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Supplementary Text 

 

Characterisation of cell lines by RNA-seq, deep proteome and kinase enrichment 

 

The four cell lines used in the cell mixture (K-562, MV-4-11, SK-NB-E(2) and COLO 

205) were analysed by RNA-seq and transcripts were mapped to the hg37 reference 

genome. In total, 494 protein kinases were transcribed and mutations were found in 139 

kinase genes in at least one of the four cell lines. The analysis exclusively considered 

indels, non-synonymous, mis-sense and non-sense mutations that resulted in an altered 

primary amino acid sequence upon translation. 

COLO 205, K-562, MV-4-11, and SK-N-BE(2) cells had 73, 71, 61, and 76 mutated 

kinase genes, respectively (with 16, 16, 11 and 20, respectively, located in the kinase 

domain). Obscurin and CSNK2A3 had the most mutations in the corresponding gene 

sequence. All kinases, the number of observed mutations and the mutated sequence are 

provided in Tables S4 and S5. Mutations that did not meet the applied statistical criteria 

are not listed. For example, BRAF in COLO 205 cells revealed a heterologous point 

mutation coding for the BRAF V600E mutation. The underlying sequence data, however, 

had poor coverage. Only 6 reads were evident at the corresponding transcript site; of which 

two bore mutations. Therefore, this mutation was excluded from the analysis. Mutations 

that could not be unambiguously determined by Illumina sequencing were also excluded 

(such as FLT3 insertion mutations expressed in MV-4-11 cells).  

To profile the proteome of the four cell lines, peptides from each cell line were 

separated into 36 fractions using hydrophilic strong anion exchange chromatography 

(hSAX) and each fraction was subsequently measured by LC-MS/MS. From the deep 

proteome analysis, 363 protein kinases were identified that were also present in the RNA-

seq data. Kinobead enrichment of the four single cell lines resulted in 253 kinases; 251 

thereof were also observed by RNAseq and 235 were identified in the full proteome 

analyses. The total overlap between the three methods was 234 kinases. 19 kinases were 

detected by both RNA-seq and the Kinobead experiments; but were not identified in the 

proteome. Additional kinases were identified by more peptides in the Kinobead 

experiments compared to the proteomes; thus highlighting the effectiveness of chemical 

(affinity) proteomic approaches for sub-proteome enrichment. On average, 52% of the total 

MS-intensity in the Kinobead experiments were mapped to kinase peptides (fig. S1E). Four 

kinases (CAMK1G, STK26, MLK4, POMK) were only identified in the Kinobead 

pulldowns and the proteome. For these, the read threshold by RNA-seq may have been too 

low, or the mRNA may have been relatively unstable. RNA-seq exclusively identified 115 

kinases. This suggested that either these proteins were not enriched by the Kinobeads 

and/or not detected by mass spectrometry because of low abundance. Alternatively, these 

proteins may be unstable (e.g., MAP3K14/NIK) and cannot be detected by standard 

proteomics. Together, the combined data from RNA-seq, deep proteome, and Kinobeads 

define the target space of the kinase inhibitors that can be measured in our assay (fig. S1F). 

 

In general, the γ-version of Kinobeads used here can capture a majority but not all 

kinases present in the cell lysate used. Missing kinases may be found by using a different 

cell lysate (as demonstrated by the use of CAKI cells for MET inhibitor profiling, fig. S1G) 

or by the use of a more suitable linkable probe illustrated by the use of immobilized 
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Omipalisib for mTOR inhibitor profiling (fig. S1H). With regard to sensitivity, the assay 

works best for affinities below 10 µM as weaker interactions are prone to losses during the 

washing process leading to variation in the data. The investigation of interactions below 

3 nM (the lowest dose used in this study) is possible by simply adjusting the concentration 

range used. Please also refer to prior literature on the Kinobead technology(13, 14).  

We compared our Dasatinib data to KiNativ’s biotinylated acyl phosphate probe 

profiling data. The obtained Kd values correlate well (R= 0.91) for overlapping targets(16). 

We have previously published a direct comparison of the Kinobead and the KiNativ 

technologies. This revealed overlapping, but also in part complementary kinome coverage, 

as the KiNativ technology uses covalent ATP probes(56).  

Several groups have compared the various technologies used in the field. Sutherland 

et al. have shown that hot ATP kinase activity assays correlate reasonably well with 

KinomeScan binding data(17). In a comparison of the Kinativ technology with activity 

assays, activity data from recombinant kinases is typically an order of magnitude stronger 

than their apparent Kd values with the acyl phosphate probe but correlate well with cellular 

compound activity(16). Another study suggest the use of full length proteins or kinase 

constructs with additional domains and subunits to improve the agreement between activity 

and binding assays(18).  

Several activity and binding assays studying protein-kinase inhibitor interactions have 

been published to date. For example, Anastassiadis et al. profiled 178 KIs (25 clinical) at 

a single dose against 300 recombinant kinases(6). In-vitro binding assays against 442 

recombinant kinases were reported for 72 kinase inhibitors (50 clinical) using 11-fold serial 

dilutions for Kd determination in a series of papers published by Davis, Karaman and 

Fabian et al.(3, 5, 8). At the time of writing, the LINCS database contained single-dose 

binding data for 161 KIs (67 clinical) and 440 phage displayed kinase domains or mutants 

thereof(12) and Elkins et al. reported 367 tool compounds screened at two doses against 

224 recombinant kinases. However, the here presented study is among the first to 

systematically investigate a large set of clinical molecules.  

 

Detailed data analysis 

 

Kinobeads workflow: To systematically profile clinical kinase inhibitors, a chemical 

proteomic approach was employed. Here, affinity capture of proteins on Kinobeads is 

combined with protein identification and quantitative mass spectrometry. Kinobeads 

(version γ)(14) are a mixture of five immobilized broad-spectrum kinase inhibitors and 

enables the enrichment of >300 human protein kinases and approximately a total of 3,000 

proteins from cell/tissue lysates. Addition of the free inhibitor to the lysate in increasing 

concentrations results in competition at the ATP-binding site of the kinases. Thus, a dose-

dependent prevention of specific protein kinases binding to the beads can be achieved. At 

each dose of competing inhibitor (or vehicle), proteins bound to the Kinobeads can be 

identified and quantified by label-free mass spectrometry. Label-free quantification is 

based on the fact that the MS intensity of peptides scales linearly with the quantity of the 

peptide present in the sample. The more protein that is bound by an inhibitor in solution, 

the less that protein will bind to the Kinobeads. Consequently, the intensity of the 

respective peptides detected by the mass spectrometer decreases. EC50 values can thus be 

derived from the relative quantity of each protein per dose of competitor (or vehicle) via a 
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dose-response plot using nonlinear regression analysis. By multiplying with a correction 

factor that accounts for the depletion of a protein from the lysate in the Kinobead pulldown 

(14, 56, 89), the EC50 value for each protein can be converted into an apparent binding 

constant Kd
app. The correction factor is determined by performing a second Kinobead 

pulldown (with fresh beads) on the supernatant of the vehicle control pulldown. The 

amount of protein captured in the two pulldowns is then compared/quantified. 

 

Kinobeads data processing: Data processing was performed for each drug 

separately. Raw MS files of pulldowns for one particular drug and with increasing drug 

concentrations for one compound were processed together and supplemented with 15 high-

quality DMSO vehicle controls. In order to reduce missing values (i.e., peptides not 

selected for tandem MS in each LC-MS/MS analysis), the “match between runs” option of 

Andromeda/MaxQuant was used. After protein identification and quantification with 

Andromeda/MaxQuant (see Online Methods for details), the resultant file 

(proteinGroups.txt) was used for subsequent filtering, normalization and curve fitting. For 

this purpose, reverse hits and not quantified protein groups in the DMSO control were 

discarded. To derive relative residual binding intensities (Irel) for each protein group at 

every concentration, both raw- and LFQ-intensities were normalized against the respective 

DMSO intensity. Curve fitting was achieved using an internally developed R-script that 

utilizes the drc-package(55). Briefly, each protein group was individually fitted using a 

four parameter log-logistic regression model (equation 1). 

 

𝐼𝑟𝑒𝑙(𝑐) = 𝑏 +  
𝑡−𝑏

1+𝑒𝑠∙(log(𝑐)−log (𝑖))      (1) 

 

where c is the compound concentration and the four free parameters are the plateau of 

the fit b (bottom), the maximal residual binding t (top) and the hill slope s of the curve at 

the inflection point I (EC50). First, Irel values derived from the LFQ intensities were used. 

If no relative LFQ intensity for a protein group was available (due to a low number of 

identified peptides) or no curve fit could be derived, the relative raw intensities were used 

in a second iteration. During this process, a summary file (see fig. S2 as an example) 

containing all curve-fits was generated. The output also generates a comprehensive csv file 

containing all the necessary parameters and raw data (see PRIDE upload) required for 

reproducing the results. These were then used for manual target annotation (see below).  

 

Target selection criteria. Targets were manually annotated. A protein was 

considered a high-confidence target if the binding curve showed a sigmoidal shape with a 

dose-dependent decrease in binding to the Kinobeads. Proteins that only showed an effect 

at the highest inhibitor dose were not annotated as targets. The number of unique peptides 

and MSMS spectra was also included as target selection criteria. Peptide intensity in 

DMSO controls and MS/MS data quality was also taken into account. Proteins with low 

peptide counts, MS/MS spectral counts or MS1 intensity that nonetheless showed a 

reasonable dose response curve fit were considered as potential targets. In addition, if an 

inhibitor also interacted with similar kinases (e.g., CDK family) it was also considered as 

a potential target. Low-confidence targets were excluded from further analysis. Note that 

for some targets, curve fitting with our data processing pipeline was not possible resulting 

in no or very high Kd
app values. Targets were considered as direct Kinobead binders if 
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annotated in Uniprot.org as a protein or lipid kinase. Furthermore, nucleotide binders, 

helicases, ATPases and GTPases, FAD (e.g., NQO2) and heme (e.g., FECH) containing 

proteins were also considered as potential direct binders. Most other target proteins are 

interaction partners/adaptor proteins of the kinases and are termed indirect Kinobead 

binders. A complete annotation of all target proteins is provided in Table S2. 

 

Data availability. Both raw and processed data for each individual drug profile are 

available in proteomeXchange (http://www.proteomexchange.org, identifier PXD: 

005336) and ProteomicsDB (https://www.proteomicsdb.org, identifier: PRDB004257). 

The processed data consist of the Andromeda/MaxQuant search results and the derived 

curve fits and are provided as summary pdf and csv files (examples are provided in fig. S2 

and Table S2, S3). Briefly, page one of each summary file depicts the core findings 

visualized as three main elements (fig. S2A). Subsequent pages provide a list of all high-

confidence (‘*’) and low confidence (‘#’) targets shown in detail and including the 

elements provided in fig. S2B-D. Proteins that were not annotated as drug targets are 

provided in a more compact form consisting of the elements shown in fig. S2B-C. 

 
Concentration And Target Dependent Selectivity (CATDS): a versatile scoring system to 

determine drug selectivity 

 

The large body of data accumulated in this study, enabled us to develop a selectivity 

metric termed Concentration and Target Dependent Selectivity (CATDS) that can be 

flexibly applied to a range of topics relevant for basic biology, drug discovery and clinical 

research and application. 

 

Calculation of CATDS. The Concentration and Target Dependent Selectivity 

(CATDS) measures the engagement of a specific protein target at a particular drug 

concentration relative to all target protein engagements of that drug at the same 

concentration. It is calculated by dividing the sum of the target engagements of the target 

protein(s) of interest by the sum of all target engagements (including target protein(s) of 

interest) at a particular concentration (equation 2). Target engagement at any concentration 

can be derived from the dose response curve fits (see formula). 

 

𝐶𝐴𝑇𝐷𝑆 =  
∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)

𝑡𝑎𝑟𝑔𝑒𝑡(𝑠)𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑎𝑙𝑙 𝑡𝑎𝑟𝑔𝑒𝑡𝑠
         (2) 

 

To illustrate the concept, we chose the EGFR inhibitor Gefitinib as an example (see 

also fig. S3A). The Kinobeads selectivity profile revealed seven target proteins (including 

EGFR as the most potent target; Kd
app of 413 nM). In order to determine the selectivity of 

Gefitinib for its designated target, EGFR is chosen as the target of interest and CATDS is 

calculated at the respective Kd
app concentration according to equation (3). 

 

𝐶𝐴𝑇𝐷𝑆 =  
∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)

𝐸𝐺𝐹𝑅

∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝐸𝐺𝐹𝑅,𝐺𝐴𝐾,𝑅𝐼𝑃𝐾2,𝑅𝐼𝑃𝐾3,𝑀𝐸𝑇,𝑆𝑇𝐾10,𝐹𝐸𝐶𝐻 
   (3) 

 

http://www.proteomexchange.org/
https://www.proteomicsdb.org/
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The degree of engagement for each target protein is derived from the curve fit at the 

chosen concentration (here Kd
app, fig. S3A). By definition, 50% of all EGFR molecules are 

occupied with Gefitinib at 413 nM thus the numerator in (3) is 0.5. The denominator is the 

sum of the target engagements of all seven targets of Gefitinib. 

 

Variations on the CATDS theme for different applications. CATDS can be used 

to answer a variety of different research question as it can be calculated for a single target 

protein of interest or groups of target proteins of interest (fig. S3B).  

CATDStarget is calculated by dividing the target engagement of a certain fixed protein 

of interest by the sum of all target engagements. CATDStarget is determined for each 

particular compound at the respective Kd
app concentration of the target protein (equation 

4). For example, we identified 19 compounds targeting CHEK1 (only 4 of them are 

designated CHEK1 inhibitors; Fig. 2B). CATDSCHEK1 was calculated for all 19 inhibitors 

and Rabusertib was found to be the most selective molecule for CHEK1 in our screen, 

whereas the RTK inhibitor Sunitinib was the most unselective molecule targeting CHEK1 

among 100 other kinases. CATDStarget can be useful in medicinal chemistry programs or to 

choose the most selective inhibitor for a biological or biochemical experiment.  

 

𝐶𝐴𝑇𝐷𝑆𝐶𝐻𝐸𝐾1(𝑆𝑢𝑛𝑖𝑡𝑖𝑛𝑖𝑏) =  
∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)

𝐶𝐻𝐸𝐾1

∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)101 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙
   (4) 

 

CATDSdesignated is calculated by dividing the target engagement of the most potent 

designated target protein by the sum of all target engagements (fig. S4B, C). The 

calculation is performed at the Kd
app concentration of this particular target (equation 5). For 

example, AZD-7762 is a designated CHEK1 inhibitor but it has 68 further targets 

according to our Kinobeads profile. Calculating CATDSdesignated can help to evaluate the 

selectivity for the protein which is intended to be inhibited by a certain inhibitor. However, 

it can also be used to assess selectivity of compounds with different binding modes as 

exemplified in fig. S4D. 

 

𝐶𝐴𝑇𝐷𝑆𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑(𝐴𝑍𝐷 7762) =  
∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)

𝐶𝐻𝐸𝐾1

∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)69 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙
        (5) 

 

CATDSmost-potent is calculated by dividing the target engagement of the most potent 

target protein of a particular compound by the sum of all target engagements. The 

calculation is performed at the Kd
app concentration of this particular target. The most potent 

target of an inhibitor is not necessarily the protein an inhibitor was originally designed for. 

For example, we determined CATDSmost-potent to assess the applicability of a compound as 

a chemical probe (Fig. 2A). KW-2449 targeted a total of 55 proteins and PAK2 was more 

potently and selectively hit than its designated target protein FLT3 (equation 6). 

 

𝐶𝐴𝑇𝐷𝑆𝑚𝑜𝑠𝑡−𝑝𝑜𝑡𝑒𝑛𝑡(𝐾𝑊 2449) =  
∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)

𝑃𝐴𝐾2

∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)55 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙
  (6) 

 



 

 

7 

 

The application of CATDS is not limited to single proteins but is also applicable for 

groups of proteins. For this, several proteins of interest are defined as targets and CATDS 

is simply calculated as the sum of their target engagements divided by the sum of all target 

engagements. This can be particularly useful if a certain group of proteins should be 

targeted by a drug (e.g. two functionally important kinases in the same pathway). 

Furthermore, CATDS could even be used to compare the selectivity of a drug for different 

modes of actions. 

 

CATDSmulti-designated is calculated by dividing the sum of target engagements of all 

designated target proteins by the sum of all target engagements. The calculation is 

performed at the Kd
app concentration of the least potent designated target protein. Many 

inhibitors are intended to address several target proteins at once (e.g Dasatinib targeting 

BCR-ABL and SRC) and thus, selectivity for the intended use of that compound should 

consider all designated targets (equation 7) relative to all 66 targets of this compound. 

 

𝐶𝐴𝑇𝐷𝑆𝑚𝑢𝑙𝑡𝑖−𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑(𝐷𝑎𝑠𝑎𝑡𝑖𝑛𝑖𝑏) =  
∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)

𝐴𝐵𝐿1,𝑆𝑅𝐶

∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡) 66 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙
  (7) 

 

CATDSMoA is calculated by dividing the sum of target engagements of selected 

proteins by the sum of target engagements in a (restricted) set of target proteins. The 

calculation is performed at the Kd
app concentration of the most potent target protein of the 

selected target group as we expect an influence on the respective mode-of-action even if 

only one member is inhibited. For example, we used CATDSMoA to analyse CDK mode of 

action (fig. S7C). For this purpose, we selected e.g. CDK4 and 6 (role in cell cycle) vs all 

CDKs (restricted set, irrespective of biological role) (equation 8). 

 

𝐶𝐴𝑇𝐷𝑆𝑀𝑜𝐴−𝐶𝑒𝑙𝑙𝑐𝑦𝑐𝑙𝑒  (𝐷𝑎𝑠𝑎𝑡𝑖𝑛𝑖𝑏) =  
∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)

𝐶𝐷𝐾4,𝐶𝐷𝐾6

∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡) 𝐶𝐷𝐾4,𝐶𝐷𝐾6,𝐶𝐷𝐾9,𝐶𝐷𝐾16,𝐶𝐷𝐾17
  (8) 

 

In summary, the CATDS approach combines several important aspects of selectivity 

determination which are not considered in their entirety by other selectivity metrics 

published so far (fig. S3C). Other selectivity metrics such as the selectivity score, the Gini 

coefficient, the selectivity entropy and the partition index cover some aspects of selectivity 

and are applicable for particular questions but comparisons to CATDS show that CATDS 

is more versatile and outperforms other scores as discussed in the following paragraphs. 

 

CATDS versus selectivity score. Perhaps the simplest way to measure selectivity is 

given by the selectivity score(3, 5). It is calculated by dividing the number of target proteins 

of a drug at an arbitrary concentration (say 100 nM) by the number of tested proteins. It 

ranges from 0 (very selective) to 1 (very unselective). The selectivity score can be used 

either as a global assessment or for a certain target protein. The drawbacks of this scoring 

system are clearly the strong dependence on the panel size used for screening and the fact 

that target proteins are only counted and the experimentally determined target engagements 

are not considered. This impairs comparability between different screens and reduces the 

score to a rather imprecise measure of selectivity. For example, a comparison of 



 

 

8 

 

CATDSdesignated and the selectivity score (threshold concentration: Kd
app of the most potent 

designated target) shows that both scores correlate to some extent (fig. S3D). However, the 

selectivity scores are distributed between 0.3 and 0.003 (from 0.5 to 2.5 in –log10 scale) 

and are therefore not capable of distinguishing well between selective and non-selective 

compounds. All inhibitors appear to be rather selective (low selectivity score) which is 

mainly due to the large background set the target profiles are compared to (>300 proteins 

in the Kinobead assay). The CATDS distribution, however, covers the entire score range 

(0-1) and adequately reflects different inhibitor selectivity towards their designated targets. 

 

CATDS versus Gini coefficient. The Gini coefficient(19) uses the percent inhibition 

data at a single inhibitor concentration to calculate the relative inhibition fraction of each 

target protein. It orders and normalizes the single data points to derive a cumulative fraction 

inhibition plot which describes the inhibitor’s selectivity profile depending on the 

background set of tested kinases as a Lorenz curve. The Gini coefficient is calculated as 

the ratio of the area outside this distribution and the complete area, resulting in a value 

between 0 (unselective; all tested proteins are inhibited equally) and 1 (selective; only 1 

target protein). Originally, the Gini coefficient was developed to determine selectivity of 

compounds tested at single compound concentrations which makes it more vulnerable to 

technical variation. Moreover, it considers the panel size of tested proteins making it 

difficult to compare selectivity data between different datasets and also leads to poor 

performance with very small(21) but also very large screening panels (all values close to 

1; all assayed proteins contribute to the calculation). The Gini coefficient does not directly 

allow calculation of selectivity towards a certain target protein. However, to estimate 

target-specific selectivity by the Gini coefficient, one could use the Kd
app

 of the protein of 

interest as a threshold concentration. For example, we compared CATDSdesignated to the Gini 

coefficient calculated at the same threshold concentration (Kd
app of the most potent 

designated target). Here, CATDS and Gini coefficient show a clear correlation (fig. S3E). 

Similar to the selectivity score, the distribution of Gini coefficients also suffers from the 

large background set of protein. This leads to a compressed scale with values mainly 

between 0.8 and 1 (from 0.7 to 2.5 in –log10(1-Gini)) which hampers clear differentiation 

of selective and unselective compounds. The CATDS, however, is neither dependent of the 

tested panel size nor the threshold concentration and distributes between 0 and 1 enabling 

comparable determination of compound selectivity. 

 

CATDS versus selectivity entropy. Uitdehaag et al. introduced the selectivity 

entropy(20, 90) to enable global selectivity determination for compounds in order to 

provide a scoring system that would be more comparable between different selectivity 

profiling screens. The selectivity entropy assumes that a small amount of drug would 

distribute in an excess of target proteins according to its Kd value in a Boltzmann 

distribution. The width of this distribution reflects the different energy states of the 

compound, thus its selectivity, and can be calculated by theoretical entropy calculation. 

This scoring system enables the calculation of compound selectivity independent of the 

tested panel size, yet cannot be calculated at a certain threshold concentration or for a 

certain target protein. For example, CATDSmost-potent can be calculated at the Kd
app 

concentration of the most potent identified target protein in order to provide a view of 

compound selectivity independent from its designated target protein. CATDSmost-potent 



 

 

9 

 

(inversely) correlates well with the selectivity entropy (fig. S3F, left panel). In contrast to 

CATDS, selectivity entropy does not allow determining selectivity of a compound for a 

particular target protein. Comparison of CATDSmulti-designated and selectivity entropy 

highlights this advantage of CATDS. It reveals that there are compounds with very low 

selectivity entropy values (allegedly quite selective molecules) but it ignores the possibility 

that another target is more potently inhibited than the intended target (i.e. the selectivity 

entropy values are artificially low; fig. S3F, right panel). In contrast, CATDSmulti-designated is 

able to distinguish whether a compound is selective for its intended use (blue) or if another 

protein is targeted more potently (black). 

 

CATDS versus partition index. Similarly to the selectivity entropy, the partition 

index(21) is based on the theoretical distribution a compound would have in a complex 

mixture of protein targets (proteins in excess). The compound will distribute between the 

protein targets according to its affinity (Kd values) and the partition index describes the 

relative affinity for a reference kinase compared to all measured affinities. Thus, the 

partition index is independent of the tested panel size as it only uses targeted proteins for 

calculation and it can be used to determine selectivity of a compound towards single or 

groups of proteins. Both, the partition index and the CATDS are based on full dose 

response data with a thermodynamic background. Indeed, we found that both scoring 

systems correlate well (fig. S3G) for single (left panel, reference: most-potent target 

protein) and multiple targets (right panel, reference: multi-designated at Kd
app 

concentration of most potent target). However, one advantage of CATDS over the partition 

index is that the CATDS calculation accounts for the curve shape of the dose response 

which is more precise than the Kd
app value itself as it considers binding effects that might 

result in different Hill slopes. In addition, the partition index does not allow for determining 

drug selectivity at individual drug concentrations which is a clear advantage of CATDS 

(fig. S3H).  

 

Calculation of CATDSI. As discussed earlier, drug selectivity can vary with 

increasing drug concentration – a fact which underscores the necessity of calculating the 

CATDS across the tested concentration range to identify the optimal concentration for 

maximal selectivity (fig. S3A, lower panel). However, the effect of a drug is determined 

by the engagement of its target protein(91), as estimated by the dose response curve in this 

screen. That means, that concentrations below Kd
app might result in high selectivity for a 

certain target, but drug efficacy may be very low. In order to determine the most selective 

yet effective concentration of a drug, the CATDS can be multiplied with the target 

engagement at each drug concentration to generate the Concentration And Target 

Dependent Selective Inhibition (CATDSI; equation 9). The maximum of this curve 

highlights the drug concentration at which the optimal balance between selectivity and 

potency of a drug for a certain target is reached (Fig. 3A, lower panel, red line).  

 

𝐶𝐴𝑇𝐷𝑆𝐼 = 𝐶𝐴𝑇𝐷𝑆 × ∑(𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑡𝑎𝑟𝑔𝑒𝑡(𝑠) 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡   (9) 

 

Thermodynamic basis of CATDS. If an inhibitor is added to a pool of target proteins 

(such as in cells or cell lysates) and the thermodynamic equilibrium is established, the 
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inhibitor will bind to its target proteins according to the applied drug concentration and the 

respective binding affinities. We assume that the concentration of each target protein is 

much lower than the specific dissociation constant of the drug-protein interaction which 

assures that the actual protein concentration is negligible for the calculation of Kd
app values. 

We also assume that the binding of a drug to its target proteins does not reduce the effective 

concentration of a drug, ensuring that each individual drug-protein binding equilibrium can 

be established at the applied drug concentration. Both assumptions are prerequisites for 

determining binding affinities in a dose response experiment. If these basic assumptions 

are met, we can derive the relative target engagement of each individual protein at each 

particular drug concentration directly from its dose response curve (e.g. 50% target 

engagement if the drug concentration is equal to the Kd
app). With increasing drug 

concentration, more and more protein binding sites will be occupied by the inhibitor and 

target engagement will eventually reach 100%. This is true for any target protein present 

e.g. in a cell albeit the concentration at which this happens will be different between 

proteins as their affinities for the drug are not the same. This has important consequences 

for determining drug selectivity. For instance, consider inhibitor A that has 1 target with a 

Kd
app of 1 nM, 10 targets with a Kd

app of 100 nM and no further targets beyond 100 nM. 

Then consider another inhibitor B that has 2 targets with a Kd
app of 1 nM each and no further 

targets beyond 1 nM. Both inhibitors have different selectivities depending on the applied 

drug concentration. Inhibitor A is more selective at 1 nM, whereas inhibitor B is more 

selective at 100 nM. As a consequence, drug selectivity should generally be determined as 

a function of the inhibitor concentration. Yet, this is very often not done in drug research. 

 

Notes on CATDS for Kinobeads data. The target space of a drug is dependent on 

the assayed proteins. In this study, we identified >300 probable direct binders to Kinobeads 

including kinases and other ATP or cofactor binding proteins (Table S2). All these were 

taken into account when calculating compound selectivity. In contrast, proteins not 

classified as direct binders (e.g. complex partners) were not considered for selectivity 

calculation. In Kinobeads experiments where native cell lysate is used for measuring drug-

protein interactions, we observed a bottom plateau for some targets (i.e. dose response 

curve not reaching zero despite high compound dose). Also, we observed that the vehicle 

control did not necessarily start at 1 which is usually due to technical reasons, for instance 

if the DMSO control used for normalization showed low MS intensity. Therefore, dose 

response curves were bottom and top corrected to enable use of the full effect size range 

between 0 and 1.  

CATDS turns out to be a very versatile and practical, yet simple to calculate, scoring 

system for the determination of compound selectivity. It can use various input data formats 

(activity or binding, single dose or full dose response). CATDS is also flexible in terms of 

choice of which set of proteins or drug dose is used in the calculation. Therefore, it can be 

applied for asking very different questions regarding compound selectivity. Kinobeads data 

appears to be particularly amenable to CATDS because the experimental setup of using 

native cell lysate comprising a very complex mixture of endogenous proteins at vastly 

varying concentrations approximates the dose dependent binding behavior of a drug within 

a native cellular environment and which directly reflects the underlying thermodynamic 

equilibrium. 
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Characterization of Dabrafenib off-targets 

 

For Dabrafenib, the Kinobeads data showed potent binding inhibition for CDK2 but 

no co-competition of any of the canonical cyclins for CDK2 (CCNA2 or E1 or E2). 

Interestingly, commercial kinase assays using CDK2 did not show any inhibitory effect of 

Dabrafinib on CDK2 when tested in combination with CCNA2, E and O implying that 

either the drug can bind the free kinase in cells or lysates without the need for a cyclin or 

that an hitherto undetected CDK2/cyclin complex exists which is not part of classical assay 

panels (fig. S5F, Table S12). Unfortunately, we have not been able to test this hypothesis 

systematically owing to the lack of appropriate reagents. 

 

 

SIK2 inhibition induces anti-inflammatory response in LPS-stimulated macrophages 

 

The biological function of salt-inducible kinase 2 (SIK2) is slowly being uncovered 

and reveals a potential role of SIK2 in oncology as well as immune disorders. Recent 

studies imply a role for SIK2 in the regulation of inflammatory response of the innate 

immune system(28, 29, 92-94). It was shown, that SIK2 phosphorylates CREB-regulated 

transcription coactivator 3 (CRTC3) on multiple sites which leads to recognition and thus 

inactivation of CRTC3 by 14-3-3 proteins(28). In its non-phosphorylated active form, 

CRTC3 binds and activates the cyclic AMP-responsive element-binding protein 1 

(CREB1) which leads to translocation into the nucleus where the transcription factor can 

then exert its action and regulate gene expression. The exact function of CREB is 

controversially discussed but it was found that CREB1 is regulating pro-inflammatory 

responses by inducing the expression of anti-inflammatory cytokines such as interleukin-

10 (IL-10). IL-10 modulates the response of effector cells of the innate immune system 

(such as dendritic cells or macrophages) towards an anti-inflammatory phenotype through 

down-regulation of pro-inflammatory cytokines like tumor necrosis factor alpha (TNFα). 

Inhibition of SIK2 by small molecule kinase inhibitors was shown to reduce CRTC3 

inactivating phosphorylation and to mediate the up-regulation of CREB-mediated anti-

inflammatory response characterized by increased IL-10 and decreased TNFα 

secretion(28, 29, 94, 95).  

In our screen, 21 of 243 clinical small molecule kinase inhibitors showed off-target 

SIK2 inhibition with affinities of below 500 nM. None of these inhibitors were developed 

for SIK2 and 11 of those inhibitors were not reported to target SIK2 in the literature so far. 

Biochemical activity assays using a FlashPlateTM-based radiometric assay (ProQinase, 

Freiburg) confirmed inhibition of SIK2 enzymatic activity for the 11 newly identified SIK2 

inhibitors in comparison to the SIK tool compound HG-9-91-01(28). This molecule is 

commonly used as tool compound to abrogate SIK activity but comprises a rather 

promiscuous target profile as revealed by LINCS and Kinobeads selectivity profiling (fig. 

S6E). 

To evaluate the biological effect of the 21 identified SIK2 inhibitors, murine bone-

marrow derived macrophages (BMDM) were treated with increasing drug doses (8 doses 

between 1-10,000 nM) and subsequently stimulated with LPS to induce TLR4 mediated 

pro-inflammatory response (characterized by increasing TNFα levels). Most inhibitors 
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(13/21) showed down-regulation of TNFα levels with increasing drug concentrations, four 

inhibitors were not effective and another four inhibitors showed cytotoxic effects. 13 

inhibitors that showed TNFα reduction were additionally examined for their effect on IL-

10 secretion. Up-regulation of IL-10 was detected for most inhibitors and was in general 

in concordance with TNFα reduction (fig. S6B). A biological replicate with BMDM cells 

from a second mouse showed distinct absolute values of TNFα and IL-10 but recapitulated 

the same trends in decreasing TNFα and increasing IL-10 secretion, as exemplarily shown 

for the compounds HG-9-91-01, UCN-01, AZD-7762, Crenolanib, BMS-690514 and PF-

03814735 (fig. S6B). Noteworthy, the novel SIK2 inhibitor UCN-01 revealed pronounced 

effects on TNFα reduction in the same nanomolar range (EC50 22 nM) as the tool 

compound HG-9-91-01. Another already described SIK2 inhibitor, AZD-7762, was less 

potent (EC50 124 nM) in inhibiting TNFα secretion, but was found to be the most selective 

SIK2 inhibitor (CATDSSIK2: 0.216) in our panel of 22 SIK2 compounds (including HG-9-

91-01). All inhibitor data and raw data can be found in Table S8. 

Cytokine secretion is a rather complex phenotype and involves the activity of several 

kinases which might also be targeted by the tested inhibitors. Thus, measuring TNFα and 

IL-10 response is not sufficient to prove SIK2 target engagement in living cells. In order 

to evaluate whether SIK2 inhibitors identified in our screen are able to perturb SIK2 

signaling in a living system, we tested a sub-selection of six SIK2 inhibitors for their ability 

to down-regulate the phosphorylation status of the SIK2 substrate CRTC3. Therefore, we 

treated murine bone-marrow derived macrophages at an optimal dose at which we observed 

pronounced TNFα reduction but no toxic effect on cell viability. SIK2-mediated 

phosphorylation of CRTC3 S62 and S370 was detected by a parallel reaction monitoring 

(PRM) mass spectrometry readout(31) (fig. S6C, D). Our results showed clear reduction 

of the phosphorylation levels of CRTC3 S62 and S370 in comparison to the vehicle control 

by all tested inhibitors (300 nM HG-9-91-01, 300 nM AZD-7762, 300 nM PF-03814735, 

100 nM UCN-01, 300 nM Dasatinib, 1000 nM AT-9283). Both phosphorylation sites 

showed the same effect upon drug treatments, demonstrating with high confidence that 

these inhibitors are indeed capable of engaging SIK2 in living cells. 

As already mentioned, cytokine secretion is the result of manifold stimuli and the 

interplay of multiple signaling pathways within the cell. Thus, the observed anti-

inflammatory response may not only be due to SIK2 inhibition but also due to the inhibition 

of other kinase targets. In order to be able to distinguish truly associated targets with TNFα 

production and to confirm the effect of SIK2 inhibition, we compiled a list of proteins that 

are members of known pathways in the TNFα production from the literature. The aim was 

to select additional kinase inhibitors such that the targets associated with TNFα production 

can be well distinguished. To select as little additional kinase inhibitors as possible, we 

employed a greedy search algorithm. Briefly, in each step, one extra kinase inhibitor was 

added to the currently selected inhibitor set (initially 21) which maximizes the 

heterogeneity of target space. For this purpose, the heterogeneity of the target space is 

defined as 

h = w * E 

, where w is the sum of the maximum pair-wise difference of all pairs of targets, 

defined as w = ∑ 𝑤𝑖𝑗𝑖,𝑗,𝑖<𝑗  , where w𝑖𝑗 = D(𝑥𝑖 , 𝑥𝑗), xi and xj are the pKd
apps of target i and 

target j across the inhibitor panel. D is a function calculating the maximum pair-wise 

difference between xi and xj. 
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E is the pseudo-shannon entropy, defined as E = − ∑ 𝑝𝑡 ln 𝑝𝑡, where for the tth pair 

of i and j 𝑝𝑡 = 𝑤𝑖𝑗/𝑤. Therefore, a high w indicates there is a high overall difference in 

Kd
apps between all pairs of targets and a high E indicates the difference is rather averaged 

across different pairs of targets, i.e. not driven by the difference of a single pair of targets. 

The greedy search is stopped when no more target pairs could be separated, defined by 

D(xi, xj) > 1. As a result, nine extra inhibitors (PH-797804, GSK-2110183, GSK-690693, 

GDC-0994, Trametinib, Uprosertib, Abemaciclib, Cobimetinib and Ponatinib) were 

selected and additionally tested for TNFα response (Table S8). Unfortunately, Ponatinib 

failed due to technical reasons which lead to a final number of eight additional inhibitors. 

In order to evaluate the role of SIK2 in relation to the TNFα production, we used a 

similar “target deconvolution” approach originally proposed by Gujral et al (30). In short, 

this method utilizes an elastic net model to predict a polypharmacology-driven phenotypic 

readout with given inhibition data. During this process, the elastic net model automatically 

selects features associated with the phenotype. In this study, we used the target space of 26 

kinase inhibitors, 18 of which were part of the initially tested 22 inhibitors (TG-100572, 

AZD-7762, PF-03814735, UCN-01, Crenolanib, Dasatinib, AT-9283, PF-477736, BMS-

690514, Milciclib, TAK-901, Nintedanib, ASP-3026, Cerdulatinib, Bosutinib, SCH-

900776, XL-019, HG-9-91-01, four cytotoxic drugs were excluded) and 8 additional 

inhibitors (PH-797804, GSK-2110183, GSK-690693, GDC-0994, Trametinib, Uprosertib, 

Abemaciclib and Cobimetinib), as input to predict TNFα production in bone-marrow 

derived macrophages (BMDM). We observed that a clear effect on TNFα production was 

visible on average around 300 nM while cell viability was not affected at this concentration 

(Fig. 3C, left panel). Therefore, our analysis mainly focused on dosages of 100 to 300 nM. 

To evaluate the selection stability of a target at each dose, we generated 100 bootstrap 

samples and fed them into elastic net models. The result is summarized by two values, 

namely the selection frequency and the effect size (Fig. 3C, middle panel). Our analysis 

revealed that SIK2 is the most frequently selected target and has the largest effect size in 

comparison to other targets that have similar selection frequency (e.g. CHEK1). The results 

confirmed our hypothesis that a decrease in TNFα production can be initiated by the 

inhibition of SIK2. Other kinases that may affect TNFα response in our inhibitor set include 

CHEK1, PDPK1, MAP3K11, ZAK and MARK4. CHEK1 was reported to modulate 

NF-κB signaling(96) by phosphorylating the RelA (p65) NF-κB subunit (pT505). In an 

oncology background, this phosphorylation was found to correlate with the inhibition of 

NF-κB target gene expression(97). However, it remains to be investigated how this 

CHEK1-mediated phosphorylation influences NF-κB activity, and TNFα secretion in 

particular, in immune regulatory cells. Another interesting target is PDPK1 which has been 

shown to down-regulate NF-κB signaling in LPS-stimulated macrophages through the 

PI3K/AKT signaling pathway(98). However, the literature is not clear in this regard as 

there are other reports that conclude that CHEK1 and PDPK1 inhibition would increase 

TNFa production. There is also a possibility that the selection of CHEK1 and PDPK1 by 

the elastic net are due to a technical artifact. This remains to be investigated by e.g. further 

experiments using highly selective inhibitors (e.g., Rabusertib for CHEK1) which may help 

to shed light on the influence of these particular protein kinases on TNFα secretion. 

Our data confirms previous findings that SIK2 inhibition is a valuable concept to 

modulate the innate immune response to an anti-inflammatory phenotype. We extended 

the landscape of SIK2 inhibitors landscape by 11 compounds and provide bioactivity data 
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for 21 SIK2 inhibitors of which most have not been characterized in that way so far. 

Especially, UCN-01 and AZD-7762 were found to elicit a distinctive anti-inflammatory 

response (TNFα reduction, IL-10 increase) and might thus be interesting candidates for 

further investigation. 

 

Saracatinib affects osteosarcoma cells by dual inhibition of SRC and BMP receptor 

signaling 

 

Saracatinib was developed as a dual SRC/ABL inhibitor(99) and has been subject to 

33 clinical trials so far. Amongst other diseases and other cancer entities, Saracatinib is 

currently also evaluated in two phase 2 clinical studies investigating a therapeutic effect 

of this drug on osteosarcoma (NCT00752206) and bone neoplasms (NCT00558272). The 

potential therapeutic effect of Saracatinib on osteosarcoma was so far mainly attributed to 

the inhibition of its main target SRC, which was found to play an important role in bone 

sarcoma cell survival(100, 101). Target profiling using the Kinobeads technology 

confirmed that Saracatinib not only targets SRC and ABL as previously anticipated but 

also a whole range of BMP receptors (BMPR1A, ACVR1, ACVR1B) with high 

affinities(102). The exact role of BMP signaling in osteosarcoma is controversially 

discussed in the literature, but several studies correlated BMP signaling in osteosarcoma 

to pro-migratory and metastatic effects as well as poor survival(103). We therefore 

hypothesized that Saracatinib might affect osteosarcoma cells in a dual mode-of-action 

by inhibiting both, SRC and BMP signaling. To investigate this hypothesis, we selected 

the human osteosarcoma cell line U-2 OS and performed drug treatment with cell 

viability and phosphorylation status readouts as well as protein knockdown experiments.  

Saracatinib treatment inhibited U-2 OS cell viability with higher potency than the 

unrelated ovarian cancer cell line NCI/ADR-RES which was characterized by relatively 

low expression of BMP receptors (fig. S6G). Additionally, siRNA-mediated protein 

knockdown experiments were performed in order to distinguish the influence of single 

Saracatinib targets (SRC, BMPR1A, ACVR1, ACVR1B) on U-2 OS cell viability (fig. 

S6G). Knockdown of these kinases resulted in clearly diminished cell viability in U-2 OS 

while NCI/ADR-RES cell viability was affected to a much lower extent. Knockdown of 

BMP receptors caused similar reduction of cell viability as a knockdown of SRC kinase, 

further substantiating the dependence of U-2 OS cells on intact BMP signaling. In order 

to investigate whether Saracatinib is indeed capable of interrogating both signaling axis 

within the living cells, we performed drug treatment on U-2 OS cells and examined its 

effect on the phosphorylation of the BMP receptor downstream substrate SMAD1/5/9 

(pS463/465/467, fig. S6H) and SRC autophosphorylation (pY416, fig. S6I). Increasing 

concentrations of Saracatinib lead to a decrease of both, pSMAD1/5/9 and pSRC, in a 

dose-dependent manner. The inhibitors Dasatinib and Gilteritinib were used as controls to 

ensure that the effect on pSMAD and pSRC was not affected by crosstalk between both 

pathways. Dasatinib is a SRC inhibitor which does not target BMP receptors; accordingly 

SMAD phosphorylation was not affected by Dasatinib treatment. As expected, Dasatinib 

showed strong effect on SRC autophosphorylation. Gilteritinib is a multi-target inhibitor 

which –according to our data - targets BMPR1A and ACVR1 but not SRC. 

Unfortunately, this inhibitor control was not as conclusive as anticipated as it did not 

succeed in abrogating SMAD1/5/9 phosphorylation. This might be due to lower affinities 
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towards BMP receptors in comparison to Saracatinib or due to the fact that one of the 

evaluated BMP receptors, ACVR1B, was not found to be inhibited by this compound 

which might reduce the anticipated effect on SMAD phosphorylation. Nonetheless, our 

data revealed that Saracatinib engaged and perturbed both signaling pathways in human 

osteosarcoma cells and that both, SRC and BMP signaling, play a pivotal role for U-2 OS 

cell viability. Thus, simultaneous targeting of both pathways by Saracatinib may provide 

a valuable strategy for treating bone cancer. Potent inhibition of BMP signaling by 

Saracatinib may even be exploited for the treatment of other skeletal disorders such as 

fibrodisplasia ossificans progressive (FOP) where abnormal activation of ACVR1 leads 

to a constant rigidification of the skeleton. 

 

 

Phosphoproteomic analysis of EGFR/ERBB2 signaling 

 

Global phosphoproteomic analysis after short-term exposure of BT-474 breast cancer 

cells to five different EGFR/ERBB2 inhibitors revealed a core set of commonly regulated 

phosphorylation sites. In addition to the target binding data obtained by the Kinobeads 

assay, such analysis enables the investigation of inhibitor action directly in living cells. 

Indeed, the data contains several known and new observations which collectively can help 

to explain how inhibition of EGFR/ERBB2 translates into decreased cellular proliferation 

and cytotoxicity. For example, our analysis confirms the known inhibition of the 

RAF/MEK/ERK and the PI3K/MTOR signaling axis which for instance causes cell cycle 

arrest (e.g. via de-phosphorylation induced nuclear export of the MAPK1 substrate and 

transcriptional repressor ERF)(104, 105) (Fig. 4C; fig. S8C-G). Our data also show that 

phosphorylation of the activity regulating site pS703 of the Na+/H+ antiporter SLC9A1 is 

strongly decreased in response to treatment with all five inhibitors. SLC9A1 deletion has 

been described to drastically reduce tumour growth(106) which is why it is tempting to 

speculate that the observed de-phosphorylation induces SLC9A1 inactivation. Disruption 

of pH homeostasis may therefore play an important role in mediating cytotoxic effects of 

the studied inhibitors. Importantly, our data also suggest the involvement of many other 

phosphoproteins which have not been described so far in this context. For example, it has 

been very recently shown that FOXK2 inhibits the proliferation and invasion of breast 

cancer cells and suppresses the growth and metastasis of breast cancer(107). We find that 

treatment of breast cancer cells induces phosphorylation of FOXK1 pS-436 (average 

log2FC across inhibitors = 0.84) and FOXK2 pS-424 (average log2FC across inhibitors = 

2.16). Although the functional role of those phosphorylation sites is currently unknown, 

the observed induction of phosphorylation may suggest that both transcriptional regulators 

may play a role in altering cellular proliferation and invasion. Further support for the latter 

comes from an established role of the aforementioned mentioned activation of the SLC9A1 

antiporter in invasion and metastasis(108). Strikingly, we also found increased 

phosphorylation of BAHD1 pS180 (average log2 FC across all inhibitors = 1.52) and 

ATRX pS594 (average log2 FC across all inhibitors = 1.47). BAHD1 represses several 

proliferation and survival genes(109) and both BAHD1 and ATRX participate in 

heterochromatin silencing which has a well-established functional role in cancer 

progression(108). Hence, altered heterochromatin silencing and concomitant change in 

transcriptional activity might be one (novel) mode of action of EGFR/ERBB2 inhibitors. 
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Phosphorylation signatures of individual drug molecules are also of value in order to assess 

the molecular consequences of e. g. polypharmacology. Rather than looking at the set of 

commonly regulated phosphorylation sites, a well annotated kinase inhibitor target in 

combination with phosphoproteomic data can enable the identification of differential 

inhibitor effects and support the correct interpretation of cellular effects of individual 

inhibitors. For example, we discovered that de-phosphorylation of pS363 of RIPK2 is not 

caused by inhibition of EGFR/ERBB2 but rather is a consequence of direct RIPK2 

inhibition. A well annotated target space has also retrospective value for other 

phosphoproteomic studies. The RIPK2 pS363 site has been previously shown to be 

inhibited in response to treatment of melanoma cells with the kinase inhibitor Vemurafenib. 

This is in line with the fact that our chemoproteomic data clearly identify Vemurafenib as 

a potent RIPK2 inhibitor(110). Although this represents only a single example, the 

combination of the present dataset with a more systematic phosphoproteomic analysis of 

inhibitor action should uncover many more such associations and greatly support the 

interpretation of phosphoproteomic experiments.  

 

Non-protein-kinase off targets 

As the compounds immobilized on Kinobeads are ATP mimetics, we and others have 

shown that other nucleotide binding proteins may also specifically bind. The large body 

of data reported here expands on these prior observations. 

The metabolic kinase PDXK has previously been shown to bind Seliciclib (Roscovitine) 

via the pyridoxal binding site(36). We detected binding of PDXK to the designated PLK1 

inhibitor BI-2536 (Kd
app= 387 nM), most likely via direct binding to the ATP site of 

PDXK (fig. S6J). Clinically relevant levels of BI-2536 may therefore interfere with 

vitamin B6 metabolism and potentially lead to the depletion of pyridoxal phosphate, an 

essential cofactor in the metabolism of amino acids and neurotransmitters. Moreover, 

PDXK inhibition might render cancer cells less susceptible to chemotherapy(111). 

Several KIs were potent binders of the acetyl-CoA dehydrogenases ACAD10 (e.g. 

Alisertib) and ACAD11 (e.g. Crizotinib). Little is known about the function of these 

ACADs, but they presumably play a role in fatty acid metabolism. As ACADs use FAD 

as a cofactor, the kinase inhibitors likely bind to the FAD site of the enzymes. This may 

potentially be therapeutically exploited, as tumours can switch to oxidative 

phosphorylation for energy production under conditions of glucose starvation (fig. 

S6K)(112). 

 

Insights from co-crystal structures of kinase inhibitors and their targets 

 

NQO2: In order to analyze the binding mode and mechanism of NQO2 inhibition by 

the kinase inhibitors Crenolanib, Pacritinib and Volitinib, the enzyme was co-crystallized 

with the compounds and high-resolution structures determined by X-ray crystallography 

(for data processing and structure refinement statistics see Table S13; PDB codes: 5LBY, 

5LBZ, 5LBW for the aforementioned compounds). NQO2 is a homodimer with the two 

active sites sitting at the interface between the two monomers and each containing a FAD 

molecule as a co-factor. All three compounds were clearly defined in the unbiased Fo-DFc 

difference density maps in both pre-formed hydrophobic active sites of NQO2, directly 

above the isoalloxazine ring of the FAD molecule. The interactions between NQO2 and 
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the compounds are dominated by pi-stacking interactions between the isoalloxazine ring 

of FAD and residues lining the pocket (Fig. 3D; fig. S6L). Specificity, in all three cases, is 

further governed by a hydrogen bond to N161. In the Crenolanib and Pacritinib complexes 

an additional water mediated hydrogen bond to E193 or Q122 can be observed. In 

comparison with the previously reported structure of Imatinib bound to NQO2(37) an 

analogous water-mediated hydrogen bond between Q122 and bridging nitrogen can also 

be seen (PDB code 3FW1). In addition, M154 forms a sulfur-arene contact (113) to an 

aromatic ring of the compounds in the NQO2 bound Volitinib and Imatinib structures, 

which provides a significant amount of stabilizing dispersion energy. 

 

MELK. Little is known about the structure-activity-relationship (SAR) of MELK and 

its inhibitors as information on MELK as a target and compounds from medicinal 

chemistry programs focusing on MELK have just begun to emerge in the literature (114-

116). Our Kinobeads drug screen can be used as a rich source of molecules for SAR 

elucidation and identification potential lead structures for future medicinal chemistry 

campaigns. We identified 16 compounds that target MELK as an off-target and 7 of those 

drugs bound and inhibited the kinase with sub-micromolar affinity (Nintedanib, PF-

3758309, K-252a, Lestaurtinib, CC-401, Defactinib, BI-847325; Fig. 5D, fig. S1D, Table 

S11). Co-crystallization experiments yielded high resolution crystal structures of the 

MELK kinase domain in complex with the inhibitors Nintedanib, PF-3758309, K-252a, 

Defactinib and BI-847325 (fig. S9E; for data processing and structure refinement statistics 

see Table S14; PDB codes: 5MAF, 5MAG, 5M5A, 5MAH, 5MAI respectively). These 

compounds comprise a diverse set of different pharmacophores, which enabled the 

determination of a range of different drug-protein interactions. In addition, Nintedanib and 

BI-847325 are of particular interest as they share large parts of the molecular scaffold but 

differ significantly in their binding affinities (53 nM and 918 nM, respectively) and 

selectivity profiles in the Kinobeads assay. Ligand interaction analysis identified a total of 

26 drug-protein interactions which were located at different positions within the ATP 

pocket (e.g. G-rich loop, hinge region, activation loop, catalytic loop, etc.). We have 

recently described a classification scheme that categorizes interacting residues according 

to preferential binding, side chain accessibility/targetability and kinome-wide conservation 

into the categories of key, selectivity, potency and scaffold residues(46). By applying this 

classification scheme to the obtained MELK data set, we identified 14 scaffold residues, 5 

potency residues, 5 selectivity residues (2 of which are reverse selectivity residues; fig. 

S9E; Table S11). No key residues could be assigned which is probably due to different 

factors: i) the number of analyzed crystals is still too low, ii) pharmacophore diversity 

between the compounds is quite high, iii) affinity of the inhibitors is not extremely high 

and iv) the intended targets of the inhibitors (VEGFR/FGFR/PDGFR, PAK4, PRKC, 

MEK/AURK) are structurally very different from MELK. The potency residue Glu57 

forms direct interactions to Nintedanib and the potency residue Asn137 to PF-3758309 and 

K-252a, respectively, which might be responsible for the higher affinity of these 

compounds compared to Defactinib and BI-847325. Particularly, the potency residue 

Glu57 appears to have a strong influence when comparing Nintedanib and the structurally 

similar inhibitor BI-847325. Cocrystal structures of both compounds revealed very 

different binding modes of Nintedanib (DFG in, Cα helix in) and BI-847325 (DFG in, Cα 

helix out). The shift of the Cα helix is induced by the more bulky ethylamide substituent 
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of BI-847325 and leads to a disruption of the characteristic salt bridge between Lys40 and 

Glu57 (salt bridge indicates active kinase conformation) and prevents BI-847325 from 

establishing an interaction with Glu57 as observed for Nintedanib. This might explain the 

large affinity difference towards MELK. The five selectivity residues (E15, C70, Y88, C89, 

E93) could potentially facilitate MELK inhibitor design as exemplified by the direct 

interactions engaged between Nintedanib and E15 (kinome-wide conservation level: 6%) 

or K-252a and E93 (kinome-wide conservation level: 15%). The selectivity residues C70 

and C89 are readily accessible in the center of the ATP pocket and open up the possibility 

to design irreversible inhibitors for MELK. Given the low conservation level of both 

cysteines (C70: 1%, C89: 19%) and the fact that this combination of cysteines is present in 

only one more protein kinase (TBCK), one can anticipate that such an irreversible inhibitor 

would not only gain in potency and increase the drug’s residence time but also provide 

selectivity towards MELK. 

 
NSCLC patient analysis 

 

Kinobeads experiments from tumor and nearby normal tissue of 15 lung cancer 

patients revealed differential expression of several interesting protein kinases (namely 

MELK, EGFR and DDR1, fig S9A). These candidate proteins were followed up in a 

retrospective study of 375 patients comprising 186 adenocarcinoma cases and 189 

squamous cell carcinoma cases (Table S15). Immunohistochemistry staining suggested 

that MELK was mainly present in the nucleus (Fig. 5A). Overall, we found overexpression 

of MELK in 291 of 359 NSCLCs (81%), which correlated with poor prognosis of the 

NSCLCs (p=0.04). The further analysis revealed that 77.7% (140 of 180) adenocarcinoma 

and 84.5% (151 of 179) squamous cell carcinoma tissues showed high levels of MELK. 

However, overexpression of MELK had no impact on survival in adenocarcinoma patients 

(p=0.7) but significantly correlated with survival in squamous cell carcinoma patients 

(p=0.02) (Fig. 5B). Staining for EGFR revealed membrane localization of the protein. 

Overexpression of EGFR in NSCLC had no impact on overall survival (p>0.05). High 

expression of EGFR in Adenocarcinoma (in 114 of 177) correlated with poor prognosis (p 

= 0.06) whereas high expression in squamous cell carcinoma (135 of 178) was associated 

with good prognosis (p = 0.03). According to immunohistochemistry staining, DDR1 was 

mainly expressed in cytoplasm. High expression of DDR1 (20 of 177) had impact on a 

good prognosis in squamous cell carcinoma (p = 0.05), whereas no significant correlation 

with survival could be found in adenocarcinoma or the combined analysis (p>0.05) (fig. 

S9B-D). 

 
Characterization of the novel FLT3 inhibitor Golvatinib and pre-clinical evaluation of 

Cabozantinib in mice 

 

FLT3-ITD has been proven to be a therapeutic target in acute myeloid leukemia 

(AML) (117). In early 2017, the multikinase inhibitor Midostaurin has been approved for 

newly diagnosed AML in adult patients who are FLT3 mutation positive. Clinial trials have 

also demonstrated Midostaurin activity in patients with FLT3 wild type, owing to either 

FLT3 or off-target inhibition(118). We identified 30 targets for Midostaurin in our assay 

with medium affinity and low selectivity (CATDSFLT3: 0.048) for FLT3, whereas 
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designated FLT3 inhibitors in clinical trials such as Quizartinib, Crenolanib or Gilteritinib 

showed higher potencies and selectivity values. Overall, 61 inhibitors were identified to 

bind to FLT3. According to mRNA sequencing of the utilized four cell lines, FLT3 is 

mainly expressed in the MV-4-11 cell line, harboring a FLT3-ITD mutation (see above and 

Table S5) suggesting that these compounds are active against the mutated protein. 

This work identified Golvatinib as a new and very affine and reasonably selective 

FLT3 inhibitor (Kd
app: 4 nM, CATDSFLT3: 0.249), whereas Cabozantinib showed favorable 

selectivity for FLT3 (Kd
app: 53 nM, CATDSFLT3: 0.457) compared to its other targets. 

Cabozantinib is approved for the treatment of medullary thyroid cancer and renal cell 

carcinoma based on the inhibition of c-MET and VEGFR and appears to be well tolerated. 

Thus, further repurposing of this inhibitor for other indications might be possible.  

We screened a panel of leukemia cell lines against Cabozantinib using the designated 

FLT3 inhibitors Quizartinib and Crenolanib as positive controls (up to 500 nM in vitro). 

Cell metabolic activity was measured by an MTS-assay. The cell lines THP-1, OCI-AML3, 

OCI-AML5, U-937, KG-1a, NB-4, HL-60, SD-1, and K-562 were resistant to all three 

inhibitors. Remarkably, all three compounds inhibited proliferation of cell lines harboring 

mutations in receptor tyrosine kinase (RTK) class III receptors (PDGFR subfamily, 

including FLT3) in the low nanomolar range (Table S16, 17). Cell viability for a subset of 

these cell lines (MOLM-13, MV4-11, MM-6, Kasumi-1, OCI-AML3, HL-60, KG-1a and 

THP-1 was measured by the trypan blue assay (after 72 h of drug treatment; fig. S10A). 

To validate FLT3 inhibition by Golvatinib, we also treated MV-4-11, OCI-AML3 and HL-

60 cells with the drug. Noteworthy, only cell lines with mutations in the PDGFR-RTK 

family were sensitive to the drugs, with Golvatinib being the (relatively speaking) least 

potent one (EC50 = 26 nM).  

We next treated Ba/F3 cells expressing different FLT3 mutants with the three 

inhibitors and assayed their viability after 72 h (fig. S10B). All three drugs inhibited FLT3-

ITD E611C(28) (NPOS) with EC50 values below 40 nM, FLT3-ITD 598/599(22) (w78) 

below 15 nM and FLT3-ITD K602R(7) (w51) below 10 nM. Among the tested drugs, 

Quizartinib was the most potent inhibitor, followed by Cabozantinib. All three inhibitors 

can inhibit the proliferation of cells carrying the resistance mutation FLT3-ITD E611C(28) 

N676K(119) but only Crenolanib showed an effect against FLT3-ITD E611C(28) 

D835Y(86). The tyrosine kinase domain FLT3 D835Y mutation alone was also less 

sensitive towards Cabozantinib treatment. Thus, Cabozantinib was not able to overcome 

AML-resistance against common treatment options at lower doses. A combination of the 

N676K and D835Y mutations also renders the Ba/F3 cells resistant towards Cabozantinib, 

whereas Crenolanib shows the best inhibitory effect on proliferation in these cases. 

Moreover, all three inhibitors showed an inhibitory effect on KIT expressing cells but with 

lower potency compared to cells expressing FLT3-ITD mutations (fig. S10B; Table S17). 

Golvatinib treatment reduced viability of FLT3-ITD K602 (7) cells but had no effect in the 

Ba/F3 clone with resistance mutation. 

Immunoblot analysis of Golvatinib and Cabozantinib in FLT3 wild type or FLT3-ITD 

transfected HEK293 cells showed that all compounds reduce FLT3 phosphorylation in the 

mutant and wild type form proving target engagement in living cells (fig. S10C). In FLT3-

ITD dependent MV-4-11 cells, lower doses of drug are sufficient for inhibition of FLT3 

signaling (fig. S10D). 
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To determine the effect of Cabozantinib on cellular FLT3 expression levels, U-2 OS 

cells were transiently transfected with FLT3 wild-type and mutant constructs (FLT3-ITD 

(K602R(7) (w51), FLT3-ITD E611C(28) (NPOS)). Cells were treated with 50 nM 

Cabozantinib while control cells were left untreated prior to immuno-fluorescent staining 

for DNA (DAPI), membranes and other lipophilic structures (WGA) and FLT3. In 

untreated FLT3 wild type cells, FLT3 is located at the membrane and in the cytoplasm of 

the cell, whereas the FLT3-ITD mutation leads to an apparent displacement of the receptor 

from the membrane. Comparison of Cabozantinib treated and untreated controls revealed 

an increase in FLT3 surface localization, similar to the one previously observed for 

Quizartinib(120). Therefore, Cabozantinib treatment is able to restore the membrane 

localization of FLT3-ITD (Fig. 6A; fig. S10E). Furthermore, immunoblot analysis showed 

that Cabozantinib abbrogated phosphorylation of STAT5 in MV-4-11 cells and thus 

stopped this aberrant signaling (49). at doses below 10 nM (fig. S10D).  

As a result of Cabozantinib treatment efficacy in cells, we next evaluated the drug in 

a systemic xenograft mouse model of AML. Wild type FLT3 (OCI-AML3) or FLT3-ITD 

mutated (MV-4-11) cells were injected into the tail vein of NSG mice. Cabozantinib 

treatment started on day three after cell injection with a dosage of 60 mg/kg (prior dose 

escalation trials showed no drug related toxicities at this dose). Mice were imaged every 

four to five days and bioluminescence imaging was used to monitor tumour burden in the 

animals. Solvent treated control mice showed a high bioluminescence signal starting on 

day 13 and therefore had to be sacrificed starting with day 17 after cell injection. 

Cabozantinib treatment was continued until day 14 and was then stopped so that survival 

could be monitored by Kaplan Meier analysis. After drug treatment was discontinued, 

cancer cells started growing and luminescence concommittantly increased (fig. S10F 

shows exemplary mice for disease development). From these experiments we conclude that 

Cabozantinib treatment leads to a significant reduction of tumour growth in FLT3-ITD 

positive but not FLT3-WT AML cells. In addition, treatment significantly prolonged the 

survival of MOLM-13 bearing mice (fig. S10G, H) making Cabozantinib a promising 

candidate for further evaluation in AML patients stratified for FLT3-ITD. 
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Fig. S1. 

Fig. S1 | Kinobeads Drug Screen workflow and evaluation. (A) Kinobead pulldowns were 

performed in 96-well format. Eight doses were used for each drug plus vehicle control and a second 

pulldown of the vehicle control (pulldown of pulldown). This control was used to correct for protein 

depletion from the lysate caused by the affinity enrichment (see methods). Proteins were eluted 

from beads, run ~1 cm into a LDS gel and in-gel digested with trypsin. Each pulldown was analysed 

by liquid chromatography tandem mass spectrometry and using an inclusion list of kinase peptide 

m/z and retention times collected in prior experiments. MS data from the same 15 vehicle control 

Kinobeads pulldowns were added to the MaxQuant/Andromeda software for consistent protein 

identification and quantification. Dose response plots were generated and target proteins manually 

annotated. (B) Kinobead western Blot readout for selected inhibitor:protein combinations.  

(C) Dasatinib target pKd
app correlate well with KiNativ binding data for the same inhibitor.  

(D) Correlation of Kinobeads binding data for clinical MELK and SIK2 inhibitors to IC50-values 

obtained in recombinant activity assays shows reasonable agreement between the two assay 

formats.  
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Fig. S1 continued | Kinobeads Drug Screen workflow and evaluation. (E) Intensity 

distribution of proteins captured on Kinobeads. From the total MS peptide intensities, 52% 

originated from kinase peptides illustrating good enrichment of kinases on Kinobeads.  

(F) Venn diagram of the overlap of protein kinases identified in the RNA-seq data, full 

proteome analysis and Kinobeads pulldowns in K-562, M-4-11, COLO 205 and SK-N-

BE(2) cells. (G) Examples for Kinobeads experiments performed to profile MET inhibitors 

using a lysate mixture of the four standard cell lines supplemented with Caki-1 cell lysate 

(high MET expression). (H) Kinobeads competition data for MTOR/PI3K-family members 

(red) using immobilized Omipalisib (inset) and unmodified Omipalisib as the competitor. 
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Fig. S2. 

Fig. S2 | Description of target profile summaries. For reference purposes, we have created pdf 

files summarizing the target profiles of all 243 inhibitors used in a total of 281 experiments. (A) 

Page 1 highlights general information about the inhibitor. Each identified target kinase (blue for 

designated target, red for other targets) is highlighted on the phylogenetic tree of all human kinases. 

A histogram plot places the inhibitor on the distribution of selectivity of all drugs investigated in 

this study. The histogram at the bottom of panel (A) indicates the level of target engagement of the 

drug in the cell lysate at a defined concentration. (B) Beginning with the high confidence targets, 

the subsequent pages show all MS intensity-based dose-response profiles obtained for the 

compound including parameters for curve fitting and derived IC50, EC50 and Kd
app values. (C) For 

each protein, further analytical evidence is provided (number of MS/MS scans, number of unique 

peptides) and how abundant the protein was within the experiment (LFQ or raw intensity in the 

DMSO control). (D) Target engagement, compound selectivity (CATDS) and predicted optimum 
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of compound selectivity and target engagement (CATDSI) as a function of applied compound dose. 

The optimum in the CATDSI curve indicates the drug concentration that represents the best 

compromise between selectivity and target engagement. Visualization information for proteins that 

do not show dose-dependent binding consists of (B) and (C) only. Links to all target summary files 

are provided in Table S1. The pdf files can also be retrieved from proteomeXchange and 

ProteomicsDB (see data availability).  
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Fig. S3. 

Fig. S3 | Determination of compound selectivity by the Concentration and Target Dependent 

Selectivity (CATDS) score. (A) An example of a CATDS calculation is provided for Gefitinib 

(upper panel). Kinobeads profiling determined seven targets for Gefitinib (blue box for EGFR and 

red box for the six other targets). The target engagement (blue vertical bar in the dose-response plot 

for EGFR; red vertical bar in dose response plot for other targets) is shown for all targets. The 

histogram in the middle panel uses the same color code. The selectivity of Gefitinib for EGFR 

(CATDSEGFR) can be calculated by dividing the target engagement of EGFR (here at its Kd
app of 

413 nM, i.e. 0.5, blue bar) by the sum of all target engagements (blue and red bars) at the same 

concentration. More generally, using the fitted curves from the Kinobeads assay, CATDSEGFR can 

be calculated at any concentration (lower panel, blue dashed line) to monitor the selectivity across 

the entire concentration range. A further useful metric is the Concentration and Target Dependent 

Selective Inhibition (CATDSI) which provides an estimate of the optimal concentration at which 

the highest selectivity and highest target engagement can be obtained. Thus, CATDSIEGFR is the 

CATDSEGFR multiplied by the target engagement of EGFR (lower panel, dashed black line). (B) 

CATDS can be flexibly used to express the selectivity of a compound for any one protein of interest 

(CATDStarget), one of the designated targets of a compound (CATDSdesignated) or the most potent 

designated target of a compound (CATDSmost-potent). The score can also be used for protein groups 

such as multiple target proteins (CATDStargets), multiple designated targets (CATDSmulti-designated) or 

multiple targets involved in a drug’s mechanism of action (CATDSMoA). (C) Comparison of 

CATDS features to four other selectivity measures. CATDS encompasses features of all the other 

metrics but only CATDS provides an assay-independent selectivity measure for single and multiple 

proteins of interest at any concentration.  
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Fig. S3 continued | Determination of compound selectivity by the Concentration and Target 

Dependent Selectivity (CATDS) score. (D-H) Generally, there is reasonable agreement of 

CATDS with four other measures of selectivity. CATDSdesignated is highly comparable to (D) the 

selectivity score and (E) the Gini coefficient. (F) Selectivity entropy is comparable to CATDSmost-

potent (left panel); however, CATDSmulti-designated indicates that the selectivity entropy is unable to 

differentiate compounds that are on-target (blue circles) or off-target (black circles) proteins (right 

panel). (G) There is also a high correlation between CATDSmost-potent (CATDSmulti-designated) and the 

partition indexmost-potent (partition indexmulti-designated), respectively. (H) The comparison of 

CATDSmulti-designated calculated at 10 nM (left) and 1,000 nM (right) with the partition indexmulti-

designated demonstrates that the partition index cannot account for the fact that selectivity is a function 

of drug dose.  



27 

Fig. S4. 

Fig. S4 | Evaluation of drug selectivity – global dataset. (A) Inhibitors grouped by status of 

clinical evaluation. Given is the number of targets with a potency of below 100 nM (blue), 1,000 

nM (light grey) and any concentration (total; dark grey). (B) CATDS analysis of drug selectivity 

according to clinical status (determined from the CATDS for all designated targets at the 

concentration of the most potent designated target; CATDSdesignated). There was no difference in 

selectivity between clinical phases confirming that selectivity is not a strict requirement for 

progressing a compound in the clinic. (C) Selectivity analysis of 137 kinase inhibitors with 

annotated binding type according to CATDSdesignated (the most potent designated target of a 

compound at its Kd
app). Type 1 and 2 inhibitors did not differ in median selectivity; while type 3 

inhibitors were generally more selective. Irreversible and reversible inhibitors spanned a broad 

range of selectivity, albeit highly selective molecules were apparent in both.  
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Fig. S4 continued | Evaluation of drug selectivity – irreversible and reversible EGFR 

inhibitors.  

(D) Violin plots of EGFR inhibitors profiled in the lysate mixture of the four cell lines (top panel) 

as well as BT-474 cells (bottom panel). Given are pKd
app values of all high-confidence, direct-

binder targets (pKd
app of EGFR highlighted as a grey circle). The shape of the violin indicates the 

number of targets at the respective pKd
app. The total number of targets is printed at the top (e.g. 

n=8). Violins are colored according to selectivity for EGFR (CATDSEGFR). (E) EGFR turnover 

measured by pulsed SILAC mass spectrometry and monitoring the loss of a heavy label over time. 

EGFR turnover was corrected for cell doubling to obtain protein half-lives (see Supplementary 

Materials).  
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Fig. S4 continued| Evaluation of drug selectivity. (F) Kinobeads target profiling data of a pro-

drug (grey) compared to the active drug (blue) for different compounds that are formulated as pro-

drugs. 
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Fig. S5. 

Fig. S5 | Characterization of novel off-targets. (A) Comparison of protein-drug interactions from 

this study with those described in major publications and online databases (CHEMBL, LINCS, 

Anastassiadis et al., Metz et al.) (B) Phylogenetic tree representation of all human kinases and 

Dabrafenib targets (blue) determined from activity (left) and Kinobeads binding data (right; 

illustration reproduced courtesy of Cell Signaling Technology, Inc; www.cellsignal.com). The size 

of each circle is proportional to the Kd
app of the interaction. (C-E) Kinase activity assays of novel 

Dabrafenib targets validated the binding results obtained with Kinobeads. (F) Kinobeads binding 

and kinase activity assays for Dabrafenib and different CDK/Cyclin combinations. Potent binding 

competition of CDK2 could not be confirmed in the activity assay). 
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Fig. S5 continued | Characterization of novel off-targets. (G) Kinase activity assays for 

Ponatinib and ABL1, ZAK and MAPK14 confirmed that binding data (inserted radar plot for all 

kinase targets of Ponatinib) translated into inhibition of kinase activity. The target promiscuity of 

Ponatinib may be responsible for both desired and undesired side effects. 
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Fig. S6. 

Fig. S6 | Characterization of novel off-targets. (A) Citations from PubMed (pubmed.gov, 

10/2016) indicating a recent and increasing interest in particular kinases. 
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Fig. S6 continued | Characterization of novel off-targets – SIK2. (B) Mouse BMDM cells were 

treated with increasing concentrations of potential SIK2 inhibitors followed by cell viability (grey 

area), TNFα (pink) and IL-10 (blue) measurement. All shown inhibitors resulted in anti-

inflammatory effects (IL-10 increase, TNFα decrease), suggesting SIK2 inhibition (error bars show 

standard deviation of technical triplicates). The known SIK2 inhibitor HG-9-91-01 was used as 

positive control. (C) PRM assay for phosphorylation of CRTC3 S370 – a substrate site of SIK2 – 

showing reduced phosphorylation for all SIK2 inhibitors compared to DMSO. (D) Quantitative 

readout of PRM transitions for either pS370 or pS62 after inhibitor treatment. (E) Western blot and 

mass spectrometry readout of Kinobeads binding of SIK2 by HG-9-91-01. 
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Fig. S6 continued | Characterization of novel off-targets – NTRK1. (F) Potential NTRK1 

inhibitors but not Gefitinib reduced the viability of TPM3-NTRK1 dependent KM12 cells in a dose-

dependent fashion (error bars show standard deviation of technical triplicates). The designated 

NTRK1 inhibitor Entrectinib was used as positive control. 
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Fig. S6 continued | Characterization of novel off-targets - Saracatinib. (G) siRNA knock-down 

experiments in U-2 OS cells (osteosarcoma) and NCI/ADR-RES cells (ovarian cancer; left panel) 

suggested that Saracatinib efficacy in U-2 OS cells (right panel) is owing to a concerted inhibition 

of SRC and BMP receptor signaling in osteosarcoma. Transfection reagent and scrambled siRNAs 

were used as negative control and cell death inducing siRNA as positive control (error bars depict 

standard deviation of technical triplicates). (H) Western blot readout for phospho-SMAD in U-2 

OS cells treated with inhibitor in the presence or absence of BMP2. Saracatinib treatment results 

in decreased phosphorylation of SMAD downstream of BMP receptors and (I) decreased 

autophosphorylation of SRC Y419 showing target/pathway engagement of the drug. 
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Fig. S6 continued | Characterization of novel off-targets – beyond protein kinases.  

(J) Metabolic kinase PDXK as off-target of kinase inhibitors. Seliciclib is known to bind to the 

pyridoxal binding site (PLP) but does not score in the Kinobeads assay. Conversely, BI-2536 

showed binding inhibition in Kinobeads and therefore likely interacts with the ATP-binding pocket 

of PDXK. (K) Acyl-CoA dehydrogenases ACAD10 and ACAD11 as off-targets of kinase 

inhibitors. Inhibition of ACAD11 may block the metabolic switch of cancer cells from glucose to 

fatty acid metabolism under conditions of glucose starvation. (L) Co-crystal structures of NQO2 

and Crenolanib (left two panels), Pacritinib (middle two panels) and Volitinib (right two panels). 

All molecules interact with FAD by π-stacking and residues in the active site. (M) Radar plot of 

pKd
app values for FECH revealing interaction with a total of 26 compounds.  
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Fig. S7. 

Fig. S7 | Kinobeads binding of protein complexes (A) Co-competed proteins forming KEOPS, 

TBK1, AP2 and CDK/Cyclin complexes are shown as examples. (B) Schematic representation of 

additional protein complexes identified in the Kinobeads pulldowns that showed similar curve 

characteristics (blue, direct Kinobead binder). 
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Fig. S7 continued | Kinobeads binding of protein complexes – CDKs. (C) Clustering of 

inhibitors targeting CDKs according to CATDSMoA (see Supplementary Materials for 

details). Compounds either had no preference (white-light blue) or targeted the same 

biological process (pink; e.g., the cell cycle). Off-target CDK inhibitors (light grey bar) 

often inhibited one potential CDK mode-of-action. (D) Designated CDK inhibitors 

targeted all CDK/cyclins irrespective of the biological process a particular complex is 

involved in (cell cycle in dark blue, translation in light blue, dual cell cycle and 

transcription CDK7 in dark grey, atypical CDKs in light grey). (E) Conversely, off-target 

CDK inhibitors showed some preference for the cell cycle (dark blue), translation (light 

blue), dual cell cycle and transcription CDK7 (dark grey) or atypical CDKs (light grey).  
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Fig. S8. 

Fig. S8 | From target to pathway engagement – combination treatment. (A) Viability assays of 

drug combination treatment in lung (PC-9) and ovarian (IGROV-1) cancer cell lines. (B) 

Proliferation assays (from left to right) for PC-9 and IGROV-1 with single and drug combination 

treatment with Gefitinib and AZD-4547. Combination treatment of Gefitinib and AZD-4547 was 

more effective than any single drug. Experiments were performed in technical triplicates and error 

bars depict standard deviation.  
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Fig. S8 continued | From target to pathway engagement – EGFR pathway. (C) Workflow for 

quantitative phosphoproteomics in BT-474 cell lines treated with different EGFR/ERBB2 

inhibitors (in four replicates). (D) Number of reproducible (at least 3 from 4 biological replicates) 

significantly up- (blue) and down-regulated (pink) phosphorylated sites observed for each drug 

(two-sided t-test, p<0.01). (E) Down-regulation of the ERBB2 autophosphorylation site pY1248 

can be used as a target engagement marker in cells for all drugs shown. (F-G) Up- and down-

regulated phosphorylated sites for (F) known and (G) novel members of the ERBB2 network. Error 

bars depict the standard deviation. Further details are provided in the Supplementary Materials. 
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Fig. S9. 

Fig. S9 | Clinical drugs for potential kinase targets (A) Kinobead based kinase expression heat 

map of healthy (grey) and tumour (blue) tissue from 15 NSCLC patients. Columns and rows are 

ordered according to the results from a supervised clustering (dendrogram) of significantly 

regulated kinases. (B) Combined Kaplan-Meier analysis of MELK in squamous cell carcinoma 

(SCC) and adenocarcinoma (ADC). (C) Kaplan-Meier analysis of EGFR in SCC, ADC and 

combined analysis. (D) Kaplan-Meier analysis of DDR1 in SCC, ADC and combined analysis. P-

values were obtained from a log rank test.  
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Fig. S9 continued | Clinical drugs for potential kinase targets (E) Co-crystal structures of 

MELK with Nintedanib, K-252a, PF-3758309, Defactinib and BI-847325 (left panel; 

superimposed compound structures in the ATP pocket in blue). The sequence logo shows kinome 

wide frequency of drug-interacting residues. Drug-interacting residues are classified as scaffold 

(grey), potency (pink) and selectivity (blue) residues (middle panel) and are localized within the 

ATP-pocket (right panel). A complete list of all residues plus classification is provided in Table 

S10 and Supplementary Materials.  
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Fig. S10. 

Fig. S10 | Preclinical evaluation of Cabozantinib for treatment of AML. (A) Cell viability 

assays for Cabozantinib, Golvatinib, Quizartinib and Crenolanib in AML cell lines (standard 

deviation of technical triplicates). Mutations and translocations of the cell lines are provided in the 

table (right). FLT3-mutated cell lines were sensitive towards FLT3 inhibition. (B) Proliferation 

assays for Cabozantinib, Golvatinib, Quizartinib and Crenolanib in Ba/F3 cells harbouring different 

FLT3 mutations. (C) Immunoblot analysis in MV-4-11 cells and MOLM-13, FLT3-WT and FLT3-

ITD transfected HEK293 cells, and Ba/F3 FLT3-ITD cells revealed FLT3 target engagement for 

Golvatinib and Cabozantinib. FLT-ITD dependent cells are more sensitive to inhibitor treatment. 

(D) Immunoblot analysis of STAT5 phosphorylation for increasing doses of Quizartinib and 

Cabozantinib showed that both drugs can abrogate aberrant FLT3 signaling in MV-4-11 cells.  
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Fig. S10 continued | Preclinical evaluation of Cabozantinib for treatment of AML. (E) 
Immunofluorescence staining for FLT3-WT, FLT3-ITD 611C(28) or empty-vector transfected U-

2 OS cells with no, or 6 h treatment with 50 nM Cabozantinib. Drug treatment restored membrane 

localization of FLT3-ITD analogous to WT. (F-H) NOD scid gamma mice were injected i.v. with 

MOLM13 cells. Three days post-injection, mice were treated with Cabozantinib (60 mg/kg) or left 

untreated. (F) Representative bioluminescence images of treated and control mice for up to 24 d 

after cell injection (MOLM-13). (G) BLI (bioluminescence in photons [lg]/(s*cm2*sr) signals for 

Cabozantinib- (blue, n=6) or vehicle-treated animals (black, n=5). Error bars depict standard 

deviation; diamonds indicate treatment days. (H) Kaplan-Meier survival curves for Cabozantinib 

(blue, n=6) or vehicle-treated animals (black, n=5). P-values were obtained after log rank test. 
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Table S12. 

Summary of kinase assay data performed at Reaction Biology Corporation. IC50 values for 

kinases where obtained from dose responses in single measurements. Kinases not tested 

(n.d.) or not inhibited (n.i) are indicated as such.  

Kinases Dabrafenib IC50 [M] Ponatinib IC50 [M] 

ABL1 5.19E-06 < 1.00E-9 

ABL2/ARG 2.94E-06 n.d. 

ALK5/TGFBR1 9.87E-07 n.d. 

ARAF 1.39E-10 n.d. 

BRAF 6.30E-10 n.d. 

BRAF (V599E) 4.05E-09 n.d. 

BRK 1.13E-08 n.d. 

CDK16/cyclin Y (PCTAIRE) 2.90E-08 n.d. 

CDK1/cyclin A 5.69E-06 n.d. 

CDK1/cyclin B 2.22E-06 n.d. 

CDK1/cyclin E 2.92E-07 n.d. 

CDK2/cyclin A 7.47E-06 n.d. 

CDK2/cyclin A1 n.i. n.d. 

CDK2/cyclin E n.i. n.d. 

CDK2/cyclin O 9.40E-06 n.d. 

CDK3/cyclin E 6.86E-06 n.d. 

CDK4/cyclin D1 8.52E-07 n.d. 

CDK4/cyclin D3 1.84E-06 n.d. 

CDK5/p25 4.92E-06 n.d. 

CDK5/p35 3.71E-06 n.d. 

CDK6/cyclin D1 n.i. n.d. 

CDK6/cyclin D3 5.37E-07 n.d. 

CK1a1 n.i. n.d. 

CSK 4.24E-08 n.d. 

EIF2AK1 4.82E-08 n.d. 

FGR 5.35E-07 n.d. 

FRK/PTK5 3.97E-07 n.d. 

FYN 1.30E-06 n.d. 

HPK1/MAP4K1 n.d. 3.62E-09 

IRAK1 3.39E-06 4.02E-08 

IRAK4 n.d. 5.32E-06 

JNK2 n.d. 2.99E-06 

LCK 4.50E-08 n.d. 

LIMK1 3.22E-08 n.d. 

LIMK2 3.59E-09 n.d. 

LYN 8.57E-08 n.d. 

MEKK1 n.d. 1.36E-06 

MLK3/MAP3K11 2.48E-06 n.d. 

NEK1 9.58E-07 n.d. 

NEK11 2.47E-08 n.d. 

NEK9 4.70E-10 n.d. 

p38a/MAPK14 n.d. 2.07E-08 

PKCnu/PRKD3 8.40E-09 n.d. 

PKD2/PRKD2 1.23E-07 n.d. 

PLK4/SAK 3.47E-08 n.d. 

RAF1 5.12E-10 n.d. 

RIPK2 4.13E-08 

RIPK3 4.08E-09 

SIK2 4.23E-08 

SIK3 1.38E-07 

TAOK3/JIK 9.10E-06 

TNK1 3.78E-08 

ULK1 2.40E-07 

ZAK/MLTK 1.22E-08 < 1.00E-9 
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Table S13. 

Data collection and refinement statistics for drug-NQO2 co-crystals (molecular 

replacement). Data analysis and structure validation was carried out with 

MOLPROBITY(121) and PHENIX(122).  

NQO2 

Crenolanib 

(5LBY) 

NQO2 

Pacritinib 

(5LBZ) 

NQO2 

Volitinib 

(5LBW) 

Data collection 

Space group P212121 P212121 P212121 

Cell dimensions 

    a, b, c (Å) 61.6, 79.4, 106.6 61.4, 79.2, 106.2 57.4, 81.4, 106.4 

    α, β, γ ()  90, 90, 90 90, 90, 90 90, 90, 90 

Resolution (Å) 44.3 - 1.4  

(1.45 - 1.4)a 

48.6 - 1.4 

(1.45 - 1.4)a 

44.5 - 1.9  

(1.97-1.9)a 

Rmerge 0.039 (0.276)a 0.045 (0.329)a 0.110 (0.976)a 

I/s(I) 22.6 (5.1)a 21.1 (5.3)a 7.5 (1.3)a 

CC1/2 0.999 (0.95)a 0.999 (0.93)a 0.996 (0.56)a 

Completeness (%) 0.93 (0.90)a 0.95 (0.91)a 0.90 (0.93)a 

Redundancy 4.6 (64.4)a 4.5 (4.4)a 4.7 (4.0)a 

Refinement 

Resolution (Å) 44.3 - 1.4 48.6 - 1.4 44.5 - 1.90 

No. reflections 96,392 97,697 36,195 

Rwork / Rfree 0.124 / 0.142 0.126 / 0.145 0.238/ 0.247 

No. atoms 

    Protein 3711 3697 3643 

    Ligands 174 198 160 

    Water 436 428 39 

B factors 

    Protein 14.6 13.1 42.1 

    Ligands 12.1 14.6 46.6 

    Water 26.9 25.1 37.7 

R.m.s. deviations 

    Bond lengths (Å) 0.96 0.96 0.97 

    Bond angles () 6.7 6.6 6.6 
a Values in parentheses are for highest-resolution shell. 
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Table S14. 

Data collection and refinement statistics for drug-MELK cocrystals (molecular 

replacement). 
MELK 

Nintedanib 

(5MAF) 

MELK 

PF-3758309 

(5MAG) 

MELK 

K-252a 

(5M5A) 

MELK 

Defactinib 

(5MAH) 

MELK 

BI-847325 

(5MAI) 

Data collection 

Space group P212121 P212121 P212121 P212121 I4132 

    a, b, c (Å) 59.91, 63.71, 

91.29 

61.18, 62.81, 

94.11 

63.28, 91.21, 

59.65 

59.67, 63.70, 

90.94 

169.13, 

169.13, 169.13 

   α, β, γ () 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 

Resolution (Å) 52.25 - 2.80 

(2.95 - 2.80)a 

94.11 - 2.35 

(2.48 - 2.35)a 

49.93 - 1.90 

(2.00 - 1.90)a 

43.55 - 2.00 

(2.11 - 2.00)a 

53.48 - 2.15 

(2.27 - 2.15)a 

Rmerge 0.129 (0.733)a 0.131 (0.369)a 0.032 (0.224)a 0.068 (0.735)a 0.063 (0.793)a 

I/(I) 10.5 (2.6)a 7.7 (3.9)a 21.3 (5.6)a 15.4 (2.5)a 18.1 (3.1)a 

CC1/2 0.993 (0.774)a 0.981 (0.885)a 1.000 (0.974)a 0.999 (0.824)a 0.999 (0.798)a 

Completeness (%) 99.8 (99.8)a 95.9 (99.9)a 94.7 (84.2)a 98.3 (98.6)a 100.0 (100.0)a 

Redundancy 6.0 (6.2)a 4.6 (4.8)a 4.5 (4.6)a 5.1 (4.9)a 8.6 (8.5)a 

Refinement 

Resolution (Å) 52.25 - 2.80 52.24 - 2.35 49.93 - 1.90 43.55 - 2.00 53.49 - 2.15 

No. reflections 8550 14303 19461 22356 21616 

Rwork / Rfree 0.223 / 0.257 0.194 / 0.251 0.185 / 0.214 18.3 / 23.8 19.2 / 23.7 

No. atoms 

    Protein 2578 2586 2587 2604 2563 

    Ligand 40 35 35 35 35 

    Water 34 92 109 105 69 

B factors 

    Protein 57.01 36.42 43.85 38.46 54.60 

    Ligand 51.42 32.19 36.74 35.66 65.12 

    Water 46.57 35.72 47.23 42.52 55.01 

R.m.s. deviations 

    Bond lengths (Å) 0.0076 0.0091 0.0116 0.0107 0.0120 

    Bond angles () 1.2854 1.4091 1.8555 1.4383 1.5352 
a Values in parentheses are for highest-resolution shell. 
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Table S15. 

Clinical pathology parameters of the human NSCLC tissue samples. 

Total Adenocarcinoma Squamous cell carcinoma

Number of patients [n] 375 186 189

Gender [%]

Female 25 37 14

Male 75 63 86

Age [years]

Average 65 63 66

Range 31-83 31-83 43-82

pT category [%]

pT1 23 32 14

pT2 49 46 52

pT3 19 15 24

pT4 8 7 10

Lymph node metastasis [%]

pN0 57 58 56

pN1 15 10 20

pN2 26 28 23

pN3 1 2 1

pNX 1 2 1

Distant metastasis [%]

M0 97 95 99

M1 3 5 1

Residual tumour [%]

R0 89 90 88

R1 9 10 7

R2 1 0 1

RX 2 0 4
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Table S16. 

Panel of AML cell lines with mutation information and sensitivity data for Cabozantinib, 

Crenolanib, and Quizartinib measured by an MTS-assay. Number in brackets gives EC50 

for Cabozantinib in the respective cell line. 

Cell line Described mutations FLT3 inhibitor 

sensitivity 

FLT3 expression 

THP-1 NRAS, MLL-AF9 no yes 

OCI-AML3 NPM1, DNMT3A no yes 

OCI-AML5 no yes 

U-937 no no 

KG-1a OP1-FGFR1 no no 

NB-4 PML-RARA no no 

HL-60 NRAS no no 

SD-1 BCR-ABL no no 

K-562 BCR-ABL no no 

MV-4-11 FLT3-ITD (homozygous), MLL-

AF9 

yes (16 nM) yes 

MOLM-13 FLT3-ITD (heterozygous), MLL-

AF9 

yes (73 nM) yes 

MONO-MAC-1 FLT3 V592A, MLL-AF9 yes (34 nM) yes 

MONO-MAC-6 FLT3 V592A, MLL-AF9 yes (288 nM) yes 

EOL-1 FIP1L1-PDGFRA yes (1 nM) yes 

KASUMI-1 KIT N822K, KRAS, AML-ETO yes (69 nM) no 
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Table S17. 

Cell viability data (EC50 in nM) for kinase inhibitors in AML cell lines and stable Ba/F3 

cell lines expressing different FLT3 constructs (n.i. means no inhibition). 

FLT3-ITD Nomenclature according to Janke et al.(85) and Arreba-Tutusaus et al.(123): 

FLT3-ITD K602R(7) = FLT3-ITD (w51) = FLT3-ITD 3 

FLT3-ITD E611C(28) = FLT3-ITD (Npos) = FLT3-ITD 2 

FLT3-ITD 598/599(22) = FLT3-ITD (w78) = FLT3-ITD 1 

Cell line Cabozantinib Quizartinib Crenolanib Golvatinib 

MOLM-13 18 5 8 32 

MV-4-11 8 2 3 26 

MONO-MAC-6 16 7 19 

Kasumi-1 19 17 >100 

OCI-AML3 n.i. n.i. n.i. n.i. 

HL-60 n.i. n.i. n.i. n.i. 

KG-1a n.i. n.i. n.i. 

THP-1 n.i. n.i. n.i. 

FLT3-ITD E611C(28)  18 1 33 

FLT3-ITD K602R(7) 5 0.3 9 

FLT3-ITD 598/599(22) 5 2 10 

KIT CBL ∆exon8 32 14 >100 

FLT3-ITD E611C(28) D835Y n.i. n.i. 64 

FLT3-ITD E611C(28) N676K 22 58 85 

FLT3 D835Y 57 7 2 

FLT3 N676K D835Y >100 66 6 
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