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INTRODUCTION:Molecularly targeted drugs
such as imatinib and crizotinib have revolu-
tionized the treatment of certain blood and
lung cancers because of their remarkable clin-
ical success. Over the past 20 years, protein
kinases have become a major class of drug
targets because these signaling biomolecules
are often deregulated in disease, particularly
in cancer. Today, 37 small kinase inhibitors
(KIs) are approved medicines worldwide and
more than 250 drug candidates are undergoing
clinical evaluation.

RATIONALE: Although it is commonly ac-
cepted that most KIs target more than one
protein, the extent to which this information
is available to the public varies greatly be-
tween drugs. It would seem important to
thoroughly characterize the target spectrum
of any drug because additional off-targets may
offer opportunities, not only for repurposing
but also to explain undesired side effects. To
this end, we used a chemical proteomic ap-
proach (kinobeads) and quantitative mass spec-
trometry to characterize the target space of

243 clinical KIs that are approved drugs or
have been tested in humans.

RESULTS: The number of targets for a given
drug differed substantially.Whereas some com-
pounds showed exquisite selectivity, others tar-
geted more than 100 kinases simultaneously,
making it difficult to attribute their biological
effects to any particular mode of action. Also of
note is that recently developed irreversible KIs
can address more kinases than their intended
targets epidermal growth factor receptor (EGFR)
and Bruton’s tyrosine kinase (BTK). Collect-
ively, the evaluated KIs targeted 220 kinases

with submicromolar affin-
ity, offering a view of the
druggable kinomeanden-
abling the development
of a universal new selectiv-
ity metric termed CATDS
(concentration- and target-

dependent selectivity). All drug profiles can be
interactively explored in ProteomicsDB and
a purpose-built shinyApp. Many uses of this
unique data and analysis resource by the sci-
entific community can be envisaged, of which
we can only highlight a few. The profiles iden-
tified many new targets for established drugs,
thus improving our understanding of how these
drugs might exert their phenotypic effects. For
example, we evaluated novel salt-inducible ki-
nase 2 (SIK2) inhibitors for their ability tomod-
ulate tumor necrosis factor–a (TNFa) and
interleukin-10 (IL-10) production, which may
allow repurposing these drugs for inflamma-
tory conditions. Integrating target space infor-
mation with phosphoproteomic analysis of
several EGFR inhibitors enabled the identifi-
cation of drug response markers inside and
outside the canonical EGFR signaling path-
way. Off-target identification may also inform
drug discovery projects using high-value clin-
ical molecules as lead compounds. We illus-
trate such a case by a novel structure-affinity
relationship analysis of MELK inhibitors based
on target profiles and cocrystal structures. To
assess the repurposing potential of approved or
clinically advanced compounds, we used cell-
based assays and mouse xenografts to show
that golvatinib and cabozantinib may be used
for the treatment of acute myeloid leukemia
(AML) based on their FLT3 inhibitory activity.

CONCLUSION: This work provides a rich data
resource describing the target landscape of
243 clinically tested KIs. It is the most compre-
hensive study to date and illustrates how the
informationmaybe used in basic research, drug
discovery, or clinical decision-making.▪
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Schematic representation of identifying the druggable kinome. A chemical proteomic
approach revealed quantitative interaction profiles of 243 clinically evaluated small-molecule
KIs covering half of the human kinome. Results can be interactively explored in ProteomicsDB
and inform basic biology, drug discovery, and clinical decision-making.
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Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly
observed, requiring thorough target deconvolution to understand drug mechanism
of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically
evaluated kinase drugs. The data revealed previously unknown targets for established
drugs, offered a perspective on the “druggable” kinome, highlighted (non)kinase
off-targets, and suggested potential therapeutic applications. Integration of
phosphoproteomic data refined drug-affected pathways, identified response markers,
and strengthened rationale for combination treatments. We exemplify translational
value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine
production in primary cells, by identifying drugs against the lung cancer survival marker
MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to
treat FLT3-ITD–positive acute myeloid leukemia. This resource, available via the
ProteomicsDB database, should facilitate basic, clinical, and drug discovery research
and aid clinical decision-making.

M
any of the 518 protein kinases encoded
by the human genome have emerged
as drug targets because their function
is often deregulated in signal transduc-
tion networks, leading to diseases such

as cancer and inflammation. More than 250
kinase inhibitors (KIs) are currently undergoing
clinical trials, and 37 have been approved for hu-
man use (1). Half of the approvals occurred with-
in the past 4 years, demonstrating the continued
importance of protein kinases as a target class (2).
Owing to the fact that many compounds target
the structurally and functionally conserved aden-
osine 5′-triphosphate (ATP)–binding site, poly-
pharmacology (that is, drugs that act on more

than one target) is commonly observed. Target
promiscuity may have advantageous or detrimen-
tal therapeutic consequences. Thus, it is impor-
tant to thoroughly investigate the target space
of these molecules to understand the molecular
and cellular mechanisms of action (MoAs). To this
end, several kinase activity and binding screens
have been published (3–12). Despite the consid-
erable value of these studies, the target space of
most clinically evaluated KIs has not yet been
systematically analyzed. In addition, recombinant
kinase assays cannot capture many of the regu-
lating factors provided by a full-length protein
expressed in a native cellular context (for exam-
ple, posttranslational modifications, protein com-

plex interactions, or the presence of metabolites).
Here, the target space, selectivity, and full dose-
response characteristics of 243 clinical (that is,
tested in humans) KIs were investigated by chem-
ical proteomics using lysates of cancer cells, kino-
beads, and quantitative mass spectrometry (MS)
(13, 14). This is currently the largest publicly avail-
able information resource for clinical drug-target
interactions. We highlight utility in identifying
novel targets for established drugs and for the
repurposing of existing drugs for new targets or
disease indications. All data can be interactively
explored in the ProteomicsDB database (15) to
facilitate translational research and kinase drug
discovery in academia, biotech, and pharma as
well as clinical decision-making.

Chemoproteomic target screen of
243 clinical KIs

To determine the protein targets of the 243 KIs, a
quantitative,MS-based chemical proteomic assay
termed kinobeadswas used (13, 14). Briefly, kino-
beads feature immobilized broad-spectrum KIs
that enable the purification of endogenous ki-
nases from cells or tissues. When performed as
a competition binding assay and measured by
quantitative MS, kinobeads allow the label-free
measurement of the physical interaction of a
compound of interest with thousands of proteins
in parallel. Here, KIs were dosed at eight concen-
trations (plus vehicle and target depletion control)
to derive dose-response characteristics and appar-
ent dissociation constants (Kd

app) for every drug-
protein interaction (Fig. 1A, fig. S1A, tables S1 to
S3, and supplementary text). Quantification of
protein binding by MS essentially yielded the
same data as Western blot analysis (fig. S1B)
but does not require antibodies and affordsmuch
higher throughput for target proteins. Kinobeads
assay data also agreed well with the KiNativ tech-
nology (16), which is an alternative binding assay
using covalent ATP probes (fig. S1C). The correla-
tion of kinobeads binding and enzymatic activity
data was good but not quite as strong as between
the two binding methods (fig. S1D), and reasons
for the observed discrepancies have been dis-
cussed before (16–18). For example, the activa-
tion status of an endogenous kinase in cells may
not be the same as that of a recombinant protein
in a cell-free system. In addition, the high protein
concentration of lysates can lead to various de-
grees of unspecific binding of the generally hy-
drophobic KIs akin to the extensive binding of
most drugs to plasmaproteins. Despite the above,
we observed that when a compound scored in the
kinobeads assay, it also inhibited the activity of
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the kinase in a recombinant kinase assay (but not
vice versa), showing that the kinobeads interac-
tion data obtained in complex cell lysates can be
functionally interpreted.
To define the target space that can be ad-

dressed by the kinobeads assay, RNA sequencing,
full proteome profiling, and kinobeads measure-
ments were performed for the four cell lines
used in the interaction screen [K-562, MV-4-11,
SK-N-BE(2), and COLO 205], and a total of
494 transcribed kinases (including mutations),
363 translated kinases, and 253 kinases on kino-
beadswere identified (fig. S1, E and F, and tables S4
and S5). Some kinases (for example, MET) were
too weakly expressed in the cell lines used to be
robustly detected but were observed when using
an alternative cell line (12 MET inhibitors were
also profiled in CAKI cells; fig. S1G). Some ki-
nases escaped detection entirely as the immobi-
lized probes were unable to capture them. A few
kinases were not competed even by excess com-
pound because the proteins bound to beads by
anunknownbindingmode. Thiswas pronounced
for members of the phosphatidylinositol 3-kinase

(PI3K)/mammalian target of rapamycin (mTOR)
family, and when an immobilized derivative of
the PI3K/mTOR inhibitor omipalisib was used,
these proteins also became amenable to the assay
(fig. S1H). Some KIs are known to bind G protein
(guanine nucleotide–binding protein)–coupled
receptors (GPCRs) (10), but these cannot be as-
sayed by kinobeads because we have not detected
binding of any GPCRs to the five immobilized KIs
that constitute kinobeads.
Unsupervised clustering of pKd

app (negative log-
arithm of apparent dissociation constants Kd

app

inmolar) values for all inhibitors and the targeted
kinases obtained from ~3000 affinity purifica-
tions (Fig. 1B) offered a view of the kinome that
can be drugged by current clinical KIs. The sys-
tematic collection of these quantitative drug-target
interaction profiles revealed groups of drugs for
intended or phylogenetically related targets [for
example, cyclin-dependent kinases (CDKs) and
protein kinase C (PKC)]. Historically, drug discov-
ery focused on tyrosine kinases and, not surpris-
ingly, these form a large cluster, as domultikinase
inhibitors with very promiscuous target profiles.

In contrast, the map also indicates that some in-
hibitors are quite selective, for example, drugs tar-
geting MAP2K1 [mitogen-activated protein kinase
(MAPK) kinase (MEK)], MAPK11/14 (p38), or epi-
dermal growth factor receptor (EGFR). To the best
of our knowledge, the present work constitutes
themost comprehensive drug-target interaction
analysis for KIs to date. Broad binding or ac-
tivity profiles for KIs may exist within drug dis-
covery programs in the pharmaceutical or biotech
industry but are generally not available to aca-
demic laboratories working with thesemolecules.
Therefore, every drug-target profile provides val-
uable information as to how these compounds
may exert their effects, how they may be used
in the laboratory, and if any particular effect can
be attributed to the targeting of a particular pro-
tein. To facilitate the use of the present work, all
drug-target profiles generated in this study are
provided as PDF files (see fig. S2 for an example)
on ProteomeXchange (www.proteomexchange.org/)
and can be interactively explored in ProteomicsDB
(www.proteomicsdb.org) aswell as inapurpose-built
selectivity calculator (http://129.187.44.58:7575/).

Selective chemical probes
and polypharmacology

Many clinical KIs are claimed to be potent and
selective; however, this is often not the case, re-
sulting in failure of clinical trials and obstacles
with laboratory research. Assessing selectivity of
a compound for a target or target class is not a
trivial undertaking, because the full range of tar-
gets (and their cellular expression levels or con-
centrations) is often unknown and the complete
compound dose range is rarely measured. All KIs
in our study were profiled in a dose-dependent
manner and at near thermodynamic equilibrium
in cellular lysates. Thus, this large body of bind-
ing data enabled the development of a new se-
lectivity metric termed CATDS (concentration- and
target-dependent selectivity) that goes beyond
previously published selectivity scores (3, 5, 19–21)
in that it also captures aspects of target engage-
ment and drug MoA. CATDS measures the reduc-
tion of binding of a particular protein to kinobeads
at a particular compound concentration relative
to the summed reduction of binding of all pro-
teins at that concentration. Therefore, a CATDS
value close to one or close to zero is indicative
of selective and unselective compounds, respec-
tively (fig. S3 and table S6; see supplementary
text for a more detailed discussion).
CATDS analysis of drugs in this study not only

confirmedmany previous observations but also re-
vealed some surprises. Some molecules appeared
to be very selective (for example, capmatinib for
MET, lapatinib for EGFR, and rabusertib for
CHEK1; in general scores > 0.5; Fig. 2A) andmay
thus qualify as chemical probes for these targets.
Compounds in blue were previously classified as
selective probes inwww.chemicalprobes.org/ (22),
but many of these showed rather poor selectivity
in our assay. Perhaps more surprisingly, clinically
more advanced compounds did not show higher
selectivity than those from earlier trial phases.
This reinforces the notion that selectivity is not
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Fig. 1. The “druggable” kinome. (A) Schematic representation of the chemical proteomic workflow
used to profile drug-protein interactions. Cell lysates were separately equilibrated with vehicle or
increasing concentrations of each drug. Kinobeads were used to enrich kinases and other proteins from
each lysate. Proteins were eluted from the beads, digested with trypsin, identified by liquid
chromatography–tandem MS (LC-MS/MS), and quantified using the MS intensity of the identified
peptides. Nonlinear regression determined the effective drug concentration, at which half of the target
protein was competed [median effective concentration (EC50)]. EC50 values were converted into
apparent dissociation constants (Kd

app) of each drug-target interaction by correcting for the depletion of
a target protein from the lysate by kinobeads [correction factor (cf)]. This workflow enabled the
simultaneous measurement of interaction of one drug with hundreds of proteins in a single experiment.
(B) Hierarchical clustering of kinase targets against clinical kinase drugs provided an overview of the
druggable kinome (color code depicts the Kd

app of drug-target interactions). Boxed regions represent groups
of kinases and inhibitors that ranged from highly selective (for example, EGFR or MEK inhibitors) to
relatively unselective interactions (for example, tyrosine kinase and multikinase inhibitors). Further
details are provided in figs. S1 and S2 and tables S2 and S3.
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a strict requirement for progressing compounds
in the clinic (fig. S4, A and B). This is illustrated
by the recent approval of midostaurin, a drug
with a very broad kinase inhibitory profile. How-
ever, we argue that it is nonetheless important to
determine the target spectrumof any drug that is
administered to humans or used as a tool com-
pound as carefully as possible to be able to make
informed decisions in the clinic and in the re-
search laboratory. The binding mode of KIs to
kinases has been classified based on structural
features. Analysis of 137 compounds with availa-
ble bindingmode information for the drug-kinase
complex (fig. S4C) (5, 23, 24) confirmed that type
2 inhibitors (that is, KI binding to the inactive
kinase conformation) are not necessarily more
selective than type 1 inhibitors (that is, KI binding
to the active kinase conformation;median CATDS
of 0.4 versus 0.3) (5). Type 3 inhibitors showed
a higher selectivity (median CATDS of 0.7), but
these are special cases because most of them
are designated MEK1/2 inhibitors that bind to a
particular cavity adjacent to the ATP-binding site
(25). Type 4 inhibitors bind to allosteric sites and
usually do not score in the kinobeads assay un-
less binding leads to a conformational change
involving the ATP-binding site (as observed for
MK-2206). Irreversible KIs that target a cysteine
residue in the ATP-binding site of EGFR (C797)
or Bruton’s tyrosine kinase (BTK) (C481) have re-
ceived considerable attention (recent approvals
of afatinib and ibrutinib, respectively). The nine
irreversible EGFR and two BTK inhibitors in our
panel showed a higher selectivity than reversible
compounds (median CATDS of 0.6 and 0.4, re-
spectively), but this was not universally the case.
Most of the irreversible inhibitors bound both

EGFR and BTK, albeit often with higher potency
for the intended target. Some inhibitors can also
reversibly bind kinases lacking the supposedly
required cysteine residue (for example, pelitinib
and WEE1). This may not be surprising because
a kinase scaffold is still required to position the
molecule at the intended target to permit ir-
reversible binding. Additional experiments for
24 EGFR inhibitors (9 irreversible and 15 re-
versible) in the ERBB2-dependent breast cancer
cell line BT-474 confirmed the results from the
main kinobeads screen (fig. S4D). Even if selec-
tivity cannot be universally claimed for these
molecules, irreversible target binding increases
the residence time of the drug, which can be useful
for targeting long-lived proteins. Protein turnover
measurements performed inHeLa cells confirmed
that EGFR is a long-lived protein (t1/2 = 271 hours;
fig. S4E).
The drug-target data matrix can also be used

in a target-centric fashion. For example, 19 drugs
inhibited CHEK1 binding,many of which are not
designated CHEK1 inhibitors. Although the des-
ignated CHEK1 inhibitor AZD-7762 was very po-
tent (Kd

app of 5 nM), a low CATDS score at all
concentrations showed that there aremany other
potent targets (Fig. 2B). Attributing cellular effects
to the inhibition of CHEK1 would therefore often
be difficult. Two other designated CHEK1 inhib-
itors, PF-477736 and SCH-900776, were similarly
potent (Kd

app of 0.2 and 11 nM, respectively) but
showed improved selectivity at concentrations of
about 10 nM.Rabusertibwas also similarly potent
(Kd

app of 43 nM) but had no other targets in our
assay. This drug is, by far, themost selective CHEK1
inhibitor in the panel tested and may therefore
be the best current chemical probe for this pro-

tein. Another interesting and unexpected finding
was that the target spectrum and potency of pro-
drugs and their active metabolites varied consid-
erably (fig. S4F). Fasudil had many more targets
than the active metabolite hydroxyfasudil (14).
Conversely, the vascular endothelial growth fac-
tor receptor (VEGFR)/SRC prodrug TG-100801
had far fewer and less potent targets than the
active drug TG-100572. The active metabolites
of the SYK inhibitor fostamatinib and the Aurora
drug barasertib had very different kinase bind-
ing profiles compared to the precursormolecules.
All of the above shows that to understand the
mechanisms by which a clinical drug exerts an
effect in vivo, careful target deconvolution of the
inhibitor, the formulation, and the metabolites
should generally be performed.

Additional targets for established drugs

As expected, the vast majority of compounds
interacted with protein/lipid kinases, but our
study also revealed binding to seven metabolic
kinases, 19 other nucleotide binders, five FAD
(flavin adenine dinucleotide) binders, and the
heme-binding enzyme FECH (ferrochelatase)
(Fig. 3A and table S2). These unanticipated inter-
actions not onlymay lead to desired consequences
but also can represent mechanisms of drug tox-
icity. A survey of the scientific and patent liter-
ature (using PubMed, SciFinder, or ChEMBL)
revealed that many of the 243 drugs investigated
in this study are surprisingly poorly characterized
with regard to their target space or bioactivities.
At the time of writing, >110,000 publicationswere
listed in PubMed, >90,000 publications and
>47,000 patents in SciFinder, and >2400 bio-
activities in ChEMBL (table S1). More than 50%
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Fig. 2. Selectivity of KIs.The collective drug-protein interaction data
enabled the definition of a new selectivity metric (CATDS). CATDS
measures the reduction in binding of a target protein to kinobeads at a
specified concentration relative to the summed reduction of all protein
targets of the compound at the same concentration. (A) Rank plot of KIs
according to CATDSmost-potent (most potent compound target at the
respective Kd

app) showing that lapatinib, capmatinib, and rabusertib are
highly selective inhibitors, whereas TAK-901, midostaurin, and XL-228 are
not. Compounds previously designated as “chemical probes” are shown in
blue but are not necessarily selective. (B) The large radar plot shows all

CHEK1 inhibitors (each spoke is a drug, and the length of the spoke is
indicative of binding affinity). The smaller plots depict the number and
potency of targets for rabusertib, SCH-900776, PF-477736, and AZD-7762.
The plot to the right shows the selectivity of each compound (CATDSCHEK1

at its Kd
app) as a function of drug concentration. AZD-7762 is a potent

CHEK1 inhibitor but is not selective at any concentration. PF-477736
and SCH-900776 are selective at lower doses, and rabusertib is selective
at all doses, because no other targets beside CHEK1 were observed
in this screen. Further details are provided in figs. S3 and S4 and
supplementary text.
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of all publications in PubMed or SciFinder were
covered by just five drugs (that is, rapamycin,
imatinib, sorafenib, gefitinib, and erlotinib). Al-
though structure-based searches identified pa-
tents for all compounds in SciFinder, 17 drugs
had no PubMed entry at all (4 for SciFinder pub-
lications), 35 drugs had no listed bioactivity in
ChEMBL, and 70 drugs had fewer than 10 pub-
lications in PubMed (50 such cases for SciFinder).
This is very noteworthy because all of thesemole-
cules have been tested in humans. As a result, this
study reports on a large number of novel molec-
ular interactions and off-targets not previously
covered by the scientific literature (Fig. 3B, fig. S5A,
and table S7) (6, 11, 12, 26). This includes clinically
advanced compounds such as dabrafenib, a re-
portedly selective BRAF inhibitor. The kinobeads

data showed that the drug is a multikinase inhib-
itor with ~30 submicromolar targets (fig. S5B). Ki-
nase activity assays confirmed potent inhibition of
several SRC family members, and there was no
apparent difference in selectivity between the three
RAF family members. Moreover, wild-type (WT)
BRAF and the V600E mutation for which the
drug is used in the treatment of melanoma were
equally well inhibited (fig. S5, C to F). Our results
also confirmed recent binding assay data (27) for
the approved BCR-ABL inhibitor ponatinib. Far
more potent targets were identified than previ-
ously described, and kinase assays validated potent
inhibition of ZAK andMAPK14 (p38a) activity (fig.
S5G). Both proteins are key regulators of the
MAPK pathway, and inhibition thereof has been
linked to desired and undesired effects. Notably,

there are 16 submicromolar ZAK and 15 such p38a
inhibitors in the panel of which 10 drugs cotarget
ZAK and p38a. As a result, two nodes in the same
essential pathway are inhibited, which may po-
tentially lead to pleiotropic and unpredictable bio-
logical effects.
Polypharmacology also offers therapeutic op-

portunity, and our interaction screen provides
many candidates for clinical reevaluation or as
chemical starting points for the development of
novel compounds. The early years of kinase drug
discovery focused on very few kinases, but many
morehave come into focus in recent years (fig. S6A).
One such protein is SIK2 (salt-inducible kinase 2),
which is proposed as a target for inflammation
and autoimmunity (28) because inhibition of SIK2
by dasatinib or the SIK tool compoundHG-9-91-01
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marrow–derived macrophages (BMDMs) with the novel SIK2-binding drug
UCN-01 led to a reduction in TNFa production and an increase of IL-10

secretion, indicating cellular activity of UCN-01. Error bars depict SD of
three technical replicates. Middle panel: Elastic net analysis performed at
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nonkinase off-target NQO2 via p-stacking and contact to certain residues
(sticks). The protein is shown as a semitransparent surface. The cocrystal
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has been shown to reduce the production of the
proinflammatory cytokine tumor necrosis factor–a
(TNFa) and to up-regulate the secretion of the
anti-inflammatory protein interleukin-10 (IL-10)
in mouse bone marrow–derived macrophages
(BMDMs) (29). Our kinobeads assays identified
21 SIK2 inhibitors with affinities of better than
500 nM, and we performed TNFa assays in mu-
rineBMDMs, showing thatAZD-7762, BMS-690514,
crenolanib, PF-03814736, and UCN-01 also sup-
pressed LPS-induced TNFa production in a dose-
dependent fashion (Fig. 3C, fig. S6B, and table S8).
Further experiments on selected TNFa-reducing
KIs in the same primary cell assay showed that
the compounds also led to an increase of IL-10

production. Because all these inhibitors have ad-
ditional targets, the TNFa phenotype may not
only be attributable to the inhibition of SIK2. To
test this, we performed elastic net analysis (30) on
the SIK2 inhibitors and included eight further
drugs that did not inhibit SIK2 and did not re-
duce TNFa production but have a large overlap
in kinase targets with the SIK2 inhibitors. The
results ranked SIK2 at the top of all candidates
at nontoxic compound concentrations, indicating
a very strong association of SIK2 inhibition and
TNFa response (Fig. 3C; see supplementary text
for further information). We next treated murine
BMDMs with HG-9-91-01, dasatinib, AZD-7762,
PF-03814735, UCN-01, and AT-9283 and quanti-

fied phosphorylation of pS62 and pS370 of CRTC3
(a direct substrate of SIK2) by parallel reaction
monitoring (PRM)MS (Fig. 3C and fig. S6, C andD)
(31, 32). The data show that all six compounds led to
a strong reductionofCRTC3phosphorylation, dem-
onstrating functional target engagement of the
compounds in cells and lending further support
to the interpretation that the observed TNFa and
IL-10 responses are mediated by SIK2 inhibition.
Another emerging target is NTRK1 (TrkA) be-

cause NTRK1 fusion proteins have been identi-
fied as oncogenic drivers in lung, colon, and brain
cancer (33–35). Our analysis identified 20 NTRK1
inhibitors, and viability assays in KM12 colorectal
cancer cells (driven by TPM3-NTRK1) showed
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mapped to known ERBB pathway members (Reactome), and further
proteins were associated with the ERBB network using STRING.
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significantly regulated by the drugs (P < 0.01; scale: average log2 fold
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inhibitors (top panel). Further details are provided in fig. S8 and
supplementary text.
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that XL-228, foretinib, lestaurtinib, and TAK-901
were similarly potent as the designated NTRK1
inhibitor entrectinib (fig. S6F). Comprehensive
target profiling can also improve understanding
of the MoA of a KI. An example is the dual SRC/
ABL inhibitor saracatinib that is undergoing clin-
ical trials for bone cancer, among others. Proteins
involved in bonemorphogenesis, such asBMPR1A,
ACVR1, and ACVR1B, were identified in our assay
as high-affinity targets. In line with this hypoth-
esis, the bone osteosarcoma cell line U-2 OS (high
expression of BMPR1A) was more sensitive to
saracatinib than the unrelated ovarian cancer cell
line NCI/ADR-RES (low expression of BMPR1A).
mRNA silencing in both cell lines showed that
drug sensitivity was not exclusively due to SRC
expression, suggesting that a proportion of the
effect elicited by the drug is mediated by inhi-
bition of bone morphogenetic protein (BMP)
receptor signaling (fig. S6G). FurtherWestern blot
analysis revealed a dose-dependent decrease of
SMAD1/5/9 phosphorylation (a downstreamBMP
effector) as well as SRC autophosphorylation.
These data show that both SRC and the BMP
receptors are engaged and required for cell via-
bility, and thus suggest a dual mode of action of
saracatinib in osteosarcoma cells (fig. S6, H and I;
see supplementary text for further information).
In light of the above, we stress again that it is

important to know the full target spectrum of a
drug and that our resource fills an important gap
in the scientific literature. In addition, the sys-
tematic identification of drug-target interactions
could become a valuable tool for clinicians. In
particular, the information assembled here and
in ProteomicsDB may be of value to molecular
tumor boards, where physicians and scientists
seek to integrate clinical and molecular data to
identify the best possible therapeutic regimen
for an individual patient.

Less conventional targets of clinical KIs

Because the compounds immobilized onkinobeads
are ATP mimetics, we and others have shown
that other nucleotide-binding proteins may also
specifically bind to them. The large body of data
reported here expands on these previous ob-
servations. For example, the metabolic kinase
PDXKhas previously been shown to bind seliciclib
(roscovitine) via the pyridoxal-binding site (36).
We detected binding of PDXK to the designated
PLK1 inhibitor BI-2536 (Kd

app = 387 nM), pos-
sibly via direct binding to the ATP site of PDXK
(fig. S6J). Several KIs were potent binders of the
acetyl–coenzyme A dehydrogenases ACAD10 (for
example, alisertib) and ACAD11 (for example,
crizotinib), whichmay be rationalized by binding
to the FAD site of the enzymes (fig. S6K). Another
member of the same enzyme superfamily isNQO2.
This enzyme is potently inhibited by the BCR-ABL
inhibitor imatinib (13). Our data revealed a further
nine submicromolar binders of NQO2, most no-
tably pacritinib (Kd

app = 4 nM) and crenolanib
(Kd

app = 40 nM). Previous x-ray crystallography
studies showed that imatinib binds to the FAD-
binding site of the enzyme (37). Because the
pharmacophores of some of the newly identified

NQO2 binders are different to that of imatinib,
we used x-ray crystallography to investigate the
binding mode of crenolanib [Protein Data Bank
(PDB) code, 5LBY], volitinib (PDB code, 5LBW),
and pacritinib (PDB code, 5LBZ). The structures
revealed that all compounds bound the FAD-
binding pocket by p-stacking interactions with
the isoalloxazine ring of the FAD molecule and
also by specific interactions with N161, E193, or
Q122 andM154 of the protein (Fig. 3D, fig. S6L,
and supplementary text). Thus, NQO2 is a more
common off-target of KIs than previously antici-
pated, but the physiological relevance of this in-
teraction remains unclear. Recent reports have
shown that KIs can bind the enzyme FECH and
that inhibition of FECH is the mechanism by
which the clinically observed photosensitivity of
vemurafenib patients can be rationalized (38, 39).
This was surprising at the time, because the en-
zyme does not contain a nucleotide-binding site
and subsequent biochemical assays showed that
the inhibitors bind the protoporphyrin-binding
site. The current profiling of 243 clinical drugs
identified 4 additional FECH binders, increasing
the total to 30 (fig. S6M), further supporting the
notion that FECH assays should become part of
preclinical KI testing.
Some kinases form relatively stable protein

complexes, and some complexes are also enriched
on kinobeads. Members of the AP2 complex that
play a role in clathrin-mediated endocytosis were
frequently observed (AAK1, AP2B1, AP2S1, and
AP2M1). Other examples included inflammatory
response–regulating complexes (TBK1, TBKBP1,
AZI2, and TANK), the transfer RNA–modifying
KEOPS complex (TP53K, TPRKB, OSGEP, and
LAGE2), and other kinase interactors such as
scaffolding proteins (INPPL1 and INCENP) and
signaling modules [CSNK2A1/2 and EIF3J (40);
LATS1 and MOB1; fig. S7, A and B]. CDK-cyclin
complexes present an interesting case. On the
basis of described functions in the regulation
of the cell cycle (CDK1/2/4/5/6/7), transcription
(CDK7/9/11/12), or otherprocesses (atypical; CDK16/
17/18), CDKs can be categorized into several cel-
lular MoAs. Clustering of inhibitors that bind
CDKs by CATDS score revealed that most of the
designated CDK inhibitors were not very selec-
tive for any particular CDK, CDK complex, or
cellular role (fig. S7, C and D). Conversely, several
inhibitors, for which CDKs are off-targets, showed
a preference for CDK complexes in the cell cycle,
transcriptional, or atypical categories (fig. S7, C
and E). In principle, this implies that it may be
feasible to design CDK inhibitors in the future that
are selective for one of these biological processes.

From target to pathway engagement

We have incorporated the present chemical
proteomic data into ProteomicsDB (15) and added
new functionality that displays the target spec-
trum and dose-response characteristics of each
KI. This online resource also enables exploring
potential drug combinations to overcome drug
resistance (Fig. 4A). For example, it has been
shown that growth factors secreted by the tumor
microenvironment can lead to fibroblast growth

factor receptor (FGFR)–mediated signaling that
bypasses EGFR inhibition by gefitinib (41). Pro-
teomicsDB can simultaneously visualize several
target proteins and respective inhibitors thereof
plus additional proteins targeted by these com-
pounds. On the basis of this idea, the potent
FGFR1 inhibitor AZD-4547 was chosen for com-
bination treatments in four cell lines that are
partially sensitive to gefitinib (A-431, skin, EGFR-
WT; ACHN, kidney, EGFR-WT; IGROV-1, ovary,
EGFR-WT; PC-9, lung, EGFR-activating E746-A750
deletion; Fig. 4B and fig. S8, A and B). Regardless
of whether or not EGFR carried an activating
mutation, the combination was always more ef-
fective in inhibiting cell viability and proliferation
than any one drug alone.
One key challenge in drug discovery is to as-

sess whether a drugmolecule engages a target or
associated pathway in a cell. The present resource
allowed us to explore this in a novel way by an-
alyzing the phosphoproteome of cancer cells in
response to KI treatment and by integrating this
informationwith the target spectrumof the drug(s)
used. To illustrate this concept, the phospho-
proteomes of BT-474 cells after treatment with
the EGFR/HER2 inhibitors lapatinib, afatinib,
canertinib, dacomitinib, and sapitinib were deter-
mined to a depth of ~15,000 phosphorylation
sites (fig. S8C and table S9). The analysis revealed
a surprisingly large number of statistically sig-
nificantly regulated phosphorylation events for
each drug (P < 0.01; minimum three from four
replicates; fig. S8D). The five drugs have different
selectivity in BT-474 cells (CATDS = 1.00, 0.78,
0.94, 0.77, and 0.73, respectively); thus, a common
network affected by inhibition of the primary
targets EGFR/HER2 was generated. Many of the
211 resultant proteins (274 regulated phospho-
rylation sites in at least four from five inhibitors)
mapped to the EGFR/HER2 network (Fig. 4C)
and can be functionally interpreted. For exam-
ple, reduction of autophosphorylation on pY1248
from ERBB2 showed that the drugs are “on tar-
get” (fig. S8E).DiminishedKRT8phosphorylation
(a substrate of EGFR) can be used as a target-
proximal readout for reduced EGFR activity. Re-
duced phosphorylation of MAPK1 and MAPK3
(ERK1/2) confirmed the engagement of theMAPK
signaling pathway in response to the drugs (fig.
S8F). All five drugs led to the activation of CHEK1
(by reducing phosphorylation of the inhibitory
site pS280, downstream of AKT), thus indicating
activation of the DNA damage response pathway
and protection from apoptosis (fig. S8G). Such ob-
servations not only uncover how the drug exerts
its effects in cells but also can rationalize a com-
bination treatment, for example, using the highly
selective CHEK1 inhibitor rabusertib (see above).
There aremany proteins with significant changes
in phosphorylation but without obvious connec-
tions to the EGFR/HER2 pathway (for example,
transcription factors FOXK1 andFOXK2). Several
of these sites or proteins have little or no ascribed
function (supplementary text). However, the fact
that such proteins consistently showed a robust
response in cells to the EGFR inhibitors may im-
ply that these are members of the network and
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may act as response markers of drug action. To
assess the molecular consequences of polyphar-
macology, comparative phosphorylation signa-
tures of individual drugs are also valuable. For
example, RIPK2 has recently been implicated
as a target in breast cancer (42). In addition to
EGFR, kinobeads profiling showed that although
canertinib and sapitinib are potent inhibitors of
RIPK2, lapatinib, afatinib, and dacomitinib are
not. Consequently, RIPK2 pS363 levels in BT-474
cellswere only reduced by canertinib and sapitinib.
Thus, this site is a target engagement marker for
drugs specific for RIPK2 but not EGFR (Fig. 4D).
Again, the above analysis highlights the need to
thoroughly profile the target space of any KI to
understand its cellular MoA.

Initial drugs for potential
novel kinase targets

One use case of the drug-target matrix provided
by this study is to identify compounds with very
good drug-like properties for potential novel tar-
gets. These drugs may serve as high-value chem-
ical leads to inform or jump-start a drug discovery
program. To illustrate this concept, expression
profiling using kinobeads was performed on
15 non–small cell lung cancer (NSCLC) tumors and

adjacent healthy tissue from the same patients
(fig. S9A and table S10). Among the overexpressed
kinases in tumors were the well-known drug tar-
gets EGFR and MAP2K1 (MEK1), as well as the
kinases DDR1 and MELK (maternal embryonic
leucine zipper kinase). A retrospective survival
analysis of a cohort of 375 NSCLC patients was
performed by staining tissue microarrays (TMAs)
for EGFR, DDR1, and MELK (Fig. 5, A and B; fig.
S9, B to D; and supplementary text). The com-
bined analysis of squamous cell carcinoma (SCC)
and adenocarcinoma (ADC) cases showed no sig-
nificant correlationwith EGFR andDDR1 expres-
sion and a moderate effect for MELK (log-rank
test, P = 0.04). However, separate analysis of SCC
and ADC showed that high MELK expression
was more strongly correlated with poor survival
in SCC but not ADC patients (P = 0.02 versus P =
0.71). These results confirmed earlier reports that
MELK is a potential predictive marker for poor
prognosis in SCC-NSCLC (43). Given this differ-
ential expression pattern and the fact thatMELK
is a kinase, the protein may have potential as an
actionable target in the SCC-NSCLC subtype of
lung cancer. There is some controversy about the
validity of MELK as a target because recent work
in cell lines has shown that the protein is not

generally required for the growth of cancer cells
(44, 45). In these studies, neither pharmacological
inhibition nor CRISPR-Cas9–mediated knockout
of the protein showed a growth-inhibiting pheno-
type. However, as these authors also point out, the
current data cannot rule out the possibility that
MELK, or mutants thereof, may play important
roles in vivo, for example, in tumor maintenance.
Therefore, we emphasize that our observations do
not specifically provide validation forMELK as an
oncology target but serve to illustrate how our
drug-target interaction screenmight be used to
inform a preclinical drug discovery project.
The only designatedMELK inhibitor currently

in clinical trials is OTS-167 (phase 1). Kinobeads
profiling for this drug showed that it is a very
broad multikinase inhibitor and will thus likely
not contribute to the clinical validation of MELK
as a drug target (Fig. 5C). Moreover, its efficacy in
cancer cells may actually not stem from the in-
hibition of MELK. A further 16 MELK inhibitors
were identified in our present work (including
the approved drugs nintedanib and sunitinib)
and kinase activity assays confirmed reasonably
potent enzymatic inhibition (Fig. 5D). To gain in-
sight into the structure-activity relationship of
MELK inhibitors, the protein was cocrystallized
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Fig. 5. Characterization of drugs targeting MELK. (A) Kinobeads
profiling of 15 NSCLC patient tumors and adjacent healthy tissue identified
overexpression of MELK, EGFR, and DDR1. Expression was confirmed by
immunohistochemistry in a cohort of 375 NSCLC patients. (B) MELK
overexpression correlated (log-rank test) with poor overall survival in SCC
but not ADC patients. (C) Radar plot depicting targets and binding
affinities of the phase 1 MELK inhibitor OTS-167 (each spoke is a direct
binder, and the length of the spoke is indicative of binding affinity),
showing that the drug is a very unselective compound and suggesting that

its biological activities may not be due to MELK inhibition alone. MELK is
marked by a red dot. (D) Kinase activity assays confirmed that MELK
binders identified in this study (for example, nintedanib) are also
potent MELK inhibitors. (E) Cocrystal structures obtained for five MELK
inhibitors revealed that nintedanib forms strong interactions with residues
E15 and E57 in the ATP pocket. There are additional residues (notably,
C70 and C89) that may be exploited to develop selective and potent
irreversible MELK inhibitors. Further details are provided in fig. S9 and
supplementary text.
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with nintedanib (PDB code, 5MAF), K-252a (PDB
code, 5M5A), defactinib (PDB code, 5MAH), PF-
3758309 (PDB code, 5MAG), and BI-847325 (PDB
code, 5MAI). Not only are these the first MELK
structures with clinical KIs, but also the analysis
revealed 10 amino acids within the ATP pocket
that may be particularly suitable for the devel-
opment of selective and potent MELK inhibitors
(fig. S9E) (46). Specifically, nintedanib engaged
in two drug-protein interactions not observedwith
the other structures (E15, selectivity residue; E57,
potency residue). In addition, the structure revealed
two readily accessible cysteine residues (C70 and
C89) that only exist in 1% of all human kinases
and that could therefore be used for the design
of irreversible MELK inhibitors with improved
selectivity (Fig. 5E, fig. S9E, table S11, and supple-
mentary text). In our view, the above is a clear
example for how drug repositioning ormedicinal
chemistry can be conceptually approached using
systematic profiling data of clinical compounds.

Repurposing cabozantinib for treatment
of FLT3-positive acute myeloid leukemia

The discovery that the BCR-ABL inhibitor imatinib
also potently inhibits c-KIT and platelet-derived

growth factor receptor (PDGFR) mutations ex-
tended the use of this drug from chronic myelog-
enous leukemia to the treatment of gastrointestinal
stroma tumors (47). It also demonstrated that KI
polypharmacology can be exploited to repurpose
compounds for other indications. The KI inter-
action study provided here should enable the
scientific community to discover such opportu-
nities more systematically. As an example, the
kinobeads data (Fig. 6A) revealed that the desig-
nated MET/VEGFR inhibitors cabozantinib (ap-
proved for the treatment of medullary thyroid
cancer and advanced renal cell carcinoma) (48)
and golvatinib, among others, are potent inhib-
itors of the mutated tyrosine kinase FLT3-ITD
that is involved in an aggressive form of acute
myeloid leukemia (AML). This potential FLT3 ac-
tivity was not previously known for golvatinib.
Both compounds killed FLT3-ITD–dependent tu-
mor cells, and Western blot analysis showed that
both compounds abrogated FLT3 autophospho-
rylation, thus demonstrating target engagement
in cells (fig. S10, A to D). Because cabozantinib is
an already approved drug, we performed further
experiments to assess whether cabozantinibmay
be repurposed to treat FLT3-ITD–dependentAML.

To this end, a panel of AML cell lines was treated
with cabozantinib and the FLT3 inhibitors qui-
zartinib and crenolanib. The FLT3 mutant cell
lines (MV-4-11, MOLM-13, and MONO-MAC-6)
were sensitive to all three drugs; however, FLT3-
WT cells (OCI-AML3, HL-60, KG-1a, and THP-1)
did not respond. Additional experiments inmu-
rine Ba/F3 cells harboring FLT3-ITD mutations
showed potent inhibition by the three inhibitors
of most, but not all, mutants (fig. S10, A and B,
and supplementary text). Immunofluorescence
experiments showed that the FLT3-WT protein
prominently localized to the plasma membrane,
but FLT3-ITD K602R(7) or FLT3-ITD E611C(28)
U-2 OS cells showed localization primarily in the
cytosol. Cabozantinib treatment restored the cel-
lular distribution to that of theWTprotein (Fig. 6B
and fig. S10E). Immunoblotting revealed that low
nanomolar concentrations of cabozantinib also
abrogated signal transducer and activator of tran-
scription 5 (STAT5) phosphorylation downstream
of FLT3 in MV-4-11 cells, thus indicating that the
drug has a similar inhibitory effect as quizartinib
on aberrant FLT3-ITD signaling in AML cells
(fig. S10D) (49). To assess the in vivo efficacy of
cabozantinib,micewere xenograftedwithMOLM-13
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Fig. 6. Repurposing of cabozantinib for the treatment of FLT3-ITD–
positive AML. (A) Violin plots comparing the potency and selectivity of
some FLT3 inhibitors identified in this study (figures at the top indicate the
number of targets of the respective compound). (B) Immunofluorescence
staining of U-2 OS cells expressing FLT3-WT or the FLT3-ITD K602R(7)
mutant protein. Staining for DNA (DAPI, blue), membrane structures
(WGA, green), and FLT3 (red) showed that FLT3-WT predominantly
localized to the plasma membrane, whereas the mutant protein
accumulated in the perinuclear endoplasmic reticulum. Cabozantinib
treatment had no effect on FLT3-WT localization. FLT3-ITD localization
to the plasma membrane was restored, analogous to the cellular
phenotype of the WT protein. (C) Measurement of tumor burden by
bioluminescence [photons (lg)/(s*cm2*sr)] in cabozantinib (blue, n = 6) or

vehicle-treated mice (black, n = 5) xenografted with MOLM-13
(FLT3-ITD) or OCI-AML3 (FLT3-WT) cells. Diamonds on the x axis
indicate days of drug treatment; error bars depict the SD in the
aforementioned groups of animals. Proliferation of MOLM-13 cells in
cabozantinib-treated animals was significantly slowed compared to
vehicle control (day 5, P = 0.00003; day 10, P = 0.00013, unpaired t test).
No such effect was observed for animals xenografted with OCI-AML3
cells. Thus, cabozantinib specifically inhibited FLT3-ITD but not FLT3-WT
AML cells in vivo. (D) Representative whole-animal bioluminescence
imaging of MOLM-13 (FLT3-ITD) and OCI-AML3 (FLT3-WT) xenografts on
days 0 and 10 after cabozantinib treatment, showing that the drug
slows the proliferation of AML cells in vivo. Further details are provided in
fig. S10 and supplementary text.
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(FLT3-ITD; n= 6) or OCI-AML3 (FLT3-WT; n= 5)
cells andtreatedwithcabozantinib.Bioluminescence
measurements revealed that the tumor burden
of treated mice injected with FLT3 mutant cells
was significantly reduced upon cabozantinib treat-
ment compared to the untreated control. FLT3-
WT xenografts showed no difference in tumor
burden between drug or vehicle treatment (Fig.
6, C and D). Tomonitor survival, drug dosing was
stopped on day 14 after cell injection and the last
animal was sacrificed on day 26. Cabozantinib
significantly reduced tumor growth in FLT3-ITD
AML cells in vivo, and Kaplan-Meier analysis
showed a statistically significant, positive effect
on survival in the drug-treated animals (P = 0.01;
fig. S10, F to H). Collectively, these preclinical data
and recent similar results (50) are in support of
initiating a phase 2 clinical trial of cabozantinib in
FLT3-ITD–stratified AML patients. We believe
that this is an innovative approach, because
cabozantinib is as potent and selective as qui-
zartinib but more potent and selective than
midostaurin (Fig. 6A),whichwas recently approved
for the treatment of AML.
Our interactive ProteomicsDB database pro-

vides a rich open-access resource to study the
molecular landscape of clinically evaluated small-
molecule KIs and targets. We highlight examples
for why this information is important and how it
may be used. The demonstration that repurpos-
ing kinase drugs is feasible and can be approached
in a systematic fashion is a timely message. To
promote and facilitate further exploitation of the
data, we provide extensive new functionality in
ProteomicsDB and ready-to-use target summa-
ries for each of the 243 drugs. The data can be
queried by a purpose-built shinyApp to ask spe-
cific questions about selectivity and binding af-
finity for drugs and targets of interest. We are
committed to keeping this resource up to date
and anticipate that engaging the community in
the project will improve our understanding on
the MoA of cancer drugs, facilitate the design
of innovative clinical trials, foster the develop-
ment of novel compounds, and aid molecular
tumor boards in clinical decision-making.

Materials and methods
Cell lines, affinity matrices, and reagents
for kinase inhibitor profiling

The cell lysate mixture (cell line mix) used to
profile all kinase inhibitors in this study was
generated from K-562, COLO 205 and MV-4-11
cells grown in RPMI 1640 medium (Biochrom
GmbH), SK-N-BE(2) cultured in DMEM/HAM’s
F-12 medium (Biochrom GmbH). All were sup-
plemented with 10% FBS (Biochrom GmbH) and
1% antibiotic solution (Sigma). Cell lines were
authenticated by multiplex human cell line au-
thentication test (MCA) and tested internally for
mycoplasma contamination. For MET-inhibitor
profiling, Caki-1 cells were cultured in IMDM
(Biorad) with 10% FBS. For EGFR-inhibitor pro-
filing, BT-474 cells were grown in DMEM/HAM’s
F-12 supplemented with 15% FBS (Biochrom). Ki-
nase inhibitor affinity matrices (kinobeads) were
synthesized in house as published (14). Omipalisib

with a linker was internally synthesized. Small mol-
ecule kinase and other inhibitors were purchased
from Selleckchem, MedChemExpress, Active Bio-
chem, Abmole, Merck, or LC Laboratories (table S1).

Kinase inhibitor profiling with affinity
matrices (Kinobead pulldowns)

Kinobead pulldown assays were performed as
previously described (14). Briefly, cells were lysed
in 0.8% NP40, 50 mM Tris-HCl pH 7.5, 5% glyc-
erol, 1.5mMMgCl2, 150mMNaCl, 1 mMNa3VO4,
25 mM NaF, 1 mM DTT and supplemented with
protease inhibitors (SigmaFast, Sigma) and phos-
phatase inhibitors. The protein concentrationwas
adjusted to 5mg/mL. Kinase inhibitors of interest
were spiked into 1 mL lysate at increasing con-
centrations (DMSO vehicle, 3 nM, 10 nM, 30 nM,
100 nM, 300 nM, 1 mM, 3 mM and 30 mM) and in-
cubated for 45 min at 4°C. This was followed by
incubation with kinobeads (35 mL settled beads)
for 30 min at 4°C. To assess the degree of protein
depletion from the lysates by the kinobeads, a
second Kinobead pulldown (with fresh beads)
was performed on the unbound fraction of the
vehicle control (so-called pulldown of pulldown).
This enabled the determination of a correction
factor for each protein that was used to calculate
apparent dissociation constants for a drug-target
complex. Proteins bound to kinobeadswere eluted
with LDS sample buffer (NuPAGE, Invitrogen)
containing 50mMDTT and stored until required.
The same procedure was used for immobilized
omipalisib (coupling density 1 mmol/mL).
Western blotting of kinobeads eluates was per-

formed using the following antibodies: SIK2 (sc-
393139 (B-12), Santa Cruz Biotechnology), PAK4
(#3242, Cell Signaling Technology), CHEK1 (#2360,
Cell Signaling Technology), a-tubulin (sc-12462-R
(E-19), Santa Cruz Biotechnology).

Liquid chromatography–tandem mass
spectrometry (LC-MS/MS)

Kinobeads eluates were alkylated with chloro-
acetamide (55 mM) and run into a 4-12% NuPAGE
gel (Invitrogen; approximately 1 cm). In-gel di-
gestion was performed according to standard
procedures. Generated peptides were analyzed
by LC-MS/MS on a nanoLC-Ultra 1D+ (Eksigent)
coupled to an LTQ Orbitrap Elite mass spec-
trometer (Thermo Fisher Scientific). Peptides
were delivered to a trap column (75 mm × 2 cm,
self-packed with Reprosil-Pur C18 ODS-3 5 mm
resin, Dr. Maisch, Ammerbuch) at a flow rate of
5 mL/min in solvent A0 (0.1% formic acid in
water). Peptides were separated on an analytical
column (75 mm× 40 cm, self-packed with Reprosil-
Gold C18, 3 mm resin, Dr. Maisch, Ammerbuch)
using a 100 min linear gradient from 4-32% sol-
vent B (0.1% formic acid, 5% DMSO in acetonitrile)
and solvent A1 (0.1% formic acid, 5% DMSO in
water) at a flow rate of 300 nL/min (51). The mass
spectrometer was operated in data dependent
mode, automatically switching between MS and
MS2 spectra. MS1 spectra were acquired over a
mass-to-charge (m/z) range of 360-1300 m/z at a
resolution of 30,000 (at m/z 400) in the Orbitrap
using an automatic gain control (AGC) target

value of 1e6 or maximum injection time of 100 ms.
Up to 15 peptide precursors were selected for
fragmentation by higher energy collision-induced
dissociation (HCD; isolation width of 2 Th, maxi-
mum injection time of 100 ms, AGC value of 2e5)
using 30% normalized collision energy (NCE)
and analyzed in the Orbitrap (7,500 resolution).
A previous experimentally-obtained inclusion list
containing approximately 1,000 kinase peptide m/z
and retention time values was enabled in the data
acquisition regime. Dynamic exclusion was 20 s
and singly-charged precursors were excluded. Pro-
files of EGFR inhibitors in BT-474 cells were ob-
tained using a Dionex Ultimate 3000 nano HPLC
coupled to a Q Exactive HF mass spectrometer.
Experiments using the immobilized omipalisib
probe were analyzed on a nanoLC-Ultra 1D+
coupled to a Q Exactive HF mass spectrometer.
For both instruments, peptides were delivered
to a trap column as described above and sepa-
rated on an analytical column using a 60 min
gradient from 4-32% solvent B in solvent A1. MS1
spectra were acquired at a resolution of 60,000
(at m/z 200) using a maximum injection time of
10 ms and an AGC target value of 3e6. Up to
12 peptide precursors were isolated (isolation
width of 1.7 Th, maximum injection time of 75 ms,
AGC value of 2e5) and fragmented by HCD using
25% NCE and analyzed at a resolution of 15,000.
Precursor ions that were singly-charged, unassigned
or with charge states >6+ were excluded. The dy-
namic exclusion duration of fragmented precur-
sor ions was 30 s.

Peptide and protein identification
and quantification

Peptide and protein identification plus quantifi-
cation were performed with MaxQuant (version
1.5.3.30.) (52) by searching the MS2 data against
all canonical protein sequences as annotated in
the Swissprot reference database (human proteins
only, 20,193 entries, downloaded 22.03.2016, inter-
nally annotated with PFAM domains) using the
embedded search engine Andromeda (53). Carba-
midomethylated cysteine was a fixed modifica-
tion; and phosphorylation of serine, threonine,
and tyrosine, oxidation of methionine, and N-
terminal protein acetylation were variable modi-
fications. Trypsin/Pwas specified as the proteolytic
enzyme and up to twomissed cleavage sites were
allowed. Precursor and fragment ion tolerances
were 10 ppm and 20 ppm, respectively. Label-free
quantification (54) and datamatching between con-
secutive analyseswere enabledwithinMaxQuant.
Search results were filtered for a minimum pep-
tide length of seven amino acids, 1% peptide and
protein FDR plus common contaminants and
reverse identifications. For consistent peptide
identification and protein grouping, the MS data
for each compound was supplemented with
15 standardDMSO controls. Each compoundwas
analyzed separately.

Data analysis

For the kinobeads competition binding assays,
protein intensities were normalized to the re-
spective DMSO control and IC50 and EC50 values
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were deduced by a four-parameter log-logistic
regression using an internal pipeline that uti-
lizes the ‘drc’ (55) package in R. A Kd

app was
calculated by multiplying the estimated EC50

with a protein-dependent correction factor (de-
pletion factor) that was limited to a maximum
value of 1. The correction factor (cf) for a pro-
tein is defined as the ratio of the amount of pro-
tein captured from two consecutive pulldowns of
the same DMSO control lysate (14, 56). In this
study, protein-dependent correction factors were
set to the median of correction factors across all
experiments using the same lysate and beads.

mRNA sequencing

Total RNA from the cell lines COLO 205, K-562,
MV-4-11 and SK-N-BE(2) was isolated using the
RNeasy Plus Kit (Qiagen). Concentrations of pu-
rified RNA were determined using the Qubit
2.0 Fluorometer (Thermo Fischer Scientific) and
the integrity was assessed applying the Agilent
2100 Bioanalyzer (Agilent). A RIN value of 10 in-
dicated maximum integrity for all four cell line
samples. TruSeq RNA Sample Preparation Kit V2
(Illumina) was subsequently used for library syn-
thesis according to the manufacturer’s instruc-
tions. 10 nM of normalized libraries were pooled
and loaded onto the flow cell of a HiSeq2500
Sequencing System (Illumina), followed by clus-
ter generation and sequencing-by-synthesis. Sam-
ples were sequenced to a depth ranging from
51,583,423 (MV-4-11) to 63,500,730 purity filtered
paired end reads (SK-N-BE (2)) of 101 bp length.
Raw sequence data were mapped to the hg37 ref-
erence genome and processed to determine tran-
script expression and variants using Genomatix
Mining station, NGSAnalyzer (Genomatix Software
GmbH, Munich, Germany) and Integrative Ge-
nomics Viewer (57, 58).

Deep proteome profiling of cell lines

Proteinswereextractedand concomitantly reduced
and alkylated using lysis buffer (50 mM Tris-HCl
pH 7.6, 8 M urea, 10 mM Tris-(2-carboxyethyl)-
phosphin-HCl, 40 mM chloro-acetamide, pro-
tease inhibitor SigmaFast (S8820-20TAB) and
Phosphatase inhibitor cocktail). Protein concen-
tration of the cell extract was determined using
a Bradford assay (Thermo Fisher Scientific). A
total of 300 mg protein extract was diluted with
digestion buffer (50 mM Tris-HCl pH 7.6) to re-
duce the urea concentration to <1.6 M, and sub-
sequently digested with trypsin (1:100 protease:
protein ratio). After a pre-digestion step (4 hours,
37°C), another aliquot of trypsin was added (1:100
protease:protein ratio), and the sample was fur-
ther incubated overnight at 37°C. The tryptic
digest was acidified with formic acid (final con-
centration 1% v/v), precipitates were removed
by centrifugation (14,000 x g, 4°C, 10 min), the
supernatant was desalted and concentrated using
C18 Sep-Pak columns according to the manufac-
turer’s instructions (Waters), and dried down in
a vacuum centrifuge. The desalted digest was
resolubilized in 5 mM Tris, pH 8.5 prior to hy-
drophilic SAX (hSAX) chromatography as de-
scribed before (59). Thirty-six hSAX fractions

were collected and desalted using C18 StageTips
as described (60). Each desalted peptide poolwas
analyzed by LC-MS/MS as follows. Desalted pep-
tide samples (10% of each hSAX fraction) were
analyzed on a LC-MS/MS system consisting of an
Eksigent NanoLC415 (Eksigent) ultrahigh pres-
sure nano LC system coupled online to a Q Ex-
active Plus mass spectrometer (Thermo Scientific).
Peptides were first delivered to a trap column
(100 mm x 2 cm, packed in house with Reprosil-
Pur C18 ODS-3 5 mm resin, Dr. Maisch, Ammer-
buch) at a flow rate of 5 mL/min in solventA0 (0.1%
formic acid in water). Peptides were separated
on an analytical column (75 mm x 40 cm, packed
in-house with Reprosil-Gold C18, 3 mm resin,
Dr. Maisch, Ammerbuch) using a 100 min linear
gradient from 4-32% of solvent B (0.1% formic
acid, 5% DMSO in acetonitrile) and solvent A1
(0.1% formic acid, 5% DMSO in water) at a flow
rate of 300 nL/min (51). Full scan MS1 spectra
were acquired at a resolution of 70,000 (at m/z
200) in the Orbitrap using a maximum injection
time of 100ms and anAGC target value of 3e6. Up
to 20 peptide precursors were sequentially se-
lected and subjected to fragmentation by HCD
using 25% NCE (isolation width of 1.7 Th, maxi-
mum injection time of 50 ms, AGC value of 1e5,
17,500 resolution). Dynamic exclusion duration
of fragmented precursor ions was set to 20 s.
Peptide and protein identification and quanti-
ficationwas performed usingMaxQuant (version
1.5.3.30) as described above. Absolute quantifica-
tion using iBAQ was enabled.

Kinase activity assays

Kinase activity assays were performed at Re-
action Biology Corp. or ProQinase GmbH. IC50

values were obtained using 10 drug concentra-
tions in semi-log steps. Kinases of interest were
measured at an ATP concentration correspond-
ing to the apparent Km for ATP of the corre-
sponding kinase.

Pulsed SILAC experiments for
EGFR half-life determination

HeLa cellswere cultured in SILACDMEM(Thermo
Fisher Scientific) supplemented with 10% dia-
lyzed FBS (GibcoTM), 1% antibiotic antimycotic
solution (Sigma) and 1.74 mM L-proline (≥99%,
Sigma). Arginine and lysine were added in either
light (K0, isotope purity ≥99%; R0, ≥98%, Sigma)
or heavy (K8, ≥99%; R10, ≥99% Cambridge Iso-
tope Laboratories) form to a final concentration
of 0.798 mM for lysine and 0.398 mM for ar-
ginine. After 10 cell doublings in heavy medium,
proteins were tested for label incorporation (>99%
K8 and R10). For the pulse experiment, heavy
medium was replaced with light medium after
washing the cells twice using sterile PBS. HeLa
cell doubling time was determined by cell count-
ing (six replicates every 12 h). Cells were lysed at
1, 3, 6, 10, 16, 24, 34 and 48 h after the medium
switch using 8M urea in 40 mM Tris-HCl con-
taining 1x protease inhibitor (cOmpleteTM, Mini,
EDTA-free Protease Inhibitor Cocktail Tablets,
Roche) and 1x phosphatase inhibitors. Lysates
were cleared by centrifugation for 30 min at

20,000 g and 4°C and protein concentration was
determined by the Bradford method (Coomassie
(Bradford) Protein Assay Kit, Thermo Fisher
Scientific).
After reduction (10 mM DTT, 30°C, 30 min)

and alkylation (50 mM chloroacetamide, room
temperature, 30 min, in the dark), the lysate was
diluted to 1.6 M urea using 40 mM Tris-HCl. Di-
gestion was performed using trypsin (Promega,
1:50 enzyme-to-substrate ratio) and incubating
overnight at 37°C at 700 rpm on a thermoshaker.
Digests were acidified by addition of neat formic
acid (FA) to 1% and desalted by centrifugation
through self-packed Stage Tips (loading andwash
solvent: 0.1% FA; elution solvent: 0.1% FA, 60%
acetonitrile). For this, 200 ml pipette tips were
packed with five C18 extraction disks (Ø 1.5 mm,
3M EmporeTM SPE disks, Sigma-Aldrich) and
fixed in the cut lids of 1.5 mL tubes. The material
was washed and activated using 250 mL acetoni-
trile and 250 mL elution solvent, then equilibrated
applying 500 mLwash solvent. Next, sampleswere
slowly loaded twice, washed with 250 mL wash
solvent and eluted using 50 mL elution solvent.
Peptide solutions were frozen and dried in a
SpeedVac.
High-pH reversed-phase tip fractionation was

also performed in Stage Tips, constructed as de-
scribed above. Tips were washed using 250 mL of
100% ACN, followed by 250 mL of 60% ACN in
25 mM NH4COOH, pH 10 and then equilibrated
with 500 mL of 25 mM NH4COOH, pH 10. Sub-
sequently, the desalted peptides were reconsti-
tuted in 50 mL of 25 mM NH4COOH, pH 10, and
slowly loaded onto the C18 material. After re-
application of the flow through, bound peptides
were eluted using 40 mL of solvent with increas-
ing concentrations of ACN (5, 10, 15, 17.5, 50%
ACN) in 25 mM NH4COOH, pH 10. The 5 and
50% ACN fractions were pooled and the 17.5%
ACN fraction was combined with the previously
stored flow through, resulting in a total of four
fractions, which were dried and stored at −20°C
until LC-MS/MS measurement.
Nanoflow LC-ESI-MS/MSmeasurements were

performedwith aDionexUltimate 3000UHPLC+
system coupled to a Fusion Lumos Tribrid mass
spectrometer (Thermo Fisher Scientific). After
reconstitution in 1% FA, 1/6th of each high pH-
RP fractionwas injected. Peptides were delivered
to a trap column (75 um x 2 cm, packed in-house
with 5 mmC18 resin; Reprosil PURAQ,Dr.Maisch)
andwashed using 0.1% formic acid at a flow rate
of 5 mL/min for 10 min. Subsequently, peptides
were transferred to an analytical column (75 um x
45 cm, packed in-house with 3 mm C18 resin;
Reprosil Gold, Dr. Maisch) applying a flow rate
of 300 nL/min and separated using a 100 min
linear gradient from 4% to 32% LC solvent B
(0.1% FA, 5% DMSO in ACN) in LC solvent A
(0.1% FA in 5% DMSO). The mass spectrometer
was operated in positive ionization mode. Full
scan MS1 spectra were recorded from 360 to
1300 m/z at a resolution of 60,000 (at m/z 200)
using an AGC target value of 4e5 charges and a
maximum injection time of 50 ms. Up to 15 se-
quentially selected precursors (isolation window
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1.6 m/z) were fragmented via HCD using a nor-
malized collision energy of 28%. MS2 spectra
were recorded at a resolution of 15,000 using
an AGC target value of 1e5 and a maximum in-
jection time of 100 ms. Fixed first mass and dy-
namic exclusion were set to 100 m/z and 60 s,
respectively.
Peptide and protein identification and quan-

tification was performed using MaxQuant (ver-
sion 1.5.5.1). Raw files were searched against the
UniProtKB database (human, 42,145 entries,
downloaded 01.02.2016) with K0/R0 and K8/R10
specified as metabolic labels. Carbamidomethyl-
ated cysteine was set as fixed modification and
oxidation of methionine, and N-terminal protein
acetylation as variable modifications. Trypsin/P
was specified as the proteolytic enzyme, with up
to two missed cleavage sites allowed. Precursor
tolerance was set to ±5 ppm, and fragment ion
tolerance to ±20 ppm. Results were adjusted to
1% PSM and 1% protein FDR.
For half-life determination, fractions of heavy

EGFR peptides (summed intensities of heavy
peptides divided by summed intensities of light
and heavy peptides) were plotted over time and
a curve was fitted following a one phase decay
equation:

f ðtÞ ¼ ðA� BÞe�Kt � B ð1Þ

where K is the rate constant of the decay of
heavy label, A is the fraction of heavy label at
t=0 and B the fraction of heavy label at t=inf.
As the decrease of heavy label is affected by the

half-life of the protein as well as the cell growth,
K can be formulated as:

K ¼ kd þ kcd ð2Þ

where kd is the protein degradation rate con-
stant and kcd is the rate constant of the cell
doubling. The latter was obtained by fitting an
exponential growth equation to the cell counts
determined over the course of the pulsed SILAC
experiment. The protein half-life T1⁄2 can then
be calculated as:

T½ ¼ ln2

kd
ð3Þ

Comparison of kinase inhibitor
profiles/targets to other published data

For the purpose of this comparison, only targets
annotated as either direct Kinobead binders or
kinases were considered in the comparison to
interactions reported in the literature or major
onlinedatabases.Datasets obtained fromCHEMBL,
LINCS, Anastassiadis et al. (6) andMetz et al. (11)
were filtered for compounds used in theKinobead
drug screen and protein names were annotated
according to gene names as used inUniProt. Dose
response data was filtered for half maximal re-
sponse at 30 mM or lower if the assay threshold
concentration was lower. Single concentration
datawas filtered for aminimumof 25% inhibition
of binding or activity.

Analysis of scientific literature on kinase
inhibitors (as of June 2017)
The number of PubMed entries was derived from
searching the kinase inhibitor and its synonyms
in the PubMed database. This analysis includes
primary scientific literature as well as reviews
and published clinical trial reports about the re-
spective drug. Additionally, the kinase inhibitors
(using their respective CHEMBL IDs) were also
searched for scientific literature reporting any
type of bioactivities (e.g. data on single proteins,
cell lines, organisms) in the CHEMBL database.
A structure search was performed in SciFinder
and yielded the overall number of publications
and patents annotated to this compound struc-
ture (including reviews).

Cytokine secretion assay in response to
SIK2 inhibitors

Primary BMDMs were obtained from C57BL/6J
mice which were maintained under standard
specific pathogen-free conditions. BMDMs were
differentiated for six days in DMEM (Gibco) con-
taining 10% FCS, Penicillin/Streptomycin (Gibco),
0.1 mM 2-Mercaptoethanol (Gibco) and L929-
conditioned medium. On day 6, BMDMs were
seeded in 96-well plates at 2.5x104 cells per well
in 50 mL culture medium (differentiation medium
without L929 supernatants), followed by incu-
bation at 37°C for 4 h. Cells were incubated
with compounds (25 mL of a 4X stock per well)
for 2 h followed by stimulation with LPS (ultra-
pure LPS-EB from Invivogen, 100 ng/mL final
concentration) dispersed in culture medium
(25 mL per well) for 18 h. After LPS stimulation,
the cell culture medium was removed and clari-
fied by centrifugation for 5 min at 400 × g.
Concentrations of TNFa or IL-10 in the super-
natants were determined using mouse TNFa
ELISA ready-set-go (eBioscience) according to
the manufacturer’s instructions. BMDMs were
detached with 5 mM EDTA in PBS, transferred
to a white plate and viability was assessed using
the CellTiter-Glo luminescent cell viability assay
(Promega) following to the manufacturer’s in-
structions. Experiments were performed in bio-
logical duplicates and technical triplicates.

CRCT3 phosphorylation site monitoring
by PRM after SIK2 inhibitor treatment

Murine BMDMs were treated with HG-9-91-01
(300 nM), AZD-7762 (300 nM), PF-03814735
(300 nM), UCN-01 (100 nM), dasatinib (300 nM),
AT-9283 (1000 nM) for 30 min at 37°C, followed
by stimulation with LPS (ultra-pure LPS-EB from
Invivogen, 100 ng/mL final concentration) for
30 min at 37°C. Each treatment was performed
on a single 10 cm dish (about 90% confluence,
0.5-1x107 cells, 0.1% final DMSO concentration).
After treatment, cells were washed twice with
phosphate-buffered saline and lysed by scraping
in the presence of 200 mL lysis buffer (40 mM
Tris-HCl pH 7.6, 8 M urea, protease inhibitors
(SigmaFast, Sigma) and phosphatase inhibitor
cocktail at 1× final concentration). Disulfide bonds
were reduced (10 mM DTT, 45 min, 37°C) and
alkylated (55 mM chloroacetamide, 30 min, room

temperature, darkness). A total of 500 mg protein
extract was diluted with digestion buffer (50 mM
Tris-HCl pH 7.6) to reduce the urea concentra-
tion to <1.6 M, and subsequently digested with
trypsin (1:100 protease:protein ratio). After a pre-
digestion step (4 hours, 37°C), another aliquot of
trypsin was added (1:100 protease:protein ratio),
and the sample was further incubated overnight
at 37°C. The tryptic digest was acidified with
formic acid (final concentration 1% v/v), desalted
using C18 Sep-Pak columns according to the
manufacturer’s instructions (Waters), and dried
down in a vacuum centrifuge. Phosphopeptides
were enriched from digests using Fe-IMAC as
previously described (59). Fe-IMAC eluate was
desalted using C18 StageTips as described (60),
and dried down in a vacuum centrifuge.
To monitor the phosphorylation of the three

CRTC3 phosphorylation sites, a parallel reaction
monitoringassay (PRM)wassetup.SIK2-dependent
phosphorylation onCRTC3was reported for Ser62,
Ser162, Ser329, Ser370 (28). A spectral library for
the surrogate peptides LTQYHGGpSLPNVSQLR
(CRCT3_Ser62) and LFSLpSNPSLSTTNLSGPSR
(CRCT3_Ser370) was constructed using the Sky-
line 3.7.0 software (61) and a MaxQuant derived
msms.txt file. Precursor charge states and tran-
sitions were automatically chosen from the spec-
tral library and the transitions manually refined
to include site determining ions for each phospho
site. In addition, the PRTC retention time cali-
bration mixture (Pierce) was monitored. A sched-
uled inclusion listwith 10minmonitoringwindows
was exported for the LC-MS method (table S8).
Nanoflow LC-ESI-MS/MSmeasurements were

performedwith aDionexUltimate 3000UHPLC+
system coupled to a Fusion Lumos Tribrid mass
spectrometer (Thermo Fisher Scientific). After
reconstitution in 50mM citric acid, 0.1% FA con-
taining 25 fmol/mL PRTC retention time calibra-
tion mixture (Pierce), 1/4th of each Fe-IMAC
enrichment was injected. Peptideswere delivered
to a trap column (75 mm × 2 cm, packed in-house
with 5 mmC18 resin; Reprosil PURAQ,Dr.Maisch)
andwashed using 0.1% formic acid at a flow rate
of 5 mL/min for 10 min. Subsequently, peptides
were transferred to an analytical column (75 mm×
45 cm, packed in-house with 3 mm C18 resin;
Reprosil Gold, Dr.Maisch) applying a flow rate of
300 nL/min and separated using a 50 min linear
gradient from 4% to 35% LC solvent B (0.1% FA,
5% DMSO in ACN) in LC solvent A (0.1% FA in
5%DMSO). Themass spectrometer was operated
in positive ionization mode. The acquisition
method contained two separate experiments. The
acquisition was set up to switch between experi-
ments after one duty-cycle. The first experiment
consisted of a full scanMS1 spectrum recorded in
the Orbitrapmass analyzer from 360 to 1300m/z
at a resolution of 15,000 (at m/z 200) using an
AGC target value of 4e5 and amaximum injection
time of 10 ms. The second experiment consisted
of a tMS2 PRM scan triggering MS2 scans based
on a scheduled list containing m/z and charge
information. For the tMS2 PRM scan, the sched-
uled precursors were isolated (isolation win-
dow 0.4 m/z) and fragmented via HCD using
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a normalized collision energy of 28%. MS2 spec-
tra were recorded in the Orbitrap mass analyzer
from 100 to 2000 m/z at a resolution of 15,000
using an AGC target value of 2e5 and amaximum
injection time of 250 ms.
The generated RAW files were imported into

Skyline for data filtering and analysis. The tran-
sitions were extracted with Phospho (S, T, Y) as
structuralmodification, allowing precursor charges
2, 3 and ion types b, y. The library ion match
tolerance was set to 0.05 m/z and transitions
were extracted using the centroided productmass
analyzer with 20 ppm mass accuracy with high-
selectivity extraction switched on (including all
matching scans). Peaks were integrated using the
automatic peak finding function followed by the
manual curation of all peak boundaries and tran-
sitions (table S8). The summed area under the
fragment ion traces data for every transition was
exported for data visualization inMicrosoft Excel
and GraphPad Prism 5. Intensity values of the
samples were normalized to the total intensity of
all eluting features extracted from MaxQuant’s
allpeptides.txt to correct for unequal loading. Cor-
rected data was normalized to the intensity of the
DMSO control to display changes in CRTC3 phos-
phorylation introduced by SIK2 inhibition.

Implementation of elastic net for drug
target deconvolution

The predicted percentage of inhibition values
(using the 4 parameter model fits) for each
target:drug combination at 100 and 300 nM
were used as predictors for the elastic net model.
In order to evaluate the stability of selection of
a target, we employed a bootstrap approach as
previously described (62). In short, for each dose,
we randomly drew (with replacement) 100 pairs
of kinase inhibitor target profiles and TNFa pro-
ductionmeasurement and fed the randomly drawn
samples into the elastic net model. The results are
summarized by two statistic – selection frequency,
showing how many times a target is selected in
the 100 bootstrap samples; and effect size, the
coefficient multiplied by the standard deviation
of the Kd

apps of a target. The effect size reflects
how much the TNFa production changes under
a unit change of a specific target. Themodelswere
fitted using the CRAN package glmnet (version
2.0-10). The alpha and regularization parameter
lambda were optimized using a five-fold cross-
validation. Most features were stably selected at
a wide range of alpha, leading to a final selection
of alpha = 0.1 to have a good compromise be-
tween model accuracy and sparsity. Using this
alpha, lambda was chosen such that the predic-
tion error in the validation set was minimal.

Dose-dependent cell viability and
time-resolved cell proliferation assays
for combination treatments and
TPM3-NTRK1 fusion inhibition

Cell viabilitywas determinedusing the alamarBlue
cell viability assay (Thermo Fisher Scientific) in
96-well plates. For A-431 (epidermoid cancer) and
PC-9 (lung cancer) cells (cultivated in RPMI-1640
with 10% FBS, Biochrom), ACHN (renal cancer)

and IGROV-1 (ovarian cancer) cells (IMDM, 10%
FBS, Biochrom), 2,000 cells were seededper well.
For KM12 cell viability, 1,000 cells were seeded
per well in IMDM medium with 10% FBS (Bio-
chrom). On the following day, the cells were ex-
posed to different concentrations of a specified
inhibitor ranging from 1 nM to 10 mM. The cells
were incubated for 72 h at 37°C and 5%CO2. Cell
viability assays were performed by adding 10%
alamarBlue reagent to each well. The reduction
from resazurin to resorufin was measured after
4 h using a fluorescence spectrophotometer
(BMGLabtech) at 544 nm (excitation) and 584nm
(emission). This assay does not distinguish be-
tween viability and proliferation. For simplicity,
we refer to viability, acknowledging that thismay
also mean proliferation.
Time-resolved cell proliferation assays were

performed for A-431, PC-9, ACHN and IGROV-
1 cells in 96-well plates containing 2,000 cells per
well. Cells were exposed to gefitinib (LC Labo-
ratories) and AZD-4547 (Selleckchem) for 0, 12,
24, 48 and 72 h. The selected drug concentration
for each cell line was based on the cellular EC50
of the drug used (A-431: gefitinib 1 mM, AZD-
4547 5 mM;PC-9: gefitinib 100 nM, AZD-4547 5 mM;
IGROV-1: gefitinib 100nM,AZD-4547 5 mM;ACHN:
gefitinib 1 mM, AZD-4547 1 mM). The number of
viable cells was measured with the CellTiter-Glo
(Promega) reagent. Celltiter-Glo reagent (100 mL)
was added to each well, the plate was briefly
shaken at 700 r.p.m. and incubated in a micro-
plate reader at 37°C for 8 min. Measurement of
luminescence was performed after 10 min in a
fluorescence spectrophotometer (FluoStar Omega,
BMGLabtech). Data from the cellular assayswere
analyzed using GraphPadPrism (version 5.03).

siRNA and drug treatment for SRC and
BMP receptor signaling

NCI/ADR-RES cells were seeded in 200 mL IMDM
medium (Biochrom GmbH, supplemented with
10% FBS and 1% antibiotics) at a density of 1 ×
104 cells/mL, U-2 OS cells were seeded in 200 mL
DMEMmedium (BiochromGmbH, supplemented
with 10% FBS and 1% antibiotics) at a density of
5 × 103 cells/mL. The cells were incubated over-
night at 37°C and 5% CO2. Lyophilized siRNA
(for SRC, BMPR1A, ACVR1, ACVR1B, Qiagen) was
reconstitutedby the addition of sterile RNAse-free
water according to the instructions provided by
themanufacturer. The siRNAwas further diluted
inOpti-MEM(GIBCO) before addition of the trans-
fection reagent INTERFERin (PolyPlus, peqlab).
Themixture was vortexed for 10 s and incubated
for 10 min at room temperature. Medium was
removed from the cells and fresh medium was
added. The transfection mixture was homoge-
nized by swirling and added to the well. The cells
were incubated for 144 h and cell viability was
assessed by an alamarBlue assay according to the
manufacturer’s instruction (Thermo Fisher Sci-
entific) as described above.
For saracatinib treatment of U-2 OS and NCI/

ADR-RES control cells, cells were seeded in a 96-
well plate in a density of 1000 and 2000 cells per
well, respectively. Drug was added in increasing

concentrations (3 nM, 10 nM, 30 nM, 100 nM,
300 nM, 1 mM, 3 mM, 30 mM in DMSO) and in-
cubated for 72 h at 37°C and 5%CO2. Cell viability
was assessed by an alamarBlue assay according
to the manufacturer’s instruction (Thermo Fisher
Scientific) as described above.
For Western Blot analysis, 3x106 U-2 OS cells

were seeded in a 10 cm cell culture dish and
treated with inhibitors (dasatinib 1 mM, gilteritinib
1 mM, saracatinib 1 mM, 100 nM, 10 nM in DMSO)
for 30 min prior to addition of 100 ng/ml BMP2
(#4697, Cell signaling technology), followed by
45 min incubation before cells were lysed using
an NP40-based lysis buffer as described earlier.
Western blotting was performed using the follow-
ing antibodies: pSMAD1/5 (Ser463/465)/SMAD9
(465/467) (D5B10,Cell SignalingTechnology), pSRC
(Y416, D49G4, Cell Signaling Technology), c-SRC
(sc-18, Santa Cruz Biotechnology) and b-actin (sc-
47778, Santa Cruz Biotechnology).

Cloning, expression, purification,
crystallization, and structure
determination of NQO2

The codon-optimized full-length DNA sequence
encoding for the human NQO2 enzyme (Thermo-
Fisher Scientific) with a C-terminal His6-affinity
tag was cloned into the expression plasmid
pET28. For protein expression, the plasmid was
transformed in E. coli BL21 (DE3) (Novagen). The
cells were grown in 2YT medium supplemented
with 50 mg/mL kanamycin at 37°C until an op-
tical density of 1 was reached. Protein expression
was induced by adding 1 mM isopropyl-b-D-
thiogalactoside (IPTG) and continued at 30°C
overnight. Cells were harvested by centrifuga-
tion, resuspended in 50 mM Tris-HCl pH 7.4,
300 mM NaCl, 10 mM imidazole (lysis buffer)
supplemented with complete protease inhibitor
cocktail (Roche) and lysed by sonication. Protein
purification was performed by Ni-affinity chro-
matography (Ni-NTA superflow, Qiagen). The
protein buffer was exchanged to 50 mM Tris-
HCl pH 8, and the protein concentration was
adjusted to 50 mg/mL using centrifugal filter
devices (Amicon Ultra Centrifugal Filter Device,
Millipore), aliquoted and stored at -80°C until
required. For co-crystallization, NQO2 in 50 mM
Tris-HCl pH 8, 10 mM flavin adenine dinucleotide
and 1 mM dithiothreitol was mixed with pacriti-
nib, crenolanib or volitinib (4 mM stock solution
in dimethyl sulfoxide) to a final concentration
of 7.5 mg/mL NQO2 and 100 mM of the inhib-
itor prior to crystallization. Crystals were grown
in 180 mM triammonium citrate, 2.2 M ammo-
nium sulphate (crenolanib) and 200 mM sodium
sulphate, 2.2 M ammonium sulphate (pacritinib,
volitinib) at 20°C. Data was collected at the PXI
beam line of the Swiss Light Source (SLS, Villigen
Switzerland). Diffraction data were processed
with XDS (63, 64) to 1.35 Å (crenolanib, pacritinib)
and 1.9 Å (volitinib) resolution and crystals be-
longed to the space group P212121. The resolution
thresholds were chosen using the correlation co-
efficient of random half-data sets (1/2 CC) of
about 50% (65–67). For all data sets the same
set of FreeR reflections was used. The structures
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were solved by placing the coordinates of human
NQO2 (PDB code 2BZS) in the asymmetric crys-
tal unit using rigid-body refinement, followed by
restrained refinement in REFMAC5 (68–70). Well-
defined peaks for pacritinib, crenolanib and
volitinib were visible in the corresponding dif-
ference density maps. Iterative cycles of manual
building and refinement were performed in COOT
(68, 71) and REFMAC5. Structural superpositions
were achieved with SSM (72) and interactions
analyzed by LIGPLOT (73). All structural figures
were prepared with PyMol (Delano Scientific).
Full data collection and refinement statistics are
reported in the supplementary text.

Crystallization and structure
determination of MELK

Protein production was performed as previously
described (74). Crystallization experiments were
established using the dephosphorylated MELK
protein (residues 2-340) plus 1 mM DTT and
0.5 mM inhibitor dissolved in DMSO. Crystals
were grown in hanging drops prepared bymixing
equal volumes (1-2 mL) of protein solution at a
concentration of 7 mg/mL and reservoir solu-
tion containing 10-20% PEG 3350 or PEG 4000,
600mMNaCl and 100mMBis-Tris pH 6.5. After
setting the drops, 1 mL 14.3 M b-mercaptoethanol
was added to the 500 mL reservoir. Streak seed-
ing was essential in order to obtain diffraction
quality crystals. Twodifferent crystalmorphologies
were observed.MELK complexedwith nintedanib,
PF-3758309, K-252a and defactinib yielded rect-
angular, prism-shaped crystals as described (74);
whilst the MELK-BI-847325 complex produced
cubic crystals. Crystals were transferred in a cryo-
protectant solution (15%PEG3350, 600mMNaCl
and 100 mM Bis-Tris pH 6.5 and 30% glycerol)
prior to flash-cooling in liquid nitrogen. X-ray
diffraction data were collected at the European
Synchrotron Radiation Facility (ESRF) in Gre-
noble (beam line ID23-1). Crystals of MELK com-
plexed with nintedanib, PF-3758309, K-252a and
defactinib were of space group P212121; whilst
crystals of MELK complexed with BI-847325 be-
longed to space group I4132. Using an internal
MELK structure as a search model, data were
processedwith iMOSFLM (68, 75) or XDS (63, 64)
merged with SCALA (68, 76) and phased via mo-
lecular replacement with Phaser (68, 77). Refine-
ment of the structureswas achievedusingREFMAC
(68–70) and COOT (68, 71). Full data collection
and refinement statistics are reported in the sup-
plementary text.

Drug-perturbed phosphoproteome analysis

The ERBB2 overexpressing breast cancer cell
line BT-474 was grown in DMEM/Ham’s F-12
medium (Biochrom) supplementedwith 15% (v/v)
FBS (Biochrom)and1% (v/v) antibiotic/antimycotic
solution (Sigma). BT-474 cells were treated with
1 mM of each compound for 30 min in four bio-
logical replicates. After treatment, cells were
washed twicewith PBS (SigmaAldrich) and lysed
by scraping in the presence of 400 mL lysis buffer
(40 mM Tris-HCl pH 7.6, 8 M urea, EDTA-free
protease inhibitor complete mini (Roche) and

phosphatase inhibitor cocktail at 1× final concen-
tration). Lysatewas transferred intoa 1mLreaction
vessel and centrifuged for 1 h at 21,000×g. A total
of 2 mg protein per experimental condition was
digested. Disulfide bondswere reducedwithDTT
at a final concentration of 10 mM for 45 min at
37°C. Cysteine residueswere alkylatedwith 55mM
chloroacetamide for 30 min at room temper-
ature in the dark. The sample was diluted with
three volumes of 40 mM Tris-HCl pH 7.6 to de-
crease the urea concentration to 1.5 M. Trypsin
was added toaprotease-to-protein ratioof 1:50 (w/w)
and digestion was performed overnight at 37°C
and 700 rpm on a thermoshaker. The follow-
ing day, the samples were cooled to room temper-
ature and acidified with 0.5% TFA. Following
the precipitation of insoluble debris at 5,000×g,
the supernatant was desalted using 50 mg Sep-
Pak columns (Waters) and a vacuum manifold.
Columnswere primedwith 1 mL solvent B (0.07%
TFA, 50% ACN) and equilibrated with 2 mL sol-
vent A (0.07% TFA in deionized water). The sam-
ple was then slowly passed through the column
to allow proper peptide binding. Peptides were
washed three times with 1 mL solvent A and
then eluted into a reaction vessel using 2×150 mL
solvent B. Finally, the samples were frozen at
-80°C and lyophilised in a vacuum concentrator.
Phosphopeptideswere enriched fromdigests using
Fe-IMAC as previously described (59). Dried phos-
phopeptides were labeled using TMT 6-plex at
a final concentration of 6.67 mM according to
instructions provided by the manufacturer. One
TMT channel was used for each drug treatment
(126=control, 127=lapatinib, 128=afatinib, 129=
canertinib, 130=dacomitinib, 131=sapitinib). Sub-
sequently, peptides were separated into six
fractions using high pH reversed-phase stage tips
(five discs, Ø 1.5 mm, C18 material, 3M Empore
per micro-column were used). Stage tips were
primedwith 40 mL 50% ACN, 25 mMNH4COOH
(pH 10) and equilibrated with 2×40 mL 25 mM
NH4COOH (pH 10). The sample was then slowly
passed through the columnand the flow-through
collected and applied to a low pH micro-column
for desalting as previously described (78). Pep-
tides were fractionated with increasing ACN con-
centrations (5%, 7.5%, 10%, 12.5%, 15%, 17.5% and
50% ACN) in 25 mM NH4COOH, pH 10. The
desalted flow-through was combined with the
17.5% fraction and the 50% fraction with the 5%
fraction to give a total of six fractions. All sam-
ples were lyophilised. LC-MS/MS analysis of TMT
6-plex-labeled phosphopeptides was performed
using a Dionex Ultimate3000 nano HPLC cou-
pled to an Orbitrap Fusion (Thermo Scientific)
mass spectrometer. Peptides were dissolved in
15 mL0.5% formic acid and one thirdwas injected,
Duplicate analyses were performed for each stage
tip fraction. Peptides were desalted on a trap
column (Acclaim C18 PepMap100, 75 mM i.d. ×
2 cm) in 0.1% FA and separated on an analytical
column (Acclaim C18 PepMap RSLC, 75 mM
i.d. ×15 cm) using a 120min gradient from 3-25%
B (0.1% FA, 5% DMSO in 100% ACN) in solution
A (0.1% FA, 5% DMSO in water). Full scan MS1
spectrawere acquired over a range of 300-1700m/z

and at a resolution of 60,000 (at m/z 200) in
the Orbitrap (AGC target value 4e5, maximal
injection time 50 ms). Fragmentation was per-
formed using CID at 40%NCE (AGC target value
4e4, maximal injection time 60 ms) in the ion
trap. MS2 ions were recorded in the linear ion
trap. ForMS3 spectral acquisition, fragment ions
were selected by multi-notch isolation, allow-
ing a maximum of 10 notches and an ion trap
isolation width of 2 Da. These ions were frag-
mented by HCD at 55% NCE (AGC target val-
ue 1e5, maximal injection time 120 ms). The
resultant MS3-fragment ions were recorded
in the Orbitrap over an m/z range of 100-500
and a resolution of 60,000 (atm/z 200). Proteins
and peptides were identified and quantified
using MaxQuant (v 1.5.3.8) with enabled MS3-
based TMTquantification using default parameters
and the UniprotKB database (human, 42,145 en-
tries, downloaded 01.02.2016). Phosphorylation
on S, T and Y and oxidation ofMwas specified as
variable modification. Within one replicate, the
sumof phosphopeptide intensities per TMT chan-
nel were normalized to the sum of intensities of
its DMSO control (TMT 126). Subsequently, the
average intensities for each phosphopeptide per
replicate was normalized to the average intensity
of the same phosphopeptide across all replicates.
The latter corrects for batch effects introduced by
the MS2 quantification and allows for direct in-
tensity comparison across replicates. Data was
further analyzed by Perseus (v 1.5.0.15) (79). Fold
changes for each inhibitor against the vehicle
control were calculated per peptide and tested
for significance using a t-test and threshold p-
value < 0.01. Only phosphorylation sites that
were significantly-regulated (P value < 0.01) in at
least three from four biological replicates and at
least four from five inhibitors were considered as
core pathway members. Protein-protein interac-
tions were extracted using the String database
(v 10) (80) (combined score > 0.4) and visualized
in Cytoscape (v 3.1.0). ERBB pathway annotation
was performed based on the Reactome plug-in
(FDR < 0.01) in Cytoscape and only annotations
including the terms ERBB, ERBB2, AKT, PIK3,
MEK, MAPK1/3 and MTOR were selected.
Selected phosphosites were confirmed byWest-

ern Blot analysis using antibodies against pERBB2
Y1248 (#2247, Cell Signaling Technology), pCHEK1
S280 (orb129560, Biorbyt), pAKT S473 (#4060, Cell
SignalingTechnology)andb-actinC4 (sc-47778,Santa
CruzBiotechnology) in a separate biological replicate.

Kinobead expression profiling of 15
NSCLC cases

Fresh primary lung tumor tissues and surgical
margin (nearby healthy) tissue samples were col-
lected from consenting patients of Tartu University
Hospital and the clinical and histopathological
information was obtained from pathology re-
ports. For protein extraction, the defrosted tis-
sue was quickly dissected using surgical scissors,
washed with pre-cooled PBS to remove residual
blood and homogenized using a dounce homog-
enizer with compound pulldown lysis buffer
(0.8% NP40, 50 mM Tris-HCl pH 7.5, 5% Glycerol,
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1.5 mM MgCl2, 150 mM NaCl, 1 mM Na3VO4,
25 mM NaF, 1 mM DTT) and freshly added pro-
tease (2x protease inhibitor mixture; Roche Ap-
plied Science) and phosphatase inhibitors. The
homogenate was incubated on ice for 30 min and
then centrifuged at 2°C for 30 min at 20,000 x g
to remove cell debris. Supernatants were collected,
aliquoted, frozen in liquid nitrogen, and stored at
-80°C until further use. Protein concentration in
lysates was determined by the Bradford assay.
Kinobead pulldowns were performed in two

replicates as described (81). Briefly, 5mg of tissue
lysate were incubated with 100 mL of kinobeads-a
at 4°C for 4 h. After washing of the beads, bound
proteins were eluted with 2x NuPAGE-LDS sam-
ple buffer (Invitrogen), and subsequently reduced
and alkylated by 10 mM DTT and 55 mM iodo-
acetamide. The samples were concentrated on a
SDS gel and in-gel trypsin digestion was per-
formed. Peptides of kinobeads enriched NSCLC
samples were dissolved in 0.1% formic acid and
subjected to analysis on an Eksigent nanoLC-
Ultra1D+ (Eksigent) coupled to a LTQ Orbitrap
Velos (Thermo Scientific) for LC-MS/MS analy-
sis. Peptides were delivered to a trap column
(100 mm inner diameter x 2 cm, packedwith 5 mm
C18 resin, Reprosil PUR AQ; Dr. Maisch) at a flow
rate of 5 mL/min in 100% buffer A (0.1% FA in
HPLC grade water). Subsequently, peptides were
transferred to an analytical column (75 mmx40 cm
C18 column Reprosil PUR AQ, 3 mm; Dr. Maisch)
and separated using a 210min gradient from 2%
to 35% of buffer B (0.1% FA in acetonitrile) at
300 nL/min flow rate. The Orbitrap was operated
in data-dependent mode, automatically switching
betweenMSandMS2. Full scanMS spectra were
acquired in the Orbitrap at 60,000 resolution.
Internal calibration was performed using the ion
signal (Si(CH3)2O)6 H+ atm/z 445.120025 present
in ambient laboratory air. Tandem mass spec-
tra were generated for up to eight peptide pre-
cursors in the linear ion trap for fragmentation
by using collision-induced dissociation (CID).
Progenesis (version 3.1; Nonlinear Dynamics)

was used for intensity-based label-free quan-
tification. Briefly, after selecting one sample as
a reference, the retention times of all eluting
precursor m/z values in all other samples within
the experiment were aligned creating a list of
“features” representing the same peptide in each
sample. Features with two to six charges were in-
cluded for further analysis. Features with two or
less isotopes were excluded. After alignment and
feature filtering, replicate samples were grouped
together, and raw abundances of all features were
normalized to determine a global scaling factor
for correcting experimental variation such as dif-
ferences in the quantity of protein loaded into the
instrument. Given that multiple MS/MS spectra
are frequently collected for the same feature (pre-
cursor ion) across all the samples, the precursor
intensities were ranked, and the MS/MS spectra
of the five most intense precursors for each fea-
turewere transformed into peak lists and exported
to generate Mascot generic files. The Mascot
generic files were searched against the protein
sequence database IPI human (v. 3.68, 87,061

sequences) using Mascot (v.2.2, Matrix Science).
Search parameters were as follows: fixed mod-
ification of carbamidomethylation of cysteine
residues, variable modification of serine, threo-
nine, and tyrosine phosphorylation and methi-
onine oxidation, trypsin as proteolytic enzyme
with up to two missed cleavages, precursor ion
mass tolerance of 5 ppm, fragment ion mass tol-
erance of 0.6 Da, decoy search enabled. Search
results for spectrum to peptide matches were
exported in.xml format and then imported into
Progenesis to enable the combination of peptide
quantification and identification. Peptides with
mascot ion scores >33 (P < 0.05 identity thresh-
old) were retained, and only unique peptides for
corresponding proteins were used for identifica-
tion and quantification. Single peptide identi-
fications were removed except for identified
kinases. For protein quantification, the feature
intensities of all unique peptides of a protein
were summed up.
To identify differentially expressed kinases be-

tween normal and tumor samples, a paired t-test
on the log transformedMS intensity (median cen-
tered, quantified by Progenesis) was performed.
The false discovery rates (FDR) for kinases were
calculated from the resulting P values using
Benjamini-Hochberg correction.

Immunohistochemistry staining of
NSCLC patient tissue

Immunohistochemical staining and analysis of
human patientmaterial was performed on tissue
microarrays (TMA) as previously described (82).
All tissues analyzed in this study were obtained
from patients at the Institute of Surgical Pathol-
ogy, UniversityMedical Center Freiburg, Germany.
This study was approved by the Ethics Committee
of the University Medical Center Freiburg (no.
EK 10/12). The patient cohort (n=375) comprised
adenocarcinomas (n=186) and squamous cell car-
cinomas (n=189). Where required, histological
diagnoseswere verified according to currentWHO
classification with immunohistochemistry (83).
The maximum follow-up time was 210 months.
Clinical data comprising pTMN, resection status
(R), gender and patient age at diagnosis are sum-
marized in table S15. Immunohistochemical stain-
ing was performed on a Discovery XT automated
stainer (Ventana) using the following primary
antibodies: MELK (1:50, Sigma-Aldrich), DDR1
(1:50, Biozol), and EGFR (pharmDx™-kit, DAKO).
Signal detection was performed using peroxidase-
DAB(diaminobenzidine)-MAPkit (Roche,Ventana).
The immunohistological expression of the
membrane-binding EGFR, the nuclear MELK
and the cytoplasmatic DDR1 were classified into
four levels according to specific staining inten-
sity: Score 0, 1+, 2+, 3+.

Cell lines, inhibitors, cytokines and
antibodies for cabozantinib repurposing

Low-passage murine Ba/F3, WEHI-3B and leu-
kemia cell lines THP-1, OCI-AML3, OCI-AML5,
U-937, KG-1a, NB-4, HL-60, SD-1, K-562, MV-4-
11, MOLM-13, MONO-MAC-1, MONO-MAC-6,
EOL-1 KASUMI-1 were obtained from the German

Collection of Microorganisms and Cell Cultures
(DSMZ) and cultured as previously described and
according to instructions provided by the manu-
facturer (84). Stable Ba/F3 cells were generated as
previously described (84–86). The kinase inhib-
itors quizartinib, crenolanib, cabozantinib were
purchased from Selleckchem. Golvatinib was pur-
chased from MedChemExpress. Recombinant
human FLT3 ligand (FL) was obtained from
Promokine, recombinantmurine interleukin (IL)-3
and recombinant human stem cell factor (SCF)
were obtained from Immunotools. The following
antibodies were used: STAT5 (sc-835), FLT3 (sc-
480) (both Santa Cruz Biotechnology); a-tubulin
(T6199, Sigma-Aldrich); pSTAT5 (MA5-14973, Ther-
mo Fisher Scientific), pFLT3 (#3463, Cell Sig-
naling Technology). Immunoblot analysis was
performed as previously described (84).

Proliferation and MTS assay for
cabozantinib repurposing

For proliferation assays, 3×105 cells/mL and
4×104 cells/mL of leukemia and Ba/F3 cell lines,
respectively, were seeded in growth medium in
the presence or absence of inhibitors and cyto-
kines. Viable cells were counted after 72 h by
trypan blue exclusion using the cell viability
analyzer Vi-Cell XR (Beckman Coulter). Deter-
mination of the 50% inhibitory concentration
(IC50) of the inhibitors was calculated using
GraphPad Prism (v.5.03). For MTS assays, 7.5×103 –
40×103 cells/100 mL (cell line dependent) were
seeded and incubated in the presence or ab-
sence of inhibitors for 72 h and subjected to a
Cell Titer 96 Aqueous One solution cell prolif-
eration assay according to the instructions pro-
vided by the manufacturer (Promega).

Immunofluorescence staining

U-2 OS cells were grown on cover slips and
transiently transfected with pcDNA6.2-V5-HisA-
FLT3 wild-type and mutant constructs using
PoliFect (Qiagen) according to the guidelines sup-
plied by the manufacturer. 48 h post-transfection,
cells were treated for 6 h in the presence or ab-
sence of 50 nM cabozantinib. Glycoconjugates
in the membrane were stained thereafter using
anti-wheat germ agglutinin (WGA) 488 fluores-
cein conjugate (1:1,000, W11261, Invitrogen) at
37°C for 10 min. After washing with PBS, cells
were fixed with PBS, 2% formaldehyde (37%
stock solution; Merck Schuchardt) for 10 min,
permeabilized with PBS, 0.5% Triton X-100 (Carl
Roth) for 10 min and blocked for 1 h with PBS,
2% BSA (Albumin Fraction V, AppliChem). Cells
were then incubated with polyclonal rabbit anti-
FLT3 antibody (1:200, sc-480, SantaCruz Bio-
technology) for 1 h. After extensive washing with
PBS, 0.1% Tween 20 (Carl Roth), secondary anti-
body incubation was performed for 1 h with anti-
rabbit IgG (H+L), F(ab’)2 fragment Alexa Fluor
594 Conjugate (1:500, 8889, Cell Signaling).
Counterstaining with 1 mg/mL 4’,6-diamidino-2-
phenylindole (DAPI; Sigma Aldrich) was then per-
formed for 10 min. For mounting fluorescence,
mounting medium (Dako) was used. Specimens
were analyzed utilizing a confocal fluorescence
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laser scanning system (TCS SP5 II; Leica). For
image acquisition and processing, the LAS AF
Lite Software (Leica) was used.

AML xenograft model

NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mice (NSG;
The Jackson Laboratory) weremaintained under
specific pathogen-free conditions in the research
animal facility of the Helmholtz Center Munich,
Germany. Animals accessed food and water ad
libitum, and were housed with a 12 h light–dark
cycle and constant temperature. All animal trials
were performed in accordancewith the current eth-
ical standards of the official committee on animal
experimentation (written approval byRegierung
von Oberbayern, number 55.2-1-54-2532-95-10).
AML cell lines MOLM13 and OCI-AML3 were
lentivirally-transduced to express a recombinant
codon-optimized form of firefly luciferase (effluc)
(87). Production of lentiviral particles, lentiviral
transduction and in vivo bioluminescence imag-
ing (BLI) were performed as previously described
(88). Cells transgenic for effluc were injected into
the tail vein ofmice. To visualize effluc-expressing
cells, D-Luciferin (BIOMOL GmbH) was injected
at 150mg/kg into the tail vein of mice. The Living
Image software 4.4 (Caliper Life Sciences) was
used for data acquisition and quantification of
light emission using a scale with a minimum of
2×103 photons per second per cm2 per solid angle
of one steradian (sr). When the bioluminescence
imaging (BLI) signal reached about 1×108 photons/
(s cm2 sr), mice were treated with cabozantinib
(60 mg/kg) or solvent (30% 1,2-Propandiol, 5%
Tween80, 65% D5W) by oral gavaging over one
or two weeks, four doses per week. No random-
ization or blinding was done. After the end of
the treatment, tumor load was again determined
by BLI.

REFERENCES AND NOTES

1. P. Wu, T. E. Nielsen, M. H. Clausen, FDA-approved
small-molecule kinase inhibitors. Trends Pharmacol. Sci. 36,
422–439 (2015). doi: 10.1016/j.tips.2015.04.005;
pmid: 25975227

2. D. Fabbro, S. W. Cowan-Jacob, H. Moebitz, Ten things you
should know about protein kinases: IUPHAR review 14.
Br. J. Pharmacol. 172, 2675–2700 (2015). doi: 10.1111/
bph.13096; pmid: 25630872

3. M. W. Karaman et al., A quantitative analysis of kinase inhibitor
selectivity. Nat. Biotechnol. 26, 127–132 (2008). doi: 10.1038/
nbt1358; pmid: 18183025

4. Y. Gao et al., A broad activity screen in support of a
chemogenomic map for kinase signalling research and drug
discovery. Biochem. J. 451, 313–328 (2013). doi: 10.1042/
BJ20121418; pmid: 23398362

5. M. I. Davis et al., Comprehensive analysis of kinase inhibitor
selectivity. Nat. Biotechnol. 29, 1046–1051 (2011).
doi: 10.1038/nbt.1990; pmid: 22037378

6. T. Anastassiadis, S. W. Deacon, K. Devarajan, H. Ma,
J. R. Peterson, Comprehensive assay of kinase catalytic
activity reveals features of kinase inhibitor selectivity.
Nat. Biotechnol. 29, 1039–1045 (2011). doi: 10.1038/nbt.2017;
pmid: 22037377

7. J. Bain et al., The selectivity of protein kinase inhibitors:
A further update. Biochem. J. 408, 297–315 (2007).
doi: 10.1042/BJ20070797; pmid: 17850214

8. M. A. Fabian et al., A small molecule–kinase interaction map
for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336
(2005). doi: 10.1038/nbt1068; pmid: 15711537

9. S. P. Davies, H. Reddy, M. Caivano, P. Cohen, Specificity and
mechanism of action of some commonly used protein kinase
inhibitors. Biochem. J. 351, 95–105 (2000). doi: 10.1042/
bj3510095; pmid: 10998351

10. J. M. Elkins et al., Comprehensive characterization of the
Published Kinase Inhibitor Set. Nat. Biotechnol. 34, 95–103
(2016). doi: 10.1038/nbt.3374; pmid: 26501955

11. J. T. Metz et al., Navigating the kinome. Nat. Chem. Biol.
7, 200–202 (2011). doi: 10.1038/nchembio.530;
pmid: 21336281

12. HMS LINCS Database, http://lincs.hms.harvard.edu/db/
(2016).

13. M. Bantscheff et al., Quantitative chemical proteomics reveals
mechanisms of action of clinical ABL kinase inhibitors.
Nat. Biotechnol. 25, 1035–1044 (2007). doi: 10.1038/nbt1328;
pmid: 17721511

14. G. Médard et al., Optimized chemical proteomics assay for
kinase inhibitor profiling. J. Proteome Res. 14, 1574–1586
(2015). doi: 10.1021/pr5012608; pmid: 25660469

15. M. Wilhelm et al., Mass-spectrometry-based draft of the human
proteome. Nature 509, 582–587 (2014). doi: 10.1038/
nature13319; pmid: 24870543

16. M. P. Patricelli et al., In situ kinase profiling reveals
functionally relevant properties of native kinases.
Chem. Biol. 18, 699–710 (2011). doi: 10.1016/
j.chembiol.2011.04.011; pmid: 21700206

17. J. J. Sutherland, C. Gao, S. Cahya, M. Vieth, What general
conclusions can we draw from kinase profiling data sets?
Biochim. Biophys. Acta 1834, 1425–1433 (2013). doi: 10.1016/
j.bbapap.2012.12.023; pmid: 23333421

18. A. F. Rudolf, T. Skovgaard, S. Knapp, L. J. Jensen,
J. Berthelsen, A comparison of protein kinases inhibitor
screening methods using both enzymatic activity and
binding affinity determination. PLOS ONE 9, e98800 (2014).
doi: 10.1371/journal.pone.0098800; pmid: 24915177

19. P. P. Graczyk, Gini coefficient: A new way to express selectivity
of kinase inhibitors against a family of kinases. J. Med. Chem.
50, 5773–5779 (2007). doi: 10.1021/jm070562u;
pmid: 17948979

20. J. C. M. Uitdehaag, G. J. R. Zaman, A theoretical entropy score
as a single value to express inhibitor selectivity. BMC
Bioinformatics 12, 94 (2011). doi: 10.1186/1471-2105-12-94;
pmid: 21486481

21. A. C. Cheng, J. Eksterowicz, S. Geuns-Meyer, Y. Sun, Analysis
of kinase inhibitor selectivity using a thermodynamics-based
partition index. J. Med. Chem. 53, 4502–4510 (2010).
doi: 10.1021/jm100301x; pmid: 20459125

22. S. Knapp et al., A public-private partnership to unlock the
untargeted kinome. Nat. Chem. Biol. 9, 3–6 (2013).
doi: 10.1038/nchembio.1113; pmid: 23238671

23. A. J. Kooistra et al., KLIFS: A structural kinase-ligand
interaction database. Nucleic Acids Res. 44, D365–D371
(2016). doi: 10.1093/nar/gkv1082; pmid: 26496949

24. Z. Zhao et al., Exploration of type II binding mode: A privileged
approach for kinase inhibitor focused drug discovery?
ACS Chem. Biol. 9, 1230–1241 (2014). doi: 10.1021/cb500129t;
pmid: 24730530

25. J. F. Ohren et al., Structures of human MAP kinase kinase
1 (MEK1) and MEK2 describe novel noncompetitive kinase
inhibition. Nat. Struct. Mol. Biol. 11, 1192–1197 (2004).
doi: 10.1038/nsmb859; pmid: 15543157

26. A. P. Bento et al., The ChEMBL bioactivity database: An
update. Nucleic Acids Res. 42, D1083–D1090 (2014).
doi: 10.1093/nar/gkt1031; pmid: 24214965

27. A. Fauster et al., A cellular screen identifies ponatinib
and pazopanib as inhibitors of necroptosis. Cell Death Dis.
6, e1767 (2015). doi: 10.1038/cddis.2015.130;
pmid: 25996294

28. K. Clark et al., Phosphorylation of CRTC3 by the salt-inducible
kinases controls the interconversion of classically activated
and regulatory macrophages. Proc. Natl. Acad. Sci. U.S.A. 109,
16986–16991 (2012). doi: 10.1073/pnas.1215450109;
pmid: 23033494

29. J. Ozanne, A. R. Prescott, K. Clark, The clinically approved
drugs dasatinib and bosutinib induce anti-inflammatory
macrophages by inhibiting the salt-inducible kinases.
Biochem. J. 465, 271–279 (2015). doi: 10.1042/BJ20141165;
pmid: 25351958

30. T. S. Gujral, L. Peshkin, M. W. Kirschner, Exploiting
polypharmacology for drug target deconvolution. Proc. Natl.
Acad. Sci. U.S.A. 111, 5048–5053 (2014). doi: 10.1073/
pnas.1403080111; pmid: 24707051

31. A. C. Peterson, J. D. Russell, D. J. Bailey, M. S. Westphall,
J. J. Coon, Parallel reaction monitoring for high resolution and
high mass accuracy quantitative, targeted proteomics.
Mol. Cell. Proteomics 11, 1475–1488 (2012). doi: 10.1074/
mcp.O112.020131; pmid: 22865924

32. S. Gallien et al., Targeted proteomic quantification on
quadrupole-orbitrap mass spectrometer. Mol. Cell. Proteomics
11, 1709–1723 (2012). doi: 10.1074/mcp.O112.019802;
pmid: 22962056

33. E. Ardini et al., The TPM3-NTRK1 rearrangement is a
recurring event in colorectal carcinoma and is associated
with tumor sensitivity to TRKA kinase inhibition. Mol. Oncol.
8, 1495–1507 (2014). doi: 10.1016/j.molonc.2014.06.001;
pmid: 24962792

34. A. Vaishnavi et al., Oncogenic and drug-sensitive NTRK1
rearrangements in lung cancer. Nat. Med. 19, 1469–1472
(2013). doi: 10.1038/nm.3352; pmid: 24162815

35. P. J. Cook et al., Somatic chromosomal engineering
identifies BCAN-NTRK1 as a potent glioma driver and
therapeutic target. Nat. Commun. 8, 15987 (2017).
doi: 10.1038/ncomms15987; pmid: 28695888

36. L. Tang et al., Crystal structure of pyridoxal kinase in complex
with roscovitine and derivatives. J. Biol. Chem. 280,
31220–31229 (2005). doi: 10.1074/jbc.M500805200;
pmid: 15985434

37. J. A. Winger, O. Hantschel, G. Superti-Furga, J. Kuriyan, The
structure of the leukemia drug imatinib bound to human
quinone reductase 2 (NQO2). BMC Struct. Biol. 9, 7 (2009).
doi: 10.1186/1472-6807-9-7; pmid: 19236722

38. S. Klaeger et al., Chemical proteomics reveals ferrochelatase
as a common off-target of kinase inhibitors. ACS Chem. Biol.
11, 1245–1254 (2016). doi: 10.1021/acschembio.5b01063;
pmid: 26863403

39. M. M. Savitski et al., Tracking cancer drugs in living cells by
thermal profiling of the proteome. Science 346, 1255784
(2014). doi: 10.1126/science.1255784; pmid: 25278616

40. C. Borgo et al., Protein kinase CK2 potentiates translation
efficiency by phosphorylating eIF3j at Ser127. Biochim.
Biophys. Acta 1853, 1693–1701 (2015). doi: 10.1016/
j.bbamcr.2015.04.004; pmid: 25887626

41. H. Koch et al., Phosphoproteome profiling reveals molecular
mechanisms of growth-factor-mediated kinase inhibitor
resistance in EGFR-overexpressing cancer cells.
J. Proteome Res. 15, 4490–4504 (2016). doi: 10.1021/acs.
jproteome.6b00621; pmid: 27794612

42. P. Mertins et al., Proteogenomics connects somatic mutations
to signalling in breast cancer. Nature 534, 55–62 (2016).
doi: 10.1038/nature18003; pmid: 27251275

43. Y. Li et al., Network-based approach identified cell cycle genes
as predictor of overall survival in lung adenocarcinoma
patients. Lung Cancer 80, 91–98 (2013). doi: 10.1016/
j.lungcan.2012.12.022; pmid: 23357462

44. A. Lin, C. J. Giuliano, N. M. Sayles, J. M. Sheltzer, CRISPR/Cas9
mutagenesis invalidates a putative cancer dependency
targeted in on-going clinical trials. eLife 6, e24179 (2017).
doi: 10.7554/eLife.24179; pmid: 28337968

45. H.-T. Huang et al., MELK is not necessary for the proliferation
of basal-like breast cancer cells. eLife 6, e26693 (2017).
doi: 10.7554/eLife.26693; pmid: 28926338

46. S. Heinzlmeir et al., Chemical proteomics and structural
biology define EPHA2 inhibition by clinical kinase drugs.
ACS Chem. Biol. 11, 3400–3411 (2016). doi: 10.1021/
acschembio.6b00709; pmid: 27768280

47. E. Buchdunger et al., Abl protein-tyrosine kinase inhibitor
STI571 inhibits in vitro signal transduction mediated by c-kit
and platelet-derived growth factor receptors. J. Pharmacol.
Exp. Ther. 295, 139–145 (2000). pmid: 10991971

48. F. M. Yakes et al., Cabozantinib (XL184), a novel MET and
VEGFR2 inhibitor, simultaneously suppresses metastasis,
angiogenesis, and tumor growth. Mol. Cancer Ther. 10,
2298–2308 (2011). doi: 10.1158/1535-7163.MCT-11-0264;
pmid: 21926191

49. C. Choudhary et al., Mislocalized activation of oncogenic RTKs
switches downstream signaling outcomes. Mol. Cell 36,
326–339 (2009). doi: 10.1016/j.molcel.2009.09.019;
pmid: 19854140

50. J.-W. Lu et al., Cabozantinib is selectively cytotoxic in acute
myeloid leukemia cells with FLT3-internal tandem duplication
(FLT3-ITD). Cancer Lett. 376, 218–225 (2016). doi: 10.1016/
j.canlet.2016.04.004; pmid: 27060207

51. H. Hahne et al., DMSO enhances electrospray response,
boosting sensitivity of proteomic experiments. Nat. Methods
10, 989–991 (2013). doi: 10.1038/nmeth.2610;
pmid: 23975139

52. J. Cox, M. Mann, MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and
proteome-wide protein quantification. Nat. Biotechnol. 26,
1367–1372 (2008). doi: 10.1038/nbt.1511; pmid: 19029910

Klaeger et al., Science 358, eaan4368 (2017) 1 December 2017 15 of 16

RESEARCH | RESEARCH ARTICLE
on D

ecem
ber 4, 2017

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://dx.doi.org/10.1016/j.tips.2015.04.005
http://www.ncbi.nlm.nih.gov/pubmed/25975227
http://dx.doi.org/10.1111/bph.13096
http://dx.doi.org/10.1111/bph.13096
http://www.ncbi.nlm.nih.gov/pubmed/25630872
http://dx.doi.org/10.1038/nbt1358
http://dx.doi.org/10.1038/nbt1358
http://www.ncbi.nlm.nih.gov/pubmed/18183025
http://dx.doi.org/10.1042/BJ20121418
http://dx.doi.org/10.1042/BJ20121418
http://www.ncbi.nlm.nih.gov/pubmed/23398362
http://dx.doi.org/10.1038/nbt.1990
http://www.ncbi.nlm.nih.gov/pubmed/22037378
http://dx.doi.org/10.1038/nbt.2017
http://www.ncbi.nlm.nih.gov/pubmed/22037377
http://dx.doi.org/10.1042/BJ20070797
http://www.ncbi.nlm.nih.gov/pubmed/17850214
http://dx.doi.org/10.1038/nbt1068
http://www.ncbi.nlm.nih.gov/pubmed/15711537
http://dx.doi.org/10.1042/bj3510095
http://dx.doi.org/10.1042/bj3510095
http://www.ncbi.nlm.nih.gov/pubmed/10998351
http://dx.doi.org/10.1038/nbt.3374
http://www.ncbi.nlm.nih.gov/pubmed/26501955
http://dx.doi.org/10.1038/nchembio.530
http://www.ncbi.nlm.nih.gov/pubmed/21336281
http://lincs.hms.harvard.edu/db/
http://dx.doi.org/10.1038/nbt1328
http://www.ncbi.nlm.nih.gov/pubmed/17721511
http://dx.doi.org/10.1021/pr5012608
http://www.ncbi.nlm.nih.gov/pubmed/25660469
http://dx.doi.org/10.1038/nature13319
http://dx.doi.org/10.1038/nature13319
http://www.ncbi.nlm.nih.gov/pubmed/24870543
http://dx.doi.org/10.1016/j.chembiol.2011.04.011
http://dx.doi.org/10.1016/j.chembiol.2011.04.011
http://www.ncbi.nlm.nih.gov/pubmed/21700206
http://dx.doi.org/10.1016/j.bbapap.2012.12.023
http://dx.doi.org/10.1016/j.bbapap.2012.12.023
http://www.ncbi.nlm.nih.gov/pubmed/23333421
http://dx.doi.org/10.1371/journal.pone.0098800
http://www.ncbi.nlm.nih.gov/pubmed/24915177
http://dx.doi.org/10.1021/jm070562u
http://www.ncbi.nlm.nih.gov/pubmed/17948979
http://dx.doi.org/10.1186/1471-2105-12-94
http://www.ncbi.nlm.nih.gov/pubmed/21486481
http://dx.doi.org/10.1021/jm100301x
http://www.ncbi.nlm.nih.gov/pubmed/20459125
http://dx.doi.org/10.1038/nchembio.1113
http://www.ncbi.nlm.nih.gov/pubmed/23238671
http://dx.doi.org/10.1093/nar/gkv1082
http://www.ncbi.nlm.nih.gov/pubmed/26496949
http://dx.doi.org/10.1021/cb500129t
http://www.ncbi.nlm.nih.gov/pubmed/24730530
http://dx.doi.org/10.1038/nsmb859
http://www.ncbi.nlm.nih.gov/pubmed/15543157
http://dx.doi.org/10.1093/nar/gkt1031
http://www.ncbi.nlm.nih.gov/pubmed/24214965
http://dx.doi.org/10.1038/cddis.2015.130
http://www.ncbi.nlm.nih.gov/pubmed/25996294
http://dx.doi.org/10.1073/pnas.1215450109
http://www.ncbi.nlm.nih.gov/pubmed/23033494
http://dx.doi.org/10.1042/BJ20141165
http://www.ncbi.nlm.nih.gov/pubmed/25351958
http://dx.doi.org/10.1073/pnas.1403080111
http://dx.doi.org/10.1073/pnas.1403080111
http://www.ncbi.nlm.nih.gov/pubmed/24707051
http://dx.doi.org/10.1074/mcp.O112.020131
http://dx.doi.org/10.1074/mcp.O112.020131
http://www.ncbi.nlm.nih.gov/pubmed/22865924
http://dx.doi.org/10.1074/mcp.O112.019802
http://www.ncbi.nlm.nih.gov/pubmed/22962056
http://dx.doi.org/10.1016/j.molonc.2014.06.001
http://www.ncbi.nlm.nih.gov/pubmed/24962792
http://dx.doi.org/10.1038/nm.3352
http://www.ncbi.nlm.nih.gov/pubmed/24162815
http://dx.doi.org/10.1038/ncomms15987
http://www.ncbi.nlm.nih.gov/pubmed/28695888
http://dx.doi.org/10.1074/jbc.M500805200
http://www.ncbi.nlm.nih.gov/pubmed/15985434
http://dx.doi.org/10.1186/1472-6807-9-7
http://www.ncbi.nlm.nih.gov/pubmed/19236722
http://dx.doi.org/10.1021/acschembio.5b01063
http://www.ncbi.nlm.nih.gov/pubmed/26863403
http://dx.doi.org/10.1126/science.1255784
http://www.ncbi.nlm.nih.gov/pubmed/25278616
http://dx.doi.org/10.1016/j.bbamcr.2015.04.004
http://dx.doi.org/10.1016/j.bbamcr.2015.04.004
http://www.ncbi.nlm.nih.gov/pubmed/25887626
http://dx.doi.org/10.1021/acs.jproteome.6b00621
http://dx.doi.org/10.1021/acs.jproteome.6b00621
http://www.ncbi.nlm.nih.gov/pubmed/27794612
http://dx.doi.org/10.1038/nature18003
http://www.ncbi.nlm.nih.gov/pubmed/27251275
http://dx.doi.org/10.1016/j.lungcan.2012.12.022
http://dx.doi.org/10.1016/j.lungcan.2012.12.022
http://www.ncbi.nlm.nih.gov/pubmed/23357462
http://dx.doi.org/10.7554/eLife.24179
http://www.ncbi.nlm.nih.gov/pubmed/28337968
http://dx.doi.org/10.7554/eLife.26693
http://www.ncbi.nlm.nih.gov/pubmed/28926338
http://dx.doi.org/10.1021/acschembio.6b00709
http://dx.doi.org/10.1021/acschembio.6b00709
http://www.ncbi.nlm.nih.gov/pubmed/27768280
http://www.ncbi.nlm.nih.gov/pubmed/10991971
http://dx.doi.org/10.1158/1535-7163.MCT-11-0264
http://www.ncbi.nlm.nih.gov/pubmed/21926191
http://dx.doi.org/10.1016/j.molcel.2009.09.019
http://www.ncbi.nlm.nih.gov/pubmed/19854140
http://dx.doi.org/10.1016/j.canlet.2016.04.004
http://dx.doi.org/10.1016/j.canlet.2016.04.004
http://www.ncbi.nlm.nih.gov/pubmed/27060207
http://dx.doi.org/10.1038/nmeth.2610
http://www.ncbi.nlm.nih.gov/pubmed/23975139
http://dx.doi.org/10.1038/nbt.1511
http://www.ncbi.nlm.nih.gov/pubmed/19029910
http://science.sciencemag.org/


53. J. Cox et al., Andromeda: A peptide search engine integrated
into the MaxQuant environment. J. Proteome Res. 10,
1794–1805 (2011). doi: 10.1021/pr101065j; pmid: 21254760

54. J. Cox et al., Accurate proteome-wide label-free quantification
by delayed normalization and maximal peptide ratio
extraction, termed MaxLFQ. Mol. Cell. Proteomics 13,
2513–2526 (2014). doi: 10.1074/mcp.M113.031591;
pmid: 24942700

55. C. Ritz, F. Baty, J. C. Streibig, D. Gerhard, Dose-response
analysis using R. PLOS ONE 10, e0146021 (2015). doi: 10.1371/
journal.pone.0146021; pmid: 26717316

56. S. Lemeer, C. Zörgiebel, B. Ruprecht, K. Kohl, B. Kuster,
Comparing immobilized kinase inhibitors and covalent ATP
probes for proteomic profiling of kinase expression and drug
selectivity. J. Proteome Res. 12, 1723–1731 (2013).
doi: 10.1021/pr301073j; pmid: 23495751

57. H. Thorvaldsdóttir, J. T. Robinson, J. P. Mesirov, Integrative
Genomics Viewer (IGV): High-performance genomics data
visualization and exploration. Brief. Bioinform. 14, 178–192
(2013). doi: 10.1093/bib/bbs017; pmid: 22517427

58. J. T. Robinson et al., Integrative genomics viewer.
Nat. Biotechnol. 29, 24–26 (2011). doi: 10.1038/nbt.1754;
pmid: 21221095

59. B. Ruprecht et al., Comprehensive and reproducible
phosphopeptide enrichment using iron immobilized metal ion
affinity chromatography (Fe-IMAC) columns. Mol. Cell.
Proteomics 14, 205–215 (2015). doi: 10.1074/mcp.
M114.043109; pmid: 25394399

60. J. Rappsilber, M. Mann, Y. Ishihama, Protocol for micro-
purification, enrichment, pre-fractionation and storage of
peptides for proteomics using StageTips. Nat. Protoc. 2,
1896–1906 (2007). doi: 10.1038/nprot.2007.261;
pmid: 17703201

61. B. MacLean et al., Skyline: An open source document editor for
creating and analyzing targeted proteomics experiments.
Bioinformatics 26, 966–968 (2010). doi: 10.1093/
bioinformatics/btq054; pmid: 20147306

62. A. M. Gholami et al., Global proteome analysis of the NCI-60
cell line panel. Cell Rep. 4, 609–620 (2013). doi: 10.1016/
j.celrep.2013.07.018; pmid: 23933261

63. W. Kabsch, Integration, scaling, space-group assignment and
post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66,
133–144 (2010). doi: 10.1107/S0907444909047374;
pmid: 20124693

64. W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr. 66,
125–132 (2010). doi: 10.1107/S0907444909047337;
pmid: 20124692

65. K. Diederichs, P. A. Karplus, Better models by discarding
data?. Acta Crystallogr. D Biol. Crystallogr. 69, 1215–1222
(2013). doi: 10.1107/S0907444913001121; pmid: 23793147

66. P. Evans, Resolving some old problems in protein
crystallography. Science 336, 986–987 (2012). doi: 10.1126/
science.1222162; pmid: 22628641

67. P. A. Karplus, K. Diederichs, Linking crystallographic model and
data quality. Science 336, 1030–1033 (2012). doi: 10.1126/
science.1218231; pmid: 22628654

68. M. D. Winn et al., Overview of the CCP4 suite and current
developments. Acta Crystallogr. D Biol. Crystallogr. 67,
235–242 (2011). doi: 10.1107/S0907444910045749;
pmid: 21460441

69. G. N. Murshudov, A. A. Vagin, E. J. Dodson, Refinement of
macromolecular structures by the maximum-likelihood
method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255
(1997). doi: 10.1107/S0907444996012255; pmid: 15299926

70. G. N. Murshudov et al., REFMAC5 for the refinement of
macromolecular crystal structures. Acta Crystallogr.

D Biol. Crystallogr. 67, 355–367 (2011). doi: 10.1107/
S0907444911001314; pmid: 21460454

71. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and
development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66,
486–501 (2010). doi: 10.1107/S0907444910007493;
pmid: 20383002

72. E. Krissinel, K. Henrick, Secondary-structure matching (SSM),
a new tool for fast protein structure alignment in three
dimensions. Acta Crystallogr. D Biol. Crystallogr. 60,
2256–2268 (2004). doi: 10.1107/S0907444904026460; pmid:
15572779

73. A. C. Wallace, R. A. Laskowski, J. M. Thornton, LIGPLOT: A
program to generate schematic diagrams of protein-ligand
interactions. Protein Eng. 8, 127–134 (1995). doi: 10.1093/
protein/8.2.127; pmid: 7630882

74. G. Canevari et al., Structural insight into maternal embryonic
leucine zipper kinase (MELK) conformation and inhibition
toward structure-based drug design. Biochemistry 52,
6380–6387 (2013). doi: 10.1021/bi4005864; pmid: 23914841

75. T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell,
A. G. W. Leslie, iMOSFLM: A new graphical interface for
diffraction-image processing with MOSFLM. Acta Crystallogr. D
Biol. Crystallogr. 67, 271–281 (2011). doi: 10.1107/
S0907444910048675; pmid: 21460445

76. P. Evans, Scaling and assessment of data quality. Acta
Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006). doi: 10.1107/
S0907444905036693; pmid: 16369096

77. A. J. McCoy et al., Phaser crystallographic software.
J. Appl. Crystallogr. 40, 658–674 (2007). doi: 10.1107/
S0021889807021206; pmid: 19461840

78. J. R. Wiśniewski, A. Zougman, N. Nagaraj, M. Mann, Universal
sample preparation method for proteome analysis.
Nat. Methods 6, 359–362 (2009). doi: 10.1038/nmeth.1322;
pmid: 19377485

79. S. Tyanova et al., The Perseus computational platform for
comprehensive analysis of (prote)omics data. Nat. Methods 13,
731–740 (2016). doi: 10.1038/nmeth.3901; pmid: 27348712

80. D. Szklarczyk et al., STRING v10: Protein–protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43, D447–D452 (2015). doi: 10.1093/nar/gku1003;
pmid: 25352553

81. Z. Wu, A. M. Gholami, B. Kuster, Systematic identification of
the HSP90 candidate regulated proteome. Mol. Cell.
Proteomics 11, M111.016675 (2012). doi: 10.1074/mcp.
M111.016675; pmid: 22337586

82. V. Ermolayev et al., Early recognition of lung cancer by integrin
targeted imaging in K-ras mouse model. Int. J. Cancer 137,
1107–1118 (2015). doi: 10.1002/ijc.29372; pmid: 25450481

83. G. Kayser et al., Simultaneous multi-antibody staining in
non-small cell lung cancer strengthens diagnostic accuracy
especially in small tissue samples. PLOS ONE 8, e56333
(2013). doi: 10.1371/journal.pone.0056333; pmid: 23418554

84. H. Polzer, H. Janke, D. Schmid, W. Hiddemann, K. Spiekermann,
Casitas B-lineage lymphoma mutants activate AKT to
induce transformation in cooperation with class III receptor
tyrosine kinases. Exp. Hematol. 41, 271–280 (2013).
doi: 10.1016/j.exphem.2012.10.016; pmid: 23127761

85. H. Janke et al., Activating FLT3 mutants show distinct gain-of-
function phenotypes in vitro and a characteristic signaling
pathway profile associated with prognosis in acute myeloid
leukemia. PLOS ONE 9, e89560 (2014). doi: 10.1371/journal.
pone.0089560; pmid: 24608088

86. H. Polzer et al., Individualized treatment strategy with small-
molecular inhibitors in acute myeloid leukemia with concurrent
FLT3-ITD and FLT3-TKD mutation. J. Clin. Case Rep. 5, 622
(2015). doi: 10.4172/2165-7920.1000622

87. B. A. Rabinovich et al., Visualizing fewer than 10 mouse T cells
with an enhanced firefly luciferase in immunocompetent
mouse models of cancer. Proc. Natl. Acad. Sci. U.S.A. 105,
14342–14346 (2008). doi: 10.1073/pnas.0804105105;
pmid: 18794521

88. N. Terziyska, C. Castro Alves, V. Groiss, K. Schneider,
K. Farkasova, M. Ogris, E. Wagner, H. Ehrhardt, R. J. Brentjens,
U. zur Stadt, M. Horstmann, L. Quintanilla-Martinez, I. Jeremias,
In vivo imaging enables high resolution preclinical trials on
patients’ leukemia cells growing in mice. PLOS ONE 7, e52798
(2012). doi: 10.1371/journal.pone.0052798; pmid: 23300782

ACKNOWLEDGMENTS

The data reported here are tabulated in the main paper and the
supplementary materials. We want to thank J. Mergner, F. Seefried,
D. Wang, A. Hubauer, M. Kroetz-Fahning, A. Klaus, S. Silingas, L.-H. Li,
L. Wanat (all from TUM), B. Tizazu (LMU), and M. AbuJarour
(SAP) for technical assistance. M. Fritschle is acknowledged for
animal handling. E. Kunold and S. Sieber are acknowledged for
measurement of phosphosamples. A.F. and A.W. thank
U. Buchholz, C.-M. Pflüger, and A. Voss for technical assistance.
D.P.Z. gratefully acknowledges funding from the Bundesministerium
für Bildung und Forschung (BMBF) (grant 031L0008A—
ProteomeTools). A.W. and A.F. gratefully acknowledge the financial
support of the Deutsche Forschungsgemeinschaft (DFG) (SFB 824
TP Z02), BMBF (grant 01ZX1310B.01KT16015), and Deutsche
Krebshilfe (grant 70112617). J.R. is grateful for European Research
Council (ERC) Advanced Grant (FP7, grant agreement 322865).
K.G., K.S., and H.P. are grateful for funding through DFG SFB1243.
N.T. is funded by Institutional grant IUT60-20 and personal grant
PUT736 from the Estonian Research Council. S.S. thanks Fonds
der Chemischen Industrie. I.J. is thankful for ERC Consolidator
Grant 681524, German Research Foundation, Collaborative
Research Center 1243 “Genetic and epigenetic evolution of
hematopoietic neoplasms,” and the Mildred Scheel Professorship
from German Cancer Aid. B.K. is an inventor on the patent
EP20060763568 held by GlaxoSmithKline that covers the
kinobeads technology. The proteomic data are available at the
ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with the
data set identifier PXD005336, as well as at ProteomicsDB
(www.proteomicsdb.org) with the data set identifier PRDB004257.
Compound selectivity data can also be explored at
http://129.187.44.58:7575/. Crystal data are available at
PDB protein database at www.rcsb.org/pdb with the
following PDB accession codes: 5LBW, 5LBY, 5LBZ, 5M5A, 5MAF,
5MAG, 5MAH, and 5MAI. Supplementary materials are available
as part of this Research Article, in the ProteomeXchange
repository, and in the ProteomicsDB. Tables S1 and S2 contain
direct links to the summary PDFs, containing the results of
each drug profiling and the interactive visualizations in
ProteomicsDB. H.H. is the cofounder, shareholder, and chief
executive officer of OmicScouts, a company providing
proteomic and chemical proteomic services. M.W. and B.K. are
cofounders and shareholders of OmicScouts. They have no
operational role in the company.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/358/6367/eaan4368/suppl/DC1
Supplementary Text
Figs. S1 to S10
Tables S1 to S17
References (89–123)

13 April 2017; accepted 20 September 2017
10.1126/science.aan4368

Klaeger et al., Science 358, eaan4368 (2017) 1 December 2017 16 of 16

RESEARCH | RESEARCH ARTICLE
on D

ecem
ber 4, 2017

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://dx.doi.org/10.1021/pr101065j
http://www.ncbi.nlm.nih.gov/pubmed/21254760
http://dx.doi.org/10.1074/mcp.M113.031591
http://www.ncbi.nlm.nih.gov/pubmed/24942700
http://dx.doi.org/10.1371/journal.pone.0146021
http://dx.doi.org/10.1371/journal.pone.0146021
http://www.ncbi.nlm.nih.gov/pubmed/26717316
http://dx.doi.org/10.1021/pr301073j
http://www.ncbi.nlm.nih.gov/pubmed/23495751
http://dx.doi.org/10.1093/bib/bbs017
http://www.ncbi.nlm.nih.gov/pubmed/22517427
http://dx.doi.org/10.1038/nbt.1754
http://www.ncbi.nlm.nih.gov/pubmed/21221095
http://dx.doi.org/10.1074/mcp.M114.043109
http://dx.doi.org/10.1074/mcp.M114.043109
http://www.ncbi.nlm.nih.gov/pubmed/25394399
http://dx.doi.org/10.1038/nprot.2007.261
http://www.ncbi.nlm.nih.gov/pubmed/17703201
http://dx.doi.org/10.1093/bioinformatics/btq054
http://dx.doi.org/10.1093/bioinformatics/btq054
http://www.ncbi.nlm.nih.gov/pubmed/20147306
http://dx.doi.org/10.1016/j.celrep.2013.07.018
http://dx.doi.org/10.1016/j.celrep.2013.07.018
http://www.ncbi.nlm.nih.gov/pubmed/23933261
http://dx.doi.org/10.1107/S0907444909047374
http://www.ncbi.nlm.nih.gov/pubmed/20124693
http://dx.doi.org/10.1107/S0907444909047337
http://www.ncbi.nlm.nih.gov/pubmed/20124692
http://dx.doi.org/10.1107/S0907444913001121
http://www.ncbi.nlm.nih.gov/pubmed/23793147
http://dx.doi.org/10.1126/science.1222162
http://dx.doi.org/10.1126/science.1222162
http://www.ncbi.nlm.nih.gov/pubmed/22628641
http://dx.doi.org/10.1126/science.1218231
http://dx.doi.org/10.1126/science.1218231
http://www.ncbi.nlm.nih.gov/pubmed/22628654
http://dx.doi.org/10.1107/S0907444910045749
http://www.ncbi.nlm.nih.gov/pubmed/21460441
http://dx.doi.org/10.1107/S0907444996012255
http://www.ncbi.nlm.nih.gov/pubmed/15299926
http://dx.doi.org/10.1107/S0907444911001314
http://dx.doi.org/10.1107/S0907444911001314
http://www.ncbi.nlm.nih.gov/pubmed/21460454
http://dx.doi.org/10.1107/S0907444910007493
http://www.ncbi.nlm.nih.gov/pubmed/20383002
http://dx.doi.org/10.1107/S0907444904026460
http://www.ncbi.nlm.nih.gov/pubmed/15572779
http://dx.doi.org/10.1093/protein/8.2.127
http://dx.doi.org/10.1093/protein/8.2.127
http://www.ncbi.nlm.nih.gov/pubmed/7630882
http://dx.doi.org/10.1021/bi4005864
http://www.ncbi.nlm.nih.gov/pubmed/23914841
http://dx.doi.org/10.1107/S0907444910048675
http://dx.doi.org/10.1107/S0907444910048675
http://www.ncbi.nlm.nih.gov/pubmed/21460445
http://dx.doi.org/10.1107/S0907444905036693
http://dx.doi.org/10.1107/S0907444905036693
http://www.ncbi.nlm.nih.gov/pubmed/16369096
http://dx.doi.org/10.1107/S0021889807021206
http://dx.doi.org/10.1107/S0021889807021206
http://www.ncbi.nlm.nih.gov/pubmed/19461840
http://dx.doi.org/10.1038/nmeth.1322
http://www.ncbi.nlm.nih.gov/pubmed/19377485
http://dx.doi.org/10.1038/nmeth.3901
http://www.ncbi.nlm.nih.gov/pubmed/27348712
http://dx.doi.org/10.1093/nar/gku1003
http://www.ncbi.nlm.nih.gov/pubmed/25352553
http://dx.doi.org/10.1074/mcp.M111.016675
http://dx.doi.org/10.1074/mcp.M111.016675
http://www.ncbi.nlm.nih.gov/pubmed/22337586
http://dx.doi.org/10.1002/ijc.29372
http://www.ncbi.nlm.nih.gov/pubmed/25450481
http://dx.doi.org/10.1371/journal.pone.0056333
http://www.ncbi.nlm.nih.gov/pubmed/23418554
http://dx.doi.org/10.1016/j.exphem.2012.10.016
http://www.ncbi.nlm.nih.gov/pubmed/23127761
http://dx.doi.org/10.1371/journal.pone.0089560
http://dx.doi.org/10.1371/journal.pone.0089560
http://www.ncbi.nlm.nih.gov/pubmed/24608088
http://dx.doi.org/10.4172/2165-7920.1000622
http://dx.doi.org/10.1073/pnas.0804105105
http://www.ncbi.nlm.nih.gov/pubmed/18794521
http://dx.doi.org/10.1371/journal.pone.0052798
http://www.ncbi.nlm.nih.gov/pubmed/23300782
http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
http://www.proteomicsdb.org
http://129.187.44.58:7575/
http://www.rcsb.org/pdb
http://www.sciencemag.org/content/358/6367/eaan4368/suppl/DC1
http://science.sciencemag.org/


The target landscape of clinical kinase drugs

Juergen Ruland, Guillaume Médard, Irmela Jeremias, Karsten Spiekermann and Bernhard Kuster
Schlegl, Hans-Christian Ehrlich, Stephan Aiche, Axel Walch, Philipp A. Greif, Sabine Schneider, Eduard Rudolf Felder, 
Vooder, Robert Preissner, Hannes Hahne, Neeme Tõnisson, Karl Kramer, Katharina Götze, Florian Bassermann, Judith
Lars Rueckert, Wilhelm Becker, Jan Huenges, Anne-Kathrin Garz, Bjoern-Oliver Gohlke, Daniel Paul Zolg, Gian Kayser, Tonu 
Melanie Schoof, Giulia Canevari, Elena Casale, Stefania Re Depaolini, Annette Feuchtinger, Zhixiang Wu, Tobias Schmidt,
Benjamin Ruprecht, Svenja Petzoldt, Chen Meng, Jana Zecha, Katrin Reiter, Huichao Qiao, Dominic Helm, Heiner Koch, 
Susan Klaeger, Stephanie Heinzlmeir, Mathias Wilhelm, Harald Polzer, Binje Vick, Paul-Albert Koenig, Maria Reinecke,

DOI: 10.1126/science.aan4368
 (6367), eaan4368.358Science 

, this issue p. eaan4368Science
researchers develop better drugs, understand how existing drugs work, and design more effective clinical trials.
approved for use or in clinical trials. They provide an open-access resource of target summaries that could help 

 performed a comprehensive analysis of 243 kinase inhibitors that are eitheret al.of additional diseases. Klaeger 
treatmentbind more than one target. Yet sometimes off-target effects can be beneficial, and drugs can be repurposed for 

each drug is essential for developing successful treatment strategies. Sometimes clinical trials can fail because drugs
and inflammatory disorders. There are hundreds of kinases within the human body, so knowing the kinase ''target'' of 

Kinase inhibitors are an important class of drugs that block certain enzymes involved in diseases such as cancer
An atlas for drug interactions

ARTICLE TOOLS http://science.sciencemag.org/content/358/6367/eaan4368

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2017/12/01/358.6367.eaan4368.DC1

CONTENT
RELATED 

http://stm.sciencemag.org/content/scitransmed/9/412/eaan5689.full
http://stm.sciencemag.org/content/scitransmed/9/413/eaao4583.full
http://stm.sciencemag.org/content/scitransmed/9/414/eaao1690.full
http://stm.sciencemag.org/content/scitransmed/9/416/eaan6566.full

REFERENCES

http://science.sciencemag.org/content/358/6367/eaan4368#BIBL
This article cites 122 articles, 33 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive 

(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on D
ecem

ber 4, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/358/6367/eaan4368
http://science.sciencemag.org/content/suppl/2017/12/01/358.6367.eaan4368.DC1
http://stm.sciencemag.org/content/scitransmed/9/416/eaan6566.full
http://stm.sciencemag.org/content/scitransmed/9/414/eaao1690.full
http://stm.sciencemag.org/content/scitransmed/9/413/eaao4583.full
http://stm.sciencemag.org/content/scitransmed/9/412/eaan5689.full
http://science.sciencemag.org/content/358/6367/eaan4368#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

