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Sub-display channel: Science Forum 1 

Title: The Human Cell Atlas 2 

Abstract: The recent advent of methods for high-throughput single-cell molecular 3 

profiling has catalyzed a growing sense in the scientific community that the time is 4 

ripe to complete the 150-year-old effort to identify all cell types in the human body. 5 

The Human Cell Atlas Project is an international collaborative effort that aims to 6 

define all human cell types in terms of distinctive molecular profiles (such as gene 7 

expression profiles) and to connect this information with classical cellular 8 

descriptions (such as location and morphology). An open comprehensive reference 9 

map of the molecular state of cells in healthy human tissues would propel the 10 

systematic study of physiological states, developmental trajectories, regulatory 11 

circuitry and interactions of cells, and also provide a framework for understanding 12 

cellular dysregulation in human disease. Here we describe the idea, its potential 13 

utility, early proofs-of-concept, and some design considerations for the Human Cell 14 

Atlas, including a commitment to open data, code, and community. 15 
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<L1>Introduction</L1> 151 

The cell is the fundamental unit of living organisms. Hooke reported the discovery of cells 152 

in plants in 1665 (Hooke, 1665) and named them for their resemblance to the cells 153 

inhabited by monks, but it took nearly two centuries for biologists to appreciate their 154 

central role in biology. Between 1838 and 1855, Schleiden, Schwann, Remak, Virchow and 155 

others crystalized an elegant Cell Theory (Harris, 2000), stating that all organisms are 156 
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composed of one or more cells; that cells are the basic unit of structure and function in 157 

life; and that all cells are derived from pre-existing cells (Mazzarello, 1999; Figure 1).  158 

To study human biology, we must know our cells. Human physiology emerges 159 

from normal cellular functions and intercellular interactions. Human disease entails the 160 

disruption of these processes and may involve aberrant cell types and states, as seen in 161 

cancer. Genotypes give rise to organismal phenotypes through the intermediate of cells, 162 

because cells are the basic functional units, each regulating their own program of gene 163 

expression. Therefore, genetic variants that contribute to disease typically manifest their 164 

action through impact in a particular cell types: for example, genetic variants in the IL23R 165 

locus increase risk of autoimmune diseases by altering the function of dendritic cells and 166 

T-cells (Duerr et al., 2006), and DMD mutations cause muscular dystrophy through 167 

specific effects in skeletal muscle cells (Murray et al., 1982).  168 

For more than 150 years, biologists have sought to characterize and classify cells 169 

into distinct types based on increasingly detailed descriptions of their properties, 170 

including their shape, their location and relationship to other cells within tissues, their 171 

biological function, and, more recently, their molecular components. At every step, efforts 172 

to catalog cells have been driven by advances in technology. Improvements in light 173 

microscopy were obviously critical. So too was the invention of synthetic dyes by chemists 174 

(Nagel, 1981), which biologists rapidly found stained cellular components in different ways 175 

(Stahnisch, 2015). In pioneering work beginning in 1887, Santiago Ramón y Cajal applied a 176 

remarkable staining process discovered by Camillo Golgi to show that the brain is 177 

composed of distinct neuronal cells, rather than a continuous syncytium, with stunningly 178 

diverse architectures found in specific anatomical regions (Ramón y Cajal, 1995); the pair 179 

shared the 1906 Nobel Prize in Physiology or Medicine for their work.  180 

Starting in the 1930s, electron microscopy provided up to 5000-fold higher 181 

resolution, making it possible to discover and distinguish cells based on finer structural 182 

features. Immunohistochemistry, pioneered in the 1940s (Arthur, 2016) and accelerated by 183 

the advent of monoclonal antibodies (Kohler and Milstein, 1975) and Fluorescence-184 

Activated Cell Sorting (FACS; Dittrich and Göhde, 1971; Fulwyler, 1965) in the 1970s, made 185 

it possible to detect the presence and levels of specific proteins. This revealed that 186 

morphologically indistinguishable cells can vary dramatically at the molecular level and 187 

led to exceptionally fine classification systems, for example, of hematopoietic cells, based 188 
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on cell-surface markers. In the 1980s, Fluorescence in situ Hybridization (FISH; Langer-189 

Safer et al., 1982) enhanced the ability to characterize cells by detecting specific DNA loci 190 

and RNA transcripts. Along the way, studies showed that distinct molecular phenotypes 191 

typically signify distinct functionalities. Through these remarkable efforts, biologists have 192 

achieved an impressive understanding of specific systems, such as the hematopoietic and 193 

immune systems (Chao et al., 2008; Jojic et al., 2013; Kim and Lanier, 2013) or the neurons 194 

in the retina (Sanes and Masland, 2015).  195 

Despite this progress, our knowledge of cell types remains incomplete.  Moreover, 196 

current classifications are based on different criteria, such as morphology, molecules and 197 

function, which have not always been related to each other. In addition, molecular 198 

classification of cells has largely been ad hoc – based on markers discovered by accident or 199 

chosen for convenience – rather than systematic and comprehensive. Even less is known 200 

about cell states and their relationships during development: the full lineage tree of cells 201 

from the single-cell zygote to the adult is only known for the nematode C. elegans, which 202 

is transparent and has just ~1000 cells.  203 

At a conceptual level, one challenge is that we lack a rigorous definition of what 204 

we mean by the intuitive terms 'cell type' and 'cell state'. Cell type often implies a notion 205 

of persistence (e.g., being a hepatic stellate cell or a cerebellar Purkinje cell), while cell 206 

state often refers to more transient properties (e.g., being in the G1 phase of the cell cycle 207 

or experiencing nutrient deprivation). But, the boundaries between these concepts can be 208 

blurred, because cells change over time in ways that are far from fully understood. 209 

Ultimately, data-driven approaches will likely refine our concepts.  210 

The desirability of having much deeper knowledge about cells has been well 211 

recognized for a long time (Brenner, 2010; Eberwine et al., 1992; Shapiro, 2010; Van Gelder 212 

et al., 1990). However, only in the past few years has it begun to seem feasible to 213 

undertake the kind of systematic, high-resolution characterization of human cells 214 

necessary to create a systematic cell atlas. 215 

The key has been the recent ability to apply genomic profiling approaches to single 216 

cells. By 'genomic approaches' we mean methods for large-scale profiling of the genome 217 

and its products, including DNA sequence, chromatin architecture, RNA transcripts, 218 

proteins, and metabolites (Lander, 1996). It has long been appreciated that such methods 219 

provide rich and comprehensive descriptions of biological processes. Historically, 220 
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however, they could only be applied to bulk tissue samples comprised of an ensemble of 221 

many cells, providing average genomic measures for a sample, but masking their 222 

differences across cells. The result is as unsatisfying as trying to understand New York, 223 

London or Mumbai based on the average properties of their inhabitants.  224 

The first single-cell genomic characterization method to become feasible at large-225 

scale is trancriptome analysis by single cell RNA-Seq (Box 1; Hashimshony et al., 2012; 226 

Jaitin et al., 2014; Picelli et al., 2013; Ramskold et al., 2012; Shalek et al., 2013). Initial efforts 227 

first used microarrays and then RNA-seq to profile RNA from small numbers of single 228 

cells, which were obtained either by manual picking from in situ fixed tissue, using flow-229 

sorting or, later on, with microfluidic devices, adapted from devices developed initially for 230 

qPCR-based approaches (Crino et al., 1996; Dalerba et al., 2011; Marcus et al., 2006; 231 

Miyashiro et al., 1994; Zhong et al., 2008). Now, massively parallel assays can process tens 232 

and hundreds of thousands of single cells simultaneously to measure their transcriptional 233 

profiles at rapidly decreasing costs (Klein et al., 2015; Macosko et al., 2015; Shekhar et al., 234 

2016) with increasing accuracy and sensitivity (Svensson et al., 2016; Ziegenhain et al., 235 

2016). In some cases, it is even possible to register these sorted cells to their spatial 236 

positions in images (Vickovic et al., 2016). Single-cell RNA sequencing (scRNA-seq) is 237 

rapidly becoming widely disseminated.  238 

Following this initial wave of technologies are many additional methods at various 239 

stages of development and high-throughput implementation. Techniques are being 240 

developed to assay: in situ gene expression in tissues at single-cell and even sub-cellular 241 

resolution (Chen et al., 2015b; Ke et al., 2013; Lee et al., 2014; Lubeck et al., 2014; Shah et al., 242 

2016; Stahl et al., 2016); the distribution of scores of proteins at cellular or sub-cellular 243 

resolution (Angelo et al., 2014; Chen et al., 2015a; Giesen et al., 2014; Hama et al., 2011; 244 

Susaki et al., 2014; Yang et al., 2014); various aspects of chromatin state (Buenrostro et al., 245 

2015; Cusanovich et al., 2015; Farlik et al., 2015; Guo et al., 2013; Lorthongpanich et al., 2013; 246 

Mooijman et al., 2016; Rotem et al., 2015a; Rotem et al., 2015b; Smallwood et al., 2014); and 247 

DNA mutations to allow precise reconstruction of cell lineages (Behjati et al., 2014; 248 

Biezuner et al., 2016; Shapiro et al., 2013; Taylor et al., 2003; Teixeira et al., 2013). Various 249 

groups are also developing single-cell multi-omic methods to simultaneously measure 250 

several types of molecular profiles in the same cell (Albayrak et al., 2016; Angermueller et 251 



 
 

 
 

9 

al., 2016; Behjati et al., 2014; Darmanis et al., 2016; Dey et al., 2015; Frei et al., 2016; 252 

Genshaft et al., 2016; Macaulay et al., 2015).  253 

 As a result, there is a growing sense in the scientific community that the time is 254 

now right for a project to complete the Human Cell Atlas that pioneering histologists 255 

began 150 years ago. Various discussions have taken place in a number of settings over the 256 

past two years, culminating in an international meeting in London in October 2016. In 257 

addition, several pilot efforts are already underway or in planning – for example, related to 258 

brain cells and immune cells. Prompted by such efforts, funding agencies, including the 259 

NIH, have sought information from the scientific community about the notion of creating 260 

cell or tissue atlases. 261 

The goal of this article is to engage the wider scientific community in this 262 

conversation. Although the timing is driven by technologies that have recently appeared 263 

or are expected to mature in the near-future, the project itself is fundamentally an 264 

intellectual endeavor. We therefore articulate the concept of a cell atlas and explore its 265 

potential utility for biology and medicine. We discuss how an atlas can lead to new 266 

understanding of histology, development, physiology, pathology, and intra- and inter-267 

cellular regulation, and enhance our ability to predict the impact of perturbations on cells. 268 

It will also yield molecular tools with applications in both research and clinical practice. 269 

As discussed below, a Human Cell Atlas Project would be a shared international 270 

effort involving diverse scientific communities. More details are available in the Human 271 

Cell Atlas White Paper 272 

(https://www.humancellatlas.org/files/HCA_WhitePaper_18Oct2017.pdf): the first version 273 

of this 'living document', which will updated on a regular basis, was released on October 274 

18, 2017. 275 

 276 

<L1>What is the Human Cell Atlas, and what could we learn from it?</L1> 277 

At its most basic level, the Human Cell Atlas must include a comprehensive 278 

reference catalog of all human cells based on their stable properties and transient features, 279 

as well as their locations and abundances. Yet, an atlas is more than just a catalog: it is a 280 

map that aims to show the relationships among its elements. By doing so, it can 281 

sometimes reveal fundamental processes – akin to how the atlas of Earth suggested 282 

continental drift through the correspondence of coastlines.  283 

http://www.humancellatlas.org/
https://grants.nih.gov/grants/guide/notice-files/NOT-RM-16-025.html
https://www.humancellatlas.org/files/HCA_WhitePaper_18Oct2017.pdf
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To be useful, an atlas must also be an abstraction, comprehensively representing 284 

certain features, while ignoring others. The writer Jorge Luis Borges – a master at 285 

capturing the tension between grandeur and grandiosity – distilled this challenge in his 286 

one-paragraph story, "On Exactitude in Science", about an empire enamored with science 287 

of cartography (Box 2; Borges and Hurley, 2004). Over time, the cartographers' map of the 288 

realm grew more and more elaborate, and hence bigger, until – expandio ad absurdum – 289 

the map reached the size of the entire empire itself and became useless. 290 

Moreover, an atlas must provide a system of coordinates on which one can 291 

represent and harmonize concepts at many levels (geopolitical borders, topography, roads, 292 

climate, restaurants, and even dynamic traffic patterns). Features can be viewed at any 293 

level of magnification, and high-dimensional information collapsed into simpler views. 294 

So, a key question is how a Human Cell Atlas should abstract key features, provide 295 

coordinates, and show relationships. A natural solution would be to describe each human 296 

cell by a defined set of molecular markers. For example, one might describe each cell by 297 

the expression level of each of the ~20,000 human protein-coding genes: that is, each cell 298 

would be represented as a point in ~20,000-dimensional space. Of course, the set of 299 

markers could be expanded to include the expression levels of non-coding genes, the 300 

levels of the alternatively spliced forms of each transcript, the chromatin state of every 301 

promoter and enhancer, and the levels of each protein or each post-translationally 302 

modified form of each protein. The optimal amount and type of information to collect will 303 

emerge based on a balance of technological feasibility and the biological insight provided 304 

by each layer (Corces et al., 2016; Lorthongpanich et al., 2013; Paul et al., 2015). For specific 305 

applications, it will be useful to employ reduced representations. Solely for concreteness, 306 

we will largely refer below to the 20,000-dimensional space of gene expression, which can 307 

already be assayed at high-throughput. 308 

The Atlas should have additional coordinates or annotations to represent 309 

histological and anatomical information (e.g., a cell's location, morphology, or tissue 310 

context), temporal information (e.g., the age of the individual or time since an exposure), 311 

and disease status. Such information is essential for harmonizing results based on 312 

molecular profiles with rich knowledge about cell biology, histology and function. How 313 

best to capture and represent this information requires serious attention. 314 
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In some respects, the Human Cell Atlas Project (whose fundamental unit is a cell) 315 

is analogous to the Human Genome Project (whose fundamental unit is a gene). Both are 316 

ambitious efforts to create 'Periodic Tables' for biology that comprehensively enumerate 317 

the two key 'atomic' units that underlie human life (cells and genes) and thereby provide a 318 

crucial foundation for biological research and medical application. As with the Human 319 

Genome Project, we will also need corresponding atlases for important model organisms, 320 

where conserved cell states can be identified and genetic manipulations and other 321 

approaches can be used to probe function and lineage. Yet, the Human Cell Atlas differs in 322 

important ways from the Human Genome Project: the nature of cell biology means that it 323 

will require a distinct experimental toolbox, and will involve making choices concerning 324 

molecular and cellular descriptors. Assessing the distance to completion will also be a 325 

challenge.  326 

As a Borgesian thought experiment, we could conceive of an imaginary Ultimate 327 

Human Cell Atlas that represents: all markers in every cell in a person's body; every cell's 328 

spatial position (by adding three dimensions for the body axes); every cell at every 329 

moment of a person's lifetime (by adding another dimension for time relating the cells by 330 

a lineage); and the superimposition of such cell atlases from every human being, 331 

annotated according to differences in health, genotype, lifestyle and environmental 332 

exposure.  333 

Of course, it is not possible to construct such an Ultimate Atlas. However, it is 334 

increasingly feasible to sample richly from the distribution of points to understand the key 335 

features and relationships among all human cells. We return below to the question of how 336 

the scientific community might go about creating a Human Cell Atlas. First, we consider 337 

the central scientific question: What could we hope to learn from such an atlas?  338 

 A Human Cell Atlas would have a profound impact on biology and medicine by 339 

bringing our understanding of anatomy, development, physiology, pathology, intracellular 340 

regulation, and intercellular communication to a new level of resolution. It would also 341 

provide invaluable markers, signatures and tools for basic research (facilitating detection, 342 

purification and genetic manipulation of every cell type) and clinical applications 343 

(including diagnosis, prognosis and monitoring response to therapy). 344 

In the following sections, we outline reasonable expectations and describe some 345 

early examples. We recognize that these concepts will evolve based on emerging data. It is 346 
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clear that a Human Cell Atlas Project will require and will motivate the development of 347 

new technologies. It will also necessitate the creation of new mathematical frameworks 348 

and computational approaches that may have applications far beyond biology – perhaps 349 

analogous to how biological 'big data' in agriculture in the 1920s led to the creation, by 350 

R.A. Fisher and others, of key statistical methods, including the analysis of variance and 351 

experimental design (Parolini, 2015). 352 

 353 

<L1>Taxonomy: cell types</L1> 354 

The most fundamental level of analysis is the identification of cell types. In an atlas 355 

where cells are represented as points in a high-dimensional space, 'similar' cells should be 356 

'close' in some appropriate sense, although not identical, owing to differences in 357 

physiological states (e.g., cell-cycle stage), the inherent noise in molecular systems (Eldar 358 

and Elowitz, 2010; Kharchenko et al., 2014; Kim et al., 2015; Shalek et al., 2013), and 359 

measurement errors (Buettner et al., 2015; Kharchenko et al., 2014; Kim et al., 2015; Shalek 360 

et al., 2013; Shalek et al., 2014; Wagner et al., 2016). Thus, a cell 'type' might be defined as a 361 

region or a probability distribution (Kim and Eberwine, 2010; Sul et al., 2012) either in the 362 

full-dimensional space or in a projection onto a lower-dimensional space that reflects 363 

salient features.  364 

 While this notion is intuitively compelling, it is challenging to give a precise 365 

definition of a 'cell type'. Cell-type taxonomies are often represented as hierarchies based 366 

on morphological, physiological, and molecular differences (Sanes and Masland, 2015). 367 

Whereas higher distinctions are easily agreed upon, finer ones may be less obvious and 368 

may not obey a strict hierarchy, either because distinct types share features, or because 369 

some distinctions are graded and not discrete. Critically, it remains unclear whether 370 

distinctions based on morphological, molecular and physiological properties agree with 371 

each other. New computational methods will be required both to discover types and to 372 

better classify cells and, ultimately, to refine the concepts themselves (Grun and van 373 

Oudenaarden, 2015; Shapiro et al., 2013; Stegle et al., 2015; Tanay and Regev, 2017; Wagner 374 

et al., 2016). Unsupervised clustering algorithms for high-dimensional data provide an 375 

initial framework (Grun et al., 2015; Grun et al., 2016; Jaitin et al., 2014; Levine et al., 2015; 376 

Macosko et al., 2015; Shekhar et al., 2016; Vallejos et al., 2015), but substantial advances will 377 

be needed in order to select the 'right' features, the 'right' similarity metric, and the 'right' 378 
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level of granularity for the question at hand, control for distinct biological processes, 379 

handle technical noise, and connect novel clusters with legacy knowledge. Whereas cell 380 

types are initially defined based on regions in feature space, it will be important eventually 381 

to distill them into simpler molecular and morphological signatures that can be used to 382 

index cells in the atlas, aggregate and compare results from independent labs and different 383 

individuals, and create tools and reagents for validation and follow up studies.  384 

For all the reasons above, we have not attempted to propose a precise definition of 385 

'cell type'. Rather, the definition should evolve based on empirical observation.  386 

Despite these challenges, recent studies in diverse organs – including immune, 387 

nervous, and epithelial tissues – support the prospects for comprehensive discovery of cell 388 

types, as well as harmonization of genomic, morphological, and functional classifications 389 

(Figure 2A-C). For example, analysis of immune cells from mouse spleen (Jaitin et al., 390 

2014) and human blood (Horowitz et al., 2013) showed that well-established functional 391 

immune cell types and subtypes could be readily distinguished by unsupervised clustering 392 

of single-cell expression profiles. Similarly, single-cell expression profiles of epithelial cells 393 

from gut organoids (Grun et al., 2015) distinguished known cell subtypes, each with 394 

distinctive functional and histological characteristics, while also revealing a new subtype 395 

of enteroendocrine cells, which was subsequently validated experimentally.  396 

The nervous system, where many cell types have not yet been characterized by any 397 

means, illustrates both the promise and the challenge.  Whereas each of the 302 individual 398 

neurons in C. elegans can be distinctly defined by its lineage, position, connectivity, 399 

molecular profile and functions, the extent to which the ~ 1011 neurons in the human brain 400 

are distinctly defined by morphological, physiological, lineage, connectivity, and 401 

electrical-activity criteria, and have distinct molecular profiles, remains unknown.  402 

Cellular neuroanatomy is deeply rooted in the concept of cell types defined by their 403 

morphologies (a proxy for connectivity) and electrophysiological properties (Ascoli et al., 404 

2008), and extensive efforts continue to classify the types in complicated structures like 405 

the retina and neocortex (Jiang et al., 2015; Markram et al., 2015; Sanes and Masland, 2015). 406 

Critically, it remains unclear whether distinctions based on morphological, connectional, 407 

and physiological properties agree with their molecular properties.   408 

The mouse retina provides an ideal testing ground to test this correspondence 409 

because cell types follow highly stereotyped spatial patterns (Macosko et al., 2015; Sanes 410 
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and Masland, 2015). Analysis of 31,000 retinal bipolar cells (Shekhar et al., 2016) 411 

automatically re-discovered the 13 subtypes that had been defined over the past quarter-412 

century based on morphology and lamination, while also revealing two new subtypes with 413 

distinct morphological and laminar characteristics. These subtypes included one with a 414 

'bipolar' expression pattern and developmental history, but a unipolar morphology in the 415 

adult (Shekhar et al., 2016), which has distinct functional characteristics in the neural 416 

circuits of the retina (Della Santina et al., 2016). In this example, known morphological 417 

and other non-molecular classifications matched perfectly to molecular types, and new 418 

molecularly-defined cell types discovered in the single-cell transcriptomic analysis 419 

corresponded to unique new morphology and histology. In other complex brain regions 420 

such as the neocortex and hippocampus there are also a large number of transcriptionally 421 

defined types (Darmanis et al., 2015; Gokce et al., 2016; Habib et al., 2016a; Lake et al., 2016; 422 

Pollen et al., 2014; Tasic et al., 2016; Zeisel et al., 2015), but it has been more difficult to find 423 

consensus between data modalities, and the relationship between transcriptomic types 424 

and anatomical or morphological types is unclear.  In this light, technologies that can 425 

directly measure multiple cellular phenotypes are essential.  For example, 426 

electrophysiological measurements with patch clamping followed by scRNA-seq used in a 427 

recent study of a particular inhibitory cortical cell type showed that the transcriptome 428 

correlated strongly with the cell's physiological state (Cadwell et al., 2016; Foldy et al., 429 

2016).  Thus, the transcriptome appears to provide a proxy for other neuronal properties, 430 

but much more investigation is needed. 431 

 432 

<L1>Histology: Cell neighborhood and position</L1> 433 

Histology examines the spatial position of cells and molecules within tissues. Over 434 

the past century, we have learnt a great deal about cell types, markers, and tissue 435 

architecture, and this body of knowledge will need to be further refined and woven 436 

seamlessly into the Human Cell Atlas. With emerging highly multiplexed methods for in 437 

situ hybridization (Chen et al., 2015b; Shah et al., 2016) or protein staining (Angelo et al., 438 

2014; Giesen et al., 2014), it should be possible to spatially map multiple cell types at once 439 

based on expression signatures to see how they relate to each other and to connect them 440 

with cell types defined by morphology or function. It should also be possible to extend 441 
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observations of continuous gradients for individual genes (such as morphogens) to multi-442 

gene signatures.  443 

Computational approaches could then allow iterative refinement of cellular 444 

characterization based on both a cell's molecular profile and information about its 445 

neighborhood; methods perfected in the analysis of networks could provide a helpful 446 

starting point (Blondel et al., 2008; Rosvall and Bergstrom, 2008). Conversely, expression 447 

data from a cell can help map its position in absolute coordinates or relative terms, as well 448 

as in the context of pathology, highlighting how disease tissue differs from typical healthy 449 

tissue. Combining molecular profiles with tissue architecture will require new 450 

computational methods, drawing perhaps on advances in machine vision (Xu et al., 2015; 451 

Zheng et al., 2015). 452 

New methods for integrating single-cell genomics data into a spatial context have 453 

been developed recently. Single-cell analyses of tissues from early embryos (Satija et al., 454 

2015; Scialdone et al., 2016) to adult (Achim et al., 2015) demonstrate how physical 455 

locations can be imprinted in transcriptional profiles (Durruthy-Durruthy et al., 2014) and 456 

can be used to infer tissue organization (Figure 2D). In the early zebrafish embryo, for 457 

example, a cell's expression profile specifies its location to within a small neighborhood of 458 

~100 cells; the related expression patterns of individual genes in turn fall into only nine 459 

spatial archetypes (Satija et al., 2015). In the early mouse embryo, key spatial gradients can 460 

be recovered by a 'pseudospace' inferred from reduced dimensions of single cell profiles 461 

(Scialdone et al., 2016). In adult mouse hippocampus, cell profiles show clear clusters 462 

corresponding to discrete functional regions as well as gradients following dorsal/ventral 463 

and medial/lateral axes (Habib et al., 2016a). In the annelid brain, even finer punctate 464 

spatial patterns can be resolved (Achim et al., 2015).  465 

 466 

<L1>Development: transitions to differentiated cell types</L1> 467 

Cells arrive at their final differentiated cell types through partly asynchronous 468 

branching pathways of development (Ferrell, 2012), which are driven by and reflected in 469 

molecular changes, especially gene-expression patterns (see, for example, Chao et al., 470 

2008; Jojic et al., 2013). It should therefore be possible to reconstruct development as 471 

trajectories in high-dimensional space, mirroring Waddington's landscape (Ferrell, 2012; 472 

Waddington, 1957) – just as it would be possible to infer the ski lifts and trails on a 473 
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mountain from snapshots of the positions of enough skiers. One can even infer sharp 474 

transitions, provided enough cells are observed. The required sampling density will 475 

depend on the number and complexity of paths and intersections, and sorting strategies 476 

can help to iteratively enrich for rare, transient populations. Notably, the relative 477 

proportions of cells observed at different points along the developmental paths can help 478 

convey critical information, both about the duration of each phase (Antebi et al., 2013; 479 

Kafri et al., 2013) and the balance of how progenitor cells are allocated among fates 480 

(Antebi et al., 2013; Lönnberg et al., 2017; Moris et al., 2016), especially when information 481 

about the rate of cell proliferation and/or death can be incorporated as inferred from the 482 

profiles.  483 

In animal models, it should be possible to create true lineage trees by marking a 484 

common progenitor cell type. For example, one might use synthetic circuits that introduce 485 

a molecular barcode only in cells expressing an RNA pattern characteristic of the cell type 486 

in order to recognize its descendants (Gagliani et al., 2015; McKenna et al., 2016). In 487 

humans, immune cells naturally contain lineage barcodes through VDJ recombination in 488 

T and B cells and somatic hypermutation in B cells (Stubbington et al., 2016). More 489 

generally, it may be feasible to accomplish lineage tracing in human cells by taking 490 

advantage of the steady accumulation of DNA changes (such as somatic point mutations, 491 

or repeat expansions at microsatellite loci) at each cell division (Behjati et al., 2014; 492 

Biezuner et al., 2016; Martincorena et al., 2015; Reizel et al., 2012; Shlush et al., 2012) or as a 493 

molecular clock (Taylor et al., 2003; Teixeira et al., 2013). 494 

Initial computational methods have already been developed for inferring dynamic 495 

trajectories from large numbers of single-cell profiles, although better algorithms are still 496 

needed. Critical challenges include accurately inferring branching structures, where two 497 

or more paths diverge from a single point; reconstructing 'fast' transitions, where only few 498 

cells can be captured; and accounting for the fact that a cell may be following multiple 499 

dynamic paths simultaneously – for example, differentiation, the cell cycle, and pathogen 500 

response (see below) – that may affect each other. The reconstruction algorithms 501 

themselves could incorporate insights from theoretical studies of dynamical systems, and 502 

learned models could be analyzed in light of such frameworks (Ferrell, 2012; May, 1976; 503 

Thom, 1989). 504 
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Recent studies provide proofs-of-principle for how simultaneous and orthogonal 505 

biological processes can be inferred from single-cell RNA-seq data (Figure 3; Angerer et 506 

al., 2016; Bendall et al., 2014; Chen et al., 2016b; Haghverdi et al., 2015; Haghverdi et al., 507 

2016; Lönnberg et al., 2017; Marco et al., 2014; Moignard et al., 2015; Setty et al., 2016; 508 

Trapnell et al., 2014; Treutlein et al., 2016). Linear developmental trajectories have been 509 

reconstructed, for example, from single-cell protein expression during B-cell 510 

differentiation (Bendall et al., 2014), and from single-cell RNA expression during 511 

myogenesis in vitro (Trapnell et al., 2014), early hematopoiesis (Nestorowa et al., 2016), 512 

neurogenesis in vivo (Habib et al., 2016a; Shin et al., 2015), and reprogramming from 513 

fibroblasts to neurons (Treutlein et al., 2016). With a large enough number of cells, 514 

analysis of B-cell development was able to highlight a rare (0.007%) population 515 

corresponding to the earliest B-cell lymphocytes and confirm the identification by 516 

reference to rearrangements at the IgH locus. In direct reprogramming to neurons, 517 

scRNA-seq revealed unexpected trajectories (Treutlein et al., 2016). Bifurcated trajectories 518 

have also been reconstructed in the differentiation of embryonic stem cells, T helper cells, 519 

and hematopoietic cells (Chen et al., 2016b; Haghverdi et al., 2015; Haghverdi et al., 2016; 520 

Lönnberg et al., 2017; Marco et al., 2014; Moignard et al., 2015; Setty et al., 2016), and have 521 

helped address open questions about whether myeloid progenitor cells in bone marrow 522 

are already skewed towards distinct fates (Olsson et al., 2016; Paul et al., 2015) and when T 523 

helper cell commit to their fate (Lönnberg et al., 2017). 524 

 525 

<L1>Physiology and homeostasis: cycles, transient responses and plastic states</L1> 526 

In addition to development and differentiation, cells are constantly undergoing 527 

multiple dynamic processes of physiological change and homeostatic regulation (Yosef 528 

and Regev, 2011, 2016). These include cyclical processes, such as the cell cycle and circadian 529 

rhythms; transient responses to diverse factors, from nutrients and microbes to 530 

mechanical forces and tissue damage; and plastic states that can be stably maintained over 531 

longer time scales, but can change in response to new environmental cues. (The precise 532 

boundary between plastic states and cell types, it must be noted, remains to be clarified.) 533 

The molecular phenotype of a cell reflects a superposition of these various processes and 534 

their interactions (Wagner et al., 2016). 535 
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Studies of physiological processes from bulk tissue samples are hampered by 536 

asynchrony and heterogeneity among cells, which blur the signals of individual processes 537 

and states; investigators strive to create homogeneous cell populations through 538 

synchronization and purification. By contrast, single-cell analysis exploits asynchrony and 539 

heterogeneity, leveraging variation within a cell population to reveal underlying 540 

structures. The difference is analogous to two approaches in structural biology: X-ray 541 

crystallography, which requires molecules to be in a crystalline order, and cryo-electron 542 

microscopy, which depends on observing large numbers of molecules in randomly 543 

sampled poses. 544 

From asynchronous observations of cyclical and transient processes, it should be 545 

possible to 'order' cells with respect to the process (as for development), with cell 546 

proportions reflecting residence time (e.g., the length of a phase of the cell cycle). As was 547 

initially shown for single-cell measurement of a few features of the cell cycle (Kafri et al., 548 

2013), analysis of many systems could yield a near-continuous model of the process, 549 

provided that a sufficient number of cells is sampled. This can occur either because all 550 

phases co-occur (e.g., in asynchronously cycling cells) or because enough time points are 551 

sampled to span the full process. If very rapid and dramatic discontinuities exist, 552 

recovering them would likely require direct tracing, for example by genetic tracers or live 553 

analysis in cell cultures, organoids, or animal models.  554 

Once the cells are ordered, one can derive gene-signatures that reflect each phase 555 

and use them to further sharpen and refine the model. With sufficient data, it should also 556 

be possible to tease apart interactions among processes occurring in parallel (such as the 557 

cell cycle, response to a pathogen, and differentiation). For plastic states, it may be 558 

possible to capture transient transitions between them, especially if they can be enriched 559 

by appropriate physiological cues. Finally, we will likely learn about the nature of stable 560 

states: while we often think of stable states as discrete attractor basins (Waddington, 561 

1957), there may also be troughs that reflect a continuous spectrum of stable states (e.g., 562 

the ratio of two processes may vary across cells, but are stable in each; Antebi et al., 2013; 563 

Gaublomme et al., 2015; Huang, 2012, 2013; Rebhahn et al., 2014; Zhou et al., 2012; Zhou et 564 

al., 2016). Some key aspects of processes may be difficult to uncover solely from 565 

observations of transitions among molecular states, and will likely require directed 566 

perturbations and detailed mechanistic studies.  567 
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Recent studies have shown that cyclical processes and transient responses – from 568 

the cell cycle (Buettner et al., 2015; Gut et al., 2015; Kafri et al., 2013; Kowalczyk et al., 2015; 569 

Macosko et al., 2015; Proserpio et al., 2016; Tirosh et al., 2016a) to the response of immune 570 

cells to pathogen components (Avraham et al., 2015; Shalek et al., 2013; Shalek et al., 2014) 571 

– can be traced in single-cell profiles. It is possible to order the cells temporally, define 572 

coordinately expressed genes with high precision, identify the time scale of distinct 573 

phases, and relate these findings to orthogonal measures (Figure 4). For example, in the 574 

cell cycle, analysis of single-cell profiles readily shows a robust, reproducible and 575 

evolutionarily conserved program that can be resolved in a near-continuous way across 576 

human and mouse cell lines (Macosko et al., 2015), primary immune cells (Buettner et al., 577 

2015; Kowalczyk et al., 2015), and healthy and disease tissues (Patel et al., 2014; Tirosh et 578 

al., 2016a; Tirosh et al., 2016b). This approach has made it possible to determine the 579 

relative rates of proliferation of different cell subpopulations within a dataset (Buettner et 580 

al., 2015; Kolodziejczyk et al., 2015; Kowalczyk et al., 2015; Tsang et al., 2015), a feat difficult 581 

to accomplish using bulk synchronized populations along the cell cycle (Bar-Joseph et al., 582 

2008; Lu et al., 2007). Notably, the cell cycle could also be reconstructed by similar 583 

approaches when applied to imaging data of very few molecular markers along with 584 

salient spatial features (Gut et al., 2015) or with morphology alone (Blasi et al., 2016; 585 

Eulenberg et al., 2017). Similar principles apply to transient responses. In the response of 586 

dendritic cells to pathogen components, single-cell profiling uncovered a small subset 587 

(<1%) of 'precocious' cells: these early-appearing cells express a distinctive module of 588 

genes, initiate production of interferon beta, and coordinate the subsequent response of 589 

other cells through paracrine signaling (Shalek et al., 2014).  590 

 591 

<L1>Disease: Cells and cellular ecosystems</L1> 592 

The Human Cell Atlas will be a critical reference for studying disease, which 593 

invariably involves disruption of normal cellular functions, interactions, proportions, or 594 

ecosystems. The power of single-cell analysis of disease is evident from decades of 595 

histopathological studies and FACS analysis. It will be substantially extended by the 596 

routine ability to characterize cells and tissues with rich molecular signatures, rather than 597 

focusing on a limited number of pre-defined markers or cell populations. It will also 598 

support the growing interest in understanding interactions between frankly abnormal 599 
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cells and all other cells in a tissue's ecosystem in promoting or suppressing disease 600 

processes (e.g., between malignant cells and the tumor microenvironment).  601 

Single-cell analysis of disease samples will also likely be critical to see the full 602 

range of normal cellular physiology, because disease either elicits key perturbs cellular 603 

circuitry in informative ways. A clear example is the immune system, where only in the 604 

presence of a 'challenge' is the full range of appropriate physiological behaviors and 605 

potential responses by a cell revealed.  606 

Single-cell information across many patients will allow us to learn about how cell 607 

proportions and states vary and how this variation correlates with genome variants, 608 

disease course and treatment response. From initial studies of a limited number of 609 

patients, it should be possible to derive signatures of key cell types and states and use 610 

them to deconvolute cellular proportions in conventional bulk-tissue or blood samples 611 

(Levine et al., 2015; Tirosh et al., 2016a). Future studies may expand single-cell analysis to 612 

thousands of patients to directly investigate how genetic variation affects gene 613 

transcription and regulation. 614 

The hematopoietic system will be an early and fruitful target. A study involving 615 

signatures of cell-signaling assays by single-cell mass cytometry of healthy hematopoietic 616 

cells led to more accurate classification of hematopoietic stem and progenitor cells 617 

(HSPCs) in Acute Myeloid Leukemia; a previous classification was error-prone, because 618 

the 'classical' cell-surface markers of healthy cells do not correctly identify the 619 

corresponding population in disease, whereas a richer signature allows accurate 620 

identification (Levine et al., 2015). Monitoring rare immune populations first discovered in 621 

a normal setting can help zero in on the relevant aberrations in disease. For example, the 622 

rare population associated with VDJ recombination first identified by trajectory analysis of 623 

B cell development (Bendall et al., 2014) is expanded in pediatric Acute Lymphoblastic 624 

Leukemia, and drastically more so in recurrence (Gary Nolan, unpublished results).  625 

The greatest impact, at least in the short term, is likely to be in cancer. Early 626 

studies used single-cell qPCR to investigate the origin of radioresistance in cancer stem 627 

cells (Diehn et al., 2009) and to dissect the heterogeneity and distortions of cellular 628 

hierarchy in colon cancer (Dalerba et al., 2011). With the advent of high-throughput 629 

methods, single-cell genome analysis has been used to study the clonal structure and 630 

evolution of tumors in both breast cancer (Wang et al., 2014) and acute lymphoblastic 631 
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leukemia (Gawad et al., 2014), and to infer the order of earliest mutations that cause acute 632 

myeloid leukemia (Corces-Zimmerman et al., 2014; Jan et al., 2012).  633 

In recent studies of melanoma (Tirosh et al., 2016a), glioblastoma (Patel et al., 634 

2014), low-grade glioma (Tirosh et al., 2016b), and myeloproliferative neoplasms (Kiselev 635 

et al., 2016), single-cell RNA-seq of fresh tumors resected directly from patients readily 636 

distinguished among malignant, immune, stromal and endothelial cells. Among the 637 

malignant cells, it identified distinct cell states – such as cancer stem cells (Patel et al., 638 

2014; Tirosh et al., 2016b), drug-resistant states (Tirosh et al., 2016a), proliferating and 639 

quiescent cells (Patel et al., 2014; Tirosh et al., 2016a; Tirosh et al., 2016b) – and related 640 

them to each other, showing, for example, that only stem-like cells proliferate in low-641 

grade glioma (Tirosh et al., 2016b) and that individual sub-clones can be readily identified 642 

in one patient (Kiselev et al., 2016). Among the non-malignant cells, it found distinct 643 

functional states for T-cells, and revealed that, while activation and exhaustion programs 644 

are coupled, the exhausted state is also controlled by an independent regulatory program 645 

in both human tumors (Tirosh et al., 2016a) and a mouse model (Singer et al., 2016). To 646 

associate patterns observed in a few (5-20) patients with effects on clinical phenotypes, 647 

single-cell based signatures were used to deconvolute hundreds of bulk tumor profiles 648 

that had been collected with rich clinical information (Levine et al., 2015; Patel et al., 2014; 649 

Tirosh et al., 2016a).  650 

 651 

<L1>Molecular mechanisms: intracellular and inter-cellular circuits</L1> 652 

A Human Cell Atlas can also shed light on the molecular mechanisms that control 653 

cell type, differentiation, responses and states – within cells, between cells, as well as 654 

between cells and their tissue matrix.  655 

For example, over the past several decades, biologists have sought to infer the 656 

circuitry underlying gene regulation by observing correlations between the expression of 657 

particular regulators and specific cellular phenotypes, drawing inferences about 658 

regulation, and testing their models through targeted genetic perturbations. Single-cell 659 

data provide a massive increase not only in the quantity of observations, but also in the 660 

range of perturbations. The number of cells profiled in a single-cell RNA-seq experiment 661 

can far exceed the number of profiles produced even by large consortia (such as ENCODE, 662 

FANTOM, TCGA, and GTEx). Moreover, each single cell is a perturbation system in which 663 
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the levels of regulatory molecules vary naturally – sometimes subtly, sometimes 664 

dramatically – due to both stochastic and controlled phenomena within a single genetic 665 

background, providing rich information from which to reconstruct cellular circuits 666 

(Krishnaswamy et al., 2014; Sachs et al., 2005; Shalek et al., 2013; Stewart-Ornstein et al., 667 

2012).  668 

Initial studies have shown that such analyses can uncover intracellular regulators 669 

governing cell differentiation and response to stimuli. For example, co-variation of RNA 670 

levels across a modest number of cells from a relatively 'pure' population of immune 671 

dendritic cells responding to a pathogen component was sufficient to connect antiviral 672 

transcription factors to their target genes, because of asynchrony in the responses (Shalek 673 

et al., 2013). Similarly, co-variation analysis of a few hundred Th17 cells spanning a 674 

continuum from less to more pathogenic states revealed regulators that control 675 

pathogenicity, but not other features, such as cell differentiation (Gaublomme et al., 2015). 676 

Co-variation identified a role for pregnenolone biosynthesis in the response of Th2 cells to 677 

helminth infection (Mahata et al., 2014), and new regulators of pluripotency in mouse 678 

embryonic stem cells (Kolodziejczyk et al., 2015). Computationally ordering cells along a 679 

time-course of development provides another way to infer regulators – a strategy that has 680 

been successful in, for example, differentiating B cells (Bendall et al., 2014), myoblasts 681 

(Trapnell et al., 2014), neurons (Habib et al., 2016a; Shin et al., 2015), and T helper cells 682 

(Lönnberg et al., 2017). Finally, when circuitry is already known, variation across single 683 

cells can be used to infer exquisite – and functionally important – quantitative distinctions 684 

about how signal is processed and propagated. An elegant example is a recent analysis of 685 

signaling pathways downstream from the T cell receptor, where single-cell proteomics 686 

data has shown how the same cellular circuitry processes signals differently in naïve and 687 

antigen-exposed T cells (Krishnaswamy et al., 2014). 688 

Beyond transcriptome analysis, single-cell multi-omic profiles (Box 1) will improve 689 

the inference of cellular circuitry by connecting regulatory mechanisms and their targets 690 

(Tanay and Regev, 2017). For example, simultaneous measurement of chromatin 691 

accessibility and RNA levels may help identify which regulatory regions – and by inference 692 

which trans–acting regulators – control the levels of which genes. Concomitant 693 

measurement of DNA mutations and transcriptional profiles in cancer cells may allow 694 
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similar causal connections to be drawn, as has been recently shown for mutations in the 695 

CIC gene and the expression of its regulatory targets (Tirosh et al., 2016b).  696 

Studies can be extended from naturally occurring variation among cells to 697 

engineered perturbations, by using pooled CRISPR libraries to manipulate genes and 698 

reading out both the perturbation and its effects on cellular phenotype in single cells – for 699 

example, by single-cell RNA-Seq (Adamson et al., 2016; Dixit et al., 2016; Jaitin et al., 2016). 700 

A cell atlas can also help shed light on intercellular communication, based on 701 

correlated profiles across cell types and patients. For example, analysis of single-cell 702 

profiles from many small clusters of a few aggregated cells allowed the construction of a 703 

cell-cell interaction network in the bone marrow, uncovering specific interaction between 704 

megakaryocytes and neutrophils, as well as between plasma cells and neutrophil 705 

precursors (Alexander van Oudenaarden, unpublished results). Cell-cell interactomes 706 

have also been inferred from profiles of purified cell populations, based on the secreted 707 

and cell surface molecules that they express (Ramilowski et al., 2015).  708 

In tumors from melanoma patients, gene-expression analysis (involving single-cell 709 

data obtained from some patients and bulk tumor data from many more patients, 710 

deconvoluted based on signatures learned from the single cells) found genes that are 711 

expressed in one cell type, but whose expression levels are correlated with the proportion 712 

of a different cell type that does not express them; this analysis revealed that high 713 

expression of the complement system in cancer-associated fibroblasts in the tumor 714 

microenvironment is correlated with increased infiltration of T cells (Tirosh et al., 2016a). 715 

Analysis of individual subcutaneous adipose stem cells revealed the existence of a novel 716 

cell population that negatively controls the differentiation of the resident stem cells into 717 

adipocytes, thus influencing adipose tissue growth and homeostasis (Bart Deplancke, 718 

unpublished results). In breast cancer tissues, spatial analysis of multiplex protein 719 

expression by imaging mass cytometry (Giesen et al., 2014) allowed classification of 720 

infiltrating immune cells and malignant cells based on the neighborhood of surrounding 721 

cells, highlighting new functional interactions (Bernd Bodenmiller, personal 722 

communication).  723 

 724 

<L1>A user's guide to the Human Cell Atlas: applications in research and 725 

medicine</L1> 726 
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The Human Genome Project had a major impact on biomedicine by providing a 727 

comprehensive reference, a DNA sequence in which answers could be readily looked up 728 

and from which unique 'signatures' could be derived (e.g., to recognize genes on 729 

microarrays or protein fragments in mass spectrometry). A Human Cell Atlas could 730 

provide similar benefits from basic research to clinically relevant applications.  731 

Scientists will be able, for example, to look up precisely in which cell types a gene 732 

of interest is expressed and at which level. Today, it is surprisingly challenging to obtain 733 

definitive answers for most human genes beyond tissue- or organ-level resolution, 734 

although there have been pioneering efforts for the brain and immune system in mouse 735 

(Bakken et al., 2016; Hawrylycz et al., 2012; Kim and Lanier, 2013; Miller et al., 2014) and for 736 

protein expression in human (Thul et al., 2017; Uhlen et al., 2015). Yet, the question is of 737 

enormous importance to basic biologists studying development or comparing a model 738 

system to human biology, medical scientists examining the effect of a disease-causing 739 

mutation, and drug developers concerned about the potential toxicities of a small 740 

molecule or a CAR-T cell targeting a specific protein (Brudno and Kochenderfer, 2016).  741 

Researchers will also be able to derive expression signatures that uniquely identify 742 

cell types. Such signatures provide a starting point for a vast range of experimental assays 743 

– from molecular markers for isolating, tagging, tracing or manipulating cells in animal 744 

models or human samples, to characterization of the effect of drugs on the physiological 745 

state of a tissue. Such descriptors of cellular identity will be widely used in clinical assays. 746 

For example, today's Complete Blood Count (CBC), a census of a limited number of blood 747 

components, may be supplemented by a 'CBC 2.0' that provides a high-resolution picture 748 

of the nucleated cells, including the number and activity states of each type in comparison 749 

with healthy reference samples. Analogous measures should be possible for other tissues 750 

as well. For example, gut biopsies from patients with ulcerative colitis or colon cancer 751 

could be analyzed for the type, response, state and location of each of the diverse 752 

epithelial, immune, stromal and neural cells that comprise them. 753 

 754 

<L1>Toward a Human Cell Atlas</L1> 755 

How might the biomedical community build a Human Cell Atlas? As with the 756 

Human Genome Project, a robust plan will best emerge from wide-ranging scientific 757 

discussions and careful planning involving biologists, technologists, pathologists, 758 
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physicians, surgeons, computational scientists, statisticians, and others. As noted above, 759 

various discussions have taken place for over two years about the idea of a comprehensive 760 

Human Cell Atlas, as well as about specific atlases for the brain and the immune system. 761 

Several pilot efforts are already underway. Moreover, over the past year discussions have 762 

been underway to create an initial plan for a Human Cell Atlas Project (which is 763 

articulated in the White Paper mentioned above). Among the key points for consideration 764 

are the following:  765 

<L2>Phasing of goals</L2> 766 

 While the overall goal is to build a comprehensive atlas with diverse molecular 767 

measurements, spatial organization, and interpretation of cell types, histology, 768 

development, physiology and molecular mechanisms, it will be wise to set intermediate 769 

goals for 'draft' atlases at increasing resolution, comprehensiveness, and depth of 770 

interpretation. The value of a phased approach was illustrated by the Human Genome 771 

Project, which defined milestones along the way (genetic maps, physical maps, rough-772 

draft sequence, finished sequence) that held the project accountable and provided 773 

immediate utility to the scientific community.  774 

<L2>Sampling strategies</L2> 775 

While an adult human has ~2 x 1013 nucleated cells, it is neither possible nor 776 

necessary to study them all to recover the fine distinctions among human cells. The key 777 

will be to combine sound statistical sampling, biological enrichment purification, and 778 

insights from studies of model organisms. It is likely beneficial to apply an adaptive, 779 

iterative approach with respect to both the number of cells and depth of profiles, as well 780 

as anatomical coverage and spatial resolution in the tissue, with initial sparse sampling 781 

driving decisions about further sampling. This adaptive approach, termed a 'Sky Dive', 782 

adjusts as resolution increases (and is further described in the HCA White Paper). 783 

Such approaches can be facilitated by experimental techniques that allow fast and 784 

inexpensive 'banking' of partially processed samples, to which one can return for deeper 785 

analysis as methods mature. Advances in handling fixed or frozen tissues would further 786 

facilitate the process (Box 1). With respect to depth of profiling, recent studies suggest the 787 

utility of a mixed strategy: relatively low coverage of the transcriptome can identify many 788 

cell types reliably (Heimberg et al., 2016; Shekhar et al., 2016) and a smaller set of deep 789 

profiles can be help interpret the low-coverage data to further increase detection power. 790 

https://www.humancellatlas.org/files/HCA_WhitePaper_18Oct2017.pdf
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As a result, the 'Sky Dive' begins with large-scale uniform sampling, follows with stratified 791 

sampling, and then employs specialized sampling at lower throughput. 792 

<L2>Breadth of profiles</L2> 793 

The atlas must combine two branches – a cellular branch, focused on the 794 

properties of individual cells, and a spatial branch, describing the histological organization 795 

of cells in the tissue. For the cellular branch, massively parallel transcriptome analysis of 796 

individual single cells or nuclei will likely be the workhorse for efforts in the first few 797 

years. However, other robust, high-throughput profiling methods are rapidly emerging, 798 

including techniques for studying chromatin, genome folding, and somatic mutations at 799 

single-cell resolution (Box 1). For the spatial branch, in situ analysis of the spatial patterns 800 

of RNA, proteins, and potentially epigenomics will be equally important. While some of 801 

these methods are already rapidly maturing, others will benefit from focused development 802 

efforts, as well as from cross-comparison among different techniques. Fortunately, most 803 

can be applied to preserved tissue specimens, allowing specimens collected now to be 804 

analyzed later, as methods mature.  805 

<L2>Biological scope</L2> 806 

It will be important to consider the balance among tissue samples from healthy 807 

individuals at various stages; small cohorts of individuals with diseases; and samples from 808 

model organisms, where key developmental stages are more accessible and manipulations 809 

more feasible. Well-chosen pilot projects could help refine strategies and galvanize 810 

communities of biological experts. Some communities and projects would be organized 811 

around organs (e.g., liver, heart, brain), others around systems (e.g., the immune system) 812 

or disease (e.g., cancer), the latter distributed across many organs and tissues.  813 

As outlined in the HCA White Paper, the first draft of the atlas might pursue 814 

roughly a dozen organs and systems, each from up to 100 individuals, collected across 3–4 815 

geographical sites; each would be analyzed to obtain both cellular and spatial data, by 816 

means of uniform to stratified sampling. Tissue from post-mortem examination will play a 817 

key role, because it is the only way to obtain samples from a single individual across the 818 

entire body. These efforts will be complemented, where possible, by biopsy or resection 819 

material from healthy research participants, and by whole organs obtained from deceased 820 

transplant donors after transplantation organs have been harvested. In some cases, such as 821 
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the immune system, samples from individuals with a disease will be included to probe 822 

different functional states of a system.  823 

The full atlas, will ultimately describe at least 10 billion cells, covering all tissues, 824 

organs, and systems. Specimens will come from both healthy research participants and 825 

small cohorts of patients with relevant diseases. The cells and tissues will be studied 826 

using a broad range of techniques, to obtain cellular and spatial information, from 827 

samples designed to  represent the world's diversity. As with previous genomic projects, 828 

the Human Cell Atlas will be bounded in its resolution (with respect to the rarity of cell 829 

types/states and the spatial resolution), its coverage of disease and diversity (broadly 830 

representative but not obviating the need for direct genetic and clinical studies), and its 831 

functional assessment (to validate the existence of identified cells and facilitate – but not 832 

perform – detailed functional characterization).  833 

<L2>Model organisms</L2> 834 

The Human Genome Project and the broader scientific community benefitted 835 

from insights learned from genome projects conducted in parallel in model organisms. 836 

These projects empowered functional studies in model organisms, ushered a new era of 837 

comparative genomics, and provided important technical lessons. By analogy, we 838 

envision that key 'sister' atlases in model organisms will be developed in parallel and in 839 

coordination with the Human Cell Atlas. These projects should not delay progress on the 840 

human atlas (or vice versa), because current techniques are already directly applicable to 841 

biomedical research on human samples.  842 

In some cases, model organism atlases can use techniques that are not possible in 843 

humans, such as engineering animals to facilitate lineage tracing. In many cases, the 844 

extensive validation and functional follow-up studies that can be performed in model 845 

organisms will help validate 'by proxy' conclusions drawn in the human atlas. Finally, 846 

comparing the atlases across organisms will provide invaluable lessons in evolution and 847 

function. 848 

<L2>Quality</L2> 849 

In creating a reference map to be used by thousands of investigators, it is critical to 850 

ensure that the results are of high quality and technically reproducible. This is especially 851 
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important in view of the inherent biological variation and expected measurement noise. 852 

Substantial investment will be needed in the development, comparison, and 853 

dissemination of rigorous protocols, standards, and benchmarks. Both individual groups 854 

and larger centers will likely have important roles in defining and ensuring high quality. It 855 

will also be important that the collected samples be accompanied by excellent clinical 856 

annotations, captured in consistent meta-data across the atlas. 857 

Tissue processing poses special challenges, including the need for robust methods 858 

for dissociating samples into single cells so as to preserve all cell types, fixation for in situ 859 

methods, and freezing for transport. A related challenge is the difference in the 860 

amenability of specific cell types for different assays (T cells are very small and yield lower 861 

quality scRNA-seq; the fat content in adipocyte is challenging for many spatial methods; 862 

many neurons cannot currently be isolated with their axons and dendrites from adult 863 

tissue). Careful attention will also be needed to data generation and computational 864 

analysis, including validated standard operating procedures for experimental methods, 865 

best practices, computational pipelines, and benchmarking samples and data sets to 866 

ensure comparability.   867 

<L2>Global equity</L2> 868 

Geographical atlases of the Earth were largely developed to serve global power 869 

centers. The Human Cell Atlas should be designed to serve all people: it should span 870 

genders, ethnicities, environments, and the global burden of diseases – all of which are 871 

likely to affect the molecular profiles of cells and must be characterized to maximize the 872 

atlas's benefits. The project itself should encourage and support the participation of 873 

scientists, research centers and countries from around the globe, while recognizing the 874 

value of respecting and learning from diverse populations, cultures, mores, beliefs, and 875 

traditions.  876 

<L2>Open data</L2> 877 

The Human Genome Project made clear the power of open data that can be used 878 

by all and freely combined with other datasets. A Human Cell Atlas should similarly be an 879 

open endeavor, to the full extent permitted by participants' wishes and legal regulation. 880 

While the underlying sequence data contains many polymorphisms that make it 881 

'identifiable', it should be possible to map the data onto 'standard models' of each gene to 882 

substantially mitigate this issue. To make the atlas useful, it will be critical to develop data 883 
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platforms that can provide efficient aggregation and storage, quality control, analytical 884 

software, and user-friendly portals. 885 

<L2>Flexibility</L2> 886 

A Human Cell Atlas Project should be intellectually and technologically flexible. 887 

The project should embrace the fact that its biological goals, experimental methods, 888 

computational approaches, overall scale, and criteria for 'completion' will evolve rapidly as 889 

insights and tools develop. For historical context, it is useful to remember that discussions 890 

about a Human Genome Project began before the development of automated DNA 891 

sequencing machines, the polymerase chain reaction, or large-insert DNA cloning, and the 892 

project drove technological progress on many fronts. Moreover, the criteria for a 'finished' 893 

genome sequence were only agreed upon during the last third of the project. 894 

<L2>Impact on the scientific community</L2> 895 

Large-scale efforts, such as a Human Cell Atlas, must be careful to appropriately 896 

weigh the benefits to science and individual scientists with the potential costs. We 897 

consider the key benefits to the broad scientific community to include: the core scientific 898 

knowledge and discoveries that will result from having a reference map; the 899 

empowerment of scientists working across any tissue or cell type to pursue their research 900 

more precisely and effectively; the development, hardening and dissemination of 901 

experimental techniques and computational methods in the context of big-data settings, 902 

all of which will be openly shared; the inclusive and maximally open Human Cell Atlas 903 

community, inviting participation by all individual labs and research centers; and the 904 

coordination of efforts that would otherwise be unconnected, less extensive, and more 905 

expensive. 906 

At the same time, we must be aware of potential pitfalls, including: premature 907 

restriction to specific technologies or approaches, which might limit innovation in a fast-908 

moving field; implicit restriction of participation, based on available resources; and 909 

diversion of funding from other research directions. The unique organization and 910 

community of the Human Cell Atlas Project will tackle these potential challenges by 911 

committing to open membership, to the open and immediate data release with no 912 

restrictions, and to open-source code for all computational approaches. We hope that the 913 

new information and technology generated will more than repay the costs of the project 914 
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by increasing the speed and efficiency of biomedical research throughout the scientific 915 

community. 916 

<L2>Engagement with the non-scientific community</L2> 917 

The general public is a key stakeholder community for the Human Cell Atlas. 918 

Proper public engagement should involve many communities, including interested 919 

members of the public, citizen-scientists, schoolchildren, teachers and, where appropriate, 920 

research participants. Engagement will take diverse forms, including traditional media, 921 

social media, video and, importantly, direct sharing of the project's data. Across all 922 

channels, it will be important to articulate the goals, principles and motivations of the 923 

project. While explaining the intended benefits to the public with respect to advancing 924 

disease biology, drug discovery and diagnostics, it will be equally important to avoid 925 

'hype': that is, we need to avoid making promises and raising expectations that are 926 

unrealistic in content or timing.  927 

<L2>Forward looking</L2> 928 

Any data produced today will be easier, faster, more accurate and cheaper to 929 

produce tomorrow. Any intermediate milestones achieved during the project will be 930 

supplanted by deeper, broader, more accurate, and more comprehensive successors within 931 

a few short years.  However, as we define the goal of a Human Cell Atlas Project, we 932 

should view it not as a final product, but as a critical stepping-stone to a future when the 933 

study of human biology and medicine is increasing tractable.  934 

 935 

<L2>Conclusion</L2> 936 

 The past quarter-century has shown again and again the value of the scientific 937 

community joining together in collaborative efforts to generate and make freely available 938 

systematic information resources to accelerate scientific and medical progress in tens of 939 

thousands of laboratories around the world. The Human Cell Atlas builds on this rich 940 

tradition, extending it to the fundamental unit of biological organization: the cell. 941 

Many challenges will arise along the way, but we are confident that they can be 942 

met through scientific creativity and collaboration. It is time to begin. 943 

944 
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Box 1: Key experimental methods for single-cell genomics 945 

 946 

Over the past several years, powerful approaches have emerged that make it possible to 947 

measure molecular profiles and signatures at single-cell resolution. The field remains very 948 

active, with new methods being rapidly developed and existing ones improved. 949 

Single-cell RNA-Seq (scRNA-seq) refers to a class of methods for profiling the 950 

transcriptome of individual cells. Some may take a census of mRNA species by focusing on 951 

3'- or 5'-ends (Islam et al., 2014; Macosko et al., 2015), while others assess mRNA structure 952 

and splicing by collecting near-full-length sequence (Hashimshony et al., 2012; Ramskold 953 

et al., 2012). Strategies for single-cell isolation span manual cell picking, initially used in 954 

microarray studies (Eberwine et al., 1992; Van Gelder et al., 1990), FACS-based sorting into 955 

multi-well plates (Ramskold et al., 2012; Shalek et al., 2013), microfluidic devices (Shalek et 956 

al., 2014; Treutlein et al., 2014), and, most recently, droplet-based (Klein et al., 2015; 957 

Macosko et al., 2015) and microwell-based (Fan et al., 2015; Yuan and Sims, 2016) 958 

approaches. The droplet and microwell approaches, which are currently coupled to 3'-end 959 

counting, have the largest throughput, allowing rapid processing of tens of thousands of 960 

cells simultaneously in a single sample. scRNA-seq is typically applied to freshly 961 

dissociated tissue, but emerging protocols use fixed cells (Nichterwitz et al., 2016; 962 

Thomsen et al., 2016) or nuclei isolated from frozen or lightly fixed tissue (Habib et al., 963 

2016b; Lake et al., 2016). Applications to fixed or frozen samples would simplify the 964 

process flow for scRNA-seq, as well as open the possibility of using archival material. 965 

Power analyses provides a framework for comparing the sensitivity and accuracy of these 966 

approaches (Svensson et al., 2016; Ziegenhain et al., 2016). Finally, there has been progress 967 

in scRNA-Seq with RNA isolated from live cells in their natural microenvironment using 968 

transcriptome in vivo analysis (Lovatt et al., 2014).  969 

Mass cytometry (CyTOF) and related methods allow multiplexed measurement of 970 

proteins based on antibodies barcoded with heavy metals (Bendall et al., 2014; Levine et 971 

al., 2015). In contrast to comprehensive profiles, these methods involve pre-defined 972 

signatures and require an appropriate antibody for each target, but they can process many 973 

millions of cells for a very low cost per cell. They are applied to fixed cells. Recently, the 974 

approach has been extended to the measurement of RNA signatures through multiplex 975 

hybridization of nucleic-acid probes tagged with heavy metals (Frei et al., 2016). 976 
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Single-cell genome and epigenome sequencing characterizes the cellular genome. 977 

Genomic methods aim either to characterize the whole genome or capture specific pre-978 

defined regions (Gao et al., 2016). Epigenomic methods may capture regions based on 979 

distinctive histone modifications (single-cell ChIP-Seq; Rotem et al., 2015a), accessibility 980 

(single-cell ATAC-Seq; Buenrostro et al., 2015; Cusanovich et al., 2015), or likewise 981 

characterize DNA methylation patterns (single-cell DNAme-Seq; Farlik et al., 2015; Guo et 982 

al., 2013; Mooijman et al., 2016; Smallwood et al., 2014) or 3D organization (single-cell Hi-983 

C; Nagano et al., 2013; Ramani et al., 2016). Combinatorial barcoding strategies have been 984 

used to capture measures of accessibility and 3D organization in tens of thousands of 985 

single cells (Cusanovich et al., 2015; Ramani et al., 2016). Single cell epigenomics methods 986 

are usually applied to nuclei, and can thus use frozen or certain fixed samples. Some 987 

methods, such as single-cell DNA sequencing, are currently applied to relatively few cells, 988 

due to the size of the genome and the sequencing depth required. Other methods, such as 989 

single-cell analysis of chromatin organization (by either single-cell ATAC-Seq; Buenrostro 990 

et al., 2015; Cusanovich et al., 2015) or single-cell ChIP-Seq (Rotem et al., 2015a), currently 991 

yield rather sparse data, which presents analytic challenges and benefits from large 992 

numbers of profiled cells. Computational analyses have begun to address these issues by 993 

pooling of signal across cells and across genomic regions or loci (Buenrostro et al., 2015; 994 

Rotem et al., 2015a) and by imputation (Angermueller et al., 2016). 995 

Single-cell multi-omics techniques aim to collect two or more types of data 996 

(transcriptomic, genomic, epigenomic, and proteomic) from the same single cell. Recent 997 

studies have simultaneously profiled the transcriptome together with either the genome 998 

(Angermueller et al., 2016; Dey et al., 2015; Macaulay et al., 2015), the epigenome 999 

(Angermueller et al., 2016), or protein signatures (Albayrak et al., 2016; Darmanis et al., 1000 

2016; Frei et al., 2016; Genshaft et al., 2016). Efforts to combine three and more approaches 1001 

are underway (Cheow et al., 2016). Multi-omic methods could help fill in causal chains 1002 

from genetic variation to regulatory mechanisms and phenotypic outcome in health and 1003 

in disease, especially cancer.  1004 

Multiplex in situ analysis and other spatial techniques aim to detect a limited number 1005 

of nucleic acids and/or proteins in situ in tissue samples – by hybridization (for RNA), 1006 

antibody staining (for proteins), sequencing (for nucleic acids), or other tagging strategies. 1007 

These in situ results can then be used to map massive amounts of single-cell genomic 1008 
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information from dissociated cells onto the tissue samples providing important clues 1009 

about spatial relationships and cell-cell communication. Some strategies for RNA 1010 

detection, such as MERFISH (Chen et al., 2015b; Moffitt et al., 2016b) or Seq-FISH (Shah et 1011 

al., 2016), combine multiplex hybridization with microscopy-based quantification to assess 1012 

distributions at both the cellular and subcellular level; other early studies have performed 1013 

in situ transcription (Tecott et al., 1988), followed by direct manual harvesting of cDNA 1014 

from individual cells (Crino et al., 1996; Tecott et al., 1988). Some approaches for protein 1015 

detection, such as Imaging Mass Cytometry (Giesen et al., 2014) and Mass Ion Bean 1016 

Imaging (Angelo et al., 2014), involve staining a tissue specimen with antibodies, each 1017 

labeled with a barcode of heavy metals, and rastering across the sample to measure the 1018 

proteins in each 'pixel'. This technique permits the reconstruction of remarkably rich 1019 

images. Finally, more recent studies have performed RNA-seq in situ in cells and in 1020 

preserved tissue sections (Ke et al., 2013; Lee et al., 2014). Many in situ methods can benefit 1021 

from tissue clearing and/or expansion to improve detection and spatial resolution (Chen 1022 

et al., 2015a; Chen et al., 2016a; Moffitt et al., 2016a; Yang et al., 2014). The complexity and 1023 

accuracy of these methods continues to improve with advances in sample handling, 1024 

chemistry and imaging. Various methods are also used, for example, to measure 1025 

transcriptomes in situ with barcoded arrays (Stahl et al., 2016). 1026 

Cell lineage determination. Because mammals are not transparent and have many 1027 

billions of cells, it is not currently possible to directly observe the fate of cells by 1028 

microscopy. Various alternative approaches have been developed (Kretzschmar and Watt, 1029 

2012). In mice, cells can be genetically marked with different colors (Barker et al., 2007) or 1030 

DNA barcodes (Lu et al., 2011; Naik et al., 2013; Perie and Duffy, 2016), and their offspring 1031 

traced during development. Recent work has used iterative CRISPR-based genome editing 1032 

to generate random genetic scars in the fetal genome and use them to reconstruct lineages 1033 

in the adult animal (McKenna et al., 2016). In humans, where such methods cannot be 1034 

applied, human cell lineages can be monitored experimentally in vitro, or by 1035 

transplantation of human cells to immunosuppressed mice (Morton and Houghton, 2007; 1036 

O'Brien et al., 2007; Richmond and Su, 2008), or can be inferred from in vivo samples by 1037 

measuring the DNA differences between individual sampled cells, arising from random 1038 

mutations during cell division, and using the genetic distances to construct cellular 1039 

phylogenies, or lineages (Behjati et al., 2014; Shapiro et al., 2013).  1040 
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 1041 

Box 2: On Exactitude in Science. Jorge Luis Borges (1946)  1042 

“. . . In that Empire, the Art of Cartography attained such Perfection that the map of a 1043 

single Province occupied the entirety of a City, and the map of the Empire, the entirety of 1044 

a Province. In time, those Unconscionable Maps no longer satisfied, and the 1045 

Cartographers Guilds struck a Map of the Empire whose size was that of the Empire, and 1046 

which coincided point for point with it. The following Generations, who were not so fond 1047 

of the Study of Cartography as their Forebears had been, saw that that vast map was 1048 

Useless, and not without some Pitilessness was it, that they delivered it up to the 1049 

Inclemencies of Sun and Winters. In the Deserts of the West, still today, there are 1050 

Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land there is no 1051 

other Relic of the Disciplines of Geography.”  1052 

Purportedly from Suárez Miranda, Travels of Prudent Men, Book Four, Ch. XLV, Lérida, 1053 

1658. 1054 

 1055 

1056 
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Figure legends 1057 

 1058 

Figure 1: A hierarchical view of human anatomy. A graphical depiction of the 1059 

anatomical hierarchy from organs (such as the gut), to tissues (such as the epithelium in 1060 

the crypt in the small intestine), to their constituent cells (such as epithelial, immune, 1061 

stromal and neural cells).  1062 

 1063 

Figure 2: Anatomy: cell types and tissue structure. The first three plots show single 1064 

cells (dots) embedded in low-dimensional space based on similarities between their RNA-1065 

expression profiles (A, C) or protein-expression profiles (B), using either t-stochastic 1066 

neighborhood embedding (A,B) or circular projection (C) for dimensionality reduction 1067 

and embedding. (A) Bi-polar neurons from the mouse retina; reprinted from Shekhar et 1068 

al., 2016 with permission from Elsevier. (B) Human bone marrow immune cells;  reprinted 1069 

from Levine et al., 2015 with permission from Elsevier. (C) Immune cells from the mouse 1070 

spleen; reprinted from Jaitin et al., 2014 with permission from AAAS. (D) Histology. 1071 

Projection of single-cell data onto tissue structures: image shows the mapping of 1072 

individual cells onto locations in the marine annelid brain, based on the correspondence 1073 

(color bar) between their single-cell expression profiles and independent FISH assays for a 1074 

set of landmark transcripts; adapted from Achim et al., 2015 with permission from 1075 

Macmillan Publishers Limited. 1076 

 1077 

Figure 3: Developmental trajectories. Each plot shows single cells (dots; colored by 1078 

trajectory assignment, sampled time point, or developmental stage) embedded in low-1079 

dimensional space based on their RNA (A-C) or protein (D) profiles, using different 1080 

methods for dimensionality reduction and embedding: Gaussian process patent variable 1081 

model  (A); t-stochastic neighborhood embedding (B, D); diffusion maps (C). 1082 

Computational methods then identify trajectories of pseudo-temporal progression in each 1083 

case. (A) Myoblast differentiation in vitro; reprinted from Lönnberg et al., 2017 with 1084 

permission from AAAS. (B) Neurogenesis in the mouse brain dentate gyrus; reprinted 1085 

from Habib et al., 2016a with permission from AAAS.  (C) Embryonic stem cell 1086 

differentiation in vitro; adapted from Haghverdi et al., 2016 with permission from 1087 
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Macmillan Publishers Limited.  (D) Early hematopoiesis; adapted from Setty et al., 2016 1088 

with permission from Macmillan Publishers Limited. 1089 

 1090 

Figure 4. Physiology. Each plot shows single cells (dots) embedded in low-dimensional 1091 

space on the basis of their RNA profile, based on predefined gene signatures (A) or PCA 1092 

(B, C), highlighting distinct dynamic processes. (A) The cell cycle in mouse hematopoietic 1093 

stem and progenitor cells; adapted under terms of CC BY 4.0 from Scialdone et al., 2015. 1094 

(B) Response to lipopolysaccharide (LPS) in mouse immune dendritic cells; adapted from 1095 

Shalek et al., 2014 with permission from Macmillan Publishers Limited. (C) Variation in 1096 

the extent of pathogenicity in mouse Th17 cells; reprinted from Gaublomme et al., 2015 1097 

with permission from Elsevier. 1098 

 1099 

 1100 

 1101 

1102 

https://creativecommons.org/licenses/by/4.0/


 
 

 
 

37 

References 1103 

Achim, K., Pettit, J.B., Saraiva, L.R., Gavriouchkina, D., Larsson, T., Arendt, D., and 1104 

Marioni, J.C. (2015). High-throughput spatial mapping of single-cell RNA-seq data to 1105 

tissue of origin. Nature Biotechnology 33, 503-509. 1106 

Adamson, B., Norman, T.M., Jost, M., Cho, M.Y., Nunez, J.K., Chen, Y., Villalta, J.E., 1107 

Gilbert, L.A., Horlbeck, M.A., Hein, M.Y., et al. (2016). A Multiplexed Single-Cell CRISPR 1108 

Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell 1109 

167, 1867-1882 e1821. 1110 

Albayrak, C., Jordi, C.A., Zechner, C., Lin, J., Bichsel, C.A., Khammash, M., and Tay, S. 1111 

(2016). Digital Quantification of Proteins and mRNA in Single Mammalian Cells. 1112 

Molecular Cell 61, 914-924. 1113 

Angelo, M., Bendall, S.C., Finck, R., Hale, M.B., Hitzman, C., Borowsky, A.D., Levenson, 1114 

R.M., Lowe, J.B., Liu, S.D., Zhao, S., et al. (2014). Multiplexed ion beam imaging of human 1115 

breast tumors. Nature Medicine 20, 436-442. 1116 

Angerer, P., Haghverdi, L., Buttner, M., Theis, F.J., Marr, C., and Buettner, F. (2016). 1117 

destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241-1243. 1118 

Angermueller, C., Clark, S.J., Lee, H.J., Macaulay, I.C., Teng, M.J., Hu, T.X., Krueger, F., 1119 

Smallwood, S.A., Ponting, C.P., Voet, T., et al. (2016). Parallel single-cell sequencing links 1120 

transcriptional and epigenetic heterogeneity. Nature Methods 13, 229-232. 1121 

Antebi, Y.E., Reich-Zeliger, S., Hart, Y., Mayo, A., Eizenberg, I., Rimer, J., Putheti, P., Pe'er, 1122 

D., and Friedman, N. (2013). Mapping differentiation under mixed culture conditions 1123 

reveals a tunable continuum of T cell fates. PLoS Biology 11, e1001616. 1124 

Arthur, G. (2016). Albert Coons: harnessing the power of the antibody. Lancet Respir Med 1125 

4, 181-182. 1126 

Ascoli, G.A., Alonso-Nanclares, L., Anderson, S.A., Barrionuevo, G., Benavides-Piccione, 1127 

R., Burkhalter, A., Buzsaki, G., Cauli, B., Defelipe, J., et al. (2008). Petilla terminology: 1128 

nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature 1129 

Reviews Neuroscience 9, 557-568. 1130 

Avraham, R., Haseley, N., Brown, D., Penaranda, C., Jijon, H.B., Trombetta, J.J., Satija, R., 1131 

Shalek, A.K., Xavier, R.J., Regev, A., et al. (2015). Pathogen Cell-to-Cell Variability Drives 1132 

Heterogeneity in Host Immune Responses. Cell 162, 1309-1321. 1133 



 
 

 
 

38 

Bakken, T.E., Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Dalley, 1134 

R.A., Royall, J.J., Lemon, T., et al. (2016). A comprehensive transcriptional map of primate 1135 

brain development. Nature 535, 367-375. 1136 

Bar-Joseph, Z., Siegfried, Z., Brandeis, M., Brors, B., Lu, Y., Eils, R., Dynlacht, B.D., and 1137 

Simon, I. (2008). Genome-wide transcriptional analysis of the human cell cycle identifies 1138 

genes differentially regulated in normal and cancer cells. PNAS 105, 955-960. 1139 

Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., 1140 

Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. (2007). Identification of stem 1141 

cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007. 1142 

Behjati, S., Huch, M., van Boxtel, R., Karthaus, W., Wedge, D.C., Tamuri, A.U., 1143 

Martincorena, I., Petljak, M., Alexandrov, L.B., Gundem, G., et al. (2014). Genome 1144 

sequencing of normal cells reveals developmental lineages and mutational processes. 1145 

Nature 513, 422-425. 1146 

Bendall, S.C., Davis, K.L., Amir el, A.D., Tadmor, M.D., Simonds, E.F., Chen, T.J., Shenfeld, 1147 

D.K., Nolan, G.P., and Pe'er, D. (2014). Single-cell trajectory detection uncovers 1148 

progression and regulatory coordination in human B cell development. Cell 157, 714-725. 1149 

Biezuner, T., Spiro, A., Raz, O., Amir, S., Milo, L., Adar, R., Chapal-Ilani, N., Berman, V., 1150 

Fried, Y., Ainbinder, E., et al. (2016). A generic, cost-effective, and scalable cell lineage 1151 

analysis platform. Genome Research 26, 1588-1599. 1152 

Blasi, T., Hennig, H., Summers, H.D., Theis, F.J., Cerveira, J., Patterson, J.O., Davies, D., 1153 

Filby, A., Carpenter, A.E., and Rees, P. (2016). Label-free cell cycle analysis for high-1154 

throughput imaging flow cytometry. Nat Commun 7, 10256. 1155 

Blondel, V.D., Guillaume, J.L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of 1156 

communities in large networks. J Stat Mech-Theory E. 2008:P10008 1157 

Borges, J.L., and Hurley, A. (2004). A Universal History of Iniquity New York: Penguin. 1158 

Brenner, S. (2010). Sequences and consequences. Philosophical Transactions of the Royal 1159 

Society of London Series B, Biological Sciences 365, 207-212. 1160 

Brudno, J.N., and Kochenderfer, J.N. (2016). Toxicities of chimeric antigen receptor T cells: 1161 

recognition and management. Blood 127, 3321-3330. 1162 

Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P., 1163 

Chang, H.Y., and Greenleaf, W.J. (2015). Single-cell chromatin accessibility reveals 1164 

principles of regulatory variation. Nature 523, 486-490. 1165 



 
 

 
 

39 

Buettner, F., Natarajan, K.N., Casale, F.P., Proserpio, V., Scialdone, A., Theis, F.J., 1166 

Teichmann, S.A., Marioni, J.C., and Stegle, O. (2015). Computational analysis of cell-to-cell 1167 

heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. 1168 

Nature Biotechnology 33, 155-160. 1169 

Cadwell, C.R., Palasantza, A., Jiang, X., Berens, P., Deng, Q., Yilmaz, M., Reimer, J., Shen, 1170 

S., Bethge, M., Tolias, K.F., et al. (2016). Electrophysiological, transcriptomic and 1171 

morphologic profiling of single neurons using Patch-seq. Nature Biotechnology 34, 199-1172 

203. 1173 

Chao, M.P., Seita, J., and Weissman, I.L. (2008). Establishment of a normal hematopoietic 1174 

and leukemia stem cell hierarchy. Cold Spring Harbor Symposia on Quantitative Biology 1175 

73, 439-449. 1176 

Chen, F., Tillberg, P.W., and Boyden, E.S. (2015a). Expansion microscopy. Science 347, 543-1177 

548. 1178 

Chen, F., Wassie, A.T., Cote, A.J., Sinha, A., Alon, S., Asano, S., Daugharthy, E.R., Chang, 1179 

J.B., Marblestone, A., Church, G.M., et al. (2016a). Nanoscale imaging of RNA with 1180 

expansion microscopy. Nature Methods 13, 679-684. 1181 

Chen, J., Schlitzer, A., Chakarov, S., Ginhoux, F., and Poidinger, M. (2016b). Mpath maps 1182 

multi-branching single-cell trajectories revealing progenitor cell progression during 1183 

development. Nat Commun 7, 11988. 1184 

Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., and Zhuang, X. (2015b). RNA imaging. 1185 

Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090. 1186 

Cheow, L.F., Courtois, E.T., Tan, Y., Viswanathan, R., Xing, Q., Tan, R.Z., Tan, D.S., 1187 

Robson, P., Loh, Y.H., Quake, S.R., et al. (2016). Single-cell multimodal profiling reveals 1188 

cellular epigenetic heterogeneity. Nature Methods 13, 833-836. 1189 

Corces, M.R., Buenrostro, J.D., Wu, B., Greenside, P.G., Chan, S.M., Koenig, J.L., Snyder, 1190 

M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W.J., et al. (2016). Lineage-specific and single 1191 

cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature 1192 

Genetics. 48, 1193-1203 1193 

Corces-Zimmerman, M.R., Hong, W.J., Weissman, I.L., Medeiros, B.C., and Majeti, R. 1194 

(2014). Preleukemic mutations in human acute myeloid leukemia affect epigenetic 1195 

regulators and persist in remission. PNAS 111, 2548-2553. 1196 



 
 

 
 

40 

Crino, P.B., Trojanowski, J.Q., Dichter, M.A., and Eberwine, J. (1996). Embryonic neuronal 1197 

markers in tuberous sclerosis: single-cell molecular pathology. PNAS 93, 14152-14157. 1198 

Cusanovich, D.A., Daza, R., Adey, A., Pliner, H.A., Christiansen, L., Gunderson, K.L., 1199 

Steemers, F.J., Trapnell, C., and Shendure, J. (2015). Multiplex single cell profiling of 1200 

chromatin accessibility by combinatorial cellular indexing. Science 348, 910-914. 1201 

Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P.S., Rothenberg, M.E., Leyrat, A.A., Sim, S., 1202 

Okamoto, J., Johnston, D.M., Qian, D.L., et al. (2011). Single-cell dissection of 1203 

transcriptional heterogeneity in human colon tumors. Nature Biotechnology 29, 1120-1127. 1204 

Darmanis, S., Gallant, C.J., Marinescu, V.D., Niklasson, M., Segerman, A., Flamourakis, G., 1205 

Fredriksson, S., Assarsson, E., Lundberg, M., Nelander, S., et al. (2016). Simultaneous 1206 

Multiplexed Measurement of RNA and Proteins in Single Cells. Cell Reports 14, 380-389. 1207 

Darmanis, S., Sloan, S.A., Zhang, Y., Enge, M., Caneda, C., Shuer, L.M., Gephart, M.G.H., 1208 

Barres, B.A., and Quake, S.R. (2015). A survey of human brain transcriptome diversity at 1209 

the single cell level. PNAS 112, 7285-7290. 1210 

Della Santina, L., Kuo, S.P., Yoshimatsu, T., Okawa, H., Suzuki, S.C., Hoon, M., 1211 

Tsuboyama, K., Rieke, F., and Wong, R.O.L. (2016). Glutamatergic Monopolar 1212 

Interneurons Provide a Novel Pathway of Excitation in the Mouse Retina. Current Biology 1213 

26, 2070-2077. 1214 

Dey, S.S., Kester, L., Spanjaard, B., Bienko, M., and van Oudenaarden, A. (2015). Integrated 1215 

genome and transcriptome sequencing of the same cell. Nature Biotechnology 33, 285-289. 1216 

Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J., Kulp, A.N., Qian, D.L., Lam, J.S., 1217 

Ailles, L.E., Wong, M.Z., et al. (2009). Association of reactive oxygen species levels and 1218 

radioresistance in cancer stem cells. Nature 458, 780-783. 1219 

Dittrich, W.M., and Göhde, W.H. (1971). Flow-through Chamber for Photometers to 1220 

Measure and Count Particles in a Dispersion Medium. US Patent. 1221 

https://www.google.com/patents/US3761187 1222 

Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C.P., Jerby-Arnon, L., Marjanovic, N.D., 1223 

Dionne, D., Burks, T., Raychowdhury, R., et al. (2016). Perturb-Seq: Dissecting Molecular 1224 

Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 167, 1853-1225 

1866 e1817. 1226 



 
 

 
 

41 

Duerr, R.H., Taylor, K.D., Brant, S.R., Rioux, J.D., Silverberg, M.S., Daly, M.J., Steinhart, 1227 

A.H., Abraham, C., Regueiro, M., Griffiths, A., et al. (2006). A genome-wide association 1228 

study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461-1463. 1229 

Durruthy-Durruthy, R., Gottlieb, A., Hartman, B.H., Waldhaus, J., Laske, R.D., Altman, R., 1230 

and Heller, S. (2014). Reconstruction of the Mouse Otocyst and Early Neuroblast Lineage 1231 

at Single-Cell Resolution. Cell 157, 964-978. 1232 

Eberwine, J., Yeh, H., Miyashiro, K., Cao, Y., Nair, S., Finnell, R., Zettel, M., and Coleman, 1233 

P. (1992). Analysis of gene expression in single live neurons. PNAS 89, 3010-3014. 1234 

Eldar, A., and Elowitz, M.B. (2010). Functional roles for noise in genetic circuits. Nature 1235 

467, 167-173. 1236 

Eulenberg, P., Kohler, N., Blasi, T., Filby, A., Carpenter, A.E., Rees, P., Theis, F.J., and Wolf, 1237 

F.A. (2017). Reconstructing cell cycle and disease progression using deep learning. Nat 1238 

Commun 8, 463. 1239 

Fan, H.C., Fu, G.K., and Fodor, S.P. (2015). Combinatorial labeling of single cells for gene 1240 

expression cytometry. Science 347, 1258367. 1241 

Farlik, M., Sheffield, N.C., Nuzzo, A., Datlinger, P., Schonegger, A., Klughammer, J., and 1242 

Bock, C. (2015). Single-cell DNA methylome sequencing and bioinformatic inference of 1243 

epigenomic cell-state dynamics. Cell Reports 10, 1386-1397. 1244 

Ferrell, J.E., Jr. (2012). Bistability, bifurcations, and Waddington's epigenetic landscape. 1245 

Current Biology 22, R458-466. 1246 

Foldy, C., Darmanis, S., Aoto, J., Malenka, R.C., Quake, S.R., and Sudhof, T.C. (2016). 1247 

Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically 1248 

defined neurons. PNAS 113, E5222-E5231. 1249 

Frei, A.P., Bava, F.A., Zunder, E.R., Hsieh, E.W., Chen, S.Y., Nolan, G.P., and Gherardini, 1250 

P.F. (2016). Highly multiplexed simultaneous detection of RNAs and proteins in single 1251 

cells. Nature Methods 13, 269-275. 1252 

Fulwyler, M.J. (1965). Electronic separation of biological cells by volume. Science 150, 910-1253 

911. 1254 

Gagliani, N., Amezcua Vesely, M.C., Iseppon, A., Brockmann, L., Xu, H., Palm, N.W., de 1255 

Zoete, M.R., Licona-Limon, P., Paiva, R.S., Ching, T., et al. (2015). Th17 cells 1256 

transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 1257 

221-225. 1258 



 
 

 
 

42 

Gao, R., Davis, A., McDonald, T.O., Sei, E., Shi, X., Wang, Y., Tsai, P.C., Casasent, A., 1259 

Waters, J., Zhang, H., et al. (2016). Punctuated copy number evolution and clonal stasis in 1260 

triple-negative breast cancer. Nature Genetics 48, 1119-1130 1261 

Gaublomme, J.T., Yosef, N., Lee, Y., Gertner, R.S., Yang, L.V., Wu, C., Pandolfi, P.P., Mak, 1262 

T., Satija, R., Shalek, A.K., et al. (2015). Single-Cell Genomics Unveils Critical Regulators of 1263 

Th17 Cell Pathogenicity. Cell 163, 1400-1412. 1264 

Gawad, C., Koh, W., and Quake, S.R. (2014). Dissecting the clonal origins of childhood 1265 

acute lymphoblastic leukemia by single-cell genomics. PNAS 111, 17947-17952. 1266 

Genshaft, A.S., Li, S., Gallant, C.J., Darmanis, S., Prakadan, S.M., Ziegler, C.G., Lundberg, 1267 

M., Fredriksson, S., Hong, J., Regev, A., et al. (2016). Multiplexed, targeted profiling of 1268 

single-cell proteomes and transcriptomes in a single reaction. Genome Biology 17, 188. 1269 

Giesen, C., Wang, H.A., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., Schuffler, 1270 

P.J., Grolimund, D., Buhmann, J.M., Brandt, S., et al. (2014). Highly multiplexed imaging of 1271 

tumor tissues with subcellular resolution by mass cytometry. Nature Methods 11, 417-422. 1272 

Gokce, O., Stanley, G.M., Treutlein, B., Neff, N.F., Camp, J.G., Malenka, R.C., Rothwell, 1273 

P.E., Fuccillo, M.V., Sudhof, T.C., and Quake, S.R. (2016). Cellular Taxonomy of the Mouse 1274 

Striatum as Revealed by Single-Cell RNA-Seq. Cell Reports 16, 1126-1137. 1275 

Grun, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N., Clevers, H., and 1276 

van Oudenaarden, A. (2015). Single-cell messenger RNA sequencing reveals rare intestinal 1277 

cell types. Nature 525, 251-255. 1278 

Grun, D., Muraro, M.J., Boisset, J.C., Wiebrands, K., Lyubimova, A., Dharmadhikari, G., 1279 

van den Born, M., van Es, J., Jansen, E., Clevers, H., et al. (2016). De Novo Prediction of 1280 

Stem Cell Identity using Single-Cell Transcriptome Data. Cell Stem Cell 19, 266-277. 1281 

Grun, D., and van Oudenaarden, A. (2015). Design and Analysis of Single-Cell Sequencing 1282 

Experiments. Cell 163, 799-810. 1283 

Guo, H., Zhu, P., Wu, X., Li, X., Wen, L., and Tang, F. (2013). Single-cell methylome 1284 

landscapes of mouse embryonic stem cells and early embryos analyzed using reduced 1285 

representation bisulfite sequencing. Genome Research 23, 2126-2135. 1286 

Gut, G., Tadmor, M.D., Pe'er, D., Pelkmans, L., and Liberali, P. (2015). Trajectories of cell-1287 

cycle progression from fixed cell populations. Nature methods 12, 951-954. 1288 



 
 

 
 

43 

Habib, N., Li, Y., Heidenreich, M., Swiech, L., Avraham-Davidi, I., Trombetta, J.J., Hession, 1289 

C., Zhang, F., and Regev, A. (2016a). Div-Seq: Single-nucleus RNA-Seq reveals dynamics of 1290 

rare adult newborn neurons. Science 353, 925-928. 1291 

Habib, N., Li, Y., Heidenreich, M., Swiech, L., Trombetta, J.J., Zhang, F., and Regev, A. 1292 

(2016b). Div-Seq: A single nucleus RNA-Seq method reveals dynamics of rare adult 1293 

newborn neurons in the CNS. bioRxiv. https://doi.org/10.1101/045989 1294 

 1295 

Haghverdi, L., Buettner, F., and Theis, F.J. (2015). Diffusion maps for high-dimensional 1296 

single-cell analysis of differentiation data. Bioinformatics 31, 2989-2998. 1297 

Haghverdi, L., Buttner, M., Wolf, F.A., Buettner, F., and Theis, F.J. (2016). Diffusion 1298 

pseudotime robustly reconstructs lineage branching. Nature Methods. 13, 845-845 1299 

Hama, H., Kurokawa, H., Kawano, H., Ando, R., Shimogori, T., Noda, H., Fukami, K., 1300 

Sakaue-Sawano, A., and Miyawaki, A. (2011). Scale: a chemical approach for fluorescence 1301 

imaging and reconstruction of transparent mouse brain. Nature Neuroscience 14, 1481-1302 

1488. 1303 

Harris, H. (2000). The Birth of the Cell Yale University Press 1304 

Hashimshony, T., Wagner, F., Sher, N., and Yanai, I. (2012). CEL-Seq: single-cell RNA-Seq 1305 

by multiplexed linear amplification. Cell Reports 2, 666-673. 1306 

Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van 1307 

de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al. (2012). An anatomically 1308 

comprehensive atlas of the adult human brain transcriptome. Nature 489, 391-399. 1309 

Heimberg, G., Bhatnagar, R., El-Samad, H., and Thomson, M. (2016). Low Dimensionality 1310 

in Gene Expression Data Enables the Accurate Extraction of Transcriptional Programs 1311 

from Shallow Sequencing. Cell Syst 2, 239-250. 1312 

Hooke, R. (1665). Micrographia. London: Royal Society 1313 

Horowitz, A., Strauss-Albee, D.M., Leipold, M., Kubo, J., Nemat-Gorgani, N., Dogan, O.C., 1314 

Dekker, C.L., Mackey, S., Maecker, H., Swan, G.E., et al. (2013). Genetic and environmental 1315 

determinants of human NK cell diversity revealed by mass cytometry. Science 1316 

Translational Medicine 5, 208ra145. 1317 

Huang, S. (2012). The molecular and mathematical basis of Waddington's epigenetic 1318 

landscape: A framework for post-Darwinian biology? BioEssays 34, 149-157. 1319 



 
 

 
 

44 

Huang, S. (2013). Hybrid T-helper cells: stabilizing the moderate center in a polarized 1320 

system. PLoS Biology 11, e1001632. 1321 

Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., Lonnerberg, P., and 1322 

Linnarsson, S. (2014). Quantitative single-cell RNA-seq with unique molecular identifiers. 1323 

Nature Methods 11, 163-166. 1324 

Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., 1325 

Cohen, N., Jung, S., Tanay, A., et al. (2014). Massively parallel single-cell RNA-seq for 1326 

marker-free decomposition of tissues into cell types. Science 343, 776-779. 1327 

Jaitin, D.A., Weiner, A., Yofe, I., Lara-Astiaso, D., Keren-Shaul, H., David, E., Salame, T.M., 1328 

Tanay, A., van Oudenaarden, A., and Amit, I. (2016). Dissecting Immune Circuits by 1329 

Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell 167, 1883-1896 e1815. 1330 

Jan, M., Snyder, T.M., Corces-Zimmerman, M.R., Vyas, P., Weissman, I.L., Quake, S.R., 1331 

and Majeti, R. (2012). Clonal Evolution of Preleukemic Hematopoietic Stem Cells Precedes 1332 

Human Acute Myeloid Leukemia. Science translational medicine 4, 149ra118 1333 

Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A.S., Patel, S., and Tolias, A.S. 1334 

(2015). Principles of connectivity among morphologically defined cell types in adult 1335 

neocortex. Science 350, aac9462. 1336 

Jojic, V., Shay, T., Sylvia, K., Zuk, O., Sun, X., Kang, J., Regev, A., Koller, D., Immunological 1337 

Genome Project, C., Best, A.J., et al. (2013). Identification of transcriptional regulators in 1338 

the mouse immune system. Nature Immunology 14, 633-643. 1339 

Kafri, R., Levy, J., Ginzberg, M.B., Oh, S., Lahav, G., and Kirschner, M.W. (2013). Dynamics 1340 

extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494, 1341 

480-483. 1342 

Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wahlby, C., and Nilsson, M. 1343 

(2013). In situ sequencing for RNA analysis in preserved tissue and cells. Nature Methods 1344 

10, 857-860. 1345 

Kharchenko, P.V., Silberstein, L., and Scadden, D.T. (2014). Bayesian approach to single-1346 

cell differential expression analysis. Nature Methods 11, 740-742. 1347 

Kim, C.C., and Lanier, L.L. (2013). Beyond the transcriptome: completion of act one of the 1348 

Immunological Genome Project. Current Opinion in Immunology 25, 593-597. 1349 

Kim, J., and Eberwine, J. (2010). RNA: state memory and mediator of cellular phenotype. 1350 

Trends in Cell Biology 20, 311-318. 1351 



 
 

 
 

45 

Kim, J.K., Kolodziejczyk, A.A., Ilicic, T., Teichmann, S.A., and Marioni, J.C. (2015). 1352 

Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical 1353 

stochastic allelic expression. Nat Commun 6, 8687. 1354 

Kiselev, V.Y., Kirschner, K., Schaub, M.T., Andrews, T., Yiu, A., Chandra, T., Natarajan, 1355 

K.N., Reik, W., Barahona, M., Green, A.R., et al. (2016). SC3: consensus clustering of single-1356 

cell RNA-Seq data. Nature Methods 14, 483-486 1357 

Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, 1358 

D.A., and Kirschner, M.W. (2015). Droplet barcoding for single-cell transcriptomics 1359 

applied to embryonic stem cells. Cell 161, 1187-1201. 1360 

Kohler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of 1361 

predefined specificity. Nature 256, 495-497. 1362 

Kolodziejczyk, A.A., Kim, J.K., Tsang, J.C., Ilicic, T., Henriksson, J., Natarajan, K.N., Tuck, 1363 

A.C., Gao, X., Buhler, M., Liu, P., et al. (2015). Single Cell RNA-Sequencing of Pluripotent 1364 

States Unlocks Modular Transcriptional Variation. Cell Stem Cell 17, 471-485. 1365 

Kowalczyk, M.S., Tirosh, I., Heckl, D., Rao, T.N., Dixit, A., Haas, B.J., Schneider, R.K., 1366 

Wagers, A.J., Ebert, B.L., and Regev, A. (2015). Single-cell RNA-seq reveals changes in cell 1367 

cycle and differentiation programs upon aging of hematopoietic stem cells. Genome 1368 

Research 25, 1860-1872. 1369 

Kretzschmar, K., and Watt, F.M. (2012). Lineage tracing. Cell 148, 33-45. 1370 

Krishnaswamy, S., Spitzer, M.H., Mingueneau, M., Bendall, S.C., Litvin, O., Stone, E., Pe'er, 1371 

D., and Nolan, G.P. (2014). Conditional density-based analysis of T cell signaling in single-1372 

cell data. Science 346, 1250689. 1373 

Lake, B.B., Ai, R., Kaeser, G.E., Salathia, N.S., Yung, Y.C., Liu, R., Wildberg, A., Gao, D., 1374 

Fung, H.L., Chen, S., et al. (2016). Neuronal subtypes and diversity revealed by single-1375 

nucleus RNA sequencing of the human brain. Science 352, 1586-1590. 1376 

Lander, E.S. (1996). The new genomics: global views of biology. Science 274, 536-539. 1377 

Langer-Safer, P.R., Levine, M., and Ward, D.C. (1982). Immunological method for mapping 1378 

genes on Drosophila polytene chromosomes. PNAS 79, 4381-4385. 1379 

Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Yang, J.L., Ferrante, T.C., Terry, R., 1380 

Jeanty, S.S., Li, C., Amamoto, R., et al. (2014). Highly multiplexed subcellular RNA 1381 

sequencing in situ. Science 343, 1360-1363. 1382 



 
 

 
 

46 

Levine, J.H., Simonds, E.F., Bendall, S.C., Davis, K.L., Amir el, A.D., Tadmor, M.D., Litvin, 1383 

O., Fienberg, H.G., Jager, A., Zunder, E.R., et al. (2015). Data-Driven Phenotypic Dissection 1384 

of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 162, 184-197. 1385 

Lönnberg, T., Svensson, V., James, K.R., Fernandez-Ruiz, D., Sebina, I., Montandon, R., 1386 

Soon, M.S.F., Fogg, L.G., Stubbington, M.J.T., Otzen Bagger, F., et al. (2017). Temporal 1387 

mixture modelling of single-cell RNA-seq data resolves a CD4+ T cell fate 1388 

bifurcation. bioRxiv. https://doi.org/10.1101/074971 1389 

 1390 

Lorthongpanich, C., Cheow, L.F., Balu, S., Quake, S.R., Knowles, B.B., Burkholder, W.F., 1391 

Solter, D., and Messerschmidt, D.M. (2013). Single-Cell DNA-Methylation Analysis Reveals 1392 

Epigenetic Chimerism in Preimplantation Embryos. Science 341, 1110-1112. 1393 

Lovatt, D., Ruble, B.K., Lee, J., Dueck, H., Kim, T.K., Fisher, S., Francis, C., Spaethling, J.M., 1394 

Wolf, J.A., Grady, M.S., et al. (2014). Transcriptome in vivo analysis (TIVA) of spatially 1395 

defined single cells in live tissue. Nature Methods 11, 190-196. 1396 

Lu, R., Neff, N.F., Quake, S.R., and Weissman, I.L. (2011). Tracking single hematopoietic 1397 

stem cells in vivo using high-throughput sequencing in conjunction with viral genetic 1398 

barcoding. Nature Biotechnology 29, 928-933. 1399 

Lu, Y., Mahony, S., Benos, P.V., Rosenfeld, R., Simon, I., Breeden, L.L., and Bar-Joseph, Z. 1400 

(2007). Combined analysis reveals a core set of cycling genes. Genome Biology 8, R146. 1401 

Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M., and Cai, L. (2014). Single-cell in situ 1402 

RNA profiling by sequential hybridization. Nature Methods 11, 360-361. 1403 

Macaulay, I.C., Haerty, W., Kumar, P., Li, Y.I., Hu, T.X., Teng, M.J., Goolam, M., Saurat, N., 1404 

Coupland, P., Shirley, L.M., et al. (2015). G&T-seq: parallel sequencing of single-cell 1405 

genomes and transcriptomes. Nature Methods 12, 519-522. 1406 

Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, 1407 

A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly Parallel Genome-wide 1408 

Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202-1214. 1409 

Mahata, B., Zhang, X., Kolodziejczyk, A.A., Proserpio, V., Haim-Vilmovsky, L., Taylor, 1410 

A.E., Hebenstreit, D., Dingler, F.A., Moignard, V., Gottgens, B., et al. (2014). Single-cell 1411 

RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to 1412 

immune homeostasis. Cell Reports 7, 1130-1142. 1413 



 
 

 
 

47 

Marco, E., Karp, R.L., Guo, G., Robson, P., Hart, A.H., Trippa, L., and Yuan, G.C. (2014). 1414 

Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. PNAS 1415 

111, E5643-5650. 1416 

Marcus, J.S., Anderson, W.F., and Quake, S.R. (2006). Microfluidic single-cell mRNA 1417 

isolation and analysis. Analytical Chemistry 78, 3084-3089. 1418 

Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., 1419 

Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., et al. (2015). Reconstruction and 1420 

Simulation of Neocortical Microcircuitry. Cell 163, 456-492. 1421 

Martincorena, I., Roshan, A., Gerstung, M., Ellis, P., Van Loo, P., McLaren, S., Wedge, 1422 

D.C., Fullam, A., Alexandrov, L.B., Tubio, J.M., et al. (2015). High burden and pervasive 1423 

positive selection of somatic mutations in normal human skin. Science 348, 880-886. 1424 

May, R.M. (1976). Simple mathematical models with very complicated dynamics. Nature 1425 

261, 459-467. 1426 

Mazzarello, P. (1999). A unifying concept: the history of cell theory. Nat Cell Biol 1, E13-15. 1427 

McKenna, A., Findlay, G.M., Gagnon, J.A., Horwitz, M.S., Schier, A.F., and Shendure, J. 1428 

(2016). Whole organism lineage tracing by combinatorial and cumulative genome editing. 1429 

Science. 353, aaf7907 1430 

Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L., 1431 

Royall, J.J., Aiona, K., et al. (2014). Transcriptional landscape of the prenatal human brain. 1432 

Nature 508, 199-206. 1433 

Miyashiro, K., Dichter, M., and Eberwine, J. (1994). On the nature and differential 1434 

distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. 1435 

PNAS 91, 10800-10804. 1436 

Moffitt, J.R., Hao, J., Bambah-Mukku, D., Lu, T., Dulac, C., and Zhuang, X. (2016a). High-1437 

performance multiplexed fluorescence in situ hybridization in culture and tissue with 1438 

matrix imprinting and clearing. PNAS 113, 14456-14461. 1439 

Moffitt, J.R., Hao, J., Wang, G., Chen, K.H., Babcock, H.P., and Zhuang, X. (2016b). High-1440 

throughput single-cell gene-expression profiling with multiplexed error-robust 1441 

fluorescence in situ hybridization. PNAS 113, 11046-11051. 1442 

Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A.J., Tanaka, Y., Wilkinson, A.C., 1443 

Buettner, F., Macaulay, I.C., Jawaid, W., Diamanti, E., et al. (2015). Decoding the regulatory 1444 



 
 

 
 

48 

network of early blood development from single-cell gene expression measurements. 1445 

Nature Biotechnology 33, 269-276. 1446 

Mooijman, D., Dey, S.S., Boisset, J.C., Crosetto, N., and van Oudenaarden, A. (2016). 1447 

Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables 1448 

lineage reconstruction. Nature Biotechnology 34, 852-856. 1449 

Moris, N., Pina, C., and Arias, A.M. (2016). Transition states and cell fate decisions in 1450 

epigenetic landscapes. Nature Reviews Genetics 17, 693-703. 1451 

Morton, C.L., and Houghton, P.J. (2007). Establishment of human tumor xenografts in 1452 

immunodeficient mice. Nature Protocols 2, 247-250. 1453 

Murray, J.M., Davies, K.E., Harper, P.S., Meredith, L., Mueller, C.R., and Williamson, R. 1454 

(1982). Linkage relationship of a cloned DNA sequence on the short arm of the X 1455 

chromosome to Duchenne muscular dystrophy. Nature 300, 69-71. 1456 

Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E.D., 1457 

Tanay, A., and Fraser, P. (2013). Single-cell Hi-C reveals cell-to-cell variability in 1458 

chromosome structure. Nature 502, 59-64. 1459 

Nagel, M.C. (1981). Sir William Henry Perkin, pioneer in color. Journal of Chemical 1460 

Education 58, 305. 1461 

Naik, S.H., Perie, L., Swart, E., Gerlach, C., van Rooij, N., de Boer, R.J., and Schumacher, 1462 

T.N. (2013). Diverse and heritable lineage imprinting of early haematopoietic progenitors. 1463 

Nature 496, 229-232. 1464 

Nestorowa, S., Hamey, F.K., Pijuan Sala, B., Diamanti, E., Shepherd, M., Laurenti, E., 1465 

Wilson, N.K., Kent, D.G., and Gottgens, B. (2016). A single-cell resolution map of mouse 1466 

hematopoietic stem and progenitor cell differentiation. Blood 128, e20-31. 1467 

Nichterwitz, S., Chen, G., Aguila Benitez, J., Yilmaz, M., Storvall, H., Cao, M., Sandberg, R., 1468 

Deng, Q., and Hedlund, E. (2016). Laser capture microscopy coupled with Smart-seq2 for 1469 

precise spatial transcriptomic profiling. Nat Commun 7, 12139. 1470 

O'Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon cancer cell 1471 

capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110. 1472 

Olsson, A., Venkatasubramanian, M., Chaudhri, V.K., Aronow, B.J., Salomonis, N., Singh, 1473 

H., and Grimes, H.L. (2016). Single-cell analysis of mixed-lineage states leading to a binary 1474 

cell fate choice. Nature. 537, 698-702 1475 



 
 

 
 

49 

Parolini, G. (2015). The emergence of modern statistics in agricultural science: analysis of 1476 

variance, experimental design and the reshaping of research at Rothamsted Experimental 1477 

Station, 1919-1933. Journal of the History of Biology 48, 301-335. 1478 

Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., Cahill, 1479 

D.P., Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-cell RNA-seq highlights 1480 

intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401. 1481 

Paul, F., Arkin, Y., Giladi, A., Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Winter, D., 1482 

Lara-Astiaso, D., Gury, M., Weiner, A., et al. (2015). Transcriptional Heterogeneity and 1483 

Lineage Commitment in Myeloid Progenitors. Cell 163, 1663-1677. 1484 

Perie, L., and Duffy, K.R. (2016). Retracing the in vivo haematopoietic tree using single-cell 1485 

methods. FEBS Letters 590, 4068-4083. 1486 

Picelli, S., Bjorklund, A.K., Faridani, O.R., Sagasser, S., Winberg, G., and Sandberg, R. 1487 

(2013). Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature 1488 

Methods 10, 1096-1098. 1489 

Pollen, A.A., Nowakowski, T.J., Shuga, J., Wang, X., Leyrat, A.A., Lui, J.H., Li, N., 1490 

Szpankowski, L., Fowler, B., Chen, P., et al. (2014). Low-coverage single-cell mRNA 1491 

sequencing reveals cellular heterogeneity and activated signaling pathways in developing 1492 

cerebral cortex. Nature Biotechnology 32, 1053-1058. 1493 

Proserpio, V., Piccolo, A., Haim-Vilmovsky, L., Kar, G., Lonnberg, T., Svensson, V., 1494 

Pramanik, J., Natarajan, K.N., Zhai, W., Zhang, X., et al. (2016). Single-cell analysis of CD4+ 1495 

T-cell differentiation reveals three major cell states and progressive acceleration of 1496 

proliferation. Genome Biology 17, 103. 1497 

Ramani, V., Deng, X., Gunderson, K.L., Steemers, F.J., Disteche, C.M., Noble, W.S., Duan, 1498 

Z., and Shendure, J. (2016). Massively multiplex single-cell Hi-C. Nature Methods 14, 263-1499 

266 1500 

Ramilowski, J.A., Goldberg, T., Harshbarger, J., Kloppmann, E., Lizio, M., Satagopam, V.P., 1501 

Itoh, M., Kawaji, H., Carninci, P., Rost, B., et al. (2015). A draft network of ligand-receptor-1502 

mediated multicellular signalling in human. Nat Commun 6, 7866. 1503 

Ramón y Cajal, S. (1995). Histology of the Nervous System of Man and Vertebrates. Oxford 1504 

University Press 1505 

Ramskold, D., Luo, S., Wang, Y.C., Li, R., Deng, Q., Faridani, O.R., Daniels, G.A., 1506 

Khrebtukova, I., Loring, J.F., Laurent, L.C., et al. (2012). Full-length mRNA-Seq from 1507 



 
 

 
 

50 

single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology 30, 1508 

777-782. 1509 

Rebhahn, J.A., Deng, N., Sharma, G., Livingstone, A.M., Huang, S., and Mosmann, T.R. 1510 

(2014). An animated landscape representation of CD4+ T-cell differentiation, variability, 1511 

and plasticity: insights into the behavior of populations versus cells. European Journal of 1512 

Immunology 44, 2216-2229. 1513 

Reizel, Y., Itzkovitz, S., Adar, R., Elbaz, J., Jinich, A., Chapal-Ilani, N., Maruvka, Y.E., Nevo, 1514 

N., Marx, Z., Horovitz, I., et al. (2012). Cell lineage analysis of the mammalian female 1515 

germline. PLoS Genetics 8, e1002477. 1516 

Richmond, A., and Su, Y. (2008). Mouse xenograft models vs GEM models for human 1517 

cancer therapeutics. Disease Models & Mechanisms 1, 78-82. 1518 

Rosvall, M., and Bergstrom, C.T. (2008). Maps of random walks on complex networks 1519 

reveal community structure. PNAS 105, 1118-1123. 1520 

Rotem, A., Ram, O., Shoresh, N., Sperling, R.A., Goren, A., Weitz, D.A., and Bernstein, B.E. 1521 

(2015a). Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. 1522 

Nature Biotechnology 33, 1165-1172. 1523 

Rotem, A., Ram, O., Shoresh, N., Sperling, R.A., Schnall-Levin, M., Zhang, H., Basu, A., 1524 

Bernstein, B.E., and Weitz, D.A. (2015b). High-Throughput Single-Cell Labeling (Hi-SCL) 1525 

for RNA-Seq Using Drop-Based Microfluidics. PloS One 10, e0116328. 1526 

Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A., and Nolan, G.P. (2005). Causal protein-1527 

signaling networks derived from multiparameter single-cell data. Science 308, 523-529. 1528 

Sanes, J.R., and Masland, R.H. (2015). The types of retinal ganglion cells: current status and 1529 

implications for neuronal classification. Annual Review of Neuroscience 38, 221-246. 1530 

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial 1531 

reconstruction of single-cell gene expression data. Nature Biotechnology 33, 495-502. 1532 

Scialdone, A., Tanaka, Y., Jawaid, W., Moignard, V., Wilson, N.K., Macaulay, I.C., Marioni, 1533 

J.C., and Gottgens, B. (2016). Resolving early mesoderm diversification through single-cell 1534 

expression profiling. Nature 535, 289-293. 1535 

Setty, M., Tadmor, M.D., Reich-Zeliger, S., Angel, O., Salame, T.M., Kathail, P., Choi, K., 1536 

Bendall, S., Friedman, N., and Pe'er, D. (2016). Wishbone identifies bifurcating 1537 

developmental trajectories from single-cell data. Nature Biotechnology 34, 637-645. 1538 



 
 

 
 

51 

Shah, S., Lubeck, E., Zhou, W., and Cai, L. (2016). In Situ Transcription Profiling of Single 1539 

Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus. Neuron 92, 342-1540 

357. 1541 

Shalek, A.K., Satija, R., Adiconis, X., Gertner, R.S., Gaublomme, J.T., Raychowdhury, R., 1542 

Schwartz, S., Yosef, N., Malboeuf, C., Lu, D., et al. (2013). Single-cell transcriptomics 1543 

reveals bimodality in expression and splicing in immune cells. Nature 498, 236-240. 1544 

Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P., Gertner, 1545 

R.S., Gaublomme, J.T., Yosef, N., et al. (2014). Single-cell RNA-seq reveals dynamic 1546 

paracrine control of cellular variation. Nature 510, 363-369. 1547 

Shapiro, E. (2010). The Human Cell Lineage Flagship Initiative. http://www.lineage-1548 

flagship.eu/ (Accessed November 28, 2017) 1549 

Shapiro, E., Biezuner, T., and Linnarsson, S. (2013). Single-cell sequencing-based 1550 

technologies will revolutionize whole-organism science. Nature Reviews Genetics 14, 618-1551 

630. 1552 

Shekhar, K., Lapan, S.W., Whitney, I.E., Tran, N.M., Macosko, E.Z., Kowalczyk, M., 1553 

Adiconis, X., Levin, J.Z., Nemesh, J., Goldman, M., et al. (2016). Comprehensive 1554 

Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. Cell 166, 1308-1555 

1323 e1330. 1556 

Shin, J., Berg, D.A., Zhu, Y., Shin, J.Y., Song, J., Bonaguidi, M.A., Enikolopov, G., Nauen, 1557 

D.W., Christian, K.M., Ming, G.L., et al. (2015). Single-Cell RNA-Seq with Waterfall Reveals 1558 

Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell 17, 360-372. 1559 

Shlush, L.I., Chapal-Ilani, N., Adar, R., Pery, N., Maruvka, Y., Spiro, A., Shouval, R., Rowe, 1560 

J.M., Tzukerman, M., Bercovich, D., et al. (2012). Cell lineage analysis of acute leukemia 1561 

relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. 1562 

Blood 120, 603-612. 1563 

Singer, M., Wang, C., Cong, L., Marjanovic, N.D., Kowalczyk, M.S., Zhang, H., Nyman, J., 1564 

Sakuishi, K., Kurtulus, S., Gennert, D., et al. (2016). A Distinct Gene Module for 1565 

Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell 166, 1500-1511 1566 

e1509. 1567 

Smallwood, S.A., Lee, H.J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., Andrews, 1568 

S.R., Stegle, O., Reik, W., and Kelsey, G. (2014). Single-cell genome-wide bisulfite 1569 

sequencing for assessing epigenetic heterogeneity. Nature Methods 11, 817-820. 1570 



 
 

 
 

52 

Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., 1571 

Giacomello, S., Asp, M., Westholm, J.O., Huss, M., et al. (2016). Visualization and analysis 1572 

of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82. 1573 

Stahnisch, F.W. (2015). Joseph von Gerlach (1820–1896). Journal of Neurology 262, 1397-1574 

1399. 1575 

Stegle, O., Teichmann, S.A., and Marioni, J.C. (2015). Computational and analytical 1576 

challenges in single-cell transcriptomics. Nature Reviews Genetics 16, 133-145. 1577 

Stewart-Ornstein, J., Weissman, J.S., and El-Samad, H. (2012). Cellular noise regulons 1578 

underlie fluctuations in Saccharomyces cerevisiae. Molecular Cell 45, 483-493. 1579 

Stubbington, M.J., Lonnberg, T., Proserpio, V., Clare, S., Speak, A.O., Dougan, G., and 1580 

Teichmann, S.A. (2016). T cell fate and clonality inference from single-cell transcriptomes. 1581 

Nature Methods 13, 329-332. 1582 

Sul, J.Y., Kim, T.K., Lee, J.H., and Eberwine, J. (2012). Perspectives on cell reprogramming 1583 

with RNA. Trends in Biotechnology 30, 243-249. 1584 

Susaki, E.A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T.M., Yokoyama, 1585 

C., Onoe, H., Eguchi, M., Yamaguchi, S., et al. (2014). Whole-Brain Imaging with Single-1586 

Cell Resolution Using Chemical Cocktails and Computational Analysis. Cell 157, 726-739. 1587 

Svensson, V., Natarajan, K.N., Ly, L.-H., Miragaia, R.J., Labalette, C., Macaulay, I.C., Cvejic, 1588 

A., and Teichmann, S.A. (2016). Power Analysis of Single Cell RNA‐ Sequencing 1589 

Experiments. Nature Methods 14, 381-387 1590 

Tanay, A., and Regev, A. (2017). Scaling single-cell genomics from phenomenology to 1591 

mechanism. Nature 541, 331-338. 1592 

Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., 1593 

Sorensen, S.A., Dolbeare, T., et al. (2016). Adult mouse cortical cell taxonomy revealed by 1594 

single cell transcriptomics. Nature Neuroscience 19, 335-346. 1595 

Taylor, R.W., Barron, M.J., Borthwick, G.M., Gospel, A., Chinnery, P.F., Samuels, D.C., 1596 

Taylor, G.A., Plusa, S.M., Needham, S.J., Greaves, L.C., et al. (2003). Mitochondrial DNA 1597 

mutations in human colonic crypt stem cells. Journal of Clinical Investigation 112, 1351-1598 

1360. 1599 

Tecott, L.H., Barchas, J.D., and Eberwine, J.H. (1988). In situ transcription: specific 1600 

synthesis of complementary DNA in fixed tissue sections. Science 240, 1661-1664. 1601 



 
 

 
 

53 

Teixeira, V.H., Nadarajan, P., Graham, T.A., Pipinikas, C.P., Brown, J.M., Falzon, M., Nye, 1602 

E., Poulsom, R., Lawrence, D., Wright, N.A., et al. (2013). Stochastic homeostasis in human 1603 

airway epithelium is achieved by neutral competition of basal cell progenitors. eLife 2, 1604 

e00966. 1605 

Thom, R. (1989). Structural Stability and Morphogenesis Addison Wesley Publishing 1606 

Company. 1607 

Thomsen, E.R., Mich, J.K., Yao, Z., Hodge, R.D., Doyle, A.M., Jang, S., Shehata, S.I., Nelson, 1608 

A.M., Shapovalova, N.V., Levi, B.P., et al. (2016). Fixed single-cell transcriptomic 1609 

characterization of human radial glial diversity. Nature Methods 13, 87-93. 1610 

Thul, P.J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., 1611 

Asplund, A., Bjork, L., Breckels, L.M., et al. (2017). A subcellular map of the human 1612 

proteome. Science DOI: 10.1126/science.aal3321 1613 

 Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D., Trombetta, J.J., 1614 

Rotem, A., Rodman, C., Lian, C., Murphy, G., et al. (2016a). Dissecting the multicellular 1615 

ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196. 1616 

Tirosh, I., Venteicher, A.S., Hebert, C., Escalante, L.E., Patel, A.P., Yizhak, K., Fisher, J.M., 1617 

Rodman, C., Mount, C., Filbin, M., et al. (2016b). Single-cell RNA-seq supports a 1618 

developmental hierarchy in IDH-mutant oligodendroglioma. Nature 539, 309-313. 1619 

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., 1620 

Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate 1621 

decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 1622 

32, 381-386. 1623 

Treutlein, B., Brownfield, D.G., Wu, A.R., Neff, N.F., Mantalas, G.L., Espinoza, F.H., Desai, 1624 

T.J., Krasnow, M.A., and Quake, S.R. (2014). Reconstructing lineage hierarchies of the 1625 

distal lung epithelium using single-cell RNA-seq. Nature 509, 371-375. 1626 

Treutlein, B., Lee, Q.Y., Camp, J.G., Mall, M., Koh, W., Shariati, S.A.M., Sim, S., Neff, N.F., 1627 

Skotheim, J.M., Wernig, M., et al. (2016). Dissecting direct reprogramming from fibroblast 1628 

to neuron using single-cell RNA-seq. Nature 534, 391-+. 1629 

Tsang, J.C., Yu, Y., Burke, S., Buettner, F., Wang, C., Kolodziejczyk, A.A., Teichmann, S.A., 1630 

Lu, L., and Liu, P. (2015). Single-cell transcriptomic reconstruction reveals cell cycle and 1631 

multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome 1632 

Biology 16, 178. 1633 



 
 

 
 

54 

Uhlen, M., Fagerberg, L., Hallstrom, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., 1634 

Sivertsson, A., Kampf, C., Sjostedt, E., Asplund, A., et al. (2015). Proteomics. Tissue-based 1635 

map of the human proteome. Science 347, 1260419. 1636 

Vallejos, C.A., Marioni, J.C., and Richardson, S. (2015). BASiCS: Bayesian Analysis of 1637 

Single-Cell Sequencing Data. PLoS Computational Biology 11, e1004333. 1638 

Van Gelder, R.N., von Zastrow, M.E., Yool, A., Dement, W.C., Barchas, J.D., and Eberwine, 1639 

J.H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. 1640 

PNAS 87, 1663-1667. 1641 

Vickovic, S., Stahl, P.L., Salmen, F., Giatrellis, S., Westholm, J.O., Mollbrink, A., Navarro, 1642 

J.F., Custodio, J., Bienko, M., Sutton, L.A., et al. (2016). Massive and parallel expression 1643 

profiling using microarrayed single-cell sequencing. Nat Commun 7, 13182. 1644 

Waddington, C.H. (1957). The Strategy of the Genes London: Allen & Unwin 1645 

Wagner, A., Regev, A., and Yosef, N. (2016). Uncovering the vectors of cellular identity 1646 

with single-cell genomics. Nature Biotechnology 34, 1145-1160. 1647 

Wang, Y., Waters, J., Leung, M.L., Unruh, A., Roh, W., Shi, X.Q., Chen, K., Scheet, P., 1648 

Vattathil, S., Liang, H., et al. (2014). Clonal evolution in breast cancer revealed by single 1649 

nucleus genome sequencing. Nature 512, 155-160 1650 

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R.S., and Bengio, 1651 

Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. 1652 

arXiv: https://arxiv.org/abs/1502.03044 1653 

Yang, B., Treweek, J.B., Kulkarni, R.P., Deverman, B.E., Chen, C.K., Lubeck, E., Shah, S., 1654 

Cai, L., and Gradinaru, V. (2014). Single-Cell Phenotyping within Transparent Intact Tissue 1655 

through Whole-Body Clearing. Cell 158, 945-958. 1656 

Yosef, N., and Regev, A. (2011). Impulse control: temporal dynamics in gene transcription. 1657 

Cell 144, 886-896. 1658 

Yosef, N., and Regev, A. (2016). Writ large: Genomic dissection of the effect of cellular 1659 

environment on immune response. Science 354, 64-68. 1660 

Yuan, J., and Sims, P.A. (2016). An Automated Microwell Platform for Large-Scale Single 1661 

Cell RNA-Seq. Scientific Reports 6, 33883. 1662 

Zeisel, A., Munoz-Manchado, A.B., Codeluppi, S., Lonnerberg, P., La Manno, G., Jureus, A., 1663 

Marques, S., Munguba, H., He, L., Betsholtz, C., et al. (2015). Brain structure. Cell types in 1664 

the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142. 1665 



 
 

 
 

55 

Zheng, Y., Zemel, R.S., Zhang, Y.-J., and Larochelle, H. (2015). A Neural Autoregressive 1666 

Approach to Attention-based Recognition. International Journal of Computer Vision 113, 1667 

67-79. 1668 

Zhong, J.F., Chen, Y., Marcus, J.S., Scherer, A., Quake, S.R., Taylor, C.R., and Weiner, L.P. 1669 

(2008). A microfluidic processor for gene expression profiling of single human embryonic 1670 

stem cells. Lab Chip 8, 68-74. 1671 

Zhou, J.X., Aliyu, M.D., Aurell, E., and Huang, S. (2012). Quasi-potential landscape in 1672 

complex multi-stable systems. Journal of the Royal Society: Interface. 9, 3539-3553. 1673 

Zhou, J.X., Samal, A., d'Hérouël, A.F., Price, N.D., and Huang, S. (2016). Relative stability 1674 

of network states in Boolean network models of gene regulation in development. 1675 

BioSystems 142-143, 15-24. 1676 

Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Smets, M., Leonhardt, H., Hellmann, I., 1677 

and Enard, W. (2016). Comparative analysis of single-cell RNA sequencing methods. 1678 

Molecular Cell 65, 631-643 1679 

 1680 

 1681 

 1682 



Figure 1

Human

Gastrointestinal system

Intestinal
epithelial cells

Intestinal
epithelium

Small intestine



Figure 2

BA

tSNE1

tS
N

E
2

Correspondence score
Min Max1.5

Apical view

Dorsal view

LateralVII 

I 

II 

III 

IV 

V 

Circular projection X 

C
irc

ul
ar

 p
ro

je
ct

io
n 

Y
 

VI 

tSNE 1

tS
N

E
 2

Retina bi-polar neurons (scRNA-Seq) Bone marrow immune cells (proteins, CyTOF)

DC Splenic immune cells (scRNA-Seq) Annelid brain (scRNA-Seq + FISH)



Figure 3

3–4 day
5–6 day
6–7 day

1–2 day

14 day

Maturation 
trajectory

DC 1

D
C

 2

A Cell fate tracing (GPfates)

biSNE 1Latent variable 1

La
te

nt
 v

ar
ia

bl
e 

2

B Neurogenesis (single nucleus RNA-Seq)

tSNE 1

tS
N

E
 2

DC Stem cell differentiation Wishbone branch

Precursor state

Tip branch 1

Tip branch 2

Decision
state

bi
S

N
E

 2

Bifurcation
Th1

Tfh



Figure 4

PC3

PC1 PC1

1 hr
2 hr
4 hr
6 hr

PC2

PC
2

LPS

Low

High

G1 score

G
2/

M
 s

co
re

G1

G2/M

S

A Cell cycle in Th cells B Response to LPS in immune cells C Th17 cell pathogenicity

0 100


