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Supplementary Text

Characterisation of cell lines by RNA-seq, deep proteome and kinase enrichment

The four cell lines used in the cell mixture (K-562, MV-4-11, SK-NB-E(2) and COLO
205) were analysed by RNA-seq and transcripts were mapped to the hg37 reference
genome. In total, 494 protein kinases were transcribed and mutations were found in 139
kinase genes in at least one of the four cell lines. The analysis exclusively considered
indels, non-synonymous, mis-sense and non-sense mutations that resulted in an altered
primary amino acid sequence upon translation.

COLO 205, K-562, MV-4-11, and SK-N-BE(2) cells had 73, 71, 61, and 76 mutated
kinase genes, respectively (with 16, 16, 11 and 20, respectively, located in the kinase
domain). Obscurin and CSNK2A3 had the most mutations in the corresponding gene
sequence. All kinases, the number of observed mutations and the mutated sequence are
provided in Tables S4 and S5. Mutations that did not meet the applied statistical criteria
are not listed. For example, BRAF in COLO 205 cells revealed a heterologous point
mutation coding for the BRAF V600E mutation. The underlying sequence data, however,
had poor coverage. Only 6 reads were evident at the corresponding transcript site; of which
two bore mutations. Therefore, this mutation was excluded from the analysis. Mutations
that could not be unambiguously determined by Illumina sequencing were also excluded
(such as FLT3 insertion mutations expressed in MV-4-11 cells).

To profile the proteome of the four cell lines, peptides from each cell line were
separated into 36 fractions using hydrophilic strong anion exchange chromatography
(hSAX) and each fraction was subsequently measured by LC-MS/MS. From the deep
proteome analysis, 363 protein kinases were identified that were also present in the RNA-
seq data. Kinobead enrichment of the four single cell lines resulted in 253 kinases; 251
thereof were also observed by RNAseq and 235 were identified in the full proteome
analyses. The total overlap between the three methods was 234 kinases. 19 kinases were
detected by both RNA-seq and the Kinobead experiments; but were not identified in the
proteome. Additional kinases were identified by more peptides in the Kinobead
experiments compared to the proteomes; thus highlighting the effectiveness of chemical
(affinity) proteomic approaches for sub-proteome enrichment. On average, 52% of the total
MS-intensity in the Kinobead experiments were mapped to kinase peptides (fig. S1E). Four
kinases (CAMK1G, STK26, MLK4, POMK) were only identified in the Kinobead
pulldowns and the proteome. For these, the read threshold by RNA-seq may have been too
low, or the mRNA may have been relatively unstable. RNA-seq exclusively identified 115
kinases. This suggested that either these proteins were not enriched by the Kinobeads
and/or not detected by mass spectrometry because of low abundance. Alternatively, these
proteins may be unstable (e.g., MAP3K14/NIK) and cannot be detected by standard
proteomics. Together, the combined data from RNA-seq, deep proteome, and Kinobeads
define the target space of the kinase inhibitors that can be measured in our assay (fig. S1F).

In general, the y-version of Kinobeads used here can capture a majority but not all
kinases present in the cell lysate used. Missing kinases may be found by using a different
cell lysate (as demonstrated by the use of CAKI cells for MET inhibitor profiling, fig. S1G)
or by the use of a more suitable linkable probe illustrated by the use of immobilized



Omipalisib for mTOR inhibitor profiling (fig. S1H). With regard to sensitivity, the assay
works best for affinities below 10 uM as weaker interactions are prone to losses during the
washing process leading to variation in the data. The investigation of interactions below
3 nM (the lowest dose used in this study) is possible by simply adjusting the concentration
range used. Please also refer to prior literature on the Kinobead technology(13, 14).

We compared our Dasatinib data to KiNativ’s biotinylated acyl phosphate probe
profiling data. The obtained Kq values correlate well (R=0.91) for overlapping targets(16).
We have previously published a direct comparison of the Kinobead and the KiNativ
technologies. This revealed overlapping, but also in part complementary kinome coverage,
as the KiNativ technology uses covalent ATP probes(56).

Several groups have compared the various technologies used in the field. Sutherland
et al. have shown that hot ATP kinase activity assays correlate reasonably well with
KinomeScan binding data(17). In a comparison of the Kinativ technology with activity
assays, activity data from recombinant kinases is typically an order of magnitude stronger
than their apparent Kd values with the acyl phosphate probe but correlate well with cellular
compound activity(16). Another study suggest the use of full length proteins or kinase
constructs with additional domains and subunits to improve the agreement between activity
and binding assays(18).

Several activity and binding assays studying protein-kinase inhibitor interactions have
been published to date. For example, Anastassiadis et al. profiled 178 Kls (25 clinical) at
a single dose against 300 recombinant kinases(6). In-vitro binding assays against 442
recombinant kinases were reported for 72 kinase inhibitors (50 clinical) using 11-fold serial
dilutions for Kq determination in a series of papers published by Davis, Karaman and
Fabian et al.(3, 5, 8). At the time of writing, the LINCS database contained single-dose
binding data for 161 Kils (67 clinical) and 440 phage displayed kinase domains or mutants
thereof(12) and ElKkins et al. reported 367 tool compounds screened at two doses against
224 recombinant kinases. However, the here presented study is among the first to
systematically investigate a large set of clinical molecules.

Detailed data analysis

Kinobeads workflow: To systematically profile clinical kinase inhibitors, a chemical
proteomic approach was employed. Here, affinity capture of proteins on Kinobeads is
combined with protein identification and quantitative mass spectrometry. Kinobeads
(version y)(14) are a mixture of five immobilized broad-spectrum kinase inhibitors and
enables the enrichment of >300 human protein kinases and approximately a total of 3,000
proteins from cell/tissue lysates. Addition of the free inhibitor to the lysate in increasing
concentrations results in competition at the ATP-binding site of the kinases. Thus, a dose-
dependent prevention of specific protein kinases binding to the beads can be achieved. At
each dose of competing inhibitor (or vehicle), proteins bound to the Kinobeads can be
identified and quantified by label-free mass spectrometry. Label-free quantification is
based on the fact that the MS intensity of peptides scales linearly with the quantity of the
peptide present in the sample. The more protein that is bound by an inhibitor in solution,
the less that protein will bind to the Kinobeads. Consequently, the intensity of the
respective peptides detected by the mass spectrometer decreases. ECso values can thus be
derived from the relative quantity of each protein per dose of competitor (or vehicle) via a



dose-response plot using nonlinear regression analysis. By multiplying with a correction
factor that accounts for the depletion of a protein from the lysate in the Kinobead pulldown
(14, 56, 89), the ECso value for each protein can be converted into an apparent binding
constant K¢*P. The correction factor is determined by performing a second Kinobead
pulldown (with fresh beads) on the supernatant of the vehicle control pulldown. The
amount of protein captured in the two pulldowns is then compared/quantified.

Kinobeads data processing: Data processing was performed for each drug
separately. Raw MS files of pulldowns for one particular drug and with increasing drug
concentrations for one compound were processed together and supplemented with 15 high-
quality DMSO vehicle controls. In order to reduce missing values (i.e., peptides not
selected for tandem MS in each LC-MS/MS analysis), the “match between runs” option of
Andromeda/MaxQuant was used. After protein identification and quantification with
Andromeda/MaxQuant (see Online Methods for details), the resultant file
(proteinGroups.txt) was used for subsequent filtering, normalization and curve fitting. For
this purpose, reverse hits and not quantified protein groups in the DMSO control were
discarded. To derive relative residual binding intensities (lrel) for each protein group at
every concentration, both raw- and LFQ-intensities were normalized against the respective
DMSO intensity. Curve fitting was achieved using an internally developed R-script that
utilizes the drc-package(55). Briefly, each protein group was individually fitted using a
four parameter log-logistic regression model (equation 1).

t-b
Irel(c) =b+ 1+es-(log(c)-log(D) 1)

where c is the compound concentration and the four free parameters are the plateau of
the fit b (bottom), the maximal residual binding t (top) and the hill slope s of the curve at
the inflection point | (ECso). First, lrel Values derived from the LFQ intensities were used.
If no relative LFQ intensity for a protein group was available (due to a low number of
identified peptides) or no curve fit could be derived, the relative raw intensities were used
in a second iteration. During this process, a summary file (see fig. S2 as an example)
containing all curve-fits was generated. The output also generates a comprehensive csv file
containing all the necessary parameters and raw data (see PRIDE upload) required for
reproducing the results. These were then used for manual target annotation (see below).

Target selection criteria. Targets were manually annotated. A protein was
considered a high-confidence target if the binding curve showed a sigmoidal shape with a
dose-dependent decrease in binding to the Kinobeads. Proteins that only showed an effect
at the highest inhibitor dose were not annotated as targets. The number of unique peptides
and MSMS spectra was also included as target selection criteria. Peptide intensity in
DMSO controls and MS/MS data quality was also taken into account. Proteins with low
peptide counts, MS/MS spectral counts or MS1 intensity that nonetheless showed a
reasonable dose response curve fit were considered as potential targets. In addition, if an
inhibitor also interacted with similar kinases (e.g., CDK family) it was also considered as
a potential target. Low-confidence targets were excluded from further analysis. Note that
for some targets, curve fitting with our data processing pipeline was not possible resulting
in no or very high K¢*P values. Targets were considered as direct Kinobead binders if
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annotated in Uniprot.org as a protein or lipid kinase. Furthermore, nucleotide binders,
helicases, ATPases and GTPases, FAD (e.g., NQO2) and heme (e.g., FECH) containing
proteins were also considered as potential direct binders. Most other target proteins are
interaction partners/adaptor proteins of the kinases and are termed indirect Kinobead
binders. A complete annotation of all target proteins is provided in Table S2.

Data availability. Both raw and processed data for each individual drug profile are
available in proteomeXchange (http://www.proteomexchange.org, identifier PXD:
005336) and ProteomicsDB (https://www.proteomicsdb.org, identifier: PRDB004257).
The processed data consist of the Andromeda/MaxQuant search results and the derived
curve fits and are provided as summary pdf and csv files (examples are provided in fig. S2
and Table S2, S3). Briefly, page one of each summary file depicts the core findings
visualized as three main elements (fig. S2A). Subsequent pages provide a list of all high-
confidence (‘*’) and low confidence (‘#’) targets shown in detail and including the
elements provided in fig. S2B-D. Proteins that were not annotated as drug targets are
provided in a more compact form consisting of the elements shown in fig. S2B-C.

Concentration And Target Dependent Selectivity (CATDS): a versatile scoring system to
determine drug selectivity

The large body of data accumulated in this study, enabled us to develop a selectivity
metric termed Concentration and Target Dependent Selectivity (CATDS) that can be
flexibly applied to a range of topics relevant for basic biology, drug discovery and clinical
research and application.

Calculation of CATDS. The Concentration and Target Dependent Selectivity
(CATDS) measures the engagement of a specific protein target at a particular drug
concentration relative to all target protein engagements of that drug at the same
concentration. It is calculated by dividing the sum of the target engagements of the target
protein(s) of interest by the sum of all target engagements (including target protein(s) of
interest) at a particular concentration (equation 2). Target engagement at any concentration
can be derived from the dose response curve fits (see formula).

Z(target eng agement) target(s)of interest

Y(target engagement)qy targets

CATDS =

)

To illustrate the concept, we chose the EGFR inhibitor Gefitinib as an example (see
also fig. S3A). The Kinobeads selectivity profile revealed seven target proteins (including
EGFR as the most potent target; K¢ of 413 nM). In order to determine the selectivity of
Gefitinib for its designated target, EGFR is chosen as the target of interest and CATDS is
calculated at the respective K¢* concentration according to equation (3).

Y (target engagement)pcrr (3)
Y(target engagement)gGrr,GAK RIPK2,RIPK3,MET,STK10,FECH

CATDS =
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The degree of engagement for each target protein is derived from the curve fit at the
chosen concentration (here K¢*P, fig. S3A). By definition, 50% of all EGFR molecules are
occupied with Gefitinib at 413 nM thus the numerator in (3) is 0.5. The denominator is the
sum of the target engagements of all seven targets of Gefitinib.

Variations on the CATDS theme for different applications. CATDS can be used
to answer a variety of different research question as it can be calculated for a single target
protein of interest or groups of target proteins of interest (fig. S3B).

CATDStarget is calculated by dividing the target engagement of a certain fixed protein
of interest by the sum of all target engagements. CATDStarget iS determined for each
particular compound at the respective Kq®P concentration of the target protein (equation
4). For example, we identified 19 compounds targeting CHEK1 (only 4 of them are
designated CHEKZ1 inhibitors; Fig. 2B). CATDScHex1 was calculated for all 19 inhibitors
and Rabusertib was found to be the most selective molecule for CHEKZ1 in our screen,
whereas the RTK inhibitor Sunitinib was the most unselective molecule targeting CHEK1
among 100 other kinases. CATDStarget can be useful in medicinal chemistry programs or to
choose the most selective inhibitor for a biological or biochemical experiment.

e Y (target engagement)
CATDSCHEKl(Sunltlnlb) = CHEK1 (4)
Y(target engagement)io1 target proteins in total

CATDSgesignated IS calculated by dividing the target engagement of the most potent
designated target protein by the sum of all target engagements (fig. S4B, C). The
calculation is performed at the Kq?P concentration of this particular target (equation 5). For
example, AZD-7762 is a designated CHEKZ1 inhibitor but it has 68 further targets
according to our Kinobeads profile. Calculating CATDSqesignated Can help to evaluate the
selectivity for the protein which is intended to be inhibited by a certain inhibitor. However,
it can also be used to assess selectivity of compounds with different binding modes as
exemplified in fig. S4D.

CATDS gesignatea (AZD 7762) = Y(target engagement) gy, (5)

Y(target engagement)qq target proteins in total

CATDSmost-potent 1S calculated by dividing the target engagement of the most potent
target protein of a particular compound by the sum of all target engagements. The
calculation is performed at the Kq?"P concentration of this particular target. The most potent
target of an inhibitor is not necessarily the protein an inhibitor was originally designed for.
For example, we determined CATDSmost-potent t0 assess the applicability of a compound as
a chemical probe (Fig. 2A). KW-2449 targeted a total of 55 proteins and PAK2 was more
potently and selectively hit than its designated target protein FLT3 (equation 6).

Y(target engagement)
CATDSmost—potent (KW 24‘49) = PAK?2 (6)

Y(target engagement)ss target proteins in total



The application of CATDS is not limited to single proteins but is also applicable for
groups of proteins. For this, several proteins of interest are defined as targets and CATDS
is simply calculated as the sum of their target engagements divided by the sum of all target
engagements. This can be particularly useful if a certain group of proteins should be
targeted by a drug (e.g. two functionally important kinases in the same pathway).
Furthermore, CATDS could even be used to compare the selectivity of a drug for different
modes of actions.

CATDSmutti-designated 1S calculated by dividing the sum of target engagements of all
designated target proteins by the sum of all target engagements. The calculation is
performed at the K¢*P concentration of the least potent designated target protein. Many
inhibitors are intended to address several target proteins at once (e.g Dasatinib targeting
BCR-ABL and SRC) and thus, selectivity for the intended use of that compound should
consider all designated targets (equation 7) relative to all 66 targets of this compound.

Y(target engagement) 4p; 1 spe

Y(target engagement) g6 target proteins in total

CATDSmulti—designated (Dasatinib) = (7)

CATDSwmoa is calculated by dividing the sum of target engagements of selected
proteins by the sum of target engagements in a (restricted) set of target proteins. The
calculation is performed at the K4 concentration of the most potent target protein of the
selected target group as we expect an influence on the respective mode-of-action even if
only one member is inhibited. For example, we used CATDSwmoa to analyse CDK mode of
action (fig. S7C). For this purpose, we selected e.g. CDK4 and 6 (role in cell cycle) vs all
CDKSs (restricted set, irrespective of biological role) (equation 8).

Y (target engalgement)CDK‘L‘CDK6

CATDSyoa—ceticycle (Dasatinib) = (8)

Y(target engagement) cpka,cDKe6,CDK9,CDK16,CDK17

In summary, the CATDS approach combines several important aspects of selectivity
determination which are not considered in their entirety by other selectivity metrics
published so far (fig. S3C). Other selectivity metrics such as the selectivity score, the Gini
coefficient, the selectivity entropy and the partition index cover some aspects of selectivity
and are applicable for particular questions but comparisons to CATDS show that CATDS
is more versatile and outperforms other scores as discussed in the following paragraphs.

CATDS versus selectivity score. Perhaps the simplest way to measure selectivity is
given by the selectivity score(3, 5). Itis calculated by dividing the number of target proteins
of a drug at an arbitrary concentration (say 100 nM) by the number of tested proteins. It
ranges from O (very selective) to 1 (very unselective). The selectivity score can be used
either as a global assessment or for a certain target protein. The drawbacks of this scoring
system are clearly the strong dependence on the panel size used for screening and the fact
that target proteins are only counted and the experimentally determined target engagements
are not considered. This impairs comparability between different screens and reduces the
score to a rather imprecise measure of selectivity. For example, a comparison of
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CATDSdesignated and the selectivity score (threshold concentration: K¢ of the most potent
designated target) shows that both scores correlate to some extent (fig. S3D). However, the
selectivity scores are distributed between 0.3 and 0.003 (from 0.5 to 2.5 in —logio scale)
and are therefore not capable of distinguishing well between selective and non-selective
compounds. All inhibitors appear to be rather selective (low selectivity score) which is
mainly due to the large background set the target profiles are compared to (>300 proteins
in the Kinobead assay). The CATDS distribution, however, covers the entire score range
(0-1) and adequately reflects different inhibitor selectivity towards their designated targets.

CATDS versus Gini coefficient. The Gini coefficient(19) uses the percent inhibition
data at a single inhibitor concentration to calculate the relative inhibition fraction of each
target protein. It orders and normalizes the single data points to derive a cumulative fraction
inhibition plot which describes the inhibitor’s selectivity profile depending on the
background set of tested kinases as a Lorenz curve. The Gini coefficient is calculated as
the ratio of the area outside this distribution and the complete area, resulting in a value
between 0 (unselective; all tested proteins are inhibited equally) and 1 (selective; only 1
target protein). Originally, the Gini coefficient was developed to determine selectivity of
compounds tested at single compound concentrations which makes it more vulnerable to
technical variation. Moreover, it considers the panel size of tested proteins making it
difficult to compare selectivity data between different datasets and also leads to poor
performance with very small(21) but also very large screening panels (all values close to
1; all assayed proteins contribute to the calculation). The Gini coefficient does not directly
allow calculation of selectivity towards a certain target protein. However, to estimate
target-specific selectivity by the Gini coefficient, one could use the K4 of the protein of
interest as a threshold concentration. For example, we compared CATD Sgesignated t0 the Gini
coefficient calculated at the same threshold concentration (K4 of the most potent
designated target). Here, CATDS and Gini coefficient show a clear correlation (fig. S3E).
Similar to the selectivity score, the distribution of Gini coefficients also suffers from the
large background set of protein. This leads to a compressed scale with values mainly
between 0.8 and 1 (from 0.7 to 2.5 in —logi0(1-Gini)) which hampers clear differentiation
of selective and unselective compounds. The CATDS, however, is neither dependent of the
tested panel size nor the threshold concentration and distributes between 0 and 1 enabling
comparable determination of compound selectivity.

CATDS versus selectivity entropy. Uitdehaag et al. introduced the selectivity
entropy(20, 90) to enable global selectivity determination for compounds in order to
provide a scoring system that would be more comparable between different selectivity
profiling screens. The selectivity entropy assumes that a small amount of drug would
distribute in an excess of target proteins according to its Kq value in a Boltzmann
distribution. The width of this distribution reflects the different energy states of the
compound, thus its selectivity, and can be calculated by theoretical entropy calculation.
This scoring system enables the calculation of compound selectivity independent of the
tested panel size, yet cannot be calculated at a certain threshold concentration or for a
certain target protein. For example, CATDSmost-potent Can be calculated at the Kg*P
concentration of the most potent identified target protein in order to provide a view of
compound selectivity independent from its designated target protein. CATD Smost-potent



(inversely) correlates well with the selectivity entropy (fig. S3F, left panel). In contrast to
CATDS, selectivity entropy does not allow determining selectivity of a compound for a
particular target protein. Comparison of CATDSmuti-designated and selectivity entropy
highlights this advantage of CATDS. It reveals that there are compounds with very low
selectivity entropy values (allegedly quite selective molecules) but it ignores the possibility
that another target is more potently inhibited than the intended target (i.e. the selectivity
entropy values are artificially low; fig. S3F, right panel). In contrast, CATD Smulti-designated IS
able to distinguish whether a compound is selective for its intended use (blue) or if another
protein is targeted more potently (black).

CATDS versus partition index. Similarly to the selectivity entropy, the partition
index(21) is based on the theoretical distribution a compound would have in a complex
mixture of protein targets (proteins in excess). The compound will distribute between the
protein targets according to its affinity (Kq values) and the partition index describes the
relative affinity for a reference kinase compared to all measured affinities. Thus, the
partition index is independent of the tested panel size as it only uses targeted proteins for
calculation and it can be used to determine selectivity of a compound towards single or
groups of proteins. Both, the partition index and the CATDS are based on full dose
response data with a thermodynamic background. Indeed, we found that both scoring
systems correlate well (fig. S3G) for single (left panel, reference: most-potent target
protein) and multiple targets (right panel, reference: multi-designated at KgP
concentration of most potent target). However, one advantage of CATDS over the partition
index is that the CATDS calculation accounts for the curve shape of the dose response
which is more precise than the K¢*® value itself as it considers binding effects that might
result in different Hill slopes. In addition, the partition index does not allow for determining
drug selectivity at individual drug concentrations which is a clear advantage of CATDS
(fig. S3H).

Calculation of CATDSI. As discussed earlier, drug selectivity can vary with
increasing drug concentration — a fact which underscores the necessity of calculating the
CATDS across the tested concentration range to identify the optimal concentration for
maximal selectivity (fig. S3A, lower panel). However, the effect of a drug is determined
by the engagement of its target protein(91), as estimated by the dose response curve in this
screen. That means, that concentrations below Kg¢®P might result in high selectivity for a
certain target, but drug efficacy may be very low. In order to determine the most selective
yet effective concentration of a drug, the CATDS can be multiplied with the target
engagement at each drug concentration to generate the Concentration And Target
Dependent Selective Inhibition (CATDSI; equation 9). The maximum of this curve
highlights the drug concentration at which the optimal balance between selectivity and
potency of a drug for a certain target is reached (Fig. 3A, lower panel, red line).

CATDSI = CATDS x Y.(target engagement)arget(s) of interest 9

Thermodynamic basis of CATDS. If an inhibitor is added to a pool of target proteins
(such as in cells or cell lysates) and the thermodynamic equilibrium is established, the



inhibitor will bind to its target proteins according to the applied drug concentration and the
respective binding affinities. We assume that the concentration of each target protein is
much lower than the specific dissociation constant of the drug-protein interaction which
assures that the actual protein concentration is negligible for the calculation of K values.
We also assume that the binding of a drug to its target proteins does not reduce the effective
concentration of a drug, ensuring that each individual drug-protein binding equilibrium can
be established at the applied drug concentration. Both assumptions are prerequisites for
determining binding affinities in a dose response experiment. If these basic assumptions
are met, we can derive the relative target engagement of each individual protein at each
particular drug concentration directly from its dose response curve (e.g. 50% target
engagement if the drug concentration is equal to the Kg*P). With increasing drug
concentration, more and more protein binding sites will be occupied by the inhibitor and
target engagement will eventually reach 100%. This is true for any target protein present
e.g. in a cell albeit the concentration at which this happens will be different between
proteins as their affinities for the drug are not the same. This has important consequences
for determining drug selectivity. For instance, consider inhibitor A that has 1 target with a
Kq®P of 1 nM, 10 targets with a Kq®® of 100 nM and no further targets beyond 100 nM.
Then consider another inhibitor B that has 2 targets with a K¢ of 1 nM each and no further
targets beyond 1 nM. Both inhibitors have different selectivities depending on the applied
drug concentration. Inhibitor A is more selective at 1 nM, whereas inhibitor B is more
selective at 100 nM. As a consequence, drug selectivity should generally be determined as
a function of the inhibitor concentration. Yet, this is very often not done in drug research.

Notes on CATDS for Kinobeads data. The target space of a drug is dependent on
the assayed proteins. In this study, we identified >300 probable direct binders to Kinobeads
including kinases and other ATP or cofactor binding proteins (Table S2). All these were
taken into account when calculating compound selectivity. In contrast, proteins not
classified as direct binders (e.g. complex partners) were not considered for selectivity
calculation. In Kinobeads experiments where native cell lysate is used for measuring drug-
protein interactions, we observed a bottom plateau for some targets (i.e. dose response
curve not reaching zero despite high compound dose). Also, we observed that the vehicle
control did not necessarily start at 1 which is usually due to technical reasons, for instance
if the DMSO control used for normalization showed low MS intensity. Therefore, dose
response curves were bottom and top corrected to enable use of the full effect size range
between 0 and 1.

CATDS turns out to be a very versatile and practical, yet simple to calculate, scoring
system for the determination of compound selectivity. It can use various input data formats
(activity or binding, single dose or full dose response). CATDS is also flexible in terms of
choice of which set of proteins or drug dose is used in the calculation. Therefore, it can be
applied for asking very different questions regarding compound selectivity. Kinobeads data
appears to be particularly amenable to CATDS because the experimental setup of using
native cell lysate comprising a very complex mixture of endogenous proteins at vastly
varying concentrations approximates the dose dependent binding behavior of a drug within
a native cellular environment and which directly reflects the underlying thermodynamic
equilibrium.
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Characterization of Dabrafenib off-targets

For Dabrafenib, the Kinobeads data showed potent binding inhibition for CDK2 but
no co-competition of any of the canonical cyclins for CDK2 (CCNA2 or E1 or E2).
Interestingly, commercial kinase assays using CDK2 did not show any inhibitory effect of
Dabrafinib on CDK2 when tested in combination with CCNA2, E and O implying that
either the drug can bind the free kinase in cells or lysates without the need for a cyclin or
that an hitherto undetected CDK2/cyclin complex exists which is not part of classical assay
panels (fig. S5F, Table S12). Unfortunately, we have not been able to test this hypothesis
systematically owing to the lack of appropriate reagents.

SIK2 inhibition induces anti-inflammatory response in LPS-stimulated macrophages

The biological function of salt-inducible kinase 2 (S1K2) is slowly being uncovered
and reveals a potential role of SIK2 in oncology as well as immune disorders. Recent
studies imply a role for SIK2 in the regulation of inflammatory response of the innate
immune system(28, 29, 92-94). It was shown, that SIK2 phosphorylates CREB-regulated
transcription coactivator 3 (CRTC3) on multiple sites which leads to recognition and thus
inactivation of CRTC3 by 14-3-3 proteins(28). In its non-phosphorylated active form,
CRTC3 binds and activates the cyclic AMP-responsive element-binding protein 1
(CREBL1) which leads to translocation into the nucleus where the transcription factor can
then exert its action and regulate gene expression. The exact function of CREB is
controversially discussed but it was found that CREB1 is regulating pro-inflammatory
responses by inducing the expression of anti-inflammatory cytokines such as interleukin-
10 (IL-10). IL-10 modulates the response of effector cells of the innate immune system
(such as dendritic cells or macrophages) towards an anti-inflammatory phenotype through
down-regulation of pro-inflammatory cytokines like tumor necrosis factor alpha (TNFa).
Inhibition of SIK2 by small molecule kinase inhibitors was shown to reduce CRTC3
inactivating phosphorylation and to mediate the up-regulation of CREB-mediated anti-
inflammatory response characterized by increased IL-10 and decreased TNFa
secretion(28, 29, 94, 95).

In our screen, 21 of 243 clinical small molecule kinase inhibitors showed off-target
SIK2 inhibition with affinities of below 500 nM. None of these inhibitors were developed
for SIK2 and 11 of those inhibitors were not reported to target SIK2 in the literature so far.
Biochemical activity assays using a FlashPlate™-based radiometric assay (ProQinase,
Freiburg) confirmed inhibition of SIK2 enzymatic activity for the 11 newly identified SIK2
inhibitors in comparison to the SIK tool compound HG-9-91-01(28). This molecule is
commonly used as tool compound to abrogate SIK activity but comprises a rather
promiscuous target profile as revealed by LINCS and Kinobeads selectivity profiling (fig.
S6E).

To evaluate the biological effect of the 21 identified SIK2 inhibitors, murine bone-
marrow derived macrophages (BMDM) were treated with increasing drug doses (8 doses
between 1-10,000 nM) and subsequently stimulated with LPS to induce TLR4 mediated
pro-inflammatory response (characterized by increasing TNFa levels). Most inhibitors
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(13/21) showed down-regulation of TNFa levels with increasing drug concentrations, four
inhibitors were not effective and another four inhibitors showed cytotoxic effects. 13
inhibitors that showed TNFa reduction were additionally examined for their effect on IL-
10 secretion. Up-regulation of IL-10 was detected for most inhibitors and was in general
in concordance with TNFa reduction (fig. S6B). A biological replicate with BMDM cells
from a second mouse showed distinct absolute values of TNFo, and IL-10 but recapitulated
the same trends in decreasing TNFa and increasing IL-10 secretion, as exemplarily shown
for the compounds HG-9-91-01, UCN-01, AZD-7762, Crenolanib, BMS-690514 and PF-
03814735 (fig. S6B). Noteworthy, the novel SIK2 inhibitor UCN-01 revealed pronounced
effects on TNFa reduction in the same nanomolar range (ECso 22 nM) as the tool
compound HG-9-91-01. Another already described SIK2 inhibitor, AZD-7762, was less
potent (ECso 124 nM) in inhibiting TNFa secretion, but was found to be the most selective
SIK2 inhibitor (CATDSsik2: 0.216) in our panel of 22 SIK2 compounds (including HG-9-
91-01). All inhibitor data and raw data can be found in Table S8.

Cytokine secretion is a rather complex phenotype and involves the activity of several
kinases which might also be targeted by the tested inhibitors. Thus, measuring TNFa and
IL-10 response is not sufficient to prove SIK2 target engagement in living cells. In order
to evaluate whether SIK2 inhibitors identified in our screen are able to perturb SIK2
signaling in a living system, we tested a sub-selection of six SIK2 inhibitors for their ability
to down-regulate the phosphorylation status of the SIK2 substrate CRTC3. Therefore, we
treated murine bone-marrow derived macrophages at an optimal dose at which we observed
pronounced TNFo reduction but no toxic effect on cell viability. SIK2-mediated
phosphorylation of CRTC3 S62 and S370 was detected by a parallel reaction monitoring
(PRM) mass spectrometry readout(31) (fig. S6C, D). Our results showed clear reduction
of the phosphorylation levels of CRTC3 S62 and S370 in comparison to the vehicle control
by all tested inhibitors (300 nM HG-9-91-01, 300 nM AZD-7762, 300 nM PF-03814735,
100 nM UCN-01, 300 nM Dasatinib, 1000 nM AT-9283). Both phosphorylation sites
showed the same effect upon drug treatments, demonstrating with high confidence that
these inhibitors are indeed capable of engaging SIK2 in living cells.

As already mentioned, cytokine secretion is the result of manifold stimuli and the
interplay of multiple signaling pathways within the cell. Thus, the observed anti-
inflammatory response may not only be due to SIK2 inhibition but also due to the inhibition
of other kinase targets. In order to be able to distinguish truly associated targets with TNFa
production and to confirm the effect of SIK2 inhibition, we compiled a list of proteins that
are members of known pathways in the TNFa production from the literature. The aim was
to select additional kinase inhibitors such that the targets associated with TNFo production
can be well distinguished. To select as little additional kinase inhibitors as possible, we
employed a greedy search algorithm. Briefly, in each step, one extra kinase inhibitor was
added to the currently selected inhibitor set (initially 21) which maximizes the
heterogeneity of target space. For this purpose, the heterogeneity of the target space is
defined as

h=w*E

, Where w is the sum of the maximum pair-wise difference of all pairs of targets,
defined as w = Y; j ;<jw;j , Where w;; = D(x;, x;), Xi and x; are the pKq*"s of target i and
target j across the inhibitor panel. D is a function calculating the maximum pair-wise
difference between x; and X;.
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E is the pseudo-shannon entropy, defined as E = — )’ p; In p;, where for the tth pair
of i and j p, = w;;/w. Therefore, a high w indicates there is a high overall difference in
Kd®Ps between all pairs of targets and a high E indicates the difference is rather averaged
across different pairs of targets, i.e. not driven by the difference of a single pair of targets.
The greedy search is stopped when no more target pairs could be separated, defined by
D(xi, Xj) > 1. As a result, nine extra inhibitors (PH-797804, GSK-2110183, GSK-690693,
GDC-0994, Trametinib, Uprosertib, Abemaciclib, Cobimetinib and Ponatinib) were
selected and additionally tested for TNFa response (Table S8). Unfortunately, Ponatinib
failed due to technical reasons which lead to a final number of eight additional inhibitors.

In order to evaluate the role of SIK2 in relation to the TNFa production, we used a
similar “target deconvolution” approach originally proposed by Gujral et al (30). In short,
this method utilizes an elastic net model to predict a polypharmacology-driven phenotypic
readout with given inhibition data. During this process, the elastic net model automatically
selects features associated with the phenotype. In this study, we used the target space of 26
kinase inhibitors, 18 of which were part of the initially tested 22 inhibitors (TG-100572,
AZD-7762, PF-03814735, UCN-01, Crenolanib, Dasatinib, AT-9283, PF-477736, BMS-
690514, Milciclib, TAK-901, Nintedanib, ASP-3026, Cerdulatinib, Bosutinib, SCH-
900776, XL-019, HG-9-91-01, four cytotoxic drugs were excluded) and 8 additional
inhibitors (PH-797804, GSK-2110183, GSK-690693, GDC-0994, Trametinib, Uprosertib,
Abemaciclib and Cobimetinib), as input to predict TNFo production in bone-marrow
derived macrophages (BMDM). We observed that a clear effect on TNFa production was
visible on average around 300 nM while cell viability was not affected at this concentration
(Fig. 3C, left panel). Therefore, our analysis mainly focused on dosages of 100 to 300 nM.
To evaluate the selection stability of a target at each dose, we generated 100 bootstrap
samples and fed them into elastic net models. The result is summarized by two values,
namely the selection frequency and the effect size (Fig. 3C, middle panel). Our analysis
revealed that SIK2 is the most frequently selected target and has the largest effect size in
comparison to other targets that have similar selection frequency (e.g. CHEK1). The results
confirmed our hypothesis that a decrease in TNFa production can be initiated by the
inhibition of SIK2. Other kinases that may affect TNFa response in our inhibitor set include
CHEK1, PDPK1, MAP3K11, ZAK and MARK4. CHEK1 was reported to modulate
NF-xB signaling(96) by phosphorylating the RelA (p65) NF-«B subunit (pT505). In an
oncology background, this phosphorylation was found to correlate with the inhibition of
NF-kB target gene expression(97). However, it remains to be investigated how this
CHEK1-mediated phosphorylation influences NF-kB activity, and TNFo secretion in
particular, in immune regulatory cells. Another interesting target is PDPK1 which has been
shown to down-regulate NF-xB signaling in LPS-stimulated macrophages through the
PI3K/AKT signaling pathway(98). However, the literature is not clear in this regard as
there are other reports that conclude that CHEK1 and PDPK1 inhibition would increase
TNFa production. There is also a possibility that the selection of CHEK1 and PDPK1 by
the elastic net are due to a technical artifact. This remains to be investigated by e.g. further
experiments using highly selective inhibitors (e.g., Rabusertib for CHEK1) which may help
to shed light on the influence of these particular protein kinases on TNFa, secretion.

Our data confirms previous findings that SIK2 inhibition is a valuable concept to
modulate the innate immune response to an anti-inflammatory phenotype. We extended
the landscape of SIK2 inhibitors landscape by 11 compounds and provide bioactivity data
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for 21 SIK2 inhibitors of which most have not been characterized in that way so far.
Especially, UCN-01 and AZD-7762 were found to elicit a distinctive anti-inflammatory
response (TNFa reduction, IL-10 increase) and might thus be interesting candidates for
further investigation.

Saracatinib affects osteosarcoma cells by dual inhibition of SRC and BMP receptor
signaling

Saracatinib was developed as a dual SRC/ABL inhibitor(99) and has been subject to
33 clinical trials so far. Amongst other diseases and other cancer entities, Saracatinib is
currently also evaluated in two phase 2 clinical studies investigating a therapeutic effect
of this drug on osteosarcoma (NCT00752206) and bone neoplasms (NCT00558272). The
potential therapeutic effect of Saracatinib on osteosarcoma was so far mainly attributed to
the inhibition of its main target SRC, which was found to play an important role in bone
sarcoma cell survival(100, 101). Target profiling using the Kinobeads technology
confirmed that Saracatinib not only targets SRC and ABL as previously anticipated but
also a whole range of BMP receptors (BMPR1A, ACVR1, ACVR1B) with high
affinities(102). The exact role of BMP signaling in osteosarcoma is controversially
discussed in the literature, but several studies correlated BMP signaling in osteosarcoma
to pro-migratory and metastatic effects as well as poor survival(103). We therefore
hypothesized that Saracatinib might affect osteosarcoma cells in a dual mode-of-action
by inhibiting both, SRC and BMP signaling. To investigate this hypothesis, we selected
the human osteosarcoma cell line U-2 OS and performed drug treatment with cell
viability and phosphorylation status readouts as well as protein knockdown experiments.

Saracatinib treatment inhibited U-2 OS cell viability with higher potency than the
unrelated ovarian cancer cell line NCI/ADR-RES which was characterized by relatively
low expression of BMP receptors (fig. S6G). Additionally, sSiRNA-mediated protein
knockdown experiments were performed in order to distinguish the influence of single
Saracatinib targets (SRC, BMPR1A, ACVR1, ACVR1B) on U-2 OS cell viability (fig.
S6G). Knockdown of these kinases resulted in clearly diminished cell viability in U-2 OS
while NCI/ADR-RES cell viability was affected to a much lower extent. Knockdown of
BMP receptors caused similar reduction of cell viability as a knockdown of SRC kinase,
further substantiating the dependence of U-2 OS cells on intact BMP signaling. In order
to investigate whether Saracatinib is indeed capable of interrogating both signaling axis
within the living cells, we performed drug treatment on U-2 OS cells and examined its
effect on the phosphorylation of the BMP receptor downstream substrate SMAD1/5/9
(pS463/465/467, fig. S6H) and SRC autophosphorylation (pY416, fig. S61). Increasing
concentrations of Saracatinib lead to a decrease of both, pPSMAD1/5/9 and pSRC, in a
dose-dependent manner. The inhibitors Dasatinib and Gilteritinib were used as controls to
ensure that the effect on pPSMAD and pSRC was not affected by crosstalk between both
pathways. Dasatinib is a SRC inhibitor which does not target BMP receptors; accordingly
SMAD phosphorylation was not affected by Dasatinib treatment. As expected, Dasatinib
showed strong effect on SRC autophosphorylation. Gilteritinib is a multi-target inhibitor
which —according to our data - targets BMPR1A and ACVR1 but not SRC.
Unfortunately, this inhibitor control was not as conclusive as anticipated as it did not
succeed in abrogating SMAD1/5/9 phosphorylation. This might be due to lower affinities
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towards BMP receptors in comparison to Saracatinib or due to the fact that one of the
evaluated BMP receptors, ACVR1B, was not found to be inhibited by this compound
which might reduce the anticipated effect on SMAD phosphorylation. Nonetheless, our
data revealed that Saracatinib engaged and perturbed both signaling pathways in human
osteosarcoma cells and that both, SRC and BMP signaling, play a pivotal role for U-2 OS
cell viability. Thus, simultaneous targeting of both pathways by Saracatinib may provide
a valuable strategy for treating bone cancer. Potent inhibition of BMP signaling by
Saracatinib may even be exploited for the treatment of other skeletal disorders such as
fibrodisplasia ossificans progressive (FOP) where abnormal activation of ACVR1 leads
to a constant rigidification of the skeleton.

Phosphoproteomic analysis of EGFR/ERBB2 signaling

Global phosphoproteomic analysis after short-term exposure of BT-474 breast cancer
cells to five different EGFR/ERBB?2 inhibitors revealed a core set of commonly regulated
phosphorylation sites. In addition to the target binding data obtained by the Kinobeads
assay, such analysis enables the investigation of inhibitor action directly in living cells.
Indeed, the data contains several known and new observations which collectively can help
to explain how inhibition of EGFR/ERBB?2 translates into decreased cellular proliferation
and cytotoxicity. For example, our analysis confirms the known inhibition of the
RAF/MEK/ERK and the PI3K/MTOR signaling axis which for instance causes cell cycle
arrest (e.g. via de-phosphorylation induced nuclear export of the MAPK1 substrate and
transcriptional repressor ERF)(104, 105) (Fig. 4C; fig. S8C-G). Our data also show that
phosphorylation of the activity regulating site pS703 of the Na+/H+ antiporter SLC9AL is
strongly decreased in response to treatment with all five inhibitors. SLC9A1 deletion has
been described to drastically reduce tumour growth(106) which is why it is tempting to
speculate that the observed de-phosphorylation induces SLC9A1 inactivation. Disruption
of pH homeostasis may therefore play an important role in mediating cytotoxic effects of
the studied inhibitors. Importantly, our data also suggest the involvement of many other
phosphoproteins which have not been described so far in this context. For example, it has
been very recently shown that FOXK2 inhibits the proliferation and invasion of breast
cancer cells and suppresses the growth and metastasis of breast cancer(107). We find that
treatment of breast cancer cells induces phosphorylation of FOXK1 pS-436 (average
log2FC across inhibitors = 0.84) and FOXK2 pS-424 (average log2FC across inhibitors =
2.16). Although the functional role of those phosphorylation sites is currently unknown,
the observed induction of phosphorylation may suggest that both transcriptional regulators
may play a role in altering cellular proliferation and invasion. Further support for the latter
comes from an established role of the aforementioned mentioned activation of the SLC9A1
antiporter in invasion and metastasis(108). Strikingly, we also found increased
phosphorylation of BAHD1 pS180 (average log2 FC across all inhibitors = 1.52) and
ATRX pS594 (average log2 FC across all inhibitors = 1.47). BAHD1 represses several
proliferation and survival genes(109) and both BAHD1 and ATRX participate in
heterochromatin silencing which has a well-established functional role in cancer
progression(108). Hence, altered heterochromatin silencing and concomitant change in
transcriptional activity might be one (novel) mode of action of EGFR/ERBB?2 inhibitors.
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Phosphorylation signatures of individual drug molecules are also of value in order to assess
the molecular consequences of e. g. polypharmacology. Rather than looking at the set of
commonly regulated phosphorylation sites, a well annotated kinase inhibitor target in
combination with phosphoproteomic data can enable the identification of differential
inhibitor effects and support the correct interpretation of cellular effects of individual
inhibitors. For example, we discovered that de-phosphorylation of pS363 of RIPK2 is not
caused by inhibition of EGFR/ERBB2 but rather is a consequence of direct RIPK2
inhibition. A well annotated target space has also retrospective value for other
phosphoproteomic studies. The RIPK2 pS363 site has been previously shown to be
inhibited in response to treatment of melanoma cells with the kinase inhibitor Vemurafenib.
This is in line with the fact that our chemoproteomic data clearly identify Vemurafenib as
a potent RIPK2 inhibitor(110). Although this represents only a single example, the
combination of the present dataset with a more systematic phosphoproteomic analysis of
inhibitor action should uncover many more such associations and greatly support the
interpretation of phosphoproteomic experiments.

Non-protein-kinase off targets

As the compounds immobilized on Kinobeads are ATP mimetics, we and others have
shown that other nucleotide binding proteins may also specifically bind. The large body
of data reported here expands on these prior observations.

The metabolic kinase PDXK has previously been shown to bind Seliciclib (Roscovitine)
via the pyridoxal binding site(36). We detected binding of PDXK to the designated PLK1
inhibitor BI-2536 (K¢*P= 387 nM), most likely via direct binding to the ATP site of
PDXK (fig. S6J). Clinically relevant levels of BI-2536 may therefore interfere with
vitamin B6 metabolism and potentially lead to the depletion of pyridoxal phosphate, an
essential cofactor in the metabolism of amino acids and neurotransmitters. Moreover,
PDXK inhibition might render cancer cells less susceptible to chemotherapy(111).
Several Kls were potent binders of the acetyl-CoA dehydrogenases ACAD10 (e.g.
Alisertib) and ACAD11 (e.g. Crizotinib). Little is known about the function of these
ACADs, but they presumably play a role in fatty acid metabolism. As ACADs use FAD
as a cofactor, the kinase inhibitors likely bind to the FAD site of the enzymes. This may
potentially be therapeutically exploited, as tumours can switch to oxidative
phosphorylation for energy production under conditions of glucose starvation (fig.
S6K)(112).

Insights from co-crystal structures of kinase inhibitors and their targets

NQOZ2: In order to analyze the binding mode and mechanism of NQO2 inhibition by
the kinase inhibitors Crenolanib, Pacritinib and Volitinib, the enzyme was co-crystallized
with the compounds and high-resolution structures determined by X-ray crystallography
(for data processing and structure refinement statistics see Table S13; PDB codes: 5LBY,
5LBZ, 5LBW for the aforementioned compounds). NQO2 is a homodimer with the two
active sites sitting at the interface between the two monomers and each containing a FAD
molecule as a co-factor. All three compounds were clearly defined in the unbiased Fo-DFc
difference density maps in both pre-formed hydrophobic active sites of NQOZ2, directly
above the isoalloxazine ring of the FAD molecule. The interactions between NQO2 and
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the compounds are dominated by pi-stacking interactions between the isoalloxazine ring
of FAD and residues lining the pocket (Fig. 3D; fig. S6L). Specificity, in all three cases, is
further governed by a hydrogen bond to N161. In the Crenolanib and Pacritinib complexes
an additional water mediated hydrogen bond to E193 or Q122 can be observed. In
comparison with the previously reported structure of Imatinib bound to NQO2(37) an
analogous water-mediated hydrogen bond between Q122 and bridging nitrogen can also
be seen (PDB code 3FW1). In addition, M154 forms a sulfur-arene contact (113) to an
aromatic ring of the compounds in the NQO2 bound Volitinib and Imatinib structures,
which provides a significant amount of stabilizing dispersion energy.

MELK. Little is known about the structure-activity-relationship (SAR) of MELK and
its inhibitors as information on MELK as a target and compounds from medicinal
chemistry programs focusing on MELK have just begun to emerge in the literature (114-
116). Our Kinobeads drug screen can be used as a rich source of molecules for SAR
elucidation and identification potential lead structures for future medicinal chemistry
campaigns. We identified 16 compounds that target MELK as an off-target and 7 of those
drugs bound and inhibited the kinase with sub-micromolar affinity (Nintedanib, PF-
3758309, K-252a, Lestaurtinib, CC-401, Defactinib, BI-847325; Fig. 5D, fig. S1D, Table
S11). Co-crystallization experiments yielded high resolution crystal structures of the
MELK kinase domain in complex with the inhibitors Nintedanib, PF-3758309, K-252a,
Defactinib and BI-847325 (fig. SOE; for data processing and structure refinement statistics
see Table S14; PDB codes: 5SMAF, 5SMAG, 5M5A, 5MAH, 5MAI respectively). These
compounds comprise a diverse set of different pharmacophores, which enabled the
determination of a range of different drug-protein interactions. In addition, Nintedanib and
B1-847325 are of particular interest as they share large parts of the molecular scaffold but
differ significantly in their binding affinities (53 nM and 918 nM, respectively) and
selectivity profiles in the Kinobeads assay. Ligand interaction analysis identified a total of
26 drug-protein interactions which were located at different positions within the ATP
pocket (e.g. G-rich loop, hinge region, activation loop, catalytic loop, etc.). We have
recently described a classification scheme that categorizes interacting residues according
to preferential binding, side chain accessibility/targetability and kinome-wide conservation
into the categories of key, selectivity, potency and scaffold residues(46). By applying this
classification scheme to the obtained MELK data set, we identified 14 scaffold residues, 5
potency residues, 5 selectivity residues (2 of which are reverse selectivity residues; fig.
SOE; Table S11). No key residues could be assigned which is probably due to different
factors: i) the number of analyzed crystals is still too low, ii) pharmacophore diversity
between the compounds is quite high, iii) affinity of the inhibitors is not extremely high
and iv) the intended targets of the inhibitors (VEGFR/FGFR/PDGFR, PAK4, PRKC,
MEK/AURK) are structurally very different from MELK. The potency residue Glu57
forms direct interactions to Nintedanib and the potency residue Asn137 to PF-3758309 and
K-252a, respectively, which might be responsible for the higher affinity of these
compounds compared to Defactinib and BI-847325. Particularly, the potency residue
GIlu57 appears to have a strong influence when comparing Nintedanib and the structurally
similar inhibitor BI-847325. Cocrystal structures of both compounds revealed very
different binding modes of Nintedanib (DFG in, Ca helix in) and BI-847325 (DFG in, Ca
helix out). The shift of the Ca helix is induced by the more bulky ethylamide substituent
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of BI-847325 and leads to a disruption of the characteristic salt bridge between Lys40 and
GIlu57 (salt bridge indicates active kinase conformation) and prevents BI-847325 from
establishing an interaction with Glu57 as observed for Nintedanib. This might explain the
large affinity difference towards MELK. The five selectivity residues (E15, C70, Y88, C89,
E93) could potentially facilitate MELK inhibitor design as exemplified by the direct
interactions engaged between Nintedanib and E15 (kinome-wide conservation level: 6%)
or K-252a and E93 (kinome-wide conservation level: 15%). The selectivity residues C70
and C89 are readily accessible in the center of the ATP pocket and open up the possibility
to design irreversible inhibitors for MELK. Given the low conservation level of both
cysteines (C70: 1%, C89: 19%) and the fact that this combination of cysteines is present in
only one more protein kinase (TBCK), one can anticipate that such an irreversible inhibitor
would not only gain in potency and increase the drug’s residence time but also provide
selectivity towards MELK.

NSCLC patient analysis

Kinobeads experiments from tumor and nearby normal tissue of 15 lung cancer
patients revealed differential expression of several interesting protein kinases (namely
MELK, EGFR and DDR1, fig S9A). These candidate proteins were followed up in a
retrospective study of 375 patients comprising 186 adenocarcinoma cases and 189
squamous cell carcinoma cases (Table S15). Immunohistochemistry staining suggested
that MELK was mainly present in the nucleus (Fig. 5A). Overall, we found overexpression
of MELK in 291 of 359 NSCLCs (81%), which correlated with poor prognosis of the
NSCLCs (p=0.04). The further analysis revealed that 77.7% (140 of 180) adenocarcinoma
and 84.5% (151 of 179) squamous cell carcinoma tissues showed high levels of MELK.
However, overexpression of MELK had no impact on survival in adenocarcinoma patients
(p=0.7) but significantly correlated with survival in squamous cell carcinoma patients
(p=0.02) (Fig. 5B). Staining for EGFR revealed membrane localization of the protein.
Overexpression of EGFR in NSCLC had no impact on overall survival (p>0.05). High
expression of EGFR in Adenocarcinoma (in 114 of 177) correlated with poor prognosis (p
= 0.06) whereas high expression in squamous cell carcinoma (135 of 178) was associated
with good prognosis (p = 0.03). According to immunohistochemistry staining, DDR1 was
mainly expressed in cytoplasm. High expression of DDR1 (20 of 177) had impact on a
good prognosis in squamous cell carcinoma (p = 0.05), whereas no significant correlation
with survival could be found in adenocarcinoma or the combined analysis (p>0.05) (fig.
S9B-D).

Characterization of the novel FLT3 inhibitor Golvatinib and pre-clinical evaluation of
Cabozantinib in mice

FLT3-ITD has been proven to be a therapeutic target in acute myeloid leukemia
(AML) (117). In early 2017, the multikinase inhibitor Midostaurin has been approved for
newly diagnosed AML in adult patients who are FLT3 mutation positive. Clinial trials have
also demonstrated Midostaurin activity in patients with FLT3 wild type, owing to either
FLT3 or off-target inhibition(118). We identified 30 targets for Midostaurin in our assay
with medium affinity and low selectivity (CATDSrLt3: 0.048) for FLT3, whereas
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designated FLT3 inhibitors in clinical trials such as Quizartinib, Crenolanib or Gilteritinib
showed higher potencies and selectivity values. Overall, 61 inhibitors were identified to
bind to FLT3. According to mRNA sequencing of the utilized four cell lines, FLT3 is
mainly expressed in the MV-4-11 cell line, harboring a FLT3-1TD mutation (see above and
Table S5) suggesting that these compounds are active against the mutated protein.

This work identified Golvatinib as a new and very affine and reasonably selective
FLT3 inhibitor (K¢®": 4 nM, CATDSkLT3: 0.249), whereas Cabozantinib showed favorable
selectivity for FLT3 (Kq*P: 53 nM, CATDSrLts: 0.457) compared to its other targets.
Cabozantinib is approved for the treatment of medullary thyroid cancer and renal cell
carcinoma based on the inhibition of c-MET and VEGFR and appears to be well tolerated.
Thus, further repurposing of this inhibitor for other indications might be possible.

We screened a panel of leukemia cell lines against Cabozantinib using the designated
FLT3 inhibitors Quizartinib and Crenolanib as positive controls (up to 500 nM in vitro).
Cell metabolic activity was measured by an MTS-assay. The cell lines THP-1, OCI-AML3,
OCI-AMLS5, U-937, KG-1a, NB-4, HL-60, SD-1, and K-562 were resistant to all three
inhibitors. Remarkably, all three compounds inhibited proliferation of cell lines harboring
mutations in receptor tyrosine kinase (RTK) class Il receptors (PDGFR subfamily,
including FLT3) in the low nanomolar range (Table S16, 17). Cell viability for a subset of
these cell lines (MOLM-13, MV4-11, MM-6, Kasumi-1, OCI-AML3, HL-60, KG-1a and
THP-1 was measured by the trypan blue assay (after 72 h of drug treatment; fig. S10A).
To validate FLT3 inhibition by Golvatinib, we also treated MV-4-11, OCI-AML3 and HL-
60 cells with the drug. Noteworthy, only cell lines with mutations in the PDGFR-RTK
family were sensitive to the drugs, with Golvatinib being the (relatively speaking) least
potent one (ECso = 26 nM).

We next treated Ba/F3 cells expressing different FLT3 mutants with the three
inhibitors and assayed their viability after 72 h (fig. S10B). All three drugs inhibited FLT3-
ITD E611C(28) (NPOS) with ECso values below 40 nM, FLT3-ITD 598/599(22) (w78)
below 15 nM and FLT3-ITD K602R(7) (w51) below 10 nM. Among the tested drugs,
Quizartinib was the most potent inhibitor, followed by Cabozantinib. All three inhibitors
can inhibit the proliferation of cells carrying the resistance mutation FLT3-1TD E611C(28)
N676K(119) but only Crenolanib showed an effect against FLT3-ITD E611C(28)
D835Y(86). The tyrosine kinase domain FLT3 D835Y mutation alone was also less
sensitive towards Cabozantinib treatment. Thus, Cabozantinib was not able to overcome
AML-resistance against common treatment options at lower doses. A combination of the
N676K and D835Y mutations also renders the Ba/F3 cells resistant towards Cabozantinib,
whereas Crenolanib shows the best inhibitory effect on proliferation in these cases.
Moreover, all three inhibitors showed an inhibitory effect on KIT expressing cells but with
lower potency compared to cells expressing FLT3-1TD mutations (fig. S10B; Table S17).
Golvatinib treatment reduced viability of FLT3-1TD K602 (7) cells but had no effect in the
Ba/F3 clone with resistance mutation.

Immunoblot analysis of Golvatinib and Cabozantinib in FLT3 wild type or FLT3-ITD
transfected HEK?293 cells showed that all compounds reduce FLT3 phosphorylation in the
mutant and wild type form proving target engagement in living cells (fig. S10C). In FLT3-
ITD dependent MV-4-11 cells, lower doses of drug are sufficient for inhibition of FLT3
signaling (fig. S10D).
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To determine the effect of Cabozantinib on cellular FLT3 expression levels, U-2 OS
cells were transiently transfected with FLT3 wild-type and mutant constructs (FLT3-1TD
(K602R(7) (w51), FLT3-ITD E611C(28) (NPOS)). Cells were treated with 50 nM
Cabozantinib while control cells were left untreated prior to immuno-fluorescent staining
for DNA (DAPI), membranes and other lipophilic structures (WGA) and FLT3. In
untreated FLT3 wild type cells, FLT3 is located at the membrane and in the cytoplasm of
the cell, whereas the FLT3-1TD mutation leads to an apparent displacement of the receptor
from the membrane. Comparison of Cabozantinib treated and untreated controls revealed
an increase in FLT3 surface localization, similar to the one previously observed for
Quizartinib(120). Therefore, Cabozantinib treatment is able to restore the membrane
localization of FLT3-ITD (Fig. 6A; fig. S10E). Furthermore, immunoblot analysis showed
that Cabozantinib abbrogated phosphorylation of STAT5 in MV-4-11 cells and thus
stopped this aberrant signaling (49). at doses below 10 nM (fig. S10D).

As a result of Cabozantinib treatment efficacy in cells, we next evaluated the drug in
a systemic xenograft mouse model of AML. Wild type FLT3 (OCI-AML3) or FLT3-ITD
mutated (MV-4-11) cells were injected into the tail vein of NSG mice. Cabozantinib
treatment started on day three after cell injection with a dosage of 60 mg/kg (prior dose
escalation trials showed no drug related toxicities at this dose). Mice were imaged every
four to five days and bioluminescence imaging was used to monitor tumour burden in the
animals. Solvent treated control mice showed a high bioluminescence signal starting on
day 13 and therefore had to be sacrificed starting with day 17 after cell injection.
Cabozantinib treatment was continued until day 14 and was then stopped so that survival
could be monitored by Kaplan Meier analysis. After drug treatment was discontinued,
cancer cells started growing and luminescence concommittantly increased (fig. S10F
shows exemplary mice for disease development). From these experiments we conclude that
Cabozantinib treatment leads to a significant reduction of tumour growth in FLT3-ITD
positive but not FLT3-WT AML cells. In addition, treatment significantly prolonged the
survival of MOLM-13 bearing mice (fig. S10G, H) making Cabozantinib a promising
candidate for further evaluation in AML patients stratified for FLT3-1TD.
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Fig. S1.
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Fig. S1 | Kinobeads Drug Screen workflow and evaluation. (A) Kinobead pulldowns were
performed in 96-well format. Eight doses were used for each drug plus vehicle control and a second
pulldown of the vehicle control (pulldown of pulldown). This control was used to correct for protein
depletion from the lysate caused by the affinity enrichment (see methods). Proteins were eluted
from beads, run ~1 cm into a LDS gel and in-gel digested with trypsin. Each pulldown was analysed
by liquid chromatography tandem mass spectrometry and using an inclusion list of kinase peptide
m/z and retention times collected in prior experiments. MS data from the same 15 vehicle control
Kinobeads pulldowns were added to the MaxQuant/Andromeda software for consistent protein
identification and quantification. Dose response plots were generated and target proteins manually
annotated. (B) Kinobead western Blot readout for selected inhibitor:protein combinations.

(C) Dasatinib target pKq2? correlate well with KiNativ binding data for the same inhibitor.

(D) Correlation of Kinobeads binding data for clinical MELK and SIK2 inhibitors to ICse-values
obtained in recombinant activity assays shows reasonable agreement between the two assay
formats.
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Fig. S1 continued | Kinobeads Drug Screen workflow and evaluation. (E) Intensity
distribution of proteins captured on Kinobeads. From the total MS peptide intensities, 52%
originated from kinase peptides illustrating good enrichment of kinases on Kinobeads.

(F) Venn diagram of the overlap of protein kinases identified in the RNA-seq data, full
proteome analysis and Kinobeads pulldowns in K-562, M-4-11, COLO 205 and SK-N-
BE(2) cells. (G) Examples for Kinobeads experiments performed to profile MET inhibitors
using a lysate mixture of the four standard cell lines supplemented with Caki-1 cell lysate
(high MET expression). (H) Kinobeads competition data for MTOR/PI3K-family members
(red) using immobilized Omipalisib (inset) and unmodified Omipalisib as the competitor.
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Kinome dendrogram

Phylogenetic tree of all human kinases based on sequence
similarity of the kinase domain. Circle size indicates
potency (K_** and the color code specifies protein-drug
interaction with the designated or other targets.

Selectivity distribution

Histogram of selectivity values (CATDS,__ . atthe K =®
of the most potent target) across all compounds in this
study. The drug for this specific profile is highlighted in red
to provide an estimate of its relative selectivity with respect
to all other drugs. CATDS is explained in Ext. Data Fig. 3.
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Target engagement (black dashed line, left y-axis), CATDS (blue dashed line, right y-axis)
and CATDSI (red solid line, right y-axis), as a function of drug dose. CATDS and CATDSI
are explained in Ext. Data Fig. 3 and in Supplementary Information. Both the K ** (vertical
black dashed line) and optimal drug concentration with regard to the selectivity and target
engagement (CATDSI optimum, vertical red dashed line) are shown. Note that the
CATDS/CATDSI axis is drawn to scale for each drug (0: low selectivity; 1: high selectivity).
This plot is only generated for high confidence kinase and direct binder targets. The intention
of the plot is to provide an estimate for the optimal compound concentration at which

both potency and selectivity are highest

Fig. S2 | Description of target profile summaries. For reference purposes, we have created pdf
files summarizing the target profiles of all 243 inhibitors used in a total of 281 experiments. (A)
Page 1 highlights general information about the inhibitor. Each identified target kinase (blue for
designated target, red for other targets) is highlighted on the phylogenetic tree of all human kinases.
A histogram plot places the inhibitor on the distribution of selectivity of all drugs investigated in
this study. The histogram at the bottom of panel (A) indicates the level of target engagement of the
drug in the cell lysate at a defined concentration. (B) Beginning with the high confidence targets,
the subsequent pages show all MS intensity-based dose-response profiles obtained for the
compound including parameters for curve fitting and derived 1Cso, ECso and K4** values. (C) For
each protein, further analytical evidence is provided (number of MS/MS scans, number of unique
peptides) and how abundant the protein was within the experiment (LFQ or raw intensity in the
DMSO control). (D) Target engagement, compound selectivity (CATDS) and predicted optimum
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of compound selectivity and target engagement (CATDSI) as a function of applied compound dose.
The optimum in the CATDSI curve indicates the drug concentration that represents the best
compromise between selectivity and target engagement. Visualization information for proteins that
do not show dose-dependent binding consists of (B) and (C) only. Links to all target summary files
are provided in Table S1. The pdf files can also be retrieved from proteomeXchange and
ProteomicsDB (see data availability).
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Fig. S3.
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Fig. S3 | Determination of compound selectivity by the Concentration and Target Dependent
Selectivity (CATDS) score. (A) An example of a CATDS calculation is provided for Gefitinib
(upper panel). Kinobeads profiling determined seven targets for Gefitinib (blue box for EGFR and
red box for the six other targets). The target engagement (blue vertical bar in the dose-response plot
for EGFR; red vertical bar in dose response plot for other targets) is shown for all targets. The
histogram in the middle panel uses the same color code. The selectivity of Gefitinib for EGFR
(CATDSecrr) can be calculated by dividing the target engagement of EGFR (here at its K¢ of
413 nM, i.e. 0.5, blue bar) by the sum of all target engagements (blue and red bars) at the same
concentration. More generally, using the fitted curves from the Kinobeads assay, CATDSggrr Can
be calculated at any concentration (lower panel, blue dashed line) to monitor the selectivity across
the entire concentration range. A further useful metric is the Concentration and Target Dependent
Selective Inhibition (CATDSI) which provides an estimate of the optimal concentration at which
the highest selectivity and highest target engagement can be obtained. Thus, CATDSlecrr is the
CATDSecrr multiplied by the target engagement of EGFR (lower panel, dashed black line). (B)
CATDS can be flexibly used to express the selectivity of a compound for any one protein of interest
(CATDStarger), 0ne of the designated targets of a compound (CATDSgesignated) OF the most potent
designated target of a compound (CATDSmost-potent). The score can also be used for protein groups
such as multiple target proteins (CATDSargets), multiple designated targets (CATDSmutti-designated) OF
multiple targets involved in a drug’s mechanism of action (CATDSmoa). (C) Comparison of
CATDS features to four other selectivity measures. CATDS encompasses features of all the other
metrics but only CATDS provides an assay-independent selectivity measure for single and multiple
proteins of interest at any concentration.
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Fig. S3 continued | Determination of compound selectivity by the Concentration and Target
Dependent Selectivity (CATDS) score. (D-H) Generally, there is reasonable agreement of
CATDS with four other measures of selectivity. CATDSesignatea 1S highly comparable to (D) the
selectivity score and (E) the Gini coefficient. (F) Selectivity entropy is comparable to CATDSmost-
potent (I€ft panel); however, CATDSmuni-designated iNdicates that the selectivity entropy is unable to
differentiate compounds that are on-target (blue circles) or off-target (black circles) proteins (right
panel). (G) There is also a high correlation between CATDSmost-potent (CATDSmutti-designated) and the
partition indeXmost-potent  (Partition  iNdeXmuli-designated), respectively. (H) The comparison of
CATDSmulti-designated Calculated at 10 nM (left) and 1,000 nM (right) with the partition indeXmuui-
designated d€MoOnNStrates that the partition index cannot account for the fact that selectivity is a function

of drug dose.
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Fig. S4 | Evaluation of drug selectivity — global dataset. (A) Inhibitors grouped by status of
clinical evaluation. Given is the number of targets with a potency of below 100 nM (blue), 1,000
nM (light grey) and any concentration (total; dark grey). (B) CATDS analysis of drug selectivity
according to clinical status (determined from the CATDS for all designated targets at the
concentration of the most potent designated target; CATDSesignated). There was no difference in
selectivity between clinical phases confirming that selectivity is not a strict requirement for
progressing a compound in the clinic. (C) Selectivity analysis of 137 kinase inhibitors with
annotated binding type according to CATDSdesignaed (the most potent designated target of a
compound at its Kq*P). Type 1 and 2 inhibitors did not differ in median selectivity; while type 3
inhibitors were generally more selective. Irreversible and reversible inhibitors spanned a broad
range of selectivity, albeit highly selective molecules were apparent in both.
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Fig. S4 continued | Evaluation of drug selectivity — irreversible and reversible EGFR
inhibitors.

(D) Violin plots of EGFR inhibitors profiled in the lysate mixture of the four cell lines (top panel)
as well as BT-474 cells (bottom panel). Given are pKq*" values of all high-confidence, direct-
binder targets (pKq*° of EGFR highlighted as a grey circle). The shape of the violin indicates the
number of targets at the respective pKq*P. The total number of targets is printed at the top (e.g.
n=8). Violins are colored according to selectivity for EGFR (CATDSecer). (E) EGFR turnover
measured by pulsed SILAC mass spectrometry and monitoring the loss of a heavy label over time.
EGFR turnover was corrected for cell doubling to obtain protein half-lives (see Supplementary
Materials).
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Fig. S4 continued| Evaluation of drug selectivity. (F) Kinobeads target profiling data of a pro-
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Fig. S5.
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Fig. S5 | Characterization of novel off-targets. (A) Comparison of protein-drug interactions from
this study with those described in major publications and online databases (CHEMBL, LINCS,
Anastassiadis et al., Metz et al.) (B) Phylogenetic tree representation of all human kinases and
Dabrafenib targets (blue) determined from activity (left) and Kinobeads binding data (right;
illustration reproduced courtesy of Cell Signaling Technology, Inc; www.cellsignal.com). The size
of each circle is proportional to the K4*P of the interaction. (C-E) Kinase activity assays of novel
Dabrafenib targets validated the binding results obtained with Kinobeads. (F) Kinobeads binding
and kinase activity assays for Dabrafenib and different CDK/Cyclin combinations. Potent binding
competition of CDK2 could not be confirmed in the activity assay).
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Fig. S5 continued | Characterization of novel off-targets. (G) Kinase activity assays for
Ponatinib and ABL1, ZAK and MAPK14 confirmed that binding data (inserted radar plot for all
kinase targets of Ponatinib) translated into inhibition of kinase activity. The target promiscuity of
Ponatinib may be responsible for both desired and undesired side effects.

31



Fig. S6.
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Fig. S6 continued | Characterization of novel off-targets — SIK2. (B) Mouse BMDM cells were
treated with increasing concentrations of potential SIK2 inhibitors followed by cell viability (grey
area), TNFa (pink) and IL-10 (blue) measurement. All shown inhibitors resulted in anti-
inflammatory effects (IL-10 increase, TNFa decrease), suggesting SIK?2 inhibition (error bars show
standard deviation of technical triplicates). The known SIK2 inhibitor HG-9-91-01 was used as
positive control. (C) PRM assay for phosphorylation of CRTC3 S370 — a substrate site of SIK2 —
showing reduced phosphorylation for all SIK2 inhibitors compared to DMSO. (D) Quantitative
readout of PRM transitions for either pS370 or pS62 after inhibitor treatment. (E) Western blot and
mass spectrometry readout of Kinobeads binding of SIK2 by HG-9-91-01.
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Fig. S6 continued | Characterization of novel off-targets — NTRK1. (F) Potential NTRK1
inhibitors but not Gefitinib reduced the viability of TPM3-NTRK1 dependent KM12 cells in a dose-
dependent fashion (error bars show standard deviation of technical triplicates). The designated
NTRKL1 inhibitor Entrectinib was used as positive control.
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Fig. S6 continued | Characterization of novel off-targets - Saracatinib. (G) siRNA knock-down
experiments in U-2 OS cells (osteosarcoma) and NCI/ADR-RES cells (ovarian cancer; left panel)
suggested that Saracatinib efficacy in U-2 OS cells (right panel) is owing to a concerted inhibition
of SRC and BMP receptor signaling in osteosarcoma. Transfection reagent and scrambled siRNAs
were used as negative control and cell death inducing siRNA as positive control (error bars depict
standard deviation of technical triplicates). (H) Western blot readout for phospho-SMAD in U-2
OS cells treated with inhibitor in the presence or absence of BMP2. Saracatinib treatment results
in decreased phosphorylation of SMAD downstream of BMP receptors and (I) decreased
autophosphorylation of SRC Y419 showing target/pathway engagement of the drug.
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Fig. S6 continued | Characterization of novel off-targets — beyond protein kinases.

(J) Metabolic kinase PDXK as off-target of kinase inhibitors. Seliciclib is known to bind to the
pyridoxal binding site (PLP) but does not score in the Kinobeads assay. Conversely, BI-2536
showed binding inhibition in Kinobeads and therefore likely interacts with the ATP-binding pocket
of PDXK. (K) Acyl-CoA dehydrogenases ACAD10 and ACAD11 as off-targets of kinase
inhibitors. Inhibition of ACAD11 may block the metabolic switch of cancer cells from glucose to
fatty acid metabolism under conditions of glucose starvation. (L) Co-crystal structures of NQO2
and Crenolanib (left two panels), Pacritinib (middle two panels) and Volitinib (right two panels).
All molecules interact with FAD by =n-stacking and residues in the active site. (M) Radar plot of
pK«P values for FECH revealing interaction with a total of 26 compounds.
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TBK1, AP2 and CDK/Cyclin complexes are shown as examples. (B) Schematic representation of
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characteristics (blue, direct Kinobead binder).
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Fig. S7 continued | Kinobeads binding of protein complexes — CDKs. (C) Clustering

CDK

CDK bound as off-target mode of action

of

inhibitors targeting CDKSs according to CATDSwmoa (See Supplementary Materials for
details). Compounds either had no preference (white-light blue) or targeted the same
biological process (pink; e.g., the cell cycle). Off-target CDK inhibitors (light grey bar)
often inhibited one potential CDK mode-of-action. (D) Designated CDK inhibitors

targeted all CDK/cyclins irrespective of the biological process a particular complex

is

involved in (cell cycle in dark blue, translation in light blue, dual cell cycle and
transcription CDK?7 in dark grey, atypical CDKSs in light grey). (E) Conversely, off-target
CDK inhibitors showed some preference for the cell cycle (dark blue), translation (light

blue), dual cell cycle and transcription CDK7 (dark grey) or atypical CDKs (light grey).
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Fig. S8 | From target to pathway engagement — combination treatment. (A) Viability assays of
drug combination treatment in lung (PC-9) and ovarian (IGROV-1) cancer cell lines. (B)
Proliferation assays (from left to right) for PC-9 and IGROV-1 with single and drug combination
treatment with Gefitinib and AZD-4547. Combination treatment of Gefitinib and AZD-4547 was

more effective than any single drug. Experiments were performed in technical triplicates and error
bars depict standard deviation.
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Fig. S8 continued | From target to pathway engagement — EGFR pathway. (C) Workflow for
guantitative phosphoproteomics in BT-474 cell lines treated with different EGFR/ERBB2
inhibitors (in four replicates). (D) Number of reproducible (at least 3 from 4 biological replicates)
significantly up- (blue) and down-regulated (pink) phosphorylated sites observed for each drug
(two-sided t-test, p<0.01). (E) Down-regulation of the ERBB2 autophosphorylation site pY1248
can be used as a target engagement marker in cells for all drugs shown. (F-G) Up- and down-
regulated phosphorylated sites for (F) known and (G) novel members of the ERBB2 network. Error
bars depict the standard deviation. Further details are provided in the Supplementary Materials.
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Fig. S9 | Clinical drugs for potential kinase targets (A) Kinobead based kinase expression heat
map of healthy (grey) and tumour (blue) tissue from 15 NSCLC patients. Columns and rows are
ordered according to the results from a supervised clustering (dendrogram) of significantly
regulated kinases. (B) Combined Kaplan-Meier analysis of MELK in squamous cell carcinoma
(SCC) and adenocarcinoma (ADC). (C) Kaplan-Meier analysis of EGFR in SCC, ADC and
combined analysis. (D) Kaplan-Meier analysis of DDR1 in SCC, ADC and combined analysis. P-
values were obtained from a log rank test.
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Fig. S9 continued | Clinical drugs for potential kinase targets (E) Co-crystal structures of
MELK with Nintedanib, K-252a, PF-3758309, Defactinib and B1-847325 (left panel;
superimposed compound structures in the ATP pocket in blue). The sequence logo shows kinome
wide frequency of drug-interacting residues. Drug-interacting residues are classified as scaffold
(grey), potency (pink) and selectivity (blue) residues (middle panel) and are localized within the
ATP-pocket (right panel). A complete list of all residues plus classification is provided in Table
S10 and Supplementary Materials.
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Fig. S10 | Preclinical evaluation of Cabozantinib for treatment of AML. (A) Cell viability
assays for Cabozantinib, Golvatinib, Quizartinib and Crenolanib in AML cell lines (standard
deviation of technical triplicates). Mutations and translocations of the cell lines are provided in the
table (right). FLT3-mutated cell lines were sensitive towards FLT3 inhibition. (B) Proliferation
assays for Cabozantinib, Golvatinib, Quizartinib and Crenolanib in Ba/F3 cells harbouring different
FLT3 mutations. (C) Immunoblot analysis in MV-4-11 cells and MOLM-13, FLT3-WT and FLT3-
ITD transfected HEK293 cells, and Ba/F3 FLT3-ITD cells revealed FLT3 target engagement for
Golvatinib and Cabozantinib. FLT-ITD dependent cells are more sensitive to inhibitor treatment.
(D) Immunoblot analysis of STAT5 phosphorylation for increasing doses of Quizartinib and
Cabozantinib showed that both drugs can abrogate aberrant FLT3 signaling in MV-4-11 cells.
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Fig. S10 continued | Preclinical evaluation of Cabozantinib for treatment of AML. (E)
Immunofluorescence staining for FLT3-WT, FLT3-1TD 611C(28) or empty-vector transfected U-
2 OS cells with no, or 6 h treatment with 50 nM Cabozantinib. Drug treatment restored membrane
localization of FLT3-ITD analogous to WT. (F-H) NOD scid gamma mice were injected i.v. with
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untreated. (F) Representative bioluminescence images of treated and control mice for up to 24 d
after cell injection (MOLM-13). (G) BLI (bioluminescence in photons [lg]/(s*cm?*sr) signals for
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Table S1 (separate file)
Inhibitor annotation and MS experiment description

Table S2 (separate file)
Target Lists

Table S3 (separate file)
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Table S4 (separate file)
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Mutation Analysis
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Table S9 (separate file)
Phosphorylation Dataset

Table S10 (separate file)
NSCLC

Table S11 (separate file)
MELK Structure

45



Table S12.

Summary of kinase assay data performed at Reaction Biology Corporation. ICsg values for
kinases where obtained from dose responses in single measurements. Kinases not tested
(n.d.) or not inhibited (n.i) are indicated as such.

Kinases Dabrafenib 1Cso [M] Ponatinib 1Cso [M]
ABL1 5.19E-06 < 1.00E-9
ABL2/ARG 2.94E-06 n.d.
ALK5/TGFBR1 9.87E-07 n.d.
ARAF 1.39E-10 n.d.
BRAF 6.30E-10 n.d.
BRAF (V599E) 4.05E-09 n.d.

BRK 1.13E-08 n.d.
CDK16/cyclin Y (PCTAIRE) 2.90E-08 n.d.
CDKl1/cyclin A 5.69E-06 n.d.
CDKl1/cyclin B 2.22E-06 n.d.
CDKl1/cyclin E 2.92E-07 n.d.
CDK2/cyclin A 7.47E-06 n.d.
CDK2/cyclin Al n.i. n.d.
CDK2/cyclin E n.i. n.d.
CDK2/cyclin O 9.40E-06 n.d.
CDK3/cyclin E 6.86E-06 n.d.
CDK4/cyclin D1 8.52E-07 n.d.
CDK4/cyclin D3 1.84E-06 n.d.
CDK5/p25 4.92E-06 n.d.
CDK5/p35 3.71E-06 n.d.
CDKG6/cyclin D1 n.i. n.d.
CDKG®/cyclin D3 5.37E-07 n.d.
CKlal n.i. n.d.

CSK 4.24E-08 n.d.
EIF2AK1 4.82E-08 n.d.
FGR 5.35E-07 n.d.
FRK/PTK5 3.97E-07 n.d.

FYN 1.30E-06 n.d.
HPK1/MAP4K1 n.d. 3.62E-09
IRAK1 3.39E-06 4.02E-08
IRAK4 n.d. 5.32E-06
JINK2 n.d. 2.99E-06
LCK 4.50E-08 n.d.
LIMK1 3.22E-08 n.d.
LIMK2 3.59E-09 n.d.

LYN 8.57E-08 n.d.
MEKK1 n.d. 1.36E-06
MLK3/MAP3K11 2.48E-06 n.d.
NEK1 9.58E-07 n.d.
NEK11 2.47E-08 n.d.
NEK9 4.70E-10 n.d.
p38a/MAPK14 n.d. 2.07E-08
PKCnu/PRKD3 8.40E-09 n.d.
PKD2/PRKD2 1.23E-07 n.d.
PLK4/SAK 3.47E-08 n.d.
RAF1 5.12E-10 n.d.
RIPK2 4.13E-08

RIPK3 4.08E-09

SIK2 4.23E-08

SIK3 1.38E-07

TAOK3/JIK 9.10E-06
TNK1 3.78E-08

ULK1 2.40E-07

ZAK/MLTK 1.22E-08 < 1.00E-9

46



Table S13.

Data collection and refinement statistics for drug-NQO2 co-crystals (molecular

replacement). Data analysis and
MOLPROBITY (121) and PHENIX(122).

structure validation was

carried out with

NQO2 NQO2 NQO2
Crenolanib Pacritinib Volitinib
(5LBY) (5LBZ2) (5LBW)
Data collection
Space group P212121 P212121 P212121
Cell dimensions
a, b, c(A) 61.6, 79.4, 106.6 61.4,79.2,106.2 57.4,81.4,106.4
a B y(9 90, 90, 90 90, 90, 90 90, 90, 90
Resolution (A) 443-14 48.6-14 445-19
(1.45-14)a (1.45-14)a (1.97-1.9)a
Rmerge 0.039 (0.276)a 0.045 (0.329)a 0.110 (0.976)a
1/s(1) 22.6 (5.1)a 21.1(5.3)a 7.5(L.3)a
CC1/2 0.999 (0.95)a 0.999 (0.93)a 0.996 (0.56)a
Completeness (%) 0.93 (0.90)a 0.95 (0.91)a 0.90 (0.93)a
Redundancy 4.6 (64.4)a 4.5 (4.4)a 4.7 (4.0)a
Refinement
Resolution (A) 443-14 48.6-1.4 445 -1.90
No. reflections 96,392 97,697 36,195
Rwork / Rfree 0.124/0.142 0.126 /0.145 0.238/0.247
No. atoms
Protein 3711 3697 3643
Ligands 174 198 160
Water 436 428 39
B factors
Protein 14.6 13.1 42.1
Ligands 121 14.6 46.6
Water 26.9 25.1 37.7
R.m.s. deviations
Bond lengths (A) 0.96 0.96 0.97
Bond angles (9 6.7 6.6 6.6

2 Values in parentheses are for highest-resolution shell.
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Table S14.

Data collection and refinement statistics for drug-MELK cocrystals (molecular

replacement).

MELK MELK MELK MELK MELK
Nintedanib PF-3758309 K-252a Defactinib B1-847325
(5MAF) (5MAG) (5M5A) (5MAH) (5MAI)
Data collection
Space group P21212; P21212¢ P212124 P21212, 14132
Cell dimensions 1]
a, b, c(A) 59.91, 63.71, 61.18, 62.81, 63.28, 91.21, 59.67, 63.70, 169.13,
91.29 94.11 59.65 90.94 169.13, 169.13
a B y(9 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90
Resolution (A) 52.25 - 280 9411 - 235 4993 - 190 4355 - 200 5348 - 215
(2.95 - 2.80)2 (2.48 - 2.35)2 (2.00 - 1.90)? (2.11 - 2.00)? (2.27 - 2.15)?
Rmerge 0.129 (0.733)*  0.131(0.369)* 0.032 (0.224)* 0.068 (0.735)* 0.063 (0.793)2
1/o(l) 10.5 (2.6)? 7.7 (3.9)2 21.3 (5.6)? 15.4 (2.5)? 18.1 (3.1)?
CCuwp 0.993 (0.774)*  0.981 (0.885)* 1.000 (0.974) 0.999 (0.824)*  0.999 (0.798)2
Completeness (%) 99.8 (99.8)? 95.9 (99.9)? 94.7 (84.2)? 98.3 (98.6)? 100.0 (100.0)2
Redundancy 6.0 (6.2)2 4.6 (4.8)2 4.5 (4.6)2 5.1(4.9)2 8.6 (8.5)2
Refinement
Resolution (A) 52.25-2.80 52.24 -2.35 49.93-1.90 43.55-2.00 53.49 - 2.15
No. reflections 8550 14303 19461 22356 21616
Ruwork / Riree 0.223/0.257 0.194/0.251 0.185/0.214 18.3/23.8 19.2/23.7
No. atoms
Protein 2578 2586 2587 2604 2563
Ligand 40 35 35 35 35
Water 34 92 109 105 69
B factors
Protein 57.01 36.42 43.85 38.46 54.60
Ligand 51.42 32.19 36.74 35.66 65.12
Water 46.57 35.72 47.23 42.52 55.01
R.m.s. deviations
Bond lengths (A) | 0.0076 0.0091 0.0116 0.0107 0.0120
Bond angles (9 1.2854 1.4091 1.8555 1.4383 1.5352

aValues in parentheses are for highest-resolution shell.
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Table S15.

Clinical pathology parameters of the human NSCLC tissue samples.

Total Adenocarcinoma Squamous cell carcinoma

Number of patients [n] 375 186 189
Gender [%]

Female 25 37 14

Male 75 63 86
Age [years]

Average 65 63 66

Range 31-83 31-83 43-82
pT category [%]

pT1 23 32 14

pT2 49 46 52

pT3 19 15 24

pT4 8 7 10
Lymph node metastasis [%)]

pNO 57 58 56

pN1 15 10 20

pN2 26 28 23

pN3 1

PNX 1
Distant metastasis [%]

MO 97 95 99

M1 3 5 1
Residual tumour [%]

RO 89 90 88

R1 10 7

R2

RX 0 4
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Table S16.

Panel of AML cell lines with mutation information and sensitivity data for Cabozantinib,
Crenolanib, and Quizartinib measured by an MTS-assay. Number in brackets gives ECso
for Cabozantinib in the respective cell line.

Cell line Described mutations FLT3 inhibitor FLT3 expression
sensitivity
THP-1 NRAS, MLL-AF9 no yes
OCI-AML3 NPM1, DNMT3A no yes
OCI-AML5 no yes
U-937 no no
KG-1a OP1-FGFR1 no no
NB-4 PML-RARA no no
HL-60 NRAS no no
SD-1 BCR-ABL no no
K-562 BCR-ABL no no
MV-4-11 FLT3-ITD (homozygous), MLL- yes (16 nM) yes
AF9
MOLM-13 FLT3-ITD (heterozygous), MLL- yes (73 nM) yes
AF9
MONO-MAC-1 FLT3 V592A, MLL-AF9 yes (34 nM) yes
MONO-MAC-6 FLT3 V592A, MLL-AF9 yes (288 nM) yes
EOL-1 FIP1L1-PDGFRA yes (1 nM) yes
KASUMI-1 KIT N822K, KRAS, AML-ETO yes (69 nM) no

50



Table S17.

Cell viability data (ECso in nM) for kinase inhibitors in AML cell lines and stable Ba/F3
cell lines expressing different FLT3 constructs (n.i. means no inhibition).

Cell line Cabozantinib  Quizartinib Crenolanib Golvatinib
MOLM-13 18 5 8 32
MV-4-11 8 2 3 26
MONO-MAC-6 16 7 19

Kasumi-1 19 17 >100

OCI-AML3 n.i. n.i. n.i. n.i.
HL-60 n.i. n.i. n.i. n.i.
KG-la n.i. n.i. n.i.

THP-1 n.i. n.i. n.i.

FLT3-ITD E611C(28) 18 1 33

FLT3-ITD K602R(7) 5 0.3 9

FLT3-ITD 598/599(22) 5 2 10

KIT CBL Aexon8 32 14 >100

FLT3-1TD E611C(28) D835Y n.i. n.i. 64

FLT3-1TD E611C(28) N676K 22 58 85

FLT3 D835Y 57 7 2

FLT3 N676K D835Y >100 66 6

FLT3-1TD Nomenclature according to Janke et al.(85) and Arreba-Tutusaus et al.(123):
FLT3-ITD K602R(7) = FLT3-ITD (w51) = FLT3-ITD 3

FLT3-ITD E611C(28) = FLT3-1TD (Npos) = FLT3-ITD 2

FLT3-ITD 598/599(22) = FLT3-ITD (w78) = FLT3-ITD 1

o1
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