + et,

as well as for εti

εti = π1εti−1 + uti,

this implies that the sum of these two processes is an ARMA(2,1) model, given by

(1 − φ1B)(1 − π1B) (Xti) = (1 − φ1B)(1 − π1B) (ξt + εti)

= (1 − (φ+ π)B + φ π B2) (ξt + εti)

= (1 − π1B) et + (1 − φ1B)uti. (6.20)

Now assume that a given ARMA(2,1) process is

(1 − ρ1iB − ρ2iB
2)Xti = (1 + θ1iB) γti, (6.21)

where γti is a white noise process uncorrelated with et and uti. Note that an ARMA(2,1)

model (6.21) is stationary and the roots of 1 − ρ1 z − ρ2 z
2 = 0 are real, if the ρi satisfy

the following conditions (see for example Brockwell & Davis (1998)):

ρ2 + ρ1 < 1, ρ2 − ρ1 < 1, and |ρ2| < 1.

For the two ARMA models (6.20) and (6.21) to be equivalent, the autoregressive param-

eters of the two models have to be related in the following way:

ρ1i = φ1 + π1 and ρ2i = −φ1 π1,

which implies

φ2
1 − ρ1i φ1 − ρ2i = 0 and

π2
1 − ρ1i π1 − ρ2i = 0.

Comparable to the AR(1) + white noise case, one further needs conditions based on all

non-zero autocovariances

σ2
γi

(1 + θ2
1i) = σ2

e (1 + π2
1) + σ2

εi
(1 + φ2

1) (6.22)

σ2
γi
θ1i = −π1 σ

2
e − φ1 σ

2
εi
. (6.23)
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Using the estimates ρ̂1i, ρ̂2i, θ1i and σ̂2
γi

, one can solve equation (6.23) for σ2
e , for example,

yielding

σ2
e =

−σ2
γi
θ1i − φ1 σ

2
εi

π1

Substitution of the corresponding equations into equation (6.22) finally leads to estimates

σ̂2
e and σ̂2

εi
.

6.3.2.3 Remarks

We conclude this Chapter with some remarks:

1. Uniqueness of the estimated parameters of an ARMA(2,1) model when the

ARMA(2,1) process arises as a sum process.

Following Ku & Seneta (1998), the coefficients have a unique solution, that means

they are identifiable, if the following condition holds

−(θ1i − ρ1iθ1i − ρ2i) �= 0.

The case that this condition is equal to 0 effectively results in the reduction to an

AR(1) process. See Ku & Seneta (1998) for a detailed discussion of this point.

2. Estimation of ARMA models.

There are several possibilities for the parameter estimation of an ARMA model.

Examples are estimation using Yule-Walker equations, ordinary least-squares or

maximum likelihood. For an exact maximum likelihood estimation of an ARMA

model, it is convenient to use a state-space representation of the ARMA process

(see for example Hamilton (1994) or Jones (1980)). This enables the calculation

of the exact likelihood function by means of the Kalman filter. To get the maxi-

mum likelihood estimate of the parameters, one needs to maximize the obtained

likelihood function. This can be done by optimization algorithms such as the

Newton-Raphson procedure.

3. Estimation of the trend parameters κ0 and κ1

To obtain estimates for the exposure model parameters κ0 and κ1, a linear regres-

sion is fitted with an ARMA model for the error term. Parameter estimates can be

obtained by using maximum likelihood estimation as shown in Hamilton (1994).
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4. The existence of measurement errors not only affects the estimation of model pa-

rameters, but also the lag order selection. Measurement errors may have two

opposite effects on the lag order selection. Recently, Chong et al. (2006) show that

for any given sample size, the estimated lag order obtained by the Akaike as well

as the Bayes information criteria tends to be positively associated with the vari-

ance of measurement error if the variance is small, whereas they become negatively

related when the variance is large. Therefore, order selection should be done with

due care.



Chapter 7

Measurement error correction
methods

In this chapter, we present two different approaches for analyzing temporally correlated

time series data with measurement error. The first one is a Bayesian analysis including

a measurement model with common time trend and measurement errors with system-

specific biases. To estimate the required posterior distributions, Markov chain Monte

Carlo (MCMC) simulation methods (see also Section 3.2) are used. The second approach

is a variant of the well-known regression calibration approach.

7.1 A Bayesian measurement error correction model

Bayesian analysis of measurement error problems has been developed from the work of

Clayton (1992), Richardson & Gilks (1993) and Dellaportas & Stephens (1995). It is

based on structural specifications and functional specifications. The measurement error

model based on structural specifications entails the formulation of three sub-models (see

also Section 6.1). The submodels consist of:

� A disease model that relates the response y to the true latent covariate ξ;

� A measurement model relating X and ξ; and

� An exposure model for the prior distribution of ξ.

A necessary assumption is that we have a non-differential measurement error which can

be expressed as

yt ⊥ Xt|ξt for all t.

95
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7.1.1 Model formulation

At the second stage, the functional forms of the distributions involved in the sub-models

have to be chosen. For the outcome and the measurement models, this choice is guided

by epidemiological knowledge. Thus, the current measurement error problem can be

formalized as follows:

1. Disease model

We consider a Poisson model with log-link and predictor given similar to Section

6.1.2 as disease model.

2. Measurement model

We specify a classical measurement model relating the unobservable ξ to the ob-

servable variables X1 and X2. Specifically, we assume that the measurements are

governed by the model

Xti = ξt + αi + εti, for t = 1, . . . , T, and i = 1, 2, (7.1)

where αi are measurement biases associated with the two devices; the εti are inde-

pendent N(0, σ2
εi
), i = 1, 2. Further, we assume α2 = 0 for identification.

Let τ1 and τ2 denote the measurement error precisions which are defined as τ1 ≡
1/σ2

ε1
and τ2 ≡ 1/σ2

ε2
, respectively. We assume the conditional distribution of the

system measurements given the true value being measured at time t, ξt, the device

bias α1, and the precisions τ1 and τ2, to be as follows:

([
Xt1

Xt2

]
| ξt, α1, τ1, τ2

)
∼ N2

((
ξt + α1

ξt

)
,

(
1/τ1 0

0 1/τ2

))
. (7.2)

In the case of autocorrelated measurement errors, an appropriate modification is

given by the assumption of a first order autoregressive process satisfying

εti = ρi εt−1 i + uti, i = 1, 2, (7.3)

where the uti are N(0, σ2
ui

) and independent of other errors over time. This results

in a conditional distribution for the vectors of all observations, X1 and X2, as

follows:
([

X1

X2

]
| ξ, α1, τ1, τ2, ρ1, ρ2

)
∼ N2T

((
ξ + α1

ξ

)
,

( 1
τ1
V1 0

0 1
τ2
V2

))
, (7.4)
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with

Vi =
1

(1 − ρ2
i )

⎡
⎢⎢⎢⎣

1 ρi . . . ρT−1
i

ρi 1 . . . ρT−2
i

...
...

. . .
...

ρT−1
i ρT−2

i . . . 1

⎤
⎥⎥⎥⎦ .

3. Exposure model

In the exposure model, we specify the distribution of the latent variable ξ. There

might be non-stationarity in the time series. Following Isaacson & Zimmerman

(2000), we assume that ξ has a mean that follows a linear trend. It will be further

assumed that deviations from the mean follow an autoregressive process of order

1 (AR(1)). This implies a model of the following form:

ξt = κ0 + κ1 t+ ρξ,1[ξt−1 − (κ0 + (t− 1)κ1)] + et, t = 1, . . . , T, (7.5)

where e1 is assumed to be N(0, σ2
e/(1 − ρ2)), independently of e2, . . . , eT . The

e2, . . . , eT , on the other hand, are iid N(0, σ2
e).

Starting from this exposure model, the conditional distribution of ξ1 given the

parameters κ0, κ1, ρξ,1 and τe is given by

(ξ1|κ0, κ1, ρξ,1, τe) ∼ N

(
κ0 + κ1,

1

τe(1 − ρ2
ξ,1)

)
, (7.6)

where τe ≡ 1/σ2
e . The conditional distribution of all other ξt given a previous value

ξt−1 and the parameters is assumed to be:

(ξt|ξt−1, κ0, κ1, ρξ,1, τe) ∼ N(κ0 + tκ1 + ρξ,1(ξt−1 − (κ0 + (t− 1)κ1), 1/τe). (7.7)

It is easily seen that ξ = (ξ1, . . . , ξT )′ is multivariate Gaussian with covariance

matrix elements

Ωtt′ = Cov(ξt, ξt′) =
1

τe(1 − ρ2
ξ,1)

ρ
|t−t′|
ξ,1 , t, t′ ∈ 1, . . . , T , (7.8)

defining the joint/full covariance matrix

Ω =
σ2

e

(1 − ρ2
ξ,1)

⎡
⎢⎢⎢⎣

1 ρξ,1 . . . ρT−1
ξ,1

ρξ,1 1 . . . ρT−2
ξ,1

...
...

. . .
...

ρT−1
ξ,1 ρT−2

ξ,1 . . . 1

⎤
⎥⎥⎥⎦ .
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Its inverse, Ω−1, is tri-diagonal with elements

Ω−1 =
1

σ2
e

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −ρξ,1 0 0 . . . 0
−ρξ,1 1 + ρ2

ξ,1 −ρξ,1 0 . . . 0
0 −ρξ,1 1 + ρ2

ξ,1 −ρξ,1 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 −ρξ,1 1 + ρ2

ξ,1 −ρξ,1

0 . . . 0 0 −ρξ,1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

which is very useful for computationally efficient MCMC updating schemes.

7.1.2 Prior specifications for model parameters and variances

The remaining random quantities, not yet specified, are the parameter vector β, as well

as the unknown functions fj, j = l+ 1, . . . , p− 1 and fp(t) of the disease model and the

measurement model parameter α1. Due to the complexity of the model, the parameters

ρξ,1, ρ1, ρ2 as well as σ2
1, σ

2
2 and σ2

e and the two exposure model parameters κ0, κ1 are

taken to be fixed, obtained by the methods described in Section 6.3.

7.1.2.1 Disease model parameters

For each of the fixed effects, we assume a diffuse prior

p(βj) ∝ const,

whereas the unknown functions fj and fj(t), j = l+1, . . . , p are modeled using Bayesian

P-splines as well as first or second order random walks.

Bayesian P-splines The basic idea behind Bayesian P-splines is to approximate a

function fj or fj(t) by a linear combination of B-spline basis functions. A moderately

large number of equally spaced knots (usually between 20 and 40) is used to ensure

enough flexibility. To obtain sufficient smoothness of the fitted curves, it is assumed that

adjacent B-spline coefficients follow first- or second-order random walks with Gaussian

errors. For a more detailed description of Bayesian P-splines, we refer to Section 3.2.2

or Lang & Brezger (2004).

Random walks Instead of assuming a random walk prior for the parameters of a

P-spline, a random walk can also be directly applied on the function evaluations fj =

(fj1, . . . , fjm, . . . , fjT )′, with fjm = f(xj(m)). Such random walk models are frequently
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used in the analysis of time series but can also be applied in additive regression models

(see Fahrmeir & Lang (2001), for example).

In case of equidistant knots, random walks of first or second order are defined as

fm − fm−1 ∼ N(0, τ 2
f ), for m = 2, . . . ,M, (7.9)

and

fm − 2fm−1 + fm−2 ∼ N(0, τ 2
f ), for m = 3, . . . ,M,

respectively (see also Section 3.2.3). Diffuse priors

f1 ∝ const,

as well as

f1 ∝ const and f2 ∝ const

are chosen for initial values.

The joint distribution of f in the RW1 case (7.9) can be factorized as:

p(f) = p(fM |fM−1) · . . . · p(fm|fm−1) · . . . · p(f2|f1)p(f1)

∝ exp

(
− 1

2τ 2
f

M∑
m=2

(fm − fm−1)
2

)

∝ exp

(
− 1

2τ 2
f

f ′KRW1 f

)
. (7.10)

The penalty matrix KRW1 is of the form KRW1 = D′
1D1, where D1 is a first order

difference matrix such as

D1 =

⎛
⎜⎜⎜⎝

−1 1
−1 1

. . .
. . .

−1 1

⎞
⎟⎟⎟⎠ .

The same procedure applied to a second order random walk gives the joint density

p(f) = p(fM |fM−1, fM−2) · . . . · p(fm|fm−1, fm−2) · . . . · p(f3|f2, f1) p(f2) p(f1)

∝ exp

(
− 1

2τ 2
f

M∑
m=2

(fm − 2fm−1 + fm−2)
2

)

∝ exp

(
− 1

2τ 2
f

f ′KRW2 f

)
, (7.11)
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where KRW2 denotes the corresponding precision matrix which is of the form KRW2 =

D′
2D2, where D2 is a second order difference matrix as given in Section 3.2.2.

Since the observed values of some of the xj may sometimes be not equidistant, the

random walk priors can be modified to take the non-equal distances δm = x(m) − x(m−1)

between neighboring observations of x into account. Random walks of first order are

now specified by

fm = fm−1 + um (7.12)

with adjusted error variances um ∼ N(0, δm τ
2). Random walks of second order are

specified by

fm =

(
1 +

δm
δm−1

)
fm−1 − δm

δm−1
fm−2 + um

and um ∼ N(0, wmτ
2). There are several possibilities how to choose the weights wm

defining the error variances. The simplest way is to assume wm = δm as for a first order

random walk. Another choice is the use of

wm = δm

(
1 +

δm
δm−1

)
,

which additionally accounts for the distance δm−1 (see Fahrmeir & Lang (2001) for more

details on the derivation of the weights).

The joint distribution of the vector f is a multivariate but improper Gaussian with

precision matrix K. As an example, the precision matrix of a first-order random walk

(7.12) is given as

K =

⎛
⎜⎜⎜⎜⎜⎝

δ−1
2 −δ−1

2

−δ−1
2 δ−1

2 + δ−1
3 −δ−1

3
. . .

. . .
. . .

−δ−1
m1

δ−1
m1

+ δ−1
m −δ−1

m

−δ−1
m δ−1

m

⎞
⎟⎟⎟⎟⎟⎠
.

Time-varying coefficients As introduced before, in a TVCM, the interaction terms

are of the form

fj(t, xj) = fj(t)xj ,

where the interacting variables xj are metrical or categorical. Comparable to the P-

spline case in Section 3.2, we can use the priors already defined above for the nonlinear

functions fj , adapting them to the variable calendar time. Only the function evaluations
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fj have to be redefined by multiplying each element in row t of fj with xtj . Hence, the

overall matrix formulation for the time-varying terms is given by

fj(t, xj) = fj(t)xj = diag(x1j , . . . , xTj) fj.

7.1.2.2 Measurement model

The measurement device bias α1 is assumed to have a normal distribution

α1 ∼ N(μα1 , 1/τα1), (7.13)

where τα1 = 1/σ2
α1

.

7.1.3 MCMC Estimation

Let γ = (γl+1, . . . , γp−1)
′ denote the vector of all regression coefficients of the B-spline

bases, f = fp the vector of the random walk coefficients of function fp(t), β the vector of

all fixed effects, and τ 2
γ as well as τ 2

f the vectors of the corresponding variance parameters.

We get the posterior of the unknown parameters as

π(γ, τ 2
γ , f, τ

2
f , β, α1, ξ|data, other parameters) ∝ L(y, x1, x2, γ, τ

2
γ , f, τ

2
f , β, α1, ξ)

p(γ, τ 2
γ , f, τ

2
f , β, α1, ξ).

By assuming prior independence, as is usually done, the joint prior distribution of the

unknown parameters can be expressed as the product of the marginal priors:

p(γ, τ 2
γ , f, τ

2
f , β, α1, ξ) = p(γ|τ 2

γ ) p(τ 2
γ ) p(f |τ 2

f ) p(τ 2
f ) p(β) p(α1)p(ξ).

By suppressing conditioning parameters as well as data notationally, the posterior is

obtained in the following form

π(γ, τ 2
γ , f, τ

2
f , β, α1, ξ|.) ∝ L(y, x1, x2, γ, τ

2
γ , f, τ

2
f , β, α1, ξ)

p(γ|τ 2
γ ) p(τ 2

γ ) p(f |τ 2
f ) p(τ 2

f ) p(β) p(α1)p(ξ).

Bayesian inference is based on the analysis of the posterior distribution. The posterior

distribution described above has no ’nice’ closed form which could be used to draw sam-

ples for inference, but rather a complicated high dimensional density only known up to

the proportionality constant. Estimation of the unknown parameters is, therefore, done

by simulation of the posterior with Markov Chain Monte Carlo (MCMC) techniques.
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The key idea of MCMC is to construct a Markov chain that has the posterior distribution

of interest as its stationary distribution. Then samples are collected from that chain.

This way, a sample of dependent random numbers from the posterior is obtained. For

a detailed introduction and an overview of MCMC methods see, for example, Casella

& George (1992), Chib & Greenberg (1995), Gilks, Richardson & Spiegelhalter (1996),

Robert & Casella (2004) and the references therein.

7.1.3.1 Full Conditionals and updating of the full conditionals

MCMC simulation methods with proposal densities split the model parameters into sub-

sets and then sample from the conditional distributions given the remaining parameters

and data, which are called full conditionals. These full conditionals often have a much

simpler structure than the posterior distribution itself. In the following, the full condi-

tionals will be denoted, for example, by π(ν| . . .).
Consequently, we can now obtain the full conditionals and the corresponding updat-

ing schemes for each subset or block of parameters. We use the blocks γl+1, . . . , γp−1,

τ 2
γl+1

, . . . , τ 2
γp−1

, fp, τ
2
f , β, α1, ξ.

7.1.3.2 Disease model parameters and their hyperparameters

Due to the unified form for the priors of γ and f given in (3.10) as well as in (7.10) and

in (7.11), we can represent their full conditionals in a compact way as product of the

joint likelihood and the prior,

π(ν| . . .) ∝ L(y|η) p(ν|τ 2
ν ) (7.14)

∝ L(y|η) exp

(
− 1

2τ 2
ν

ν ′Kνν

)
,

where ν ∈ γ, f , the penalty matrix Kν ∈ Kγ , Kf and the hyperparameter τ 2
ν ∈ τ 2

γ , τ
2
f ,

respectively.

Sampling For updating the parts νj of the parameter vector ν corresponding to the

time-independent functions fj , a Metropolis Hastings (MH)-algorithm based on itera-

tively weighted least squares (IWLS) proposals is used. These IWLS proposals were

originally proposed by Gamerman (1997) in the context of generalized linear mixed

models and adopted to a more general setting by Brezger & Lang (2006).

Suppose now that we want to update the regression coefficients νj of the function fj with

current state νc
j of the chain. Then, following the concept of IWLS-MH, a new value,
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denoted as νn
j , is proposed by drawing random numbers from a multivariate Gaussian

proposal distribution

νn
j ∼ N(mj , P

−1
j ).

The mean mj is obtained by one Fisher scoring step to maximize the full conditional

π(ν| . . .), whereas the precision matrix Pj is the inverse expected Fisher information,

evaluated at νc
j . Hence, the mean and the precision matrix are given as

mj = P−1
j X ′

jW (νc
j )(ỹ(ν

c
j ) − η̃), (7.15)

Pj = X ′
jW (νc

j )Xj +
1

τ 2
j

Kj , (7.16)

where Xj are the corresponding design matrices and η̃ corresponds to the part of the

predictor associated with all remaining effects in the model. Kj is a penalty matrix as

defined in (3.10). Furthermore, W (νc
j ) = diag(w1, . . . , wT ) is the usual weight matrix

for IWLS (see for example Fahrmeir & Tutz (2001)), calculated from νc
j ; the working

observations ỹ = (ỹ1(ν
c
j ), . . . , ỹT (νc

j ))
′ are defined as

ỹt(ν
c
j ) = ηt + (yt − μt)g

′(μt).

The proposed vector νn
j is accepted as the new state of the chain with probability

α(νc
j , ν

n
j ) = min

{
1,
π(νn

j |.) q(νn
j , ν

c
j )

π(νc
j |.) q(νc

j , ν
n
j )

}

where π(νc
j |.) and π(νn

j |.) is the full conditional evaluated at either νc
j or νn

j , and q(νn
j , ν

c
j )

and q(νc
j , ν

n
j ) are the corresponding proposal densities, that means multivariate Gaussian

densities corresponding to (7.15) and (7.16).

In principle, the IWLS-MH algorithm could also be used for updating the parameter

vector νp, which corresponds to the time-dependent function fp. However, especially

in the context of latent variables, this would require considerably more computational

effort. Therefore, we adopt a computationally faster MH-algorithm based on conditional

prior proposals, although mixing properties of these proposals are inferior compared

to the IWLS-MH algorithm (Brezger & Lang (2006)). The conditional prior proposal

algorithm was first suggested by Knorr-Held (1999) for dynamic generalized linear models

and extended for generalized additive mixed models in Fahrmeir & Lang (2001).

Suppose that f[m:n] denote sub-vectors (fm, fm+1, . . . , fn)′ out of the function evaluations

fp = (f1, f2, . . . , ft, . . . , fT ). Full conditionals for these sub-vectors are given by the
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product of all likelihood contributions of the posterior that depend on f[m:n], and the

conditional distribution of f[m:n]:

π(fmn| . . .) ∝ L(fmn) p(f[m:n]|fs,s/∈[m,n], τ
2).

In order to obtain the conditional distribution of f[m:n], let K[m:n] be the corresponding

sub-matrix out of the first- or second-order precision matrices KRW1 and KRW2, given by

the rows and columns m to n. Further, K[1:m−1] as well as K[n+1:T ] denote the matrices

to the left and right of K[m:n] such that

K =

⎛
⎝ K ′

[1:m−1]

K[1:m−1] K[m:n] K[n+1:T ]

K ′
[n+1:T ]

⎞
⎠ .

Then the conditional distribution of f[m:n] given f[1:m−1] and f[n+1:T ] is defined by

f[m:n]|f[1:m−1], f[n+1:T ] ∼ N(μ[m:n],Σ[m:n]) (7.17)

with

μ[m:n] =

⎧⎨
⎩

−K−1
[m:n]K[n+1:T ] f[n+1:T ] m = 1

−K−1
[m:n](K[1:m−1] f[1:m−1] +K[n+1:T ] f[n+1:T ]) m > 1, n < T

−K−1
[m:n]K[1:m−1] f[1:m−1] n = T

and Σ[m:n] = K−1
mn. All elements in K outside the z off-diagonals are zero, where z is the

order of the corresponding difference matrix. Therefore, only the fm−z , . . . , fm−1 and

fn+1, . . . , fn+z enter in μ[m:n] (Knorr-Held (1999)).

One way to update fp is to use a so-called single move conditional prior proposal, that

means ft is updated one at a time. Updates are obtained by generating a new proposed

fn
t from the conditional distribution N(μtt,Σtt). The Hastings acceptance probability is

then given by

min

{
1,
L(yt|fn

t

L(yt|f c
t )

}
, (7.18)

which is simply the likelihood ratio for observation yt.

Since the single move scheme might converge very slowly, it is recommended to alterna-

tively use so-called block moves based on updating one block f[m:n] at a time. This way,

a conditional prior proposal can be implemented similarly as for the single move scheme.

Block move updates for f[m:n] are obtained by generating fn
[m:n] from the conditional prior

proposal N(μ[m:n],Σ[m:n]). The acceptance probability is then given by

min

{
1,

∏n
t=m L(yt|fn

t )∏n
t=m L(yt|f c

t )

}
.
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The full conditional of β is given by the product of the likelihood of the disease model

and the prior

π(β| . . .) ∝ L(y|η) p(β) (7.19)

∝ L(y|η),

where the last factor can be omitted, as we have chosen p(β) ∝ const for the fixed effects.

Hence, the full conditional of β is proportional to the likelihood of the disease model.

Sampling A new value βn
j is proposed by drawing from the Gaussian proposal density

q(βc
j , β

n
j ) with mean and precision matrix

mβ = P−1
β U ′W (βc)(ỹ(βc) − η̃),

Pβ = U ′W (βc)U

where U is the design matrix of fixed effects. The working observations ỹ and η̃ are

defined as for the sampling of ν.

In accordance to the unknown functions fj , we can also obtain a general form for the

full conditional for all τ 2
ν = τ 2

γ , τ
2
f . The full conditional is then given by

π(τ 2
ν | . . .) ∝ p(ν|τ 2

ν ) p(τ 2
ν ) (7.20)

∝ IG

(
a+

1

2
rank(Kν),

1

2
ν ′Kνν + b

)
.

To update the τ 2
ν , a new value can be directly sampled from the inverse gamma densities,

τ 2 n
ν ∼ IG (a′, b′), (7.21)

with a′ = a + 1
2
rank(Kν) and b′ = b+ 1

2
ν ′Kνν. The sampled value τ 2 n

ν is then accepted

as the next stage in the chain for τ 2
ν .

7.1.3.3 Measurement error model parameter

In the measurement error model, the underlying distribution is a multivariate Normal.

We further assume a normal prior for α1 (see assumption (7.13)). The full conditional

for α1 is given by the product of the likelihood of the measurement error model and the
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prior for α1, that means

π(α1| . . .) ∝ L(X1|.) p(α1)

∝ exp

[
− 1

2σ2
1

T∑
t=1

(Xt1 − α1 − ξt)
2

]
exp

[
− 1

2σ2
α1

(α1 − μα1)
2

]

∝ exp

[
−1

2

{
τ1

∑
t

(Xt1 − α1 − ξt)
2 + τα1(α1 − μα1)

2

}]

∝ exp

[
−1

2

{
α1(T τ1 + τα1)α1 − 2α1(τ1

∑
t

(Xt1 − ξt) + τα1μα1)

}]

= N (mα1 , τα1 + T τ1) , (7.22)

with

mα1 =
μα1τα1 + τ1

∑
T (Xt1 − ξt)

τα1 + T τ1

where τ1 is the measurement error precision of the corresponding device.

Hence, the full conditional of α1 is given by a Normal distribution. Therefore, an update

of α1 can be obtained by using an additional Gibbs step.

7.1.3.4 True values ξ

Let X denote the combined vector of all measured observations, that means

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X11
...

XT1

X12
...

XT2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Furthermore, let α be a vector of dimension 2T , with α = (α1, . . . , α1, 0, . . . , 0)′. The full

conditional for ξ is given by the product of the disease model likelihood, the measurement

error model likelihood and the prior for ξ:

π(ξ| . . .) ∝ L(y|η)L(X|.) p(ξ)
∝ exp (y log(μ) − μ) exp

(
−1

2
(X − α− (Zξ))′Σ−1(X − α− (Zξ))

)

exp

(
−1

2
(ξ − μξ)

′Ω−1(ξ − μξ)

)

∝ exp (y log(μ) − μ) exp

(
−1

2

[
(X − α− (Zξ))′Σ−1(X − α− (Zξ))

+ (ξ − μξ)
′Ω−1(ξ − μξ)

])
, (7.23)



7.1. A Bayesian measurement error correction model 107

where Z =

[
IT
IT

]
, i. e. a matrix of dimension 2T × T , containing two identity matrices

of dimension T × T . One can see that it is impossible to find an appropriate known

distribution which is proportional to this full conditional. This, however, means that an

additional Metropolis-Hastings (MH) step for the update of ξ has to be implemented.

Sampling It could be considered to update all the ξt, t = 1, . . . , T , simultaneously.

However, since the number of ξt can be large, it is hard to find proposal densities which

approximate the full conditional of ξ well. Consequently, this approach suffers from slow

mixing due to low acceptance probabilities. Therefore, we use again a conditional prior

proposal for updating the latent true exposure ξ.

In the following, we specify the proposal for ξ to be

p(ξ|.) ∝ exp

(
−1

2

[
(X − α− (Zξ))′Σ−1(X − α− (Zξ))

]− 1

2

[
(ξ − μξ)

′Ω−1(ξ − μξ)
])

exp

(
−1

2
[(X − α− (Zξ))′Σ−1(X − α− (Zξ)) + (ξ − μξ)

′Ω−1(ξ − μξ)]

)

∝ exp

(
−1

2
[ξ′

(
Z ′ Σ−1 Z + Ω−1

)
ξ − 2ξ′(Z ′ Σ−1 (X − α) + Ω−1 μξ)],

)
,

which is a multivariate normal distribution N(m,Σ), where

m =
(
Z ′ Σ−1 Z + Ω−1

)−1 [
Z ′ Σ−1 (X − α) + Ω−1 μξ

]
.

For the assumption of autocorrelated true values, but independent measurement errors,

Σ is given by

Σ =
(
Z ′ Σ−1 Z + Ω−1

)−1

=

⎡
⎢⎢⎢⎢⎢⎣

τ1 + τ2 + τe −ρξ,1 τe
−ρξ,1 τe τ1 + τ2 + τe(1 + ρ2

ξ,1) −ρξ,1 τe
. . .

. . .
. . .

−ρξ,1 τe τ1 + τ2 + τe(1 + ρ2
ξ,1) −ρξ,1 τe

−ρξ,1 τe τ1 + τ2 + τe

⎤
⎥⎥⎥⎥⎥⎦

−1

.

If we also assume autocorrelated measurement errors, the only difference in the proposal

for ξ is given by a slightly modified covariance matrix such that

Σ = (Z ′ Σ−1 Z + Ω−1)
−1

=⎡
⎣ τ1 + τ2 + τe −ρ1 τ1 − ρ2 τ2 − ρξ,1 τe

−ρ1 τ1 − ρ2 τ2 − ρξ,1 τe τ1(1 + ρ2
1) + τ2(1 + ρ2

2) + τe(1 + ρ2
ξ,1) −ρ1 τ1 − ρ2 τ2 − ρξ,1 τe

. . . . . . . . .

⎤
⎦
−1

.
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The conditional distribution of ξ[m:n] given by ξ[1:m−1] and ξ[n+1:T ] is

ξ[m:n]|ξ[1:m−1], ξ[n+1:T ] ∼ N(μ[m:n],Σ[m:n]). (7.24)

In contrast to the case of random walks, which are assumed to have zero mean, the mean

has now a slightly different form

μ[m:n] =

⎧⎪⎪⎨
⎪⎪⎩

m[m:n] −K−1
[m:n]K[n+1:T ] (ξ[n+1:T ] −m[n+1:T ]) m = 1

m[m:n] −K−1
[m:n]K[1:m−1] (ξ[1:m−1] −m[1:m−1]) n = T

m[m:n] −K−1
[m:n]{K[1:m−1] (ξ[1:m−1] −m[1:m−1])

+K[n+1:T ] (ξ[1:m−1] −m[1:m−1])} else

and Σ[m:n] = K−1
[m:n].

Comparable to the conditional prior proposal for nonlinear functions, single move or

block move updates can be chosen.

7.1.4 Sampling Algorithm

The steps of the sampling algorithm can be summarized as follows:

1. Initialize γ
(0)
l+1, . . . , γ

(0)
p−1, τ

2 (0)
γl+1 , . . . , τ

2 (0)
γp−1 , f

(0)
p , τ

2 (0)
f , β(0), α

(0)
1 and ξ(0), and set the num-

ber of iterations c = 0

2. Set c = c+ 1.

3. For j = l + 1, . . . , p− 1 update γj with a IWLS MH-step in the following way:

a) Compute the likelihood L(y, . . . , γc
j , . . . , ξ

c).

b) Draw a proposed new value γn
j from the Gaussian proposal density q(γn

j , γ
c
j ),

with mean mj and precision matrix Pj as given in (7.15) and (7.16), respec-

tively.

c) Compute the likelihood L(y, . . . , γn
j , . . . , ξ

c) as well as the full conditionals

π(γc
j |.), π(γn

j |.) and proposal densities q(γc
j , γ

n
j ) and q(γn

j , γ
c
j).

d) Accept γn
j as the new state of the chain γc

j with the corresponding probability,

otherwise keep γc
j as the current state.

4. Update fp with a conditional prior proposal MH-step in the following way:

a) Choose the block size.

For every block m : n:
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b) Compute the likelihood L(y, . . . , f c
[m:n], . . . , ξ

c).

c) Draw a proposed new value fn
[m:n] from the conditional prior proposal (7.17).

d) Compute the likelihood L(y, . . . , fn
[m:n], . . . , ξ

c).

e) Accept fn
mn as the new state of the chain f c

[m:n] with the corresponding propa-

bility, otherwise keep f c
[m:n] as the current state.

5. Update the fixed parameters by similar steps as for updating the γj.

6. For j = l + 1, . . . , p update τ 2
j by drawing from inverse gamma full conditionals

with parameters given in (7.21).

7. Update ξ with a conditional prior proposal MH-step in the following way:

a) Choose the block size.

For every block m : n:

b) Compute the likelihood L(y, . . . , ξc
[m:n], . . .).

c) Draw a proposed new value ξn
[m:n] from the conditional prior proposal (7.24).

d) Compute the likelihood L(y, . . . , ξn
[m:n], . . .).

e) Accept ξn
[m:n] as the new state of the chain ξc

[m:n] with propability

min

{
1,

∏n
t=m L(yt|ξn

t )∏n
t=m L(yt|ξc

t )

}
,

otherwise keep ξc
[m:n] as the current state.

8. Update α1 by drawing from the normal full conditionals given in (7.22).

9. Go to 2. until c = C, that means the total number of iterations.

We conclude this section with some remarks:

� Starting values

For the MCMC algorithm, we have to specify starting values for all parameters.

For the terms in the disease model predictor the starting values are the posterior

mode estimates (Brezger & Lang (2006)). As starting values for the sampling of

the ξt, the corresponding mean of the two observed series Xt1 and Xt2 is used,

whereas for α1 we take the estimates obtained by an ARMA model as described

in Section 6.3.
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� Optimal block size

The choice of the block sizes is an important point and we follow here Fahrmeir

& Lang (2001) who suggest to specify a minimum and maximum block size. The

block size is then chosen randomly in every iteration of the MCMC simulations.

In our experience, the best results in terms of mixing and autocorrelations in the

sampled parameters are obtained with a block size between 1 and 100.

� The Bayesian measurement error correction method has been implemented in

BayesX (Brezger, Kneib & Lang (2005)). Further details about estimating such

models can be found in Appendix A.

7.2 A measurement error calibration model

One of the most popular methods for dealing with measurement error in covariates is

regression calibration. Armstrong (1985) originally introduced regression calibration as

a method in linear models, whereas Gleser (1990) proposed regression calibration meth-

ods in the context of logistic regression. Another formulation of the same method was

suggested by Carroll & Stefanski (1990).

The basic idea of regression calibration is to predict the unobservable variable ξ by means

of regression, and then to include this predicted variable in the main regression model.

After this approximation, one performs a standard analysis. As such, it is applicable to

any regression modelling setting.

Again, we specify a classical measurement model for the observed series Xti (see Section

7.1.1):

Xti = ξt + αi + εti, for t = 1, . . . , T, and i = 1, 2. (7.25)

We suppose that α2 = 0 for identification.

It will be further assumed that the latent variable ξ is given by

ξt = κ0 + κ1 t+ ρξ,1[ξt−1 − (κ0 + (t− 1)κ1)] + et, t = 1, . . . , T, (7.26)

with the specifications already defined in Section 7.1.1.

The complete measurement data can now be written in the vector

X = (X11, X21, . . . , XT1, X12, X22, . . . , XT2)
′. Combining models (7.25) and (7.26), we

get that

X ∼ N2T (Uθ,Σ), (7.27)
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where

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 2 1
...

...
...

1 T 1
1 1 0
...

...
...

1 T 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, θ =

⎛
⎝ κ0

κ1

α1

⎞
⎠ , (7.28)

and the variance-covariance matrix is given by

Σ = Σ(ϕ) = Σε + Ω (7.29)

=

([
σ2

1 0
0 σ2

2

]
⊗ IT

)
+

(
σ2

e

1 − ρ2

[
1 1
1 1

]
⊗ ΦT

)

with

ΦT =

⎡
⎢⎢⎢⎣

1 ρ . . . ρT−1

ρ 1 . . . ρT−2

...
...

. . .
...

ρT−1 ρT−2 . . . 1

⎤
⎥⎥⎥⎦ , and ϕ = (σ2

1 , σ
2
2, ρ, σ

2
e)

′. (7.30)

Comparing this model formulation to that of Section 7.1, we make the same distributional

assumptions that were previously described for the Bayesian correction model; however,

we express them in a different way.

Note that for the case of autocorrelated measurement errors, an appropriate modification

is given by the assumption of σ2
1 V1 and σ2

2 V2, where Vj has an equivalent structure to

ΦT . Hence, Σε is replaced by

Σε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
1 σ2
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1 ρ
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...
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...
... σ2

2 ρ2 σ2
2 . . . σ2

2 ρ
T−2
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...
...

...
...

. . .
...

0 . . . . . . 0 σ2
2 ρ

T−1
2 σ2

2 ρ
T−2
2 . . . σ2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the following, we assume that ξ is unrelated to other covariates - a strong restriction

indeed. In general, the best linear approximation to ξ given the average of the observed
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surrogates X1 and X2, X, is (see, for example, Carroll et al. (2006))

E(ξ|X) ≈ μξ + Σξ ξ [Σξ ξ + Σεε/2]−1 (X − μX), (7.31)

where Σξ ξ denotes the T × T covariance matrix of ξ, Σεε is a T × T measurement error

covariance matrix, and μξ and μX are the means of the variables ξ and X, respectively.

An estimated regression calibration function is then obtained by replacing the means

and covariance matrices in (7.31) by the corresponding methods of moments calibration

parameter estimators as describe, for example, in Carroll et al. (2006).

To be applicable in our case, we modify this general form, yielding

E(ξ|X) ≈ 1

2
Z ′ U θ + Ω11 Z

′ Σ−1Z

[
1

2
Z ′ (X − U θ)

]
, (7.32)

where X is the vector of all observed measurements, Z =

[
IT
IT

]
, i. e. a matrix of

dimension 2T × T , and Ω11 denotes a T × T sub-matrix of Ω. U and θ are defined in

(7.28).

Estimates for the autoregressive parameters and variances involved in Σ and Ω11 are

obtained by estimating the corresponding ARMA models for X1 and X2, as described in

the last chapter. Using these estimators, parameter estimates for the parameter vector

θ, which consists of the trend parameters κ0 and κ1 as well as the device bias α1, are

obtained by maximizing the log-likelihood function

l(θ|X) = −(2T ) ln2π − 1

2
ln|Σ̂| − 1

2
(X − Uθ)′Σ̂−1(X − Uθ),

which results in

θ̂ =
(
U ′ Σ̂−1 U

)−1

U ′Σ̂−1X.

The resulting estimated series E(ξ|X) can then be used in the main model to evaluate the

time-varying coefficients. Note, however, that this approach does not take into account

the uncertainty due to estimation of the latent variable and, thus, confidence intervals

for the exposure effects might not correctly reflect the true uncertainty in the data. To

obtain adjusted standard errors, one would need asymptotic formulae for the standard

errors or a bootstrap procedure; however, both methods are crucial in this case and will

be topics of future research.



Chapter 8

Measurement error analysis of the
Erfurt data

In this chapter, we again use the Erfurt data introduced in Section 5.1. In particular,

we look at PM2.5 data, for which we have measurements from two monitoring systems.

We first describe the two measurement devices and present some descriptive statistics of

the observed values. In the following, the estimated parameters and measurement error

variances obtained by the simple estimation procedure as well as by using ARMA models

are shown. Finally, we present the results of the application of a ’naive’ correction. We

further show the application results of the two proposed measurement error adjustment

methods and compare the different approaches.

8.1 Description of the data sources

The mass of fine particles (PM2.5) was measured using two different monitoring systems.

Particle size distributions for fine particles were measured on a daily basis by an aerosol

spectrometer (AS). As described elsewhere (Brand, Ruoß & Gebhart (1992),Wichmann

et al. (2000)), it consists of two measurement devices, the differential mobility particle

sizer (DMPS) and the optical laser aerosol spectrometer (LAS-X). The two instruments

cover different size ranges.

Particles in the size range from 0.01 up to 0.5 �m are measured using the DMPS. This

device consists of a differential mobility analyser (DMA) combined with a condensation

particle counter (CPC). The DMA allows for a segregation of particle fractions of uniform

electrical mobility from a polydisperse aerosol. The CPC counts the number of particles

selected by the DMA in 13 discrete size ranges. Particles in the size range from 0.1

up to 2.5 �m are measured by LAS-X, which classifies particles according to their light

113
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Table 8.1: Summary statistics of daily mortality, air pollution concentrations and key
meteorology for the period March 10, 1996 to March 31, 2000.

Variable Mean (SD) Min 25% Median 75 % Max

Daily counts of death 4.89 (2.2) 0 3 5 6 13
PM2.5AS (μg/m3) 21.5 (17.2) 1.6 10.4 15.9 27.0 143.6
PM2.5HI (μg/m3) 23.3 (17.5) 2.6 11.8 18.2 29.0 197.0
Temperature () 8.4 (7.4) -16.9 2.9 8.5 14.3 26.5
Relative humidity (%) 80.5 (11.1) 34.3 73.8 81.7 88.7 99.3

scattering properties into 45 size-dependent channels.

Particle number distributions are connected to particle mass distributions by assuming

spherical particles with an average density of 1.5. The integral of the particle mass

distributions between 10 nm to 2.5 �m is a good measure for PM2.5 (Wichmann et al.

(2000)) and is called PM2.5AS.

The second measurement device was a PM2.5 Harvard Impactor (HI) (Marple et al.

(1987)). The measurement principle of the HI is based on gravimetric analysis. The

sampler consists of an inlet, an impaction plate, and filter mounted in a plastic holder.

The concentration of particles is determined from the calculated mass change on a filter

by weighing under controlled temperature and relative humidity conditions, taking the

total volume of air sampled (at local temperature and pressure) into account. Before

weighing, the filters are equilibrated in a temperature and relative humidity controlled

weighing room for at least 24 hours.

In this example, regular measurements for both devices are available for the period of

March 10, 1996 to March 31, 2000. Time series as well autocorrelation functions plots

of PM2.5ASt and PM2.5HIt for the this time period are given in Figure 8.1.

Summary statistics of both PM2.5 time series as well as of daily counts of death and key

meteorology for the respective time period are given in Table 8.1. It can be seen that

the mean concentration obtained by the HI is slightly higher compared to those of the

AS. Moreover, the range of the HI measurements is wider.
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Figure 8.1: Time series of the two PM2.5 measurement devices (top) and the correspond-
ing autocorrelation functions (bottom).
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8.2 Application of the measurement error models

We assume that all measurements PM2.5ASt and PM2.5HIt are perturbed version of ξt,

which represents the true PM2.5 value at time point t.

The disease model used in the following applications is given by

yt ∼ Poisson(μt)

log(μt) = log(pop) + confounder + fPM2.5(t)PM2.5, (8.1)

where fPM2.5(t) is modeled using a second order random walk. Correspondingly to Chap-

ter 5, we consider same-day PM2.5 mass concentrations.

The confounder model used in this application is slightly different to that for the period

1995 to 2002 (see Section 5.1). It is given by

log(μt) = log(pop) + f(t) + pi9899l2 + pi9900l2 + so (8.2)

+ f(templ0) + templ1 + f(rhl2).

Again, cubic P-splines are estimated for calendar time (t), and for the meteorological

confounders temperature with lag 0 days (templ0) and relative humidity, lag 2 days (rhl2).

Adjustment for influenza is done by including the doctor’s practice indices of the winters

1998/1999 and 1999/2000.

In the following, we present the results of estimating the measurement error model

parameters and error variances. First, the simple estimation procedure based on the

mean of the two measured series is used. Thereafter, the results of the application of the

ARMA models are shown. To estimate the different ARMA models, we used the ARIMA

function of the ts package in R, as suggested by Staudenmayer & Buonaccorsi (2005).

The parameters were obtained using maximum likelihood estimation. More specifically,

a Kalman filter was used to compute the Gaussian likelihood and its partial derivatives,

and ML estimates were obtained using quasi-Newton methods.

Finally, we present the results of the application of the considered correcting methods in

the context of Bayesian time-varying coefficient models. For all models, the first 50,000

iterations were discarded as burn-in. Further 200,000 iterations were then completed for

the chain, which were thinned by 200 to reduce autocorrelation (see Fahrmeir & Lang

(2001)).
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Table 8.2: Estimated parameters using the simple estimation procedure.

Parameter Estimate

E(xm) 21.84
V (xm) 240.56
V (x1) 258.83
V (x2) 287.82
σ2

ξ 207.87
σ2

ε1
50.95

σ2
ε2 79.95

8.2.1 Estimating the model parameters and measurement error
variances

Applying the method of moments using the mean, Xm = (PM2.5 AS + PM2.5 HI)/2, of

the two observed variables, and

E(Xm) = μ

Var(Xm) = σ2
ξ +

1

4
(σ2

ε1
+ σ2

ε2
)

Var(X1) = σ2
ξ + σ2

ε1

Var(X2) = σ2
ξ + σ2

ε2
,

as described in Section 6.3.1, we get parameter estimates as given in Table 8.2. However,

an inspection of the correlation between consecutive observations of the averaged time

series Xm reveals that there is a considerable amount of autocorrelation in the data

(ρ ≈ 0.74) which should be accounted for.

Next, we present results of the application of ARMA models of order (1,1) to both

measured PM2.5 series (see also Section 6.3.2.1). The models are given by

(1 − ρARMAi
B)Xti = (1 + θ1iB)γti,

where X1 corresponds to the PM2.5 AS series and X2 to the PM2.5 HI series. The results

of these analyses are shown in Table 8.3. Both models show a considerable amount of

autocorrelation, ranging between 0.69 and 0.75. Using the obtained parameters ρ̂ARMAi
,

θ̂1i, and σ̂2
γi

, we can solve the equations

σ̂2
γi
θ̂1i = −σ2

εi
ρ̂ARMAi

to get an estimate for the measurement error variances σ2
εi
, and

σ2
γi

(1 + θ2
1i) = σ2

ei
+ σ2

εi
(1 + ρ2

ARMA,i)



118 8. Measurement error analysis of the Erfurt data

for obtaining an estimated variance σ̂2
ei

of the autoregressive process for ξ, shown in

Table 8.3. A comparison of the estimated measurement error variances obtained by

the ARMA(1,1) models to those of the simple approach shows that not accounting

for autocorrelation yields much larger variances. Estimated intercept and linear trend

coefficients of the true exposure process are nearly equal for the three models. In Figure

8.2, the autocorrelation functions of standardized residuals obtained by the ARMA(1,1)

models are shown for PM2.5AS and PM2.5HI. The ACF functions show that there is

nearly no autocorrelation left. The small peaks at lags 6 and 11 for both PM2.5AS and

PM2.5HI may be due to a day-of-week pattern.

As a sensitivity analysis, we further explore the difference of the two observed PM2.5

series

PM2.5 AS − PM2.5 HI.

By using this difference, we are able to investigate whether the observed autocorrela-

tion is only caused by the latent true values. Computing the ACF for the difference

series, however, reveals that there is still correlation between consecutive observations,

and investigating the pattern of autocorrelation inidcates again an autoregressive struc-

ture with a value of 0.38 for the first-order autocorrelation. This means that there is

autocorrelation within the measurement errors, and ARMA(2,1) representations might

be more appropriate.

Such ARMA models for Xi, i = 1, 2 are given as

(1 − ρ1iB − ρ2iB
2)Xti = (1 + θ1iB) γti,

where γti is white noise. Further details can be found in Section 6.3.2.2.

The results of applying ARMA(2,1) models are given in Table 8.4. As can be shown,

the maximum likelihood estimators ρ1i and ρ2i satisfy the conditions ρ2
1i + 4ρ2i > 0,

ρ1i +ρ2i < 1 and ρ2i−ρ1i < 1. These conditions are necessary for an ARMA(2,1) process

to be stationary and the roots of 1−ρ1i z−ρ2i z
2 = 0 to be real. This, however, means that

the corresponding solutions φi and πi are real and maximum likelihood estimates. We

can further show that the condition of uniqueness −(θ2
1i−ρ1iθ1i−ρ2i) �= 0 is satisfied. In

contrast to the ARMA(1,1) models, the autoregressive parameters have a greater range,

though, they show again a considerable amount of autocorrelation in the series.
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Table 8.3: Estimated parameters using an ARMA(1,1) model.

PM2.5 AS PM2.5 HI
ρARMA 0.69 0.75
θ1 0.11 0.12
σ2

γ 123.40 153.6
σ2

ε 19.67 24.57
σ2

e 95.86 117.42
κ0 46.96 46.26
κ1 -0.01 -0.01
AIC 10716.69 11270.14
BIC 10678.39 11296.65
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Figure 8.2: Autocorrelation functions (ACF) of the standardized residuals obtained by
ARMA(1,1) models.
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Using the obtained parameters ρ̂1i and ρ̂2i, we can solve for the autoregressive parameters

of the latent ξ process as well as the measurement error processes

ρ1i = φi + πi and ρ2i = −φi πi,

which implies

φ2
i − ρ1i φi − ρ2i = 0 and

π2
i − ρ1i πi − ρ2i = 0.

Using the estimates φ̂i, π̂i, θ1i and σ̂2
γi

, one can then solve

σ2
ei

=
−σ2

γi
θ1i − φi σ

2
εi

πi
,

for σ2
ei
. Substitution of the obtained equation into equation

σ2
γi

(1 + θ2
1i) = σ2

ei
(1 + π2

i ) + σ2
εi

(1 + φ2
i )

finally leads to estimates σ̂2
εi
, as shown in Table 8.4. The estimated measurement error

variances are now larger, whereas the estimated variances of the true values are smaller.

Estimated intercept and linear trend coefficients of the true exposure process are com-

parable for all models. The autocorrelation functions of standardized residuals obtained

by the ARMA(2,1) models are shown in Figure 8.3. Comparable to the ARMA(1,1)

models, the ACF plots show some slight autocorrelation for lags 6 and 11. Overall,

however, adjusting for autocorrelation by the ARMA(2,1) models seems to work very

well. This is corroborated by the inspection of the model selection criteria AIC and

BIC which reveals the the AIC and BIC values for the ARMA(2,1) models are smaller

compared to those obtained for the ARMA(1,1) models. Further, t-tests are performed

which show the statistical significance of the additional autoregressive parameters of the

ARMA(2,1) models (with p-values of 0.05 and 0.001 for the PM2.5 AS and the HI series,

respectively).

8.2.2 Results of the correction methods - time-varying effect

of PM2.5

The top left panel of Figure 8.4 shows the time-varying coefficients of the imputed

PM2.5 series as described in Chapter 5. They correspond to ’naive’ estimates that ignore

measurement error. Further, the time-varying coefficients obtained by using the mean

of the two observed PM2.5 series are shown (top right panel).
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Table 8.4: Estimated parameters using an ARMA(2,1) model.

PM2.5 AS PM2.5HI
ρ1 0.87 1.49
ρ2 -0.14 -0.51
θ1 0.06 0.87
φ 0.67 0.95
π 0.21 0.54
σ2

γ 123.30 151.1
σ2

ε 46.20 132.77
σ2

e 52.11 50.15
κ0 46.87 48.37
κ1 -0.01 -0.01
AIC 10641.27 11249.25
BIC 10678.39 11281.07
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Figure 8.3: Autocorrelation functions (ACF) of the standardized residuals obtained by
ARMA(2,1) models.
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We see a slightly decreasing time-varying effect of PM2.5 for the imputed series, whereas

for the mean series a clear decreasing time-varying effect is obtained. Further, the

estimated coefficients have a larger range and point to some significant effects at the

beginning and the end of the specific period.

The results of the application of the two correction methods are shown in Figure 8.4,

middle and bottom rows. Note that, as only one autoregressive parameter ρξ,1 or φ1 in

the measurement error correction methods is needed, we always use the mean of the two

estimated autoregressive parameters obtained for each observed series.

Figure 8.4, middle row, provides the results assuming an underlying ARMA(1,1) model

for the observed series, that means the true values are supposed to follow an AR(1)

process, whereas the measurement errors are white noise. Both methods provide a de-

creasing effect until the year 2000. Compared to the time-varying coefficients obtained

by the naive analysis and using the mean, we now observe stronger effects, where those

obtained based on the regression calibration approach even point to a significant asso-

ciation. The Bayesian correction method shows wider credible intervals. This is mainly

because this approach takes into account uncertainty due to estimating the true expo-

sure, whereas the credible intervals obtained for the estimates based on the regression

calibration function do not and, hence, can only communicate a rough impression of

significance for the coefficients. Furthermore, the time-varying curve of the Bayesian

correction approach shows a wigglier shape.

Figure 8.4, bottom row, shows the results of the measurement error adjustment methods

assuming underlying ARMA(2,1) models for the observed series. In this case, both the

true values and the measurement error are assumed to follow AR(1) processes. Compared

to the results of the ARMA(1,1) case, the same functional forms of the coefficients can

be observed. Moreover, an even more pronounced effect can be seen for both correction

methods. The estimated time-varying coefficients obtained by the Bayesian correction

approach again show wider credible intervals compared to the regression calibration

method.

8.2.3 Conclusion

Overall, we conclude from the results that not accounting for autocorrelation within the

time series, leads to biased results. Based on the sensitivity analysis of the difference, we

prefer the results obtained by assuming an underlying ARMA(2,1) model. Furthermore,

the Bayesian correction model is a more conservative method as it takes key sources of
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uncertainty in the time-varying estimate into account. Results of the correction methods

point to an association between PM2.5 and mortality for the period 1996 to 1998, which

was also found in a previous analyses of the Erfurt data (Wichmann et al. (2000)). The

results further indicate that the estimates obtained without measurement correction are

biased towards the null, an observation already established for other applications in the

context of air pollution time series data (see Dominici et al. (2000)).
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Figure 8.4: Time-varying coefficients of PM2.5 series. Top row: ’Naive’ time-varying
coefficients of the imputed PM2.5 series (left panel) and of the mean of the two observed
PM2.5 series (right panel). Middle row: Time-varying coefficients of PM2.5 obtained
by the (Bayesian) regression calibration model (left) and by the Bayesian measurement
error model (right). Underlying assumption of ARMA(1,1) models. Bottom row: Time-
varying coefficients of PM2.5 obtained by the (Bayesian) regression calibration model
(left) and by the Bayesian measurement error model (right). Underlying assumption of
ARMA(2,1) models.



Chapter 9

Summary and Outlook

In this thesis, we first presented and developed five approaches for estimating time-

varying coefficients. All methods allow for a smoothly time-varying effect. The five ap-

proaches were: Time-varying coefficient models using regression splines; Bayesian time-

varying coefficient models with P-splines; Time-varying coefficient models with penalized

linear splines based on a generalized linear mixed model framework; Time-varying coef-

ficient models with P-splines based on empirical Bayes inference, and Adaptive general-

ized TVC models. In addition to the theoretical development of the models, a simulation

study was conducted to assess the performance of the approaches. These comparisons

revealed that the fully Bayesian time-varying coefficient models using P-splines and time-

varying coefficient models with P-splines based on empirical Bayes inference performed

best. These approaches performed quite well in terms of root mean squared errors, but

also in terms of bias. They outperformed especially the approach using local likelihood

smoothing, but also the two approaches based on truncated power series bases. In most

of the simulation cases as well as in the analysis of the Erfurt data, both Bayesian ap-

proaches yielded estimates which were quite close to each other. The regression results

pointed to a time-varying association between daily mortality and air pollution. We

further presented a test procedure for investigating whether a time-varying coefficient

term is indeed required. This test was based on a likelihood ratio test statistics and

performed by using bootstrapping methods. The procedure can be seen as an extension

of the test procedure proposed by Fahrmeir & Mayer (2001).

Regarding the analysis of the Erfurt data, we are aware of some severe limitations in in-

terpreting trends and variation of the short-term effects of air pollutants. These include

power limitations caused by the small population size in a town such as Erfurt. Due to

only five deaths per day on average, power for statistical analyses is limited and therefore,

the assessment of time-varying air pollution effects is a challenging task. Because of the

125
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limited power of the study, we also did not extend the varying coefficient models to in-

teractions with higher dimensions. However, a straightforward extension of the Bayesian

P-splines to the two-dimensional case can be obtained by using bivariate P-splines as

proposed by Lang & Brezger (2004) and Brezger & Lang (2006) for fully Bayesian models

and by Kneib (2006) in the context of empirical Bayes inference. An unknown surface

is then approximated by the tensor product of two (univariate) B-splines. In analogy to

the univariate case, two-dimensional random walk priors are further assigned to enforce

smoothness of the estimated surfaces.

In the second part of this thesis we approached the problem of estimating time-varying

coefficient models in the presence of measurement errors in the interacting variable. As

time series are usually assumed to be temporally correlated, particular attention was

given to by an appropriate selection of the latent variable’s distribution. In addition,

we presented methods for estimating the measurement error model parameters in this

special context. These methods are based on an ARMA representation of measurement

error model. We further developed two methods adjusting for measurement errors in the

context of time-varying coefficients. One is a hierarchical Bayesian model based on a

MCMC correction. In this approach, we achieved a corrected time-varying estimate by

including an additional sampling step, the sampling of the latent variable values. The

second approach is an extension of the well-known regression calibration to the case of

autocorrelated data. The obtained estimated true values can then be included into the

main model to assess the effect of the variable of interest.

In the future, application of time-varying coefficient models could be of great importance,

especially in case studies related to the evaluation of the public health impact of envi-

ronmental regulations. However, there are still questions concerning model validation

which will require additional attention. First of all, power and sample size considerations

within the time-varying effects framework might be a beneficial addition. The sample

size determination for studies intending the application of such models is challenging

and has, to our knowledge, not been adequately addressed in the literature. In general,

the calculation of the optimal sample size has to be based on simulations.

As only limited information can be obtained from a single city and it is difficult to

clearly identify temporal confounders of risk, multiple city temporal risk models would

be a valuable extension of the proposed approaches. Such a model would be based on

larger amounts of data and, therefore, provide a wider basis of evidence. The extension

could be done by adding a random effects term, which would fit naturally within Bayesian

hierarchical model context. Bayesian multi-city models estimating time-constant effects

are proposed by Samet et al. (2000a) and Dominici et al. (2002), for example. If there
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was evidence of correlation between the effects from cities in close proximity, then the

covariance structure could be formulated to incorporate a spatial structure.

Furthermore, a detailed evaluation of the properties and the power of the proposed test

procedure is required. In particular, an extensive simulation study designed to assess

the validity of the bootstrap-based test is needed. Additionally, the test procedure could

be extended with respect to different robust adjustments for residual bootstrapping.

Kauermann, Claeskens & Opsomer (2006), for example, present such adjustments for

tests on generalized additive models. In the context of smoothing and mixed models,

likelihood ratio tests on variance components have been developed throughout the last

years. However, these tests either rely on the assumption of a Gaussian distributed

response (Crainiceanu & Ruppert (2004), Crainiceanu et al. (2005)) or consider only one

variance component (Crainiceanu & Ruppert (2004)), which might not be adequate in

rather complex models as considered in this thesis. Within a fully Bayesian framework,

the question whether nonparametric modeling is really necessary can be answered by the

use of simultaneous contour probabilities based on highest posterior density regions, as

proposed by Brezger (2005) for generalized additive models. An extension of these models

might be a valuable enhancement in the context of time-varying coefficient models.

Besides power assessments of testing procedures, further developments could aim at the

generalization of the Bayesian measurement error correction method proposed in this

work. For example, a further extension could be given by replacing the assumption of

a random walk for the unknown time-varying effect of the latent variable by Bayesian

P-splines. As for the models without measurement error corrections, this should give

smoother time-varying estimates.

A more challenging task is the question of the specification of the prior distribution of

the unknown covariate. In structural measurement error problems, there is a general

concern about the parametric specification of the unknown covariates. Richardson et al.

(2002), therefore, present a flexible semiparametric model for this distribution based on a

mixture of normal distributions with an unknown number of components. Using mixtures

of normal distributions increases the robustness to model miss-specification. However,

the application of such mixtures in our models is not straightforward, since computation

in large sample cases might become vastly complicated and very time-consuming.

Further generalizations of the Bayesian measurement error correction methods could

include models accounting for autocorrelation in the latent variable in combination with

those accounting for exposure error resulting from using centrally measured data as a

surrogate for personal exposure. One possibility would be an extension with an additional
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model using external information about personal exposure as proposed by Dominici

et al. (2000). A further correction approach is based on the use of spatio-temporal

models to proper specify the relationship between observed and true underlying exposure

levels. There is growing literature on modeling, for example, air pollution data in time

and space. Because of the complexity in general spatio-temporal models, interest has

focused on models which are separable over time and space (Gelfand, Zhu & Carlin

(2001)). This subclass of spatial temporal processes has several advantages, including

rapid fitting and simple extensions of many techniques developed and successfully used

in time series and classical geostatistics. Among many others, Tonellato (2001) presents

a Bayesian dynamic modeling approach for hourly measurements of CO obtained from

a small number of sites. A random walk process measured with error is used. The

spatial dependence is modeled by a heteroscedastic Gaussian spatial process. A similar

approach is proposed by Shaddick & Wakefield (2002). They also use a hierarchical

dynamic linear model with a slightly different spatial covariance structure to model data

on four different pollutants measured at eight monitoring sites in London. A combination

of their approaches with the Bayesian measurement error model considered in this work

would allow for both the modeling of appropriate exposure data and assessing a corrected

health-exposure relationship.



Chapter A

Time-varying coefficient models and
measurement error analysis with
BayesX

The focus of this chapter is on demonstrating how air pollution data with measurement

errors can be analyzed in the program package BayesX.

For this purpose, a description of the general use of BayesX and some comments about its

structure are given first. We then describe how some of the results presented in Chapter

5 can be obtained. Further, we show how to estimate time-varying coefficient models

that allow for measurement error in the pollution variable. This chapter concludes with

a description of methods that are implemented in BayesX to plot and further explore

regression results.

BayesX is a free software package available at

http://www.stat.uni-muenchen.de/~bayesx.

It allows for performing complex full and empirical Bayesian inference to estimate gen-

eralized structured additive regression models. Functions for handling and manipulating

data sets as well as for the visualization of results are added for convenient use. For

an overview over the capabilities of BayesX and a detailed description of all available

features we refer to Brezger et al. (2005) and the manuals provided in addition.

A.1 Getting started

After having started BayesX, a main window consisting of four sub-windows appears on

the screen. The sub-windows are a command window, where commands can be entered

129
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and executed, an output window for displaying results, a review window allowing for an

easy access to past commands, and, finally, an object browser, where all objects currently

available are displayed.

To estimate Bayesian regression models we need at least a dataset object which allows

for incorporating, handling and manipulating of data, a bayesreg or a remlreg object to

estimate the regression models, and a graph object to be able to visualize the estimated

results.

The syntax for generating a new object in BayesX is

> objecttype objectname

where objecttype is the type of the object, for example dataset, and objectname is the

name to be given to the new generated object.

A.2 Dataset objects

In a first step the available data set information is loaded into BayesX. This is done by

creating a dataset object named erfurt by typing

> dataset erfurt

in the command window and then using the method infile

> erfurt.infile [, options] using path\ filename

Note, that this command supposes that the variable names are given in the first row of

the corresponding external file. If this is not the case, we would have to supply them

right after the keyword infile. For large data sets, that means with more than 10000

observations, it is recommended to use the option maxobs to spead up the execution

time.

After having read in the data, we can inspect the data by double-clicking on the respective

object in the object-browser. This can also be achieved by executing the describe

command

> erfurt.describe

Further commands for handling and manipulating the data are described in Brezger

et al. (2005). Examples are the descriptive command to obtain summary statistics for

the variables or the generate command which allows the creation of new variables.
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A.3 Bayesreg and remlreg objects

Time-varying coefficient models can be estimated based on MCMC inference using the

regress command of bayesreg objects. These models can further be estimated by

methods based on mixed model representations using the regress command of remlreg

objects. The general syntax for both types of objects is

> objecttype objectname

> objectname.regress model [, options] using erfurt

Executing these commands first creates a bayesreg or remlreg object and then estimates

the regression model specified in model using erfurt, which is the dataset object created

previously. By default, estimation results are written to the sub-directory output of the

installation directory. The default filenames are then composed of the name of the

object and the type of the specific file. Usually, however, it is more convenient to specify

a directory where the results are stored. This can be done by using the command

> objectname.outfile = path\\outfilename.
Execution of this command leads to the storage of the results in the directory specified

in ’path’ and all generated filenames start with the characters ’outfilename’.

Hence, for example, a fully Bayesian time-varying coefficient model for CO with a lag of

four days, which was specified by (see Chapter 5)

log(μt) = log(pop) + f(t) + f(pi9394l0) + f(pi9495l−3) + f(pi9596l−1) + f(pi9900l2))

+f(pi0001l3) + so+ f(templ0) + templ1 + f(rhl2) + f(t)COl4, (A.1)

can be estimated by executing

> bayesreg erf

> erf.outfile = c:\temp\co mcmc

> erf.regress mortagnk = logpop(offset) + tag(psplinerw2)

+ pi9394(psplinerw2) + pi9495lm3(psplinerw2) + pi9596lm1(psplinerw2)

+ pi9900l2(psplinerw2) + pi0001l3(psplinerw2) + so + temp dwd(psplinerw2)

+ temp dwdl1 + rh dwdl2(psplinerw2) + CO Krl4*tag(psplinerw2),

iterations=60000 step=40 burnin=10000 family=poisson predict using erfurt

The effects of the unknown functions are modeled by P-splines with a second order

random walk prior specified by psplinerw2. By default, the degree of a spline is 3 and

the number of inner knots is 20. Options iterations, burnin and step define properties

of the MCMC-algorithm. In particular, iterations is used to specify the total number
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of MCMC iterations, while the number of burn-in iterations is defined by burnin. Using

the above specifications hence leads to a sample of 50000 random numbers. However,

as these random numbers are, in general, correlated, we thin out the Markov chain by

using the thinning parameter step. Specifying step = 40, for example, forces BayesX

to store only every 40-th sampled parameter leading to a random sample of length 1250

for every parameter in our example. If additionally, the option predict is specified,

then samples of the unstandardized deviance, the effective number of parameters, and

the deviance information criterion DIC of the model are computed, see Spiegelhalter et

al. (2002). Furthermore, estimates for the linear predictor as well as the expectation of

every observation are obtained.

The influence of different choices for hyperpriors can be investigated by specifying differ-

ent parameters a and b for the IG(a, b) priors. The following command may for example

be used to specify a = 1 and b = 0.005:

> erf.regress mortagnk = logpop(offset)

+ tag(psplinerw2,a=1,b=0.005) + pi9394(psplinerw2,a=1,b=0.005)

+ pi9495lm3(psplinerw2,a=1,b=0.005) + pi9596lm1(psplinerw2,a=1,b=0.005)

+ pi9900l2(psplinerw2,a=1,b=0.005) + pi0001l3(psplinerw2,a=1,b=0.005)

+ so + temp dwd(psplinerw2,a=1,b=0.005) + temp dwdl1

+ rh dwdl2(psplinerw2,a=1,b=0.005) + CO Krl4*tag(psplinerw2,a=1,b=0.005),

iterations=60000 step=40 burnin=10000 family=poisson predict using erfurt

Note that in the case that no parameters for a and b are specified, these parameters are

set to the default values a = b = 0.001.

For estimation of model (A.1) using the mixed model methodology, we enter

> remlreg erf1

> erf1.outfile = c:\temp\co reml

> erf1.regress mortagnk = logpop(offset) + tag(psplinerw2)

+ pi9394(psplinerw2) + pi9495lm3(psplinerw2) + pi9596lm1(psplinerw2)

+ pi9900l2(psplinerw2) + pi0001l3(psplinerw2) + so + temp dwd(psplinerw2)

+ temp dwdl1 + rh dwdl2(psplinerw2) + CO Krl4*tag(psplinerw2),

family=poisson using erfurt

By default, BayesX produces external ASCII files containing the posterior means or

modes obtained by bayesreg or remlreg, respectively. The names of these files are given

in the output window. The files further contain the 80% and 95% credible intervals, and

the corresponding 80% and 95% posterior probabilities of the estimated effects. The
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levels of the credible intervals and posterior probabilities may be changed by the user

using the options level1 and level2. For example, specifying level1=99 in the option

list of the regress command leads to the computation of 99% credible intervals and

posterior probabilities.

A.4 Time-varying coefficients and measurement er-

ror

To estimate the fully Bayesian time-varying coefficient models with a correction for

measurement error in the PM2.5 series presented in Section 8.2.2, we again start by

creating a bayesreg object by typing

> bayesreg mem

We could also use the existing bayesreg object erf, however, for clarity, we prefer to

create a new object named mem.

The predictor of the measurement error correction model based on an underlying as-

sumption of an ARMA(1,1) representation of the observed surrogates is given by

log(μt) = log(pop) + f(t) + pi9899l2 + pi9900l2 + so

+ f(templ0) + templ1 + f(rhl2) + fPM2.5(t)PM2.5,

To estimate this model, we execute the following commands

> mem.outfile = c:\temp\pm25
> mem.regress mortngnk = logpop(offset) + tag(psplinerw2)

+ pi9899l2 + pi9900l2 + so + temp dwd(psplinerw2) + temp dwdl1

+ rh dwdl2(psplinerw2) + x merror*tag(merrorrw2,proposal=cp,min=1,max=80,

rhoxi = 0.72, sig1 = 19.76, sig2 = 24.57, sige = 138),

iterations=250000 step=200 burnin=50000 maxint=1500 family=poisson

predict using erfurt

Note that the only difference to the estimation of the fully Bayesian models presented

in the previous section is the term

x merror*tag(merrorrw2,proposal=cp,min=1,max=80,rhoxi=0.72,sig1=19.76,

sig2=24.57,sige=138)

The term x merror specifies the object which is used for the sampling of the true PM2.5

values. Note that the two observed variables should be denoted as x1 and x2 in the
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dataset. The unknown time-varying effect for the sampled PM2.5 values is modeled as

a second order random walk specified as merrorrw2. Updating is done by using the

conditional prior proposal which is specified by proposal=cp. Minimum and maximum

blocksizes are defined by the min and max option. The options rhoxi, sig1, sig2 and

sige specify additional parameters needed for the sampling of the true PM2.5 values.

They correspond to the autoregressive parameter ρξ,1, the measurement error variances

σ2
1 and σ2

2 , and the variance of the autoregressive process σ2
e .

Again, additionally to the information being printed to the output window, results for

each effect are written to external ASCII files, with the names of these files being given

in the output window.

A.5 Post-estimation commands and visualization of

the results

A.5.1 Post-estimation commands

In addition to the regress command, bayesreg objects provide some post estimation

commands to get sampled parameters or to compute autocorrelation functions of sampled

parameters. These may be obtained by

> mem.outfile = c:\temp\pm25sample
> mem.getsample

and

> mem.plotautocor, maxlag = 150

respectively, where maxlag specifies the maximum lag number (which is by default 250).

A.5.2 Visualization of the results

BayesX automatically creates appropriate plots of some of the estimated effects and

stores the graphs as postscript files. The file names are given in the output window for

each effect. Moreover, a batch-file is created that contains all commands necessary to

reproduce the plots. The advantage is that additional options may be added by the user

to customize the graphs (for example to change the title or axis labels).
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It is also possible to visualize effects on the screen by using post estimation plot com-

mands. For the nonlinear effect of the trend as well as the time-varying effect obtained

from model (A.1), for example, such plots can be obtained by executing the commands

> erf.plotnonp 1

> erf.plotnonp 17

where the numbers following the plotnonp command depend on the order in which the

model terms have been specified. These numbers are supplied in the output window after

estimation. The graphs produced for this commands then appear in an Object-Viewer

window.

Finally, graph objects may be used to produce graphics using the obtained ASCII files

containing the estimation results. Using these graph objects, we can, for example,

visualize sampling paths for parameters.

To create a graph object, we execute

> graph g

Having created the graph object, we need a new dataset object to store the data to be

plotted:

> dataset pmsample

After having executed the method getsample on a bayesreg object, we can now use the

command plotsample to visualize the sampling paths for the parameters. For example,

sampling paths for the sampled true PM2.5 values can be obtained by the following code:

> pmsample.infile using c:\ temp\ pm25sample x f tag merror sample.raw

> g.plotsample using pmsample

Some example sampling paths are shown in Figure A.1.

A.6 Convergence diagnostics

Convergence behavior of a chosen MCMC algorithm should be controlled for each par-

ticular analysis. This is typically done by an output analysis of the samples.

The first approach is the visual inspection of the samples of all parameters involved to

determine the length of the burn-in phase. As a rule of thumb, it is recommended to

discard the ”first one or two percent of a run long enough to give sufficient precision”

(Knorr-Held (1997)). Good indicators of convergence are plots of the sampling paths

and an analysis of the autocorrelation functions. These can provide evidence whether
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Figure A.1: Sampling paths for the first PM2.5 values of the Bayesian measurement error
model.
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the chain shows good convergence behavior or not. If there is high autocorrelation be-

tween successive states of the generated chain, ’thinning’ can be used. This means that

only every k-th sampled parameter after the burn in phase will be taken as a stage in

the chain. A further tool is the acceptance rate which is defined as the proportion of

accepted changes of state in the generated chain. A high acceptance rate means that

too many of the proposed values are accepted and the proposed values are very close to

the current ones. Because of the small steps, the support of the target density is covered

very slowly, which, consequently, results in a poor mixing behavior. On the other hand,

a too low acceptance rate mean that the chain does not change often enough the states,

since the proposed values may fall in low probability zones of the support of the target

distribution, far away from the current value. As a consequence slow convergence and

poor mixing are achieved. For an optimal mixing the acceptance rate should be as a rule

of thumb between 30% and 80% (Fahrmeir & Lang (2001)). Another approach to check

for convergence is given by comparing a set of chains based on different starting values.
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Chapter B

Proof of the ARMA(p,p)
representation of AR(p) models plus
white noise

From Pagano (1974) and Granger & Morris (1976), it is known that: If ξt is an AR(p)

process with autoregressive parameters ρ and εt is white noise with (constant) vari-

ance σ2
ε , then Xt = ξt + εt follows an autoregressive moving average (ARMA) process,

ARMA(p,p).

Proof An AR process of order p for ξt can be represented by

ρ(B)ξt = et,

where ρ(B) is defined as p-th order lag polynom, ρ(B) = 1 − ρ1 B − . . . − ρp B
p, with

B is the so-called Backward-Shift operator Bj ξt = ξt−j , and et is white noise. Since the

measurement error εt is a white noise process which is uncorrelated with ξt−j for all j, it

can be inferred that εt is also uncorrelated with et−j for all j; however, this implies:

ρ(B)Xt = ρ(B)ξt + ρ(B)εt = et + ρ(B)εt = νt,

where νt = et +ρ(B)εt. νt then is the sum of a white noise process and an (uncorrelated)

MA(p) process. However, this sum is, following a lemma of Granger & Morris (1976),

itself an MA(p) process:

νt = θ(B)γt,

where θ(B) is defined as θ(B) = 1 + θ1B + . . . + θpB
p and γt is white noise, since all

autocovariances of νt at lags greater than p are zero. Therefore, one obtains

ρ(B)Xt = ρ(B)ξt + ρ(B)εt = θ(B)γt,

139
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and thus Xt follows an ARMA(p,p) process. �
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