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Abstract

Background: The statistical analysis of health care cost data is often problematic because these data are usually
non-negative, right-skewed and have excess zeros for non-users. This prevents the use of linear models based on the
Gaussian or Gamma distribution. A common way to counter this is the use of Two-part or Tobit models, which makes
interpretation of the results more difficult. In this study, I explore a statistical distribution from the Tweedie family of
distributions that can simultaneously model the probability of zero outcome, i.e. of being a non-user of health care
utilization and continuous costs for users.

Methods: I assess the usefulness of the Tweedie model in a Monte Carlo simulation study that addresses two
common situations of low and high correlation of the users and the non-users of health care utilization. Furthermore,
I compare the Tweedie model with several other models using a real data set from the RAND health insurance
experiment.

Results: I show that the Tweedie distribution fits cost data very well and provides better fit, especially when the
number of non-users is low and the correlation between users and non-users is high.

Conclusion: The Tweedie distribution provides an interesting solution to many statistical problems in health
economic analyses.

Keywords: Health economics, Tweedie distribution, Health care utilization, Cost data

Background
In modelling cost data of health care utilization, the non-
negative response variable is often zero because of non-
users, while the positive realisations are usually usually
right-skewed. Such variables are called semicontinuous [1]
and pose a number of problems: because of the point
mass at zero, common models involving the Gamma or
log-normal distributions have difficulty with such a mix-
ture of discrete and continuous values. A popular way to
account for this in the generalized linear models (GLM)
framework is the use of two-part models [2], which com-
bine a binary model for the dichotomous event of having
either zero or positive values with a continuous model
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for those having positive values. This complements a two-
stage decision process, which can be inadequate because
the two decisions are not usually made independently
(Winkelmann [3] and Van Ophem [4] discuss this for the
case of physicians visits). Another more simple model,
using a single distribution, is the Tobit model [5]. This
model is based on a zero-truncated normal distribution
but cannot handle excess zeros, i.e. the presence of more
zeros in the data than would be expected from the under-
lying distribution. In this linear regression setting, con-
stant variance is assumed, which is also inadequate for
cost data. Sometimes, count data model like the Poisson
are also used for cost modelling [6].
Recent research has mainly focused on developing new

models and comparing distributions for the continuous
part of the two-part models. For example, the general-
ized Gamma distribution (GenG) is a flexible choice as
it has one scale and two shape parameters. The standard
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Gamma, Weibull, exponential, and the log-normal are all
special cases of this distribution. Manning finds that this
distribution provides a more robust alternative estimator
than the standard alternatives [7]. Jones et al. compared
several recent developments in parametric and semipara-
metric regression models for health care costs [8]. Other
comparative studies, in which models are compared on
either real data, i.e. the true distribution is unknown, or
using simulations, include Basu et al. [9], Hill and Miller
[10] and Jones et al. [11]. They all focus on the analysis of
positive costs with no emphasis on the zero aspect. The
only comparative study considering zero costs is Buntin
and Zaslavsky [6].
In this study, I consider a single distribution GLM

for cost data that can simultaneously model the zeros
and continuous positive outcomes. The number of excess
zeros can be arbitrarily high while still providing good
support for the positive costs. Variance can be speci-
fied as some power of the mean. This model, based on
the family of Tweedie densities [12], has already been
shown to perform well in the case of rainfall precipitation
[13] and insurance premiums [14]. To my knowledge, the
Tweedie densities have not been used in health economic
cost data modelling before. In the following, I compare
the Tweedie model with the two-part (Binomial/Gamma
and Binomial/GenG), the Tobit, and the Poisson mod-
els regarding marginal effects (at the means), model fit
and prediction error in both Monte Carlo simulation
and real data. As analysts favour simple models that are
easy to interpret, I restrict myself to these alternatives.
For an overview of other, more specialized methods, I
refer to Mihaylova et al. [15] and the literature already
mentioned.
The rest of this paper is structured as follows:

“Methods” section illustrates the properties of the
Tweedie family of distributions and explains the proposed
model. Furthermore, it outlines the simulation study and
describes the data. The “Results” section compares the
Tweedie with the two-part, Tobit, and Poisson models on
these data before the last section concludes.
Code and data to reproduce all analyses are available on

the author’s github page (https://git.io/v6adW. Accessed
16 Aug 2016).

Methods
Tweedie family densities
I outline the model used in this paper as a special case of
exponential dispersion models (EDMs) [12]. This class of
models is a broad family of distributions defined by the
form

f (y|θ ,φ) = a(y,φ) exp
[
yθ − κ(θ)

φ

]
,

where both the normalizing functions a(·) and κ(·) are
known. θ is the natural parameter and φ > 0 is called the
dispersion parameter. Mean μ and variance of a random
variable Y from an EDM are given by E(Y ) = μ = κ ′(θ)

and Var(Y ) = κ ′′(θ)φ respectively. The Tweedie family of
distributions corresponds to special cases of EDMs where
the power mean-variance relationship is characterized by
Var(μ) = φμp for p �∈ (0, 1). The Tweedie family includes
a number of familiar distributions, e.g. Normal (p = 0),
Poisson (p = 1), Gamma (p = 2) and inverse Gaussian
(p = 3).
For cost data modelling, the choice p ∈ (1, 2) is the most

interesting one and the main focus here because of its
support for semicontinuous outcomes. Tweedie distribu-
tions in this range of p belong to the so-called compound
Poisson-Gamma distributions [12]. Let M ∼ Pois(λ) be a
Poisson random variable and let Xi

iid∼ Gamma(α,β) be
Gamma distributed with M ⊥ Xi, then a random variable
Z, defined by

Z =
{
0, ifM = 0,
X1 + X2 + . . . + XM, ifM = 1, 2, . . . ,

follows a compound Poisson-Gamma distribution, i.e. is a
Poisson sum of Gamma random variables. If M = 0, then
Z = 0, thus allowing for a probabilitymass at zero for non-
users, where Pr(Z = 0) = exp(−λ). If M > 0, then Z is
the sum ofM iid Gamma random variables, so conditional
on M, Z|M ∼ Gamma(Mα,β), resulting in a continuous
distribution for the positive outcome. With M = m, the
distribution for z > 0 is therefore given as:

f (z|λ,α,β) = λm exp(−λ)

m!
zmα−1 exp(−z/β)

βmα�(mα)
.

These parameters λ,α and β are related to the Tweedie
distribution parameters μ,φ and p by:

λ = μ2−p

φ(2 − p)
, α = 2 − p

p − 1
, β = φ(p − 1)μp−1.

Recovering the underlying marginal distribution of Z
results in a non-closed form expression for the normal-
izing function a(·), based on Wright’s generalized Bessel
functionW (·, ·, ·) [13, 16]:

a(z,φ) = 1
y
W (z,φ, p).

Dunn and Smyth [17] show that this function is strictly
convex and can be approximated by Stirling’s formula
for the Gamma function and a Fourier inversion method
for the infinite series. In practice, first, the parameters
φ and p are estimated by numerically maximizing the
profile likelihood, i.e. profiling out the mean parame-
ter μ as it is determined for a given value of φ. Sec-
ond, the mean parameter is estimated using a GLM with
the previously estimated φ. The Tweedie distribution

https://git.io/v6adW


Kurz BMCMedical ResearchMethodology  (2017) 17:171 Page 3 of 8

cannot be expressed in closed form. To compute the pro-
file likelihood, numerical optimization methods must be
used [16].
Because Tweedie distributions also belong to the expo-

nential family of distributions, they can be used in the
GLM framework [18]. Besides the ability to model exact
zeros and continuous outcomes, the idea that positive
total costs are sums of smaller costs provides an intuitive
appeal: Z is the total amount of expenses in a given period,
M the number of utilization events, and Xi the expenses
of the i-th event. In the following, I show that the Tweedie
distributions fit health care utilization cost data very well.

Monte Carlo simulation
I used a Monte Carlo simulation to address two common
situations when modelling semicontinuous cost data:

1. The non-users can be substantially different from the
users, i.e. they imply different characteristics and
have low correlation with the users.

2. The non-users belong to the same “distribution” as
the users, i.e. they share the same personal attributes,
and therefore show high correlation with the users.

In both situations, a broad range of circumstances that are
common in health care cost data were examined. They are:
(1) skewness and non-normality of the costs; (2) range of
the positive costs; and (3) outliers, i.e. proportion of indi-
vidual high cost cases. The Gamma distribution provides
a way to deal with these matters flexibly by specifying the
shape and rate parameters. In the GLM, the outcome Y of
the dependent variables is generated from a distribution
in the exponential family. The mean μ of the distribution
depends on the independent variables, X, through

E(Y ) = μ = g−1(Xβ),

where E(Y ) is the expected value of Y,Xβ is the linear pre-
dictor and g is the link function. The probability density
function of the Gamma distribution with shape parameter
α > 0 and rate parameter θ > 0 is defined by

f (x;α, θ) = θα

�(α)
xα−1 exp(−θx), x > 0.

The expectation of the Gamma distribution is E(X) = α
θ

and the variance is Var(X) = α
θ2
. Generating the outcome

Y given a linear predictorXβ and a rate parameter θ , using
a log-link function g(z) = log(z), is therefore possible
because

Y ∼ Gamma
(
exp(Xβ)2

θ
,
exp(Xβ)

θ

)
.

To generate the data for the Monte Carlo simulation, I
built a data matrix X with three columns for covariates.
I drew values in these columns at random from uniform

distributions U(2, 8), U(−10, 1), and U(−2, 0) respec-
tively. Corresponding parameters β1,β2, and β3 were
drawn from U(−2, 1). Together with a rate parameter of
θ = 30, these choices allow for a wide variation of possi-
ble shapes of the Gamma distribution, and consequently
of the costs Y.
In addition, I evaluated the following different propor-

tions of non-users/zeros for both situations: 0.05, 0.1, 0.15,
0.2, 0.3, 0.5 and 0.7. This choice covers a broad range of
settings that occur in real world scenarios. In the low cor-
relation setting, I drew values for non-users from uniform
distributions U(3, 6), U(−2, 3), and U(−1, 1) to account
for slightly different personal characteristics. In the high
correlation setting, I set users corresponding to the lowest
percentiles to zero. This implies that users and non-users
share very similar characteristics but only differ in costs.
For both low and high correlation and the varying amount
of zeros, I generated 100 different data sets, each with
N = 5000 observations, which reflect a great diversity of
possible scenarios. The choice of 5000 observations con-
forms to many real-world situations. Fewer observations
often lead to numerical instabilities, especially in the pres-
ence of many zeros, while more observations usually do
not improve the estimations.
As comparison metrics, I chose the Akaike information

criterion (AIC) for model fit and the root mean square
error (RSME) for predictive accuracy. RMSE is defined by

RMSE =
√√√√ 1

N

N∑
i=1

(
ŷi − yi

)2,

where ŷ denotes the estimate and y the true value. Because
of the squared term, larger errors have a disproportion-
ately large effect on RMSE. This effect is desirable when
predicting cost data with outliers. For an unbiased esti-
mator, the RMSE is the standard deviation. The reported
value is the average of a 5-fold cross-validation. Cross-
validation involves partitioning the data into five comple-
mentary subsets, performing the analysis on four subsets,
and validating the analysis on the one remaining subset.
This is repeated four times so that each subset is used once
for validation, and the validation results are combined
(e.g. averaged) over the rounds to estimate a final RMSE
value. As both AIC and RMSE have no intrinsic interpre-
tation for comparison across different data sets, I defined a
summed rank value. In this ranking, the best model (low-
est AIC or lowest RMSE) is assigned a value of 1, whereas
the worst of the five compared models gets value 5. Ranks
2, 3, and 4 are assigned accordingly, resulting in a theo-
retical value of 100 for a model that wins across all 100
data sets.
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Data
In a second evaluation, I used data from the RANDHealth
Insurance Experiment (RAND HIE). This US study mea-
sured health care costs, among other outcomes, of people
randomly assigned to different kinds of plans. Because of
the random assignment, the reliability of health insurance
coverage and the availability of important variables for this
application, these data provide an accurate base for cost
modelling in this case.
As outcome variable I took the total costs, consist-

ing of outpatient, drug, supply, psychotherapy and inpa-
tient expenses. I selected covariates commonly considered
to determine health care utilization. Among the socio-
economic characteristics were age, gender, race, the log-
arithm of family income (LINC), the number of physical
limitations (PHYSLM), the number of chronic diseases
(DISEA), the logarithm of family size (LFAM), the edu-
cation of the household head in years (EDUCDEC) and
a dummy variable indicating self-rated health as good
(HLTHG). Insurance-specific variables included the log
coinsurance rate plus 1 (LOGC), a dummy for the indi-
vidual deductible plan (IDP), the log of the participation
incentive payment (LPI), and a maximum expenditure
function (FMDE). A more detailed description of the data
set and the variables is available in Deb et al. [19].
I only chose the first year of observation for each indi-

vidual 18 years and older (N = 3301). There are 18.1%
zero observations for the costs with a mean of 206.75
(standard deviation 597.98) and amaximum of 17730. The
positive costs alone have a mean of 252.49 and a standard
deviation of 652.05, indicating the skewness.
For model comparison on these data, I again computed

AIC and RMSE (in 5-fold cross-validation). In addition, I
looked at the marginal effects. The marginal effect of an
independent variable is the derivative of a given function
of the covariates and coefficients of the preceding esti-
mation. The derivative is evaluated at the means of the
covariates.

Results
Simulation study
In this section, I apply the two-part, the Tweedie, the
Tobit, and the Poisson models to the simulated data and
the RAND HIE data. The two-part model involves two
estimations: first, it decides whether someone has zero
or non-zero costs using a logistic regression. Second,
conditional on having non-zero costs, it applies a con-
tinuous distribution to the positive outcome. I used both
Gamma with log-link and generalized Gamma with log-
link for this part. I also used the log-link for the Tweedie
and the Poisson model. The Tobit model features an
underlying normal distribution truncated at zero. For a
more detailed description and justification of the two-
part, Tobit, and Poisson models, see [1] and [15]. The aim

of this application is to show how model choice affects
model fit and prediction in the case of semicontinuous
health care cost data. In the RAND HIE case, I also look
at the marginal effects, but I reveal no causal effects in
this study. Figure 1 presents the Monte Carlo simulation
results of the rank comparison of both RMSE and AIC
across the different settings with low and high correlation
and varying numbers of zeros. If the number of zeros was
below 20%, the Tweedie model outperformed the Tobit,
the Poisson, and both two-part models in situations with
high correlation between users and non-users. When the
zero percentage was above 0.2, two-part models started
to surpass the Tweedie model in both AIC and RMSE.
The difference in performance regarding RMSE was less
apparent between two-part and Tweedie models in the
low correlation setting. However, two-part models had
better model fit in these situations. The GenG was always
better than the Gamma, whereas the Tobit performance
was generally very bad. The Poisson model had very bad
model fit but good predictive performance, especially in
the low correlation setting.

RAND HIE data
Table 1 presents the marginal effects estimation results for
themodels discussed using the RANDHIE data. Although
the estimates of the Tobit model are quite different in
the value range and sign, the Tweedie and both Gamma
and GenG parts of the two-part model are more simi-
lar: all estimates (except one for the GenG) shared the
same sign and had comparable values, leading to sim-
ilar conclusions. The Poisson model is more similar to
the Tobit. Looking at the standard errors, both Tweedie
and Gamma estimations lead to higher estimated stan-
dard errors than GenG. Furthermore, the AICs of the
Tweedie and two-part Gamma models are almost iden-
tical, suggesting comparable model fit: the Tweedie AIC
is 37777, whereas the two-part Gamma has a combined
AIC of 37252. The two-part GenG shows superior model
fit with a combined AIC of only 36209. The Poisson fits
the data very badly with an AIC of 51495. The AIC of the
Tobit model is significantly higher with a value of 43649.
When plotting the true and estimated quantiles of the
cost outcome for all distributions against each other, both
two-part models exhibit better model fit for the lower
quantiles, whereas the Tweedie model had slightly higher
support for upper quantiles. See Fig. 2 for these Q-Q plots.
This is probably because of the heavier tails of the Tweedie
distribution. The Tobit model fits the central quantiles
badly and the Poisson model is generally a bad fit.
Regarding RMSE, evaluated in a 5-fold cross-validation,

two-part and Tweedie models again produce very simi-
lar results. Tweedie has the lowest RMSE with a value of
568.14, two-part Gamma has 568.60, and two-part GenG
has 568.23. Tobit is slightly higher with a value of 573.26.
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Fig. 1 Rank values for AIC and RMSE for all models assessed in 100 simulated data sets each in situations with different percentages of zero costs. The
best model (lowest AIC or lowest RMSE) is assigned a value of 1, the worst gets 5. Plots show the rank sums of 100 data sets; lower values are bette

Table 1 Comparison of marginal effects of Tobit, Tweedie, Poisson, and two-part (Binomial/Gamma and Binomial/GenG) models on
the RAND HIE data

Tobit Tweedie Poisson Two-part

Binomial Gamma GenG

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

Intercept -212.276 118.391 883.966 112.936 94.892 94.754 -0.091 0.050 1260.155 132.253 861.167 66.452

age 2.274 1.135 1.481 1.067 1.064 0.934 0.002 0.001 1.083 1.222 1.652 0.606

disea 6.319 1.695 3.045 1.566 3.534 1.408 0.005 0.001 2.127 1.806 5.664 0.895

physlm 214.712 34.484 143.054 31.272 191.965 28.998 0.040 0.019 168.177 36.817 118.515 18.349

logc -23.994 17.530 -9.577 16.520 -8.445 13.323 -0.023 0.008 -3.963 19.191 -19.759 9.494

idp -7.057 34.130 10.661 32.162 -3.311 27.925 -0.008 0.016 14.492 37.642 26.614 18.545

lpi -1.806 5.612 -5.907 5.251 -1.625 4.612 0.001 0.003 -7.198 6.087 -4.135 3.005

fmde 1.728 10.453 3.828 9.846 -0.086 8.550 0.001 0.005 4.595 11.310 0.862 5.614

linc 18.113 11.951 13.757 11.492 6.876 9.452 0.012 0.005 8.076 13.893 13.392 6.926

lfam -12.640 23.245 -2.754 21.955 -15.670 18.987 0.007 0.011 -1.910 25.514 -22.502 12.599

female 138.240 26.417 82.600 25.001 66.654 21.586 0.116 0.013 68.471 28.453 71.842 14.100

black -166.908 39.181 -72.274 37.161 -60.124 31.299 -0.129 0.016 -28.317 44.221 -85.676 22.035

educdec 0.150 4.556 -2.301 4.290 -2.869 3.736 0.005 0.002 -4.205 4.897 1.894 2.441

hlthg -17.324 25.583 -13.963 24.077 -23.013 20.990 0.013 0.012 -20.765 27.486 -18.554 13.627

p 1.719 2 2

AIC 43649 37777 51495 2770 34482 33439

RMSE (5-CV) 573.26 568.14 572.33 568.60 568.23

p is the estimated mean-variance power parameter
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Fig. 2 Q-Q plots for true and estimated quantiles of total health care utilization in the RAND HIE data for all models. Because of heavy outliers, I do
not show the last percentile. Quantile values closer to the dashed line represent a better match of empirical and estimated distributions

The Poisson is slightly better than the Tobit with an RMSE
of 572.33.
The estimated value for the mean-variance power

parameter in the Tweedie model is p = 1.719. Figure 3
shows the mean-variance plots for all 5% quantiles for the
Tweedie model on the example data.

Discussion
This paper explores a single distribution GLM based on
the Tweedie family of distributions for semicontinuous
cost data. This model is comparable in model fit to the
two-part Binomial/Gamma and Binomial/GenG model
but only includes a one-stage decision process, making it
easier to interpret. The Tweedie model outperforms the
Tobit model as the popular single distribution model for
non-negative continuous data with a support for exact
zeros. The Tweedie model further outperforms the Pois-
son model that is often used for cost data modelling
despite being a count data model. Thus, the Tweedie
model provides an interesting alternative for modelling
of health care utilization cost data as it has natural sup-
port for cases in which no utilization has occurred and for
those it has. The Tweedie model especially shines when
the correlation between users and non-users of health care
utilization is high and the proportion of these non-users is

Fig. 3Mean-variance plots for all 5% quantiles for the Tweedie model.
The solid line represents the estimated value for the mean-variance
power parameter p = 1.719. Other values are plotted for comparison

low. On the other hand, more sophisticated models such
as the two-part Binomial/GenG show superior model fit
and predictive accuracy when the proportion of zeros is
high and the users and non-users suggest different charac-
teristics. There exist situtations, especially when analysing
inpatient utilization, where more that 70% zeros occurs.
This is not covered in the simulation study. The simula-
tions study only covers the RMSE metric for predictive
accuracy. Other studies also measure the mean absolute
error, or the mean error [6]. In the present case, this
lead to almost identical results, presumably because of
the ranking system. On the RAND HIE data, the Tweedie
model shows slighly better predictive accuracy but worse
model fit. The difference in RMSE was very small. Previ-
ous comparative studies including zero observations also
found only small differences in predictive accuracy mea-
sures among different models [6]. To rule out unfortunate
random splits in the cross-validation, I performed addi-
tional analyses with different random splits. No changes
in the ranking occured and only insignificant changes
in the RMSE values. The theoretical justification for the
Tweedie model is given as, for the discussed case where
the power parameter p ∈ (1, 2), the Tweedie model can
be explained as a Poisson sum of Gamma distributions.
There, the number of utilization events is expressed by a
Poisson distribution and the amount of each utilization by
a Gamma distribution.
There exists a variety of models that were not included

in this comparison. A prominent example is the extended
estimating equations (EEE) model, which starts with esti-
mates from a Gamma GLM and then iteratively improves
the link and distribution functions based on the data [20].
This semiparametric model showed good performance
in many comparison studies and has the advantage of
omitting the need to specify a link function in advance.
However, because of its iterative procedure, the EEE needs
a large number of observations (usually more than 5000)
to be efficient and, in the RAND HIE case and several
simulated data sets, it did not converge. Also, it does
not provide a closed form likelihood, and it is therefore
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unclear how the AIC can be used as a comparison met-
ric. Jones et al. [8] use the Pearson correlation test for
model comparison; because of various problems accom-
panying hypothesis tests in general [21] and the restriction
to more simple parametric models, the AIC seems prefer-
able. While the Pearson test can only summarize the
specification of the conditional mean function on the scale
of interest, the AIC measures goodness of fit of the whole
distribution on the scale of estimation [8]. Jones et al. also
find that the commonly used log-link is often not the ideal
link function [8]. The Tweedie model also supports the
inverse, identity and square root link function, but I could
not observe anymajor deviations in the results when using
these instead of the log. Even more so, link functions
other than the log were more unstable in the maximum
likelihood estimation and led to estimation errors, but
this is probably an implementation issue in the numerical
maximum likelihood optimization procedure.
Some other studies have used a quasi-Monte Carlo

design for comparison studies [8, 22]. In this setting, sev-
eral estimation data sets of various sizes are drawn with
replacement from a large real data set and are then evalu-
ated on a hold-out validation set. This was inappropriate
in this analysis because I was implicitly interested in differ-
ent relations between users and non-users and the varying
amount of zeros. However, one disadvantage of theMonte
Carlo simulation in this case is that only a predefined dis-
tribution, here the Gamma, can be used to generate data.
This may bias the analysis towards models that use the
Gamma, but the results show no evidence of that.
Recent research in health economic cost data modelling

has mainly focused on the second continuous part of the
two-part models. In this analysis, I show that the Binomial
part may need more attention, as it is obvious that a logis-
tic regression cannot adequately distinguish the non-users
and users if they share similar characteristics (i.e. they are
highly correlated) and the classes are very unbalanced (i.e.
the number of non-users is low).
Although the theory of the Tweedie families has been

known for more than 20 years, only recently have software
packages that allow easy handling of these distributions
become available [16, 23]. Further research should explore
the usefulness of Tweedie distributions with p > 2 as
they provide similar shape to the Gamma but support
heavier tails. Tweedie models in this range may be an
attractive alternative for the continuous part of a two-
part model or for cases without exact zeros and support a
more flexible mean-variance relationship. The estimated
mean-variance power parameter p = 1.719 may not
appropriately reflect the true relationship. The fixed p = 2
in Gamma models is still too low, but values of p in the
range of 2.2 to 2.3 seem to be more realistic when visually
comparing the curves in Fig. 3. This also has potential for
further investigation.

Swallow et al. [24] show in an ecological setting that a
Bayesian hierarchical model based on the Tweedie den-
sities provides further flexibility and removes this need
to make strong assumptions about mean-variance rela-
tionships a priori. Such a hierarchical extension may also
be useful to account for correlated effects by repeated
measurement of individuals, for example in clinical trial
settings or claims data.

Conclusion
Models based on Tweedie distributions are an interesting
alternative for the analysis of semicontinuous health care
cost data. They are especially useful when the correlation
between users and non-users of health care utilization is
high and the proportion of these non-users is low.
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