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Abstract This paper summarises the five presentations at

the First International Workshop on Systems Radiation

Biology that were concerned with mechanistic models for

carcinogenesis. The mathematical description of various

hypotheses about the carcinogenic process, and its com-

parison with available data is an example of systems

biology. It promises better understanding of effects at

the whole body level based on properties of cells and

signalling mechanisms between them. Of these five

presentations, three dealt with multistage carcinogenesis

within the framework of stochastic multistage clonal

expansion models, another presented a deterministic

multistage model incorporating chromosomal aberrations

and neoplastic transformation, and the last presented a

model of DNA double-strand break repair pathways for

second breast cancers following radiation therapy.

Introduction

Five presentations at the First International Workshop on

Systems Radiation Biology held at GSF on 14–16 February

2007 were concerned with mechanistic models for radia-

tion carcinogenesis. These presentations are summarized in

this manuscript. Of these five presentations, three (given by

Heidenreich, Little, and Moolgavkar) dealt with the theme

of multistage carcinogenesis within the framework of

stochastic multistage clonal expansion models. The pre-

sentation by Schöllnberger discussed a deterministic

multistage model incorporating chromosomal aberrations

and neoplastic transformation. Finally, Thomas presented a

model of DNA double-strand break (DSB) repair pathways

for second breast cancers following radiation therapy.

Stochastic multistage clonal expansion models

for carcinogenesis

Stochastic multistage clonal expansion models are exten-

sions of the two-stage clonal expansion (TSCE) model of

carcinogenesis generally attributed to Moolgavkar and

Venzon [1] and Moolgavkar and Knudson [2] and some-

times referred to as the MVK model. In this, its simplest,

incarnation, the model assumes that initiated cells, the

hallmark of which is a slight growth advantage over normal

neighbours, arise from stem cells according to a non-
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H. Schöllnberger

Department of Materials Engineering and Physics,

University of Salzburg, A-5020 Salzburg, Austria

D. C. Thomas

Biostatistics Research Section, Division of Biostatistics,

Department of Preventive Medicine,

University of Southern California,

Los Angeles, CA 90089-9011, USA

123

Radiat Environ Biophys (2008) 47:39–47

DOI 10.1007/s00411-007-0150-z



homogeneous Poisson process. Once created, initiated cells

undergo a stochastic birth–death–mutation process with the

birth and death process giving rise to clones of initiated

cells and the mutation process leading to the conversion of

an initiated cell into a fully malignant cell. Multistage

extensions of this basic model have been proposed by

various investigators. A couple of these extensions are

discussed later in this report. The introduction of one or

more stages with stochastic clonal expansion in multistage

cancer models has profound implications for inferences

drawn from the models.

Clonal expansion and carcinogenesis (Moolgavkar)

Clonally expanding cell populations are important in car-

cinogenesis and modelling their dynamics stochastically

rather than deterministically has interesting consequences.

We give some examples here.

Gestational mutations and cancer

Frank and Nowak [3] suggested that mutations at critical

loci during the exponential phase of growth during gesta-

tion could have important implications not only for

childhood, but also for adult cancers. Mutations occurring

early in gestation would give rise to jackpots (i.e. clones) of

cells with mutations at critical loci increasing the proba-

bility of cancer in an individual carrying these mutations.

The quantitative consequences of gestational mutations

were investigated by Meza et al. [4]. They used the Luria–

Delbruck model for jackpots in tandem with the Luebeck–

Moolgavkar model [5] for colon cancer and concluded that,

depending on the rates of gestational mutations, between 2

and 20% of colon cancers in the surveillance epidemiology

and end results (SEER) registry in the year 2000 arose from

stem cells that had sustained one or more critical mutations

during gestation. Meza et al. [4] also investigated the

cancer risks associated with radiation exposure during

gestation and concluded that radiation during the last tri-

mester of pregnancy carried the highest risk, consistent

with the epidemiological data.

Clonal expansion and cancer incidence rates

Stochastic clonal expansion of intermediate cells on the

pathway to cancer also has important implications for the

incidence of cancer in human populations. Some of these

flow from the fact that stochasticity of carcinogenesis

introduces heterogeneity of cancer risk. Even if one starts

off with a completely homogeneous population, with the

passage of time, the population becomes increasingly het-

erogeneous with respect to cancer risk as a consequence of

the stochasticity of the carcinogenic process. Much of this

heterogeneity arises from the fact that clonal expansion of

intermediate cells is modelled by stochastic birth and death

processes, leading to distributions of cells in intermediate

stages on the pathway to carcinogenesis. Unfortunate

individuals in the upper tails of these distributions tend to

develop cancer earlier than their more fortunate brethren

who lie in the lower tails. An immediate consequence of

heterogeneity is the widely observed departure of cancer

incidence rates below the log–log incidence predicted by

deterministic versions of many multistage models.

Heterogeneity of intermediate cell populations also

plays an important role in the temporal evolution of

cancer risk in a population exposed to a carcinogen, such

as ionising radiation or cigarette smoke. When smokers

quit, the incidence rates of lung cancer fall below those

among continuing smokers and gradually over a period of

15–20 years approach those among life-long non-smokers.

While this decline to background rates has often been

attributed to repair of smoke-induced damage of lung

tissue, it can be explained by the heterogeneity in the

population of intermediate cells among smokers. Within

the framework of the TSCE model, the main effect of

tobacco smoke is to stimulate clonal expansion of initiated

cells (promotion). This leads to a distribution of initiated

cells that is shifted to the right, i.e., to larger numbers, but

overlaps the distribution of initiated cells among non-

smokers. When smokers quit, individuals in the upper tail

of the distribution develop lung cancer at a higher rate

than the non-smokers. Eventually, however, the high-risk

individuals are depleted, and the risk among ex-smokers is

now determined by individuals in the lower tail of the

distribution, which overlaps the distribution among non-

smokers.

The so-called inverse exposure-rate effect for high-LET

radiation has also been explained in terms of a promotional

effect of high-LET radiation in carcinogenesis, first pos-

tulated as a result of an analysis of the Colorado Plateau

miners’ data [6] and subsequently confirmed by analysis of

experimental data [7]. More recently, it has been suggested

that low-LET radiation may also have some promoting

activity [8]. The promoting action of radiation is discussed

in more detail (section of Heidenreich) later in this paper.

With an inverse exposure-rate effect, protraction of the

time over which a given exposure is administered has an

interesting consequence, namely, one observes crossing

incidence functions, a phenomenon that is difficult to

detect and address using conventional epidemiological

methods. Methods of analyses based on ideas of multistage

carcinogenesis are much better suited to addressing issues

of this type.
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Analyses of pre-malignant lesions

The stochastic treatment of clonal expansion allows also

for the development of expressions for the distributions of

numbers and sizes of pre-malignant lesions, such as

altered foci arising in rodent hepatocarcinogenesis

experiments, and adenomatous polyps in the human colon

[9, 10], which can then be used for data analyses [11, 12].

Jeon et al. [10] developed expressions for the distribution

of the number and sizes of adenomatous polyps based on

the Luebeck–Moolgavkar model using a combination of

simulation and mathematical techniques. They used these

expressions to devise optimal screening schedules for

colon cancer [10].

Epidemiological data and models of radiation

carcinogenesis (Heidenreich)

Unfortunately, cancer biologists have not yet worked out

the details of how cancer evolves in an organ [13].

Therefore, fairly crude simplifications of these processes

have to be used when trying to connect the most relevant

biological processes with the observed risk patterns due to

ageing or radiation. When extracting information about the

cancer process, or the action of radiation from epidemio-

logical or experimental cancer incidence data, it is crucial:

• To understand what quantities are identifiable in the

models. Ideally, the signals to look for are selected

before any analysis is done

• To choose the best available data (power, quality) for

the addressed question

• Alternatively, at least to verify that the tested models

make different predictions for the chosen data.

This type of research requires cooperation of epidemiol-

ogists, biologists and modellers (usually physicists or

mathematicians). Depending on the definition, it may thus

be considered as systems radiation biology.

Here solid cancers are considered, and the action of

radiation is studied. To be specific, the following model-

components are used:

Initiation: A Poisson process resulting in cells with a

growth advantage

Promotion: Slow clonal expansion of initiated cells

Conversion: A rate-limiting step from initiated cells to

malignant ones

Lag time: Deterministic growth of one malignant cell to

an observed tumour.

Each of these components could be radiation-dependent

and could consist of sub-steps.

Radiation action on initiation

According to a conventional view, radiation only influ-

ences the initiating event of the multi-step carcinogenic

process [14]. With this assumption, 50 mGy gamma-rays

were estimated to be about as efficient in initiation as

1 year of normal life [15, 16]. If part of the effects in the

atomic bomb survivors data is due to other radiation

actions, than this number may become larger [17]. In the

lung cancer induction of mice, a dose rate of about

10 mGy/day was estimated to double the spontaneous

initiation rate [18]. High LET radiation was also found to

be acting on initiation [19, 20].

Radiation action on promotion

Radiation effects on the effective clonal expansion rate of

initiated cells (promotion) have been found for radon and

lung cancer [19–21], alpha-particles from Thorotrast in

liver [22], alpha-particles from radium in bone cancer [23],

as well as for neutrons and gamma-rays on lung cancer in

mice [18].

The most direct evidence for a promoting action of

radiation comes from protraction effects. As long as effects

are ignored that are typically observable only in old age,

the following holds:

Initiating action is additive: two exposures with a

sufficient time between them give (approximately) an

excess risk, which is the sum of the single exposure

excess risks.

Promoting action is multiplicative: two exposures with a

sufficient time between them give (approximately) a

relative risk, which is the product of the single exposure

relative risks.

Fractionated exposure with equal fractions may be best

to test between these possibilities, as there is no freedom

due to varying dose rate.

At Pacific North–West National Laboratory (PNNL),

rats were exposed for 2–700 days at constant exposure rate.

The excess relative risk (ERR) per 100 working-level

months (WLM) radon for fatal lung tumours based on the

fitted background was estimated [24] (see Fig. 1). Initiation

only predicts a decrease of ERR/WLM with duration, due

to age-at-exposure effects.

The radiation action that induces promotion is not clear.

At least one mechanism was proposed [25]. If (spontane-

ously) initiated cells can replace neighbouring cells killed

by radiation faster than normal cells, then there is a pro-

moting effect of radiation.
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Radiation action on conversion

If conversion is radiation-sensitive, then an acute irradia-

tion induces a peak in risk after the lag time. This may be

smeared out if the assumed deterministic growth of

malignant cells is distributed over a period of time.

In the JANUS experiment, a large number of mice were

exposed to acute gamma-rays and neutrons up to high doses

[18]. The lung cancer cases are plotted in Fig. 2. There is

not a single lung cancer case up to 400 days after exposure.

The lag time should definitely be shorter than this.

In various other analyses, the radiation-induced con-

version rate relative to the baseline one was found to be a

factor of at least ten smaller than that for initiation [21, 24].

This agrees qualitatively with radio-biological under-

standing: candidate mutations for late events may be

mostly induced spontaneously.

Radiation action on lag time

In neutron-exposed mice, the estimated lag time to lung

cancer was found to be significantly smaller than in

gamma-exposed mice [18]. Possibly neutron-induced

instability gives more aggressive cancer-subtypes than

occur spontaneously or after gamma-ray exposures.

Distribution of risk due to the stochastic cancer process

The considered cancer model is a stochastic one. The

mathematical description does not use the expectation of

the number of initiated cells, but their distribution. As the

number of initiated cells is proportional to the risk after the

lag time, this allows one to calculate a distribution of risk at

any given age. Under the assumptions of the present clonal

expansion model it was found that:

The estimated baseline risk for liver cancer of more than

95% of a population at age 40 is less then 10% of the

population risk, while it is more than 10-fold for the top

percentile in risk [26].

After the injection of Thorotrast, the estimated relative

risk for the low baseline risk person is more than 10

times larger than for the top percentile in baseline risk

[27]. For the high baseline risk group, cancer is not a rare

disease. Therefore, the population-based estimate of

relative risks can be an underestimation for most persons

most of the time.

A (thorny) path to better risk estimates at low doses

Integrated projects such as the EU-project RISC-RAD [28]

should demonstrate that productive interactions between

cancer modelling and radio-biology are possible. This may

help in going from a more detailed understanding of radi-

ation actions observed in experimental work to quantitative

risk estimates. This in turn may be the only way to improve

the estimates of small risks after radiation beyond direct

epidemiology.

Multistage models for cancer incorporating genomic

instability (Little)

There are many biological data suggesting that the initi-

ating lesion in the multistage process leading to cancer
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Fig. 1 Estimate of the lifetime excess relative risk per nominal

exposure unit of rats exposed to radon for various periods of time with

a constant exposure rate (100 WL). The dashed line represents model

estimates with only an initiating radiation action (I-model), and the

solid line one with initiation and promotion (IP-model) (based on

model fits carried out by Heidenreich et al. [24])

Fig. 2 Number of lung cancer cases in mice after acute exposure to

gamma-rays and neutrons (based on model fits carried out by

Heidenreich et al. [18])
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might be one involving a destabilization of the genome

resulting in elevation of mutation rates, reviewed by

Morgan [29, 30]. Loeb [31, 32] has presented evidence that

an early step in carcinogenesis is mutation in a gene con-

trolling genome stability. Stoler et al. [33] showed that

there are 11,000 mutations per carcinoma cell for a number

of different cancer types, again implying that genomic

destabilization is an early event in carcinogenesis. In par-

ticular, there is strong evidence of such an early genomic

destabilization event for colon cancer [31–33]. However,

the question of whether chromosomal instability is the

initiating event in carcinogenesis, in particular colon can-

cer, is controversial. Tomlinson and Bodmer [34] argue

that cancer is an evolutionary process, and that the

observed accumulation of chromosomal and other damage

in colon cancers may simply be the result of selection for

cells with growth advantage.

Recently, two papers have appeared proposing formu-

lations of stochastic carcinogenesis models that

incorporate genomic instability (GI) [35, 36], both applied

to colon cancer. In contrast, Luebeck and Moolgavkar [5]

have recently proposed a four-stage stochastic model

positing inactivation of the adenomatous polyposis coli

(APC) gene followed by a high frequency event, possibly

positional in nature, an extension of the two-stage clonal

expansion model of Moolgavkar and Venzon [1] and

Knudson [37] (the so-called MVK model); this model does

not assume GI. The paper of Little and Wright [36] pro-

posed a general class of carcinogenesis models that

includes, as special cases, the models proposed by Lue-

beck and Moolgavkar [5] and Nowak et al. [35], illustrated

in Fig. 3. The model of Little and Wright [36] also gen-

eralizes the class of so-called generalized MVK models

developed by Little [38], and which in turn therefore

generalizes the two-mutation model of Moolgavkar and

Venzon [1] and Knudson [37]. The model is close in spirit

to the model of Mao et al. [39].

Little and Li [40] have recently compared the goodness

of fit to US SEER [41] colon cancer data of three models

developed by Little and Wright [36] with the ones recently

proposed by Nowak et al. [35] and Luebeck and Mool-

gavkar [5]. The best fitting models were the two-stage

model of Nowak et al. [35] and the two-stage model of

Little and Wright [36], with the four stage model of Lue-

beck and Moolgavkar [5] not markedly inferior; model fits

are illustrated in Fig. 4 (taken from Little and Li [40]). The

fits of the three-stage and five-stage models were somewhat

worse (P \ 0.05), the five-stage model fitting particularly

poorly (P \ 0.01). Both optimal genomic instability mod-

els predicted cellular mutation rates that are at least 10,000

times higher after genomic destabilization, for both sexes

[40]. These large elevations in mutation frequency are not

inconsistent with a variety of biological data [31, 40, 42–

44]. In particular, Loeb and colleagues [31, 42] derive

estimates of numbers of gross chromosomal abnormalities

in human tumours, which are of the order of 10,000–

100,000-fold elevated compared with normal tissue.

Mutation rates 1,000–100,000-fold elevated have been

observed in bacteria with defects in the dnaQ (DNA

polymerase coding) gene [43, 44].

The work of Little and Li [40] suggests that analyses of

data that contain information only in relation to the age

distribution of cancer does not possess the power to dis-

criminate between models and hence to confirm or to

falsify the hypothesized involvement of GI in colon cancer.

It is possible that additional analysis, incorporating, for
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example, quantitative information on exposure to various

mutagenic agents (e.g. ionising radiation) would have the

power to discriminate between these models.

State-Vector Model for in vitro neoplastic

transformation (Schöllnberger)

The State-Vector Model is a deterministic multistage

model for in vitro neoplastic transformation and was

tested on data that show a U-shaped dose–response curve

at low doses of c-radiation [45]. In the model, initiation

results from DSBs induced by radiation and endogenous

processes. Promotion results from a disruption of inter-

cellular communication and a compensatory proliferation

of initiated cells [46]. Cell death is allowed via radiation-

induced necrosis and also at low doses via bystander-

induced apoptosis. This pathway has been hypothesized

[47] to be responsible for the observed decrease of the in

vitro neoplastic transformation frequency below the

spontaneous level [45, 48, 49]. The protective apoptosis-

mediated bystander effect is implemented via rate con-

stant kap. At first, the model with kap = 0 is fitted to the

control and high dose data points for immediate and

delayed plating. The model with kap as the only free

parameter was then fitted to the whole data set, with the

other parameter values as fixed inputs [50, 51]. Figure 5

shows the data of Redpath et al. [45] and the different

model contributions. Since the publication of these studies

[50, 51], 95% confidence intervals (CI) were calculated

for the best-estimated values using the residuals and the

Jacobi matrix obtained in local model fits that follow the

global search of the parameter space. For delayed plating,

the best estimated value for kap is 0.054/day [51] (95%

CI: 0.031–0.078) and for immediate plating kap = 0.022/

day (95% CI: 0.007–0.036).

The relevance of in vitro neoplastic transformation for

cancer induction in humans has caused discussion [45].

Cells transformed in vitro cause sarcoma after inoculation

into host animals [52]. The relative risks calculated from

human and mouse in vitro data [45, 48, 49] are remarkably

similar to those from human epidemiological studies, par-

ticularly for breast cancer and leukaemia [45]. Mitchel

(personal communication) points out the importance of in

vitro neoplastic transformation and argues that if a cell in

vivo is ‘‘near transformation’’ for whatever reason and

would eventually develop into a cancer, and if radiation

protects against and slows/reverses that process as dem-

onstrated [53–58], then this would be critically important.

Protective mechanisms such as homologous recombination

(HR), an error-free DSB repair mechanism that could prove

to be crucially important in the observed reduction of the

neoplastic transformation frequency below the spontaneous

level, are evolutionarily conserved [59]. The conservation

of HR reaches from prokaryotes to lower and higher

eukaryotes including humans [57] and neoplastic trans-

formation of human and other mammalian cells facilitates

the study of such mechanisms.

Modelling DNA double-strand break repair pathways

for second breast cancers following radiotherapy

(Thomas)

Ataxia–telengiactasia (A–T) is a rare recessive disorder

caused by homozygous truncating mutations in ataxia-

0 20 40 60 80 90 0 20 40 60 80 90

Age (years)

0.001

0.01

0.1

1

10

100

1000

001/( etar ec nedicni launn
A

)raey /000

Males Females

X

X

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X

X
X

X
X

X

x          x  

2-stage 1-destabilization model

Nowak et al (2002) model
Luebeck and Moolgavkar (2002) model

3-stage 1-destabilization model
5-stage 2-destabilization model

Observed + 95% CI

Fig. 4 Cancer hazards predicted by models of Nowak et al. [35]

(with two cancer-stage mutations and one destabilizing mutation),

Luebeck and Moolgavkar [5] (with four cancer-stage mutations and

no destabilizing mutations), and Little and Wright [36] (with two

cancer-stage mutations and one destabilizing mutation, three cancer-

stage mutations and one destabilizing mutation, five cancer-stage

mutations and two destabilizing mutations), with stem cell population

fixed to 108 cells, refitted to SEER [41] colon cancer data, and

observed data (with 95% CI, adjusted for overdispersion) (reproduced
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telangiectasia mutated gene (ATM), with one of its features

being extreme radiation sensitivity. It has been hypothe-

sized that ATM heterozygotes have increased risk of

cancer, particularly breast [60, 61] and that this suscepti-

bility interacts with ionising radiation exposure [62]. Gatti

et al. [63] suggested that the increased cancer risk is

associated with missense mutations rather than the trun-

cating mutations that cause A–T. In any event, it is well

established that ATM plays a central role in two pathways

for repair of DSBs, the HR repair and the nonhomologous

end-joining repair pathways.

The Women’s Environment, Cancer, and Radiation

Epidemiology (WECARE) study was established to test the

hypothesis that women who are carriers of a mutant allele

in the ATM or BRCA1/2 genes (or other DNA repair genes)

are more susceptible to a second radiation-induced breast

cancer than are non-carriers. A population-based, nested

case–control study was conducted in a cohort of first breast

cancer patients from five centres in the US and Denmark. A

total of 708 cases of bilateral breast cancer were identified

and individually matched on centre, age at and time since

first cancer to 1,397 controls with unilateral breast cancer.

Controls were also counter-matched 2:1 on whether or not

they received radiotherapy as recorded in the cancer reg-

istries and doses to each of eight locations in the

contralateral breast (the one at risk of a second cancer)

were estimated by phantom dosimetry. The design and

analysis of this study is fully described in Bernstein et al.

[64]. All subjects were genotyped for ATM, BRCA1 and

BRCA2, using a staged approach consisting of DHPLC

followed by direct sequencing [65]. Mutation detection in

other DNA repair genes is currently underway.

We have developed a hierarchical modelling strategy [66]

to analyse the effects of the numerous rare variants in ATM,

as well as to develop a comprehensive model for all these

genes and six others currently being tested. The first level of

the model is a standard conditional logistic regression model

of the form logit Pr(Yi = 1) = a + RjbjXij + c Zi where

Yi denotes disease status for subject i, Xij is an indicator for

variant j, and Zi is a vector of fixed covariates (including the

offset term needed to allow for the countermatching). In the

second level, the log relative risk coefficients (bj) are in turn

regressed on a vector of ‘‘prior covariates’’ Wj describing

characteristics of the variants, such as indicators for type of

variant, SIFT score, etc. Preliminary analyses found no

significant effects of any of these prior covariates, but the

risk estimates for individual variants were considerably

stabilized by the second-level model, particularly for the

rarer variants.

We are currently conducting a series of functional

assays on cell lines from a random sample of five subjects

with each of the ten most common variants and all indi-

viduals with rare variants. Each cell line will be assayed

(with two replicates each) for ATM expression levels, ATM

kinase activity, cell cycle checkpoint activation, and colony

survival after ionising radiation exposure. These assays can

then be used in the hierarchical modelling strategy to

improve the prediction of the effects of individual variants

A

Dose (Gy)

0.0 0.2 0.4 0.6 0.8 1.0

01x( lle
C 

g
nivivr

u
S re

p yc
ne

u
qer

F  
n

oita
mr

of s
nar

T
5 )

0

2

4

6

8

10

0.000               0.005               0.010
0

1

2

3

4

5

B

Dose (Gy)

0.0 0.2 0.4 0.6 0.8 1.0

01x( lle
C 

g
nivivr

u
S re

p yc
ne

u
qer

F 
n

oita
mr

o fs
nar

T
5 )

0

2

4

6

8

10

0.000               0.005                0.010
0

1

2

3

4

5

Fig. 5 Transformation frequency for CGL1 cells irradiated with c-

radiation [45]. Error bars represent 95% CI. a Data for immediate

plating and SVM fit showing the three different contributions (dash
line direct, dotted line bystander, solid line total). The direct

contribution relates to a model fit with kap = 0 to control and high

dose data for delayed and immediate plating [51]. The contribution of

the bystanders was calculated as the difference between the direct and

the total contribution. b Data for delayed plating and SVM fit showing

the three different contributions (dash line direct, dotted line
bystander, solid line total). For the SVM fits denoted as ‘‘total’’, the

95% CI are shown for the low doses (dash–dot). Insets low-dose

range with the x-axis units in Gy (reproduced from Schöllnberger

et al. [51])
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and test hypotheses about differences between subgroups

of variants with similar functional characteristics.

We are also currently genotyping six other genes

involved in DSB repair (CHEK2, TP53BP1, MDC1,

MRE11, RAD50 and NBS1) and will expand our hierar-

chical model to include these genes and their interactions

with each other and with radiation dose. We are also

hoping to carry out a genome-wide association scan as

well. In this way, we aim to build a comprehensive model

for DNA damage from ionising radiation and competency

of the various repair pathways.

Conclusion

Systems biology promises better understanding of cancer

induction through understanding and modelling properties

of cells, and the signalling mechanisms between them. The

works presented here demonstrate different approaches of

dealing with this issue.
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