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Table S1 Number of individuals and deaths from CeVD and heart diseases (Shimizu et al. 2010)

	Characteristics
	Number of individuals

(n = 86611)
	Number of deaths from CeVD (n = 9622)
	Number of deaths from heart diseases

(n = 8463)

	Sex:
	
	
	

	   Male
	35687
	3958
	3261

	   Female
	50924
	5664
	5202

	Age at atomic bomb exposure (years):
	
	
	

	   0-9
	17833
	176
	238

	   10-19
	17563
	404
	508

	   20-29
	10891
	652
	831

	   30-49
	25774
	4735
	4575

	   (50
	14550
	3655
	2311

	Weighted colon dose (Gy):
	
	
	

	   <0.005
	38509
	4247
	3723

	   0.005-
	23427
	2637
	2205

	   0.05-
	12508
	1405
	1305

	   0.2-
	6356
	735
	680

	   0.5-
	3424
	363
	342

	   1-
	1763
	176
	158

	   (2
	624
	59
	50


The table provides the number of participants and death cases from CeVD and heart diseases stratified by sex, age at exposure and weighted colon dose. All values were taken from Table 1 in Shimizu et al. (2010).
Preston baseline model
The Preston baseline model has been developed for the study by Preston et al. (2003). It is as follows:
h0 = exp{cm + cf + cmN + cfN + e30l70 ( e30 ( lage70 + e30m ( e30 + e30f ( e30

     + e30sqm ( e30sq + e30sqf ( e30sq + e30qspm ( e30qsp + e30qspf ( e30qsp

     + e50qspm ( e50qsp + e50qspf ( e50qsp + l70m ( lage70 + l70f ( lage70

     + l70sqm ( lage70sq + l70sqf ( lage70sq + l40qspm ( lage40qsp + l40qspf ( lage40qsp + 

     + l70qspm ( lage70qsp + l70qspf ( lage70qsp}





  






 (S1)

with e30 := (e ( 30)/10, e30sq := e30 ( e30 
        e50 := (e ( 50)/10
        lage70 := ln(a/70), lage70sq := ln(a/70) ( ln(a/70)
        e30qsp := 
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        e50qsp := 
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        lage40qsp := 
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        lage70qsp := 
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These naming conventions were taken from R13models.log available at http://www.rerf.or.jp/library/dl_e/lss13.html. Age at exposure is denoted by e, attained age by a. Model parameters in eq. (S1) are italicised. Parameters cm, cf, cmN, and cfN represent constant factors (cm and cf, for example, are constants related to males and females from Hiroshima), parameter e30l70 describes variations of the hazard with multiplicative effects of attained age and age at exposure, while parameters e30m and e30f describe variations of the hazard with age at exposure for males and females, respectively. Parameters e30qspm and e30qspf mark the dependence on a quadratic spline function with age knot at e = 30 years for males and females, respectively. The Preston baseline model therefore uses 29 model parameters including the four age knots in e30qsp, e50qsp, lage40qsp, and lage70qsp.

Mathematical functions used for the 13 parametric dose-response models from Figure 1
The general form of an ERR model is h = h0 ( (1 + ERR(D, s, a , e)) where h is the total hazard function, h0 is the baseline model and the function ERR(D, s, a , e) describes the change of the hazard function with weighted colon dose D allowing for effects of sex (s), age at exposure (e) and attained age (a). It is ERR(D, s, a , e) = err(D) × ε(s, a, e) = err(D) × exp(dem1 ( sex + dem2 ( e30 + dem3 ( lage70). Here, err(D) describes the shape of the dose-response function, ε(s, a, e) contains the dose-effect modifiers sex, attained age and age at exposure and dem1, dem2, and dem3 are three adjustable parameters related to the three dose-effect modifiers. The naming conventions for e30 and lage70 are provided after eq. (S1). The general form of an EAR model is h = h0 + EAR(D, s, a , e) where EAR(D, s, a , e) = ear(D) × ε(s, a, e). For h0 we first applied the Preston baseline model given in eq. (S1).
For err(D) the following dose-response models were used (analogous functions were applied for ear(D)).
err(D) = (1 × D










LNT model
err(D) = 1.12 × (1 × D2









Quadratic (Q) model
err(D) = (1 × D + 1.12 × (2 × D2








Linear-quadratic (LQ) model
err(D) = (1 × D × exp(-(2 D)









Linear-exponential (LE) model
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Linear-threshold (LTH) model
err(D) = 0.5 ( scale ( [tanh(105 (D ( Dth)) – tanh(-105 Dth)]




Step model 
err(D) = 0.5 ( scale ( [tanh(s (D ( Dth)) – tanh(-s Dth)]





Smooth step model
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Step-linear model
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Sigmoid model
err(D) = 1.12 × (1 × D×(D-Dth)








Hockey stick model (J-shaped model)
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Hormesis model
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Two-line spline model
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Categorical model

The necessary adjustments for random errors in dosimetry applied to the dose term are already applied in the publicly available LSS data, but a separate adjustment involving a multiplication factor to the dose-squared covariable should be done explicitly, either according to Pierce et al. (1990) (factor 1.12) or Pierce et al. (2008) (revised factor 1.15). Since most of the published analyses apply the factor 1.12, this has been adopted here for the quadratic and linear-quadratic models and for the hockey stick model, which is nested with the quadratic model.
The step model generally gives a good indication where a threshold may be located. An explanation why this model generally yields a lower final deviance than a smooth step model is provided in the Appendix (section A.3) of Simonetto et al. (2014). Instantaneous changes in risk are, however, biologically unrealistic. The hormesis model was introduced by Brain and Cousens (1989).

Figure S1
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Number of model parameters for the applied dose-response models and relation between the models. Two models are nested if they are connected by an arrow.

Calculation of AIC-weights
For a set of n non-nested models, the AIC-weight, pm, was calculated for model m according to the following equation (Burnham and Anderson 2002, Claeskens and Hjort 2008): 
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Here, (AICm = AICm ( AIC0, where AICm is the AIC-value for model m and AIC0 is the smallest AIC-value of all n models. The resulting weights, multiplied by a factor of 104, give the number of samples for risk estimates to be generated by uncertainty distribution simulations.

The criterion for inclusion of a model into the set of final non-nested models, which was used for multi-model inference (MMI), is whether p1 > 0.05 when comparing with the best model, i.e. the one with (AIC = 0 (Hoeting et al. 1999, Walsh 2007). In that case eq. (S2) reduces to pm = exp(-(AICm/2)/[exp(-(AICm/2) + 1]. With this equation it is easy to show that for (AIC1 < 5.9 one obtains p1 > 0.05. Applying this formula to the final non-nested models for heart diseases (Table 1, main text), one finds for the ERR-smooth step and EAR-smooth step models p1 = 0.071 and 0.13, respectively. Consequently, these two models survive the selection process. The AIC-weights provided in Table 1 were calculated using eq. (S2) because to be useful for MMI they need to sum up to 1.

Aspects of model selection for the cerebrovascular diseases (CeVD) mortality data
Table S2 provides the main results of fitting the parametric dose-response models from Figure 1 as ERR models to the mortality data for CeVD. Considering Figure S1 and applying the likelihood ratio test (LRT) three ERR models were identified for Occam’s group and were used for MMI. These three models are marked in bold in Table S2. The selection process was performed as follows. The final deviance (dev) of the ERR-LNT model was compared with the final deviance of the streamlined baseline model (dev = 13422.27). The improvement in deviance was dev = 4.74 > 3.81. Based on the LRT, the additional model parameter ((1) was therefore significant at the 95% significance level and the model was included into the set of final non-nested models that was used for MMI. For the ERR-Q model one obtains dev = 6.51 > 3.81 and so this model was also included for MMI. The LQ is nested with the LNT model and we obtained dev = 1.82 < 3.81. The additional parameter ((2) was therefore not significant, thereby eliminating the ERR-LQ model. For the ERR-LE model one finds dev = 1.5 < 3.81. The LTH model is nested with the LNT model. Comparing the final deviances we obtained dev = 2.19 < 3.81, which eliminated the ERR-LTH model. Because the step models (which were implemented as a modified hyperbolic tangent function) are not nested with any of the models that contain only one or two parameters (Figure S1), their deviances need to be compared with the one from the streamlined baseline model. The step model gives an indication of where a dose threshold may be located; for that model Dth = 0.82 Gy was found. As explained in the previous section, slope s = 105 Gy-1 was used and therefore this parameter does not count as a model parameter because 1/s ( 0 compared to all other parameter values. Compared to the streamlined baseline model this model therefore has two additional parameters and one finds dev = 13422.27 - 13415.48 = 6.79. Based on the LRT the two parameters Dth and scale are therefore significant at the 95% level (6.79 > 5.99). This model is, however, biologically unrealistic because of its extremely steep slope. It was therefore not included for MMI. For the ERR-smooth step model with free slope parameter dev = 6.50 was found and because 6.50 < 7.82 this model was not included for MMI. The step-linear model is nested with the smooth step model but because the latter was not significant one compares with the streamlined baseline model to obtaindev = 6.70 < 9.49, which eliminated the ERR-step-linear model. The deviance of the sigmoid model, not nested with any of the models that contain only one or two parameters, was compared with the deviance of the streamlined baseline model to find dev = 6.67 < 7.81. Therefore, the sigmoid model did not survive the selection process as its three parameters were not significant. Although the hormesis model is nested with the sigmoid model, its deviance needs to be compared with the deviance of the streamlined baseline model because the sigmoid model was not significant. One obtains dev = 7.46 < 9.49. That eliminated the hormesis model. The hockey stick model is nested with the Q model but the improvement in quality of fit was marginal: dev = 0.06 < 3.84, i.e. the additional parameter Dth was not significant. The two-line spline model is nested with the LTH model, which was, however, not significant. We therefore compared with the streamlined baseline model to obtain dev = 8.12 > 7.81. Consequently, the ERR-two-line spline model was included into the set of final non-nested models used for MMI.  The problematic of applying the LRT in segmented regression (Feder 1975), as it is the case here for the two-line spline model, is known to the authors. One would have to simulate the deviance-distributions of the two models (ERR-two-line spline and streamlined baseline models); if the two distributions do not overlap by more than 5%, then they are significantly different and consequently (1, (2 and Dth would be significant at the 95% level. 
As described in the main text (Methods section), when the full Preston baseline model was streamlined in combination with an EAR-LNT model, a slightly different baseline model was obtained. The fit of this streamlined baseline model alone with its 17 parameters led to dev = 13417.91. The EAR-LNT model led to an improvement of dev = 3.70 < 3.84. For the EAR-Q model the improvement was not significant either: dev = 3.16 < 3.84. Both models were therefore not included for MMI. For the EAR-LQ, which is to be compared with the streamlined baseline model, the authors obtained dev = 3.72 < 5.99 and therefore its two parameters were not significant. Analogous results were obtained for the EAR-LTH model (dev = 4.08 < 5.99). The parameters of the EAR-smooth step and EAR-hockey stick models were not significant either. The EAR-sigmoid model yielded dev = 13414.02. The corresponding improvement compared to the streamlined baseline model was dev = 3.88 < 7.81. The EAR-hormesis model and the EAR-two-line spline model did not lead to stable fits.

Table S2 Results of fitting the dose-response models from Figure 1 as ERR models to the mortality data for CeVD (Shimizu et al. 2010)
	
	dev
	(dev
	Npar
	AIC
	(AIC

	ERR-LNT model
	13417.53
	3.38
	16
	13449.53
	1.76

	ERR-Q model
	13415.77
	1.61
	16
	13447.77
	0

	ERR-LQ model
	13415.71
	1.56
	17
	13449.71
	1.94

	ERR-LE model
	13416.03
	1.87
	17
	13450.03
	2.26

	ERR-LTH model, Dth = 0.48 Gy
	13415.34
	1.18
	17
	13449.34
	1.57

	ERR-step model, Dth = 0.82 Gy
	13415.48
	1.33
	17
	13449.48
	1.72

	ERR-smooth step model, Dth = 1.18 Gy
	13415.77
	1.62
	18
	13451.77
	4.01

	ERR-step-linear model, Dth = 1.02 Gy
	13415.57
	1.42
	19
	13453.57
	5.81

	ERR-sigmoid model, Dth = 1.34 Gy
	13415.60
	1.45
	18
	13451.60
	3.83

	ERR-hockey stick model, Dth = 0.30 Gy
	13415.71
	1.56
	17
	13449.71
	1.94

	ERR-hormesis model, Dth = 1.07 Gy
	13414.82
	0.66
	19
	13452.82
	5.05

	ERR-two-line spline model, Dth = 0.14 Gy
	13414.15
	0
	18
	13450.15
	2.39


The models were implemented as ERR models. For each model resp. model fit the following measures are provided: the final deviance dev, dev, the number of model parameters Npar, the Akaike Information Criterion (AIC) and AIC. Here, the difference in final deviance is denoted by dev with respect to the model with the smallest final deviance. It is AIC = dev + 2 ( Npar. The difference in AIC-values with respect to the model with the smallest AIC-values is denoted by AIC. Those models that were used for MMI are marked in bold. As a comparison, the fit of the streamlined baseline model alone with its 15 parameters led to dev = 13422.27.
Table S3 Model parameters, maximum likelihood estimates (MLEs) and Wald-type standard errors (in parenthesis) for the three final non-nested models that were used for MMI for the CeVD mortality data. Parameters 1 to 15 are the baseline parameters, parameters 16 to 18 are the radiation-associated parameters
	#
	Parameter
	ERR-LNT model
	ERR-quadratic model
	ERR-two-line spline model

	1
	cm
	-5.416 (0.026)
	-5.412 (0.025)
	-5.40 (0.027)

	1
	cf
	-5.416
	-5.412
	-5.40

	2
	cmN
	0.167 (0.034)
	0.165 (0.034)
	0.160 (0.034)

	3
	cfN
	0.058 (0.029)
	0.056 (0.029)
	0.050 (0.030)

	4
	e30l70 (yr-1)
	0.367 (0.050)
	0.367 (0.050)
	0.369 (0.050)

	5
	e30m (yr-1)
	0.488 (0.017)
	0.488 (0.017)
	0.489 (0.017)

	6
	e30f (yr-1)
	1.476 (0.037)
	1.475 (0.037)
	1.462 (0.037)

	7
	e30sqf (yr-2)
	0.325 (0.015)
	0.32 (0.015)
	0.318 (0.014)

	8
	e30qspf (yr-2)
	-0.380 (0.013)
	-0.379 (0.013)
	-0.372 (0.013)

	9
	e50qspm (yr-2)
	-0.243 (0.035)
	-0.243 (0.035)
	-0.243 (0.035)

	10
	e50qspf (yr-2)
	-0.140 (0.028)
	-0.140 (0.028)
	-0.141 (0.028)

	11
	l70m
	4.48 (0.11)
	4.48 (0.11)
	4.47 (0.11)

	12
	l70f
	5.32 (0.10)
	5.32 (0.10)
	5.32 (0.10)

	13
	l70sqf
	0.92 (0.26)
	0.92 (0.26)
	0.92 (0.26)

	14
	e30agefa (yr)
	19.02 (0.40)
	19.02 (0.40)
	18.94 (0.40)

	15
	e50agemb (yr)
	49.21 (1.51)
	49.19 (1.52)
	49.16 (1.52)

	15
	e50agef (yr)
	49.21
	49.19
	49.16

	16
	
	(1 = 0.082 Gy-1 (0.039)
	(1 = 0.051 Gy-2 (0.022)
	(1 =-0.33 (0.23)

	17
	
	
	
	
(2 =0.142 (0.052)

	18
	
	
	
	
Dth =0.139 (0.022)

	
	
	
	
	

	
	Final deviance
	13417.53
	13415.77
	13414.15


Parameter cf is linked to cm; parameter e50agef is linked to e50agem. The parameters cf and e50agef are therefore not counted to the number of model parameters (left column). a Denotes the age at exposure knot for females in e30qsp. b Denotes the age at exposure knot for males in e50qsp.
Table S4 Values for ERR and EAR for cerebrovascular diseases at 0.1 and 1 Gy calculated with MMI and with the three final non-nested models that were used for MMI. The risk values are provided for different values of age at exposure (e) and attained age (a)
	CeVD 
	
	

	
	ERR
	EAR (10-4 person-years)

	Multi-model inference
	
	

	   0.1 Gy
	
	

	      e = 20, a = 50
	-0.004 (-0.057, 0.013)
	-0.025 (-0.40, 0.093)

	      e = 20, a = 70
	-0.004 (-0.057, 0.013)
	-0.10 (-1.6, 0.37)

	      e = 30, a = 70
	-0.004 (-0.057, 0.013)
	-0.16 (-2.6, 0.60)

	      e = 50, a = 70
	-0.004 (-0.057, 0.013)
	-0.4 (-6.9, 1.6)

	   1 Gy
	
	

	      e = 20, a = 50
	0.0669 (0.0074, 0.14)
	0.460 (0.052, 0.97)

	      e = 20, a = 70
	0.0669 (0.0074, 0.14)
	1.83 (0.20, 3.9)

	      e = 30, a = 70
	0.0669 (0.0074, 0.14)
	2.99 (0.33, 6.3)

	      e = 50, a = 70
	0.0669 (0.0074, 0.14)
	7.92 (0.87, 17)

	
	
	

	Single models
	
	

	   0.1 Gy, e = 30, a = 70
	
	

	ERR-LNT model
	0.00822 (5.2(10-4, 0.016)
	0.365 (0.023, 0.70)

	ERR-Q model
	0.000576 (9.9(10-5, 0.0011)
	0.0257 (0.0045, 0.047)

	ERR-two-line spline model
	-0.033 (-0.076, 0.012)
	-1.49 (-3.5, 0.51)

	   1 Gy, e = 30, a = 70
	
	

	ERR-LNT model
	0.0822 (0.0052, 0.16)
	3.65 (0.23, 7.0)

	ERR-Q model
	0.0576 (0.0099, 0.11)
	2.57 (0.45, 4.7)

	ERR-two-line spline model
	0.0767 (-0.0012, 0.16)
	3.453 (-0.057, 7.1)

	
	
	

	ERR-LNT model (Shimizu et al. 2010)
	0.09 (0.01, 0.17)
	2.3 (0.4, 4.4)


The 95% confidence intervals are provided in parenthesis. The risk values from Shimizu et al. (2010) are also shown. The ERR-values are valid for males and females from both cities.
The general form of an ERR model is h = h0 ( RR = h0 ( (1 + ERR), where RR is the relative risk. Consequently, when we calculate the EAR from an ERR model we get EAR = h – h0 = h0 ( (1 + ERR) – h0 = h0 ( ERR. For CeVD, the baseline model, h0, depends on sex and city via model parameters cm, cf, cmN, and cfN (Table S3). Therefore, the EAR-values for CeVD in Table S4 also depend on sex and city: they are only valid for males from Hiroshima. The city-averaged EAR-values for men can be calculated by multiplication with a factor of 1.1 (the derivation of this factor is given in the following section). The EAR-values for women can be calculated by multiplying with a factor of 0.63. 
When the ERR is calculated from an ERR model, then only the shape of the dose-responses related to the excess risk from radiation enters the risk estimate. Figures 2 and 3 in the main text are therefore valid for males and females from both cities.

Derivation of correction factor to obtain city-averaged EAR-values for Table S4
In the previous section it has been shown that the EAR can be calculated from an ERR model as follows: EAR = h0 ( ERR. The city-averaged EAR-values for males, (EAR(m, can be calculated as follows:

(EAR(m = wH ( EARH + wN ( EARN = ERR ( (wH h0,mH + wN h0,mN) = ERR ( 
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             (S3)

Here, wH = PYH/PYtot is the number of person years in Hiroshima divided by the total number of person years in the data set; wN = PYN/PYtot is the number of person years in Nagasaki divided by the total number of person years in the data set, and h0,mH is the streamlined baseline hazard for males in Hiroshima (with cf = cmN = cfN = 0; see eq. (S1)). An analogous definition holds for h0,mN, the streamlined baseline hazard for males in Nagasaki (with cf = cfN = 0).
Therefore, for the ERR-LNT model one finds
h0,mH = exp{cm + ….} = exp{(5.416} ( exp{rest} where rest stands for all other terms in the exponential function.

It is

(EAR(m = ERR ( 
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Using EAR = h0 ( ERR within Eq. (S4), one obtains

(EAR(m = EARmH 
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EARmH stands for the EAR-values for males in Hiroshima as given in Table S4. The city-averaged EAR-values for males can be obtained by multiplication with the correction factor 
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. It is wH = PYH/PYtot = 2197173.1/3294282.3 = 0.67 and wN = PYN/PYtot = 1097109.2/3294282.3 ( 0.33. Using the MLEs for cmN from Table S3, one finds that for all three final non-nested models the correction factor is approximately equal to 1.1. Consequently, the correction factor for the MMI-based EAR-values is also equal to 1.1. This factor can be applied to calculate from the EAR-values for MMI in Table S4 the city-averaged EAR-values (for example: for the MMI the EAR-value at 1 Gy for males in Hiroshima with an age attained of 70 years, exposed at an age of 30 years, is 2.99 per 104 person-years. Therefore, the city-averaged EAR-value for males is 2.99 ( 1.1 per 104 person-years = 3.3 per 104 person-years. This risk prediction holds for males in Hiroshima and Nagasaki).

Aspects of model selection for the heart diseases mortality data

Table S5 provides the main results of fitting the parametric dose-response models from Figure 1 as ERR models to the mortality data for heart diseases. Considering Figure S1 and applying the LRT three non-nested ERR models were identified for Occam’s group and used for MMI. These three ERR models are marked in bold in Table S5. The selection process was performed as follows. The final deviance of the ERR-LNT model was compared with the deviance of the streamlined baseline model (dev = 13163.17). The improvement in deviance was dev = 10.65 > 3.81. Based on the LRT, the additional model parameter ((1) was therefore significant at the 95% significance level and the model was included into the set of final non-nested models that was used for MMI. For the ERR-Q model one obtains dev = 8.62 > 3.81 and so this model was also included for MMI. The LQ is nested with the LNT model and we obtained dev = 0.0035 < 3.81. The additional parameter (2 was therefore not significant, thereby eliminating the ERR-LQ model. For the ERR-LE model one finds dev = 0.0053 < 3.81 and it was therefore not included into Occam’s group. The LTH model is nested with the LNT model. Comparing the final deviances we obtained dev = 0.097 < 3.81, which eliminated the ERR-LTH model. The step model gives an indication of where a dose threshold may be located; for that model Dth = 1.40 Gy was found. As for CeVD, slope s = 105 Gy-1 was used and therefore this parameter does not count as a model parameter because 1/s ( 0 compared to all other parameter values. Compared to the streamlined baseline model this model therefore has two additional parameters and one finds dev = 13163.17 - 13153.23 = 9.94. Based on the LRT, the two parameters Dth and scale were therefore significant at the 95% level (9.94 > 5.99). This model is, however, biologically unrealistic because of its extremely steep slope. It was therefore not included for MMI. For the ERR-smooth step model with free slope parameter one finds s = 118429 Gy-1 with Wald-type standard error 1.35(107 Gy-1 and final deviance dev = 13153.08. Like before, a model with such an extremely steep slope is biologically unrealistic and was therefore not considered for MMI. Obviously, there is not enough information in the data to estimate the slope parameter with reasonable certainty. After some testing, it was decided to fix the slope parameter at a constant value of s = 10 Gy-1. This led to dev = 13153.66. Comparing this final deviance to the one of the streamlined baseline model one finds dev = 13163.17 – 13153.66 = 9.51 > 7.81 and therefore, this model was one of the final non-nested models to be used for MMI. The step-linear model is nested with the smooth step model and one finds dev = 0.14 < 3.81, which shows that the additional parameter ((1) was not significant at the 95% level. This eliminated the ERR-step-linear model. The deviance of the sigmoid model, not nested with any of the models that contain only one or two parameters, was compared with the deviance of the streamlined baseline model to find dev = 10.70 > 7.81. This model with its large MLEs for (0 and Dth is, however, essentially a linear fit with no threshold and was therefore not included for MMI because the LNT model was already included in the set of final non-nested models. The fit of the ERR-hormesis model, which is nested with the sigmoid model, led to dev = 2(10-5 < 3.81. That eliminated the hormesis model. The hockey stick model is nested with the Q model but the improvement in quality of fit shows that the additional parameter Dth was not significant: dev = 2.03 < 3.84. The two-line spline model is nested with the LTH model, which was, however, not significant. We therefore compared with the streamlined baseline model to obtain dev = 13.45 > 7.81. Subsequently, sex turned out to be a significant dose-effect modifier. The resulting model did, however, not show any stability under cross-validation and was therefore not included for MMI.

As described in the main text (Methods section), when the full Preston baseline model was streamlined in combination with an EAR-LNT model, the same baseline model was obtained as the one found in combination with an ERR-LNT model. The EAR-LNT model led to an improvement of dev = 2.88 < 3.84 compared to the deviance of the streamlined baseline model (dev = 13163.17). Subsequently, the three dose-effect modifiers were tested for their significance and a significant effect modifier that depends on attained age was identified (dev = 9.07 > 3.84). Consequently, the two parameters (1 and dem3 (Table S7) together were significant: 11.94 > 5.99 (the problematic of applying the LRT when comparing a baseline model with a dose-response model that is multiplied with a dose-effect modifier (Liu and Shao 2003) is known to the authors). The EAR-LNT model was therefore included into the set of final non-nested models (i.e. Occam’s group) used for MMI (Tables S6 and S7). The EAR-Q model was significant: dev = 4.17 > 3.84. The age-dependent dose-effect modifier was also significant (7.22 > 3.84). This model was therefore included into Occam’s group and used for MMI. The EAR-LQ was to be compared with the EAR-Q model. Adding parameter ear1 leads to a marginal improvement of 0.08 deviance points. Consequently, this model was not included for MMI. The EAR-LE model needed to be compared with the streamlined baseline model because the EAR-LNT model was not significant. One finds dev = 8.79 > 5.99, i.e. parameters (1 and (2 (see section on mathematical functions of the dose-response models) together were significant. In addition, a significant attained age-dependent effect modifier was found. We therefore compared with the EAR-LNT model with age-dependent dose-effect modifier to find dev = 1.78 < 3.84. Consequently, the EAR-LE model was rejected. The EAR-LTH model is nested with the EAR-LNT model, which was, however, not significant. Comparing with the streamlined baseline model one finds dev = 10.87. No dose-effect modifier turned out to be significant. Consequently, the EAR-LTH model belongs to the set of final non-nested models (Tables S6 and S7). The biologically unrealistic step model yielded a final deviance dev = 13151.97. For the EAR-smooth step model with free slope parameter one finds s = 3413.71 Gy-1 with standard error 1.06(105 Gy-1 and final deviance dev = 13152.02. Like before, a model with such an extremely steep slope is biologically unrealistic and was therefore not considered for MMI. As before with the ERR-smooth step model, there is not enough information in the data to determine the slope parameter with reasonable certainty and so s = 10 Gy-1 was applied. This led to dev = 13152.31. Comparing this final deviance to the one of the streamlined baseline model one finds dev = 13163.17 - 13152.31 = 10.85 > 7.81 and therefore, this model was one of the final non-nested models to be used for MMI. For the step-linear model one finds dev = 0.20, i.e. the additional parameter describing the linear slope for D ( Dth was not significant at the 95% level. The deviance of the sigmoid model was compared with that of the streamlined baseline model: dev = 9.59 > 7.81. This model, however, increases dramatically at doses > 3 Gy. In that dose range only two cases of heart diseases can be found so that this steep dose-response is unsubstantiated. The fit of the EAR-hormesis model, nested with the EAR-sigmoid model, improves the quality of fit by only dev = 0.12 deviance points. That eliminated the hormesis model. Parameter Dth of the hockey stick model was associated with dev = 0.079 compared to the EAR-Q model. Therefore, this model dropped out.  The deviance of the two-line spline model was compared with the deviance of the EAR-LTH model yielding dev = 0.15. A significant age-dependent dose-effect modifier was found for the two-line spline model. Comparing with the EAR-LNT model with age-dependent dose-effect modifier yielded (dev = 13151.22 – 13146.02 = 5.2 < 5.99. That eliminated the two-Line spline model.
Table S5 Results of fitting the dose-response models from Figure 1 as ERR models to the mortality data for heart diseases (Shimizu et al. 2010)
	
	dev
	(dev
	Npar
	AIC
	(AIC

	ERR-LNT model
	13152.52
	6.73
	21
	13194.52
	0.73

	ERR-Q model
	13154.54
	8.75
	21
	13196.54
	2.75

	ERR-LQ model
	13152.51
	6.73
	22
	13196.51
	2.73

	ERR-LE model
	13152.51
	6.72
	22
	13196.51
	2.72

	ERR-LTH model, Dth = 0.01 Gy
	13152.42
	6.63
	22
	13196.42
	2.63

	ERR-step model , Dth = 1.40 Gy
	13153.23
	7.45
	22
	13197.23
	3.45

	ERR-smooth step model, Dth = 1.52 Gy
	13153.66
	7.87
	23
	13199.66
	5.87

	ERR-step-linear model, Dth = 1.53 Gy
	13153.52
	7.73
	24
	13201.52
	7.73

	ERR-sigmoid model1, Dth = 628.86 Gy
	13152.47
	6.68
	23
	13198.47
	4.68

	ERR-hockey stick model1, Dth = -37.80 Gy
	13152.51
	6.72
	22
	13196.51
	2.72

	ERR-hormesis model1, Dth = 631.85 Gy
	13152.47
	6.68
	24
	13200.47
	6.68

	ERR-two-line spline model, Dth = 2.65 Gy
	13145.79
	0
	24
	13193.79
	0


The models were implemented as ERR models. For each model respectively model fit the following measures are provided: the final deviance dev, dev, the number of model parameters Npar, the Akaike Information Criterion (AIC) and AIC. Here, the difference in final deviance is denoted by dev with respect to the model with the smallest final deviance. It is AIC = dev + 2 ( Npar. The difference in AIC-values with respect to the model with the smallest AIC-values is denoted by AIC. Those models that were used for MMI are marked in bold. As a comparison, the fit of the streamlined baseline model alone with its 20 parameters leds to dev = 13163.17.
1 The ERR-sigmoid, ERR-hockey stick and ERR-hormesis models lead to almost linear dose-responses.
Table S6 Results of fitting the dose-response models from Figure 1 as EAR models to the mortality data for heart diseases (Shimizu et al. 2010)
	
	dev
	(dev
	Npar
	AIC
	(AIC

	EAR-LNT modela
	13151.22
	5.20
	22
	13195.22
	1.20

	EAR-Q modela
	13151.78
	5.76
	22
	13195.78
	1.76

	EAR-LQ model
	13150.90
	4.87
	23
	13196.90
	2.87

	EAR-LE model
	13149.44
	3.42
	23
	13195.44
	1.42

	EAR-LTH model, Dth = 2.36 Gy
	13152.29
	6.27
	22
	13196.29
	2.27

	EAR-step model , Dth = 2.54 Gy
	13151.97
	5.95
	22
	13195.97
	1.95

	EAR-smooth step model, Dth = 2.54 Gy
	13152.31
	6.29
	23
	13198.31
	4.29

	EAR-step-linear model, Dth = 2.50 Gy
	13152.11
	6.09
	24
	13200.11
	6.09

	EAR-sigmoid model, Dth = 49.19 Gy
	13153.58
	7.56
	23
	13199.58
	5.56

	EAR-hockey stick model, Dth = -2.89 Gy
	13150.90
	4.88
	23
	13196.90
	2.88

	EAR-hormesis model, Dth = 49.60 Gy
	13153.46
	7.44
	24
	13201.46
	7.44

	EAR-two-line spline model, Dth = 2.57 Gy
	13146.02
	0.00
	24
	13194.02
	0.00


The models were implemented as EAR models. As a comparison, the fit of the streamlined baseline model alone with its 20 parameters led to dev = 13163.17. See Table S5 for further explanations.
a Contains an age-dependent dose-effect modifier

Table S7 Model parameters, MLEs and Wald-type standard errors (in parenthesis) for the seven final non-nested models that were used for MMI for the heart diseases mortality data
	
	Parameter
	ERR-LNT
	ERR-Q
	ERR-smooth step
	EAR-LNT

	1
	cm
	-5.283 (0.032)
	-5.27 (0.032)
	-5.267 (0.031)
	-5.275 (0.032)

	2
	cf
	-8.04 (0.11)
	-8.03 (0.12)
	-8.02 (0.12)
	-8.17 (0.12)

	3
	cmN
	-0.025 (0.039)
	-0.028 (0.039)
	-0.027 (0.039)
	-0.026 (0.040)

	4
	cfN
	0.082 (0.031)
	0.078 (0.031)
	0.077 (0.031)
	0.081 (0.031)

	5
	e30l70 (yr-1)
	0.809 (0.074)
	0.809 (0.074)
	0.812 (0.074)
	0.819 (0.075)

	6
	e30m (yr-1)
	0.252 (0.018)
	0.252 (0.018)
	0.252 (0.018)
	0.254 (0.019)

	7
	e30f (yr-1)
	0.407 (0.021)
	0.407 (0.021)
	0.407 (0.021)
	0.419 (0.022)

	8
	e30sqm (yr-2)
	-0.050 (0.010)
	-0.050 (0.010)
	-0.052 (0.010)
	-0.053 (0.010)

	9
	e30sqf (yr-2)
	-0.092 (0.011)
	-0.092 (0.011)
	-0.0928 (0.0098)
	-0.0978 (0.0099)

	10
	e50qspm (yr-2)
	-0.309 (0.079)
	-0.309 (0.079)
	-0.339 (0.093)
	-0.341 (0.094)

	11
	e50qspf (yr-2)
	-0.191 (0.051)
	-0.191 (0.051)
	-0.195 (0.047)
	-0.199 (0.050)

	12
	l70m
	6.15 (0.14)
	6.15 (0.14)
	6.14 (0.14)
	6.14 (0.14)

	13
	l70f
	0.42 (0.33)
	0.42 (0.33)
	0.42 (0.33)
	0.13 (0.33)

	14
	l70sqm
	1.33 (0.19)
	1.33 (0.19)
	1.32 (0.19)
	1.32 (0.19)

	15
	l70sqf
	-0.91 (0.26)
	-0.91 (0.26)
	-0.92 (0.26)
	-1.03 (0.27)

	16
	l40qspf
	7.48 (0.31)
	7.48 (0.31)
	7.49 (0.32)
	7.72 (0.31)

	17
	l70qspf
	-9.41 (1.00)
	-9.41 (1.00)
	-9.43 (1.00)
	-9.7 (1.0)

	18
	l40agef
	40.99 (0.55)
	40.99 (0.55)
	40.99 (0.56)
	40.71 (0.53)

	19
	l70agefa (yr)
	70
	70
	70
	70

	20
	e50agemb (yr)
	54.6 (1.8)
	54.6 (1.8)
	55.5 (2.1)
	55.5 (2.1)

	20
	e50agef (yr)
	54.6
	54.6
	55.5
	55.5 

	21
	
	(1 = 0.136 Gy-1  (0.044)
	(1 = 0.064 Gy-2 (0.024)
	s = 10 Gy-1
	(1 = 0.00055 Gy-1 pyr-1 (0.00020)

	22
	
	
	
	scale = 0.40 (0.15)
	dem3 = 5.3 (2.2)

	23
	
	
	
	Dth = 1.52 Gy (0.12)
	

	
	
	
	
	
	

	
	Final deviance
	13152.52
	13154.54
	13153.66
	13151.22


Table S7 continued
	
	Parameter
	EAR-Q
	EAR-LTH
	EAR-smooth step

	1
	cm
	-5.27 (0.032)
	-5.262 (0.031)
	-5.262 (0.031)

	2
	cf
	-8.17 (0.12)
	-8.16 (0.12)
	-8.17 (0.12)

	3
	cmN
	-0.028 (0.040)
	-0.028 (0.039)
	-0.028 (0.039)

	4
	cfN
	0.077 (0.031)
	0.077 (0.031)
	0.077 (0.031)

	5
	e30l70 (yr-1)
	0.813 (0.074)
	0.808 (0.074)
	0.808 (0.074)

	6
	e30m (yr-1)
	0.253 (0.019)
	0.252 (0.018)
	0.252 (0.018)

	7
	e30f (yr-1)
	0.413 (0.021)
	0.411 (0.021)
	0.411 (0.021)

	8
	e30sqm (yr-2)
	-0.052 (0.010)
	-0.052 (0.010)
	-0.052 (0.010)

	9
	e30sqf (yr-2)
	-0.0960 (0.0098)
	-0.0954 (0.0097)
	-0.0954 (0.0097)

	10
	e50qspm (yr-2)
	-0.341 (0.094)
	-0.340 (0.094)
	-0.340 (0.094)

	11
	e50qspf (yr-2)
	-0.201 (0.050)
	-0.200 (0.050)
	-0.201 (0.050)

	12
	l70m
	6.15 (0.14)
	6.14 (0.14)
	6.14 (0.14)

	13
	l70f
	0.14 (0.33)
	0.16 (0.33)
	0.15 (0.33)

	14
	l70sqm
	1.33 (0.19)
	1.33 (0.19)
	1.33 (0.19)

	15
	l70sqf
	-1.02 (0.26)
	-1.01 (0.26)
	-1.01 (0.26)

	16
	l40qspf
	7.57 (0.30)
	7.45 (0.30)
	7.45 (0.30)

	17
	l70qspf
	-9.50 (1.00)
	-9.29 (0.99)
	-9.28 (0.99)

	18
	l40agef
	40.40 (0.53)
	40.23 (0.53)
	40.21 (0.53)

	19
	l70agefa (yr)
	70
	70
	70

	20
	e50agemb (yr)
	55.5 (2.1)
	55.5 (2.1)
	55.6 (2.1)

	20
	e50agef (yr)
	55.5
	55.5
	55.6

	21
	
	(1 = 0.00022 Gy-2 pyr-1 (0.00011)
	(1 = 0.0020 Gy-1 pyr-1 (0.0013)
	s = 10 Gy-1

	22
	
	dem3 = 4.00 (1.66)
	Dth = 2.36 Gy (0.16)
	scale = 0.00091 pyr-1 (0.00051)

	23
	
	
	
	Dth = 2.54 Gy (0.18)

	
	
	
	
	

	
	Final deviance
	13151.78
	13152.29
	13152.31


Parameter e50agef is linked to e50agem and is therefore not counted to the number of model parameters (left column).
a Denotes the attained age knot for females in lage70qsp. This parameter was treated as a constant.
b Denotes the age at exposure knot for males in e50qsp.
Table S8 Values for ERR and EAR for heart diseases at 1 Gy calculated with MMI and with the seven final non-nested ERR and EAR models that were used for MMI. The risk values are provided for different values of age at exposure (e) and attained age (a)
	Heart diseases 
	
	

	
	ERR
	EAR (10-4 person-years)

	Multi-model inference
	
	

	   1 Gy
	
	

	      e = 20, a = 50
	0.09 (0, 0.26)
	0.7 (0, 1.9)

	      e = 20, a = 70
	0.09 (0, 0.22)
	3.5 (0, 8.4)

	      e = 30, a = 70
	0.08 (0, 0.20)
	4 (0, 10)

	      e = 50, a = 70
	0.07 (0, 0.20)
	5 (0, 13)

	
	
	

	Single models
	
	

	   1 Gy, e = 30, a = 70
	
	

	ERR-LNT model
	0.136 (0.050, 0.22)
	6.9 (2.5, 11)

	ERR-Q model
	0.072 (0.019, 0.12)
	3.67 (0.99, 6.3)

	ERR-smooth step model
	1.3(10-5 (< 10-7, 0.0013)
	6.6(10-4 (< 10-5, 0.067)

	EAR-LNT model
	0.108 (0.029, 0.19)
	5.5 (1.5, 9.5)

	EAR-Q model
	0.0488 (0.0028, 0.096)
	2.52 (0.15, 4.9)

	EAR-LTH model
	0
	0

	EAR-smooth step model
	0
	0

	
	
	

	ERR-LNT model (Shimizu et al. 2010)
	0.14 (0.06, 0.23)
	3.2 (1.3, 5.2)


The 95% confidence intervals are provided in parenthesis. The risk values from Shimizu et al. (2010) are also shown. The MMI-based ERR- and EAR-values are valid for males from Hiroshima. The ERR-values that are based on the three ERR models are valid for males and females of both cities, analogous for the EAR-values of the four EAR models.
When calculating the EAR from an ERR model one finds EAR = h0 ( ERR. For heart diseases, h0 depends on sex and city via model parameters cm, cf, cmN, and cfN (Table S7). Therefore, the EAR-values for the three non-nested ERR models (ERR-LNT, ERR-Q and ERR-smooth step) in Table S8 also depend on sex and city: they are only valid for males from Hiroshima. The city-averaged EAR-values for men can be calculated by multiplication with the factor (wH + wN ecmN) that evaluates to 0.99 for each of the three ERR models (the derivation of this factor is analogous to the one shown below Table S4). The EAR-values for women can be calculated by multiplying with a factor of 0.54.
The general form of the EAR model is h = h0 + EAR. When the ERR is calculated from an EAR model, one gets ERR = h/h0 − 1 = (h0 + EAR)/h0 − 1 = EAR/h0. For heart diseases, the baseline model, h0, dependents on city and sex via model parameters cm, cf, cmN, and cfN (Table S7). Therefore, the ERR-values for the four non-nested EAR models in Table S8 also depend on city and sex: they are only valid for males from Hiroshima. The city-averaged ERR-values for men can be calculated by multiplication with the factor (wH + wN e-cmN) that evaluates to 1.01 for each of the four EAR models. The ERR-values for women can be calculated by multiplying with factors 1.86 and 1.85 for the EAR-LNT and EAR-Q models, respectively.
The above mentioned correction factors for females need to be applied to calculate the MMI-based ERR- and EAR-values for females. For example, the MMI-based ERR-value for females at 1 Gy for e = 30 years and a = 70 years is 0.11.

For Figure 4 in the main text the ERR has in part been calculated from EAR models. Figure 4 is therefore only valid for males from Hiroshima. For Figure 5 the EAR has in part been calculated from ERR models. Following the arguments given below Table S4, Figure 5 is therefore only valid for males from Hiroshima.
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