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Ras homolog enriched in brain (Rheb) is a small GTPase that regulates

mammalian/mechanistic target of rapamycin complex 1 (mTORC1) and,

thereby, cell growth and metabolism. Here we show that cycling between the

inactive GDP- and the active GTP-bound state modulates the backbone

dynamics of a C-terminal truncated form, RhebDCT, which is suggested to

influence its interactions. We further investigated the interactions between

RhebDCT and the proposed Rheb-binding domain of the regulatory protein

FKBP38. The observed weak interactions with the GTP-analogue-

(GppNHp-) but not the GDP-bound state, appear to accelerate the GDP to

GTP exchange, but only very weakly compared to a genuine GEF. Thus,

FKBP38 is most likely not a GEF but a Rheb effector that may function in

membrane targeting of Rheb.

Keywords: backbone dynamics; FKBP38; GTPase; nucleotide exchange

rate; protein–protein interactions; Rheb

Human Ras homolog enriched in brain (Rheb) is a

small guanosine triphosphatase (GTPase) and accord-

ingly shuttles between an inactive GDP- and an active

GTP-bound state (Fig. 1A). The G1–G5 boxes (GDP/

GTP-binding motifs) that partially overlap with three

motifs known as phosphate-binding loop (P-loop) and

switch 1 and 2 are conserved in GTPases and can also

be found in human Rheb (Fig. 1B). These regions

mediate nucleotide-binding and/or sensing of the type

of bound nucleotide and/or are involved in GTP

hydrolysis as well as its regulation [1–3]. Rheb adopts

a typical GTPase fold consisting of a mixed six-

stranded beta sheet with five helices packing around it

[4,5]. During GDP to GTP cycling, the switch 1 region

of Rheb undergoes a conformational change while the

switch 2 region maintains a stable, extended conforma-

tion that differs significantly from the a-helical confor-
mation seen in other small GTPases and that results in

an orientation of Q64, which is equivalent to the cat-

alytic Q61 of Ras, that disables GTP hydrolysis

thereby explaining its low intrinsic GTPase activity [4].

Rheb is a well-known regulator of the mammalian/

mechanistic target of rapamycin (mTOR), a master

controller of cell growth and metabolism in response

to the availability of nutrients and growth factors [6–
10]. MTOR is found in two functionally and

Abbreviations

FKBP38, FK506-binding protein of 38 kDa (also known as FKBP-8); GAP, GTPase-activating protein; GDP, guanosine diphosphate; GEF, gua-

nine nucleotide exchange factor; GppCp (also known as GMPPCP and GppCH2p), guanosine-5
0-[(b,c)-methyleno]triphosphate, sodium salt;

GppNHp (also known as GMPPNP), guanosine-50-[(b,c)-imido]triphosphate, trisodium salt; mTOR, mammalian/mechanistic target of rapamy-

cin; Rheb, ras homolog enriched in brain.

1FEBS Letters (2017) ª 2017 Federation of European Biochemical Societies



structurally distinct heteromeric complexes, named

mTOR complex 1 and 2 (mTORC1 and mTORC2)

[11,12]. Rheb in the active GTP-bound state is an

mTORC1 activator [13]. The Rheb mutants D60V and

D60K are unable to bind GTP or GDP [14,15]. Based

on co-immunoprecipitation assays using wild-type or

mutant Rheb expressed in HEK293 cells, the D60V

and D60K mutants could also interact with mTOR

complexes, which suggested that the interaction does

not depend on the nucleotide-binding state [16]. The

tuberous sclerosis complex protein complex is com-

posed of the proteins tuberous sclerosis complexes 1

and 2 (TSC1 and TSC2 also known as harmatin and

tuberin, respectively) as well as Tre2-Bub2-Cdc16-1

domain family member 7 (TBC1D7) [17–19]. TSC2

functions as GTPase-activating protein (GAP) for

Rheb that promotes GTP hydrolysis thereby inactivat-

ing Rheb and thus inhibiting mTORC1 signaling

[15,20–22]. Rheb and TSC2 are a special GTPase-GAP

pair since the first has a high basal GTP-state level

and the latter uses instead of the catalytic arginine fin-

ger found in the Ras-GAP an asparagine thumb [15].

Based on the crystal structure of Rheb bound to GTP,

shielding of the phosphate moiety by the conserved

Y35 of switch 1 appears to disable the insertion of an

arginine finger [4]. The role of translationally con-

trolled tumor protein (TCTP) as guanine nucleotide

exchange factor [23] has been questioned [24] and

other GEFs have yet not been detected.

Rheb and Rheb-like protein 1 (RhebL1), which play

a similar role for TOR signaling [25], have both a C-

terminal CAAX (C = cysteine, A = aliphatic, X = ter-

minal amino acid) box (Fig. 1B) that becomes post-

translationally farnesylated resulting in targeting to

endomembranes, primarily to the ER and the Golgi

apparatus [26,27]. Failure of Rheb to localize to

endomembranes impairs the interaction with mTOR

[26]. TOR has been localized at different cellular mem-

brane compartments and in the nucleus, which has

recently been reviewed [28]. In response to amino

acids, the so-called Rag and Ragulator complexes

mediate the translocation of mTORC1 to the outer

lysosomal membrane, to which also Rheb can localize
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Fig. 1. The small GTPase Rheb switches between an active

GTP- and an inactive GDP-bound state and has been suggested to

be regulated by the FKBP12-related protein FKBP38. (A) The

activation and deactivation cycle of Rheb. The TSC complex acts as

a GTPase-activating protein (GAP) for Rheb. It has not been

analyzed if FKBP38 has some guanine nucleotide exchange factor

(GEF)-like activity on Rheb. (B) Domain structures of human Rheb

and human FKBP38. The G boxes and the two switch regions (SW1

and SW2) are indicated [1,3]. The cysteine in the C-terminal CAAX

box is post-translationally farnesylated. The C-terminally truncated

fragment (1–170) used within this study is referred to as RhebDCT.

Human FKBP38 exists in two isoforms and has different functional

regions (TPR, tetratricopeptide repeat domain; TM, transmembrane

domain). For this study, residues 88–206 of isoform 2 that has GS

instead of only G at position 183 encompassing the binding region

for Rheb [62] and referred to as FKBP38-BD was used. (C)

Superposition of the 1H-15N HSQC spectra of 15N-RhebDCT in the

GDP- (black) and GTP analogue- (= GppNHp, red) bound form.

Several residues showing large chemical shift changes between

the two states are labeled with the one letter amino acid code and

the residue sequence position and in the same color as used for

the respective spectrum. The fully assigned spectra for each state

as well as that of RhebDCT bound to another GTP analogue,

referred to as GppCp, are displayed in Fig. S1-S3, respectively.

Fig. S3 shows further a superposition of the 1H-15N HSQC spectra

of 15N-RhebDCT in the GppNHp- and GppCp-bound states.
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[29,30]. It has been suggested that Rheb is activated at

the Golgi apparatus and then translocates to the lyso-

some and that this is connected to the maturation of

endosomes to lysosomes [31].

FKBP38, a member of the FKBP506-binding pro-

tein family, has been suggested to function as an

endogenous inhibitor of mTORC1 activity, whose

action is antagonized by Rheb and RhebL1 in

response to growth factor stimulation and good nutri-

ent availability [32,33]. Human FKBP38 contains dif-

ferent functional regions and different isoforms exist

and are further obtained by alternative splicing

(Fig. 1B). The N-terminal glutamate-rich region is fol-

lowed by a FKBP12-like prolylisomerase (PPIase)

domain, referred to as FKBP-C. The structure of the

FKBP-C domain and its interaction with FK506 and

Bcl-2 have been characterized [34–38]. Binding of cal-

cium-saturated calmodulin (CaM) to its further C-

terminal recognition site activates the constitutively

inactive PPIase and enables the interaction with Bcl-2

[39,40]. A low-affinity cation-binding site in the

FKPB-C region may further regulate the interaction

with Bcl-2 in response to calcium ion levels [35]. The

C-terminal transmembrane domain mediates localiza-

tion to the outer membranes of the ER and mitochon-

dria [41–44]. Based on GST pull-down assays, the

FKBP-C domain of FKBP38 interacts with the same

region of human TOR (residues 1967–2191) that had

been suggested to interact with Rheb [13,32]. However,

Bai et al. could not verify the latter interaction but

instead suggested that Rheb interacts with the FKBP-

C domain of FKBP38 in a GTP-dependent manner

[32]. The not necessarily direct interaction between

FKBP38 and Rheb-GTP but also Rheb-GDP had

been confirmed by Wang et al., but they were unable

to confirm an influence of amino acid or insulin treat-

ment on the FKBP38-mTOR interaction [45]. The

interaction between Rheb and FKBP38 was further

examined in detail based on three different in vitro

assays, but could not be verified with any of them [46].

Thus, questions about the TOR-Rheb-FKBP38 inter-

action network remain and further studies are neces-

sary to resolve if the interactions are direct or not and

if they only occur under specific conditions.

In order to resolve the described conflicting results

regarding the role of FKBP38 for the regulation of the

GTPase Rheb, we conducted the following NMR stud-

ies. Since dynamic regions often play an important

role for interactions with regulatory proteins, we first

characterized the backbone dynamics of human Rheb

lacking the CAAX box (residues 1–170 = RhebDCT)
in the inactive GDP and the active-like GTP analogue-

bound state based on 15N-relaxation data. In addition,

we monitored the interaction with FKBP38 in both

nucleotide-binding states and analyzed if FKBP38

might influence the backbone dynamics of the GTP

analogue-bound state or stimulate the exchange of

GDP to GTP and thus show some kind of guanine

nucleotide exchange factor (GEF)-like activity.

Materials and methods

Protein expression and purification

All used proteins were expressed in Escherichia coli (E. coli)

BL21 (DE3) cells (Novagen). 15N and 13C labeling was car-

ried out by growth in minimal medium (M9) containing
15NH4Cl and 13C6-glucose as sole nitrogen and carbon

sources, respectively.

A C-terminal truncated version of human Rheb (Uni-

prot-ID Q15382) lacking the CAAX box needed for farne-

sylation (1-170 = RhebDCT) was expressed as a

glutathione-S-transferase (GST) fusion protein from

pGEX-4T. When the OD600 of the culture that had been

grown at 37 °C was around 0.6–0.8, cells were induced with

0.1 mM isopropyl-B-D-thiogalactopyranoside at 15 °C over-

night. Cells were disrupted in 50 mL 20 mM Tris, 100 mM

NaCl, 5 mM MgCl2, and 2 mM benzamidine, pH 7.5, by

sonication (Sonoplus Bandelin, UV 3200) for 15 min on ice

with a power level of 35% and a pulse length of 5 s. Fol-

lowing centrifugation, the supernatant was loaded on a

Glutathione Sepharose� 4B (GE Healthcare) column and

the target protein purified according to the manufacturer’s

manual, except for the fact that the used buffers contained

no Triton X-100. Following adjustment of the eluate pH to

7.5, the GST tag was cleaved off by adding thrombin

(Serva, 5 U per mg fusion protein) and incubation at room

temperature over night on a slowly rocking device. Throm-

bin cleaves between the R and the G of its recognition

sequence (LVPR^GS) thereby leaving two non-native resi-

dues (GS) at the N terminus. RhebDCT was separated

from the GST tag by size exclusion chromatography using

a 75 pg Superdex™ HiLoad™ 16/600 column (GE Health-

care) coupled to an €AKTA Prime FPLC system (GE

Healthcare) and equilibrated in 20 mM Tris, 150 mM NaCl,

5 mM MgCl2, pH 7.5. The used flow rate was 1 mL�min�1.

Eluted fractions that contained based on an SDS/PAGE

analysis RhebDCT were pooled and concentrated using

centrifugal filter devices (Amicon� Ultra Centrifugal Filter

Units MWCO 3000, 15 mL, Merck Millipore) at 3500 g

and 4 °C.
FKBP38-BD (Uniprot-ID 14318, residues 88–206 of

human FKBP38 isoform 2, Fig. 1B) was expressed as His-

tagged protein from a pET-16b (Novagen) expression vec-

tor. When the OD600 of the culture that had been grown

at 37 °C was around 0.8, cells were induced with 0.5 mM

IPTG at 37 °C overnight. The by centrifugation harvested

cells from 1 L culture were resuspended in 50 mL 50 mM

3FEBS Letters (2017) ª 2017 Federation of European Biochemical Societies

M. De Cicco et al. Regulation of Rheb by FKBP38

http://www.uniprot.org/uniprot/Q15382
http://www.uniprot.org/uniprot/14318


Tris, 2 mM EDTA, 2 mM benzamidine, 2 mM DTT, pH 8,

and lysed by sonication as described for RhebDCT. Since
most of the protein expressed in inclusion bodies, the pel-

let obtained after another centrifugation step was washed

with 20 mL 50 mM Tris, 1 M urea, 1 mM TCEP, pH 8.

Extraction of the His-tagged FKBP38-BD from the inclu-

sion body pellet was done by adding 15 mL 50 mM Tris,

6 M guanidinium chloride (GdmCl), 1 mM TCEP, pH 8,

manual disruption of the pellet, and incubation on a rock-

ing device for 1 h at 4 °C. Following centrifugation at

23 000 g at 4 °C for 30 min, the supernatant was loaded

on a Ni-NTA resin (Qiagen) filled column (5 mL) that

had been equilibrated in 50 mM Tris, 6 M GdmCl, 1 mM

TCEP, 30 mM imidazole, pH 8. The protein bound to the

column was refolded by step-wise decreasing the concen-

tration of GdmCl from 6 to 0 M in 1 M steps. The

refolded protein was eluted with 40 mL 50 mM Tris,

350 mM NaCl, 1 mM TCEP, 500 mM imidazole, pH 8.

Eluted fractions that contained based on an SDS/PAGE

analysis the target protein were pooled and concentrated

to 2.5 mL using centrifugal filter devices (Amicon� Ultra

Centrifugal Filter Units MWCO 3000, 15 mL, Merck Mil-

lipore) at 3500 g and 4 °C. Following exchange of the

buffer to 20 mM Tris, 100 mM NaCl, 1 mM CaCl2, pH8,

using a PD-10 column (GE Healthcare), factor Xa (New

England Biolabs, 1 U per 50 lg substrate protein) was

added to cleave off the His-tag at 25 °C overnight.

FKBP38-BD was separated from the His-tag by size

exclusion chromatography and pooled and concentrated

as described for RhebDCT.
A 13mer peptide corresponding to the switch1 region of

human Rheb (residues 33–45 referred to as

hRheb_sw1 = Acetyl-NH-DSYDPTIENTFTK-CONH2)

was bought from Thermo Scientific. A stock solution for

the NMR monitored titration with 15N-FKBP38-BD was

obtained by dissolving 2.2 mg lyophilized peptide in

0.9 mL 20 mM Tris, 150 mM NaCl, 5 mM MgCl2, pH 7.5.

Sample preparation for the NMR studies

Samples contained 80–200 lM RhebDCT for the NMR-mon-

itored interaction studies and 310–380 lM protein to record

3D HNCA and 3D CCONH-TOCSY, and 15N-relaxation

data in 20 mM Tris, 150 mM NaCl, 5 mM MgCl2, pH 7.5 sup-

plemented with 5% D2O. From E. coli cells, the GDP-bound

form is primarily purified. The GTP analogue- (guanosine 50-
[b,c-imido]triphosphate, trisodium salt = GppNHp, also

known as GMPPNP, and guanosine-50-[(b,c)-methyleno]tri-

phosphate, sodium salt = GppCp-, also known as GMPPCP

and GppCH2p, used as 50 mM stocks in buffer, Jena Bio-

science) bound forms were obtained by adding a 10-fold

excess of the respective nucleotide to the GDP form in

20 mM Tris, 150 mM NaCl, 5 mM MgCl2, pH 7.5, in the

presence of 10 mM EDTA to decrease the affinity for GDP

[47–49] and a catalytic amount of Antarctic phosphatase

(5 U = 1 lL for each NMR sample of 0.25 mL, New Eng-

land Biolabs) to degrade GDP [49–51]. To record 3D assign-

ment and 15N-relaxation data, the samples were incubated

for 7 days at 4 °C to achieve a complete exchange from the

GDP to the GppNHp or the GppCp form.

All the samples used to determine the influence of

FKBP38-BD on the GDP to GppNHp exchange rates (see

also Table 1) contained about 0.1 mM
15N-RhebDCT-GDP

in the usual buffer supplemented with 0.5 mM GppNHp, 1

(series A–C) or 10 (series F–H) mM EDTA, 5 units Antarc-

tic phosphatase (= PPase, New England Biolabs, 1 lL with

5000 units�mL�1 for each 0.25 mL sample) in the first and

second subseries (A1 to H1 and A2 to H2), and either no

FKBP38-BD in the first subseries of each series (A1 to H1)

or at the following molar ratios of 15N-RhebDCT-GDP to

FKBP38-BD: 102 : 1 (A2/3-C2/3), or 96 : 1 (F2/3) or

29 : 1 (G2/3) or 15 : 1 (H2/3). It should be noted that the

use of EDTA alone or together with phosphatase does not

correspond to physiological conditions; however, it allows

to modulate the time scale of the reaction to make it suit-

able for the used detection method and has been described

in several studies of GTPases [47–52]. The effect of the

used EDTA concentrations on the Mg2+ concentration

should be rather low since the affinity of EDTA for Mg2+

is much lower than for other divalent metal ions such as

for example Zn2+ [53]. Antarctic phosphatase needs Zn2+

(and also Mg2+) ions for its activity (New England Biolabs

data sheet). Because of this, its activity in the presence of

EDTA is expected to be reduced. The effect of EDTA on

the activity has been analyzed for alkaline phosphatases

from different tissues. Whereas bone and intestinal phos-

phatases display an increasing loss in activity with increas-

ing concentrations of EDTA, placental phosphatase

displays a progressive gain in activity with increasing con-

centration of EDTA [54]. Because the combined use of

EDTA and phosphatase (in this case calf intestine alkaline

phosphatase) had been described for the sample prepara-

tion of Rheb bound to a GTP analogue [49], we also tried

this buffer condition to monitor the effect of FKBP38-BD

on the GDP to GppNHp exchange in addition to the use

of only EDTA to promote the formation of the GTP ana-

logue-bound state ([47,48], Table 1).

NMR spectroscopy

NMR spectra were acquired at 298 K on Bruker Avance

500 and 600 MHz spectrometers, the 500 MHz and one of

the 600 MHz spectrometers equipped with a cryogenic

probe. Data were processed with NMRPipe [55] and ana-

lyzed using NMRView [56]. Chemical shift assignments for

rat and mouse Rheb in the GDP- and/or GppNHp-bound

forms have been published [49,57,58]. Since we used human

Rheb and a slightly different fragment and/or buffer condi-

tions, we assigned the backbone 1H, 15N, and 13Ca nuclei

based on newly recorded 3D HNCA and CCONH-TOCSY
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data in combination with the published assignments. The
1H and 15N resonances of Rheb-GppCp were assigned

based on the similarity of its 1H-15N HSQC spectrum to

that of Rheb-GppNHp. The assigned 1H-15N HSQC spec-

tra for RhebDCT-GDP, RhebDCT-GppNHp, and

RhebDCT-GppCp are displayed in Figs S1–S3, respectively.

Information about the backbone dynamics was derived

from the measurement of 15N-relaxation experiments,

including T1, T2, and {1H}-15N NOE. The relaxation times

were sampled at the following time points: for T1: 10.8,

216, 432, 648, 864 ms; for T2: 25.6, 51.2, 76.8, 102.4,

128 ms. Relaxation times were determined based on a fit to

the equation y = A exp(�t/B), where B corresponds to T1

or T2 and A to the signal intensity at time 0, using the

relaxation analysis tool provided in NMRView. 15N-T1,
15N-T2, and {1H}-15N-NOE values of well-resolved peaks

of different nucleotide-binding states of RhebDCT were

analyzed based on a model-free approach [59,60] using the

program TENSOR2 [61] and the solution structure of rat

Rheb-GDP (PDB-ID 2L0X) and the crystal structure of

mouse Rheb-GppNHp (PDB ID 4O25). For the determina-

tion of the rotational correlation time, sc, residues for

which T1/T2 was within one standard deviation from the

average value were considered (for RhebDCT-GDP: 6–12,
14–16, 18–22, 24–29, 31–36, 38–48, 51–66, 68, 69, 74–79,
83–99, 105–112, 118–125, 127–152, 154–161, 163–170; for

RhebDCT-GppNHp: 6–14, 16–18, 20–23, 26–29, 43–49,
51–59, 63, 65–68, 77, 79–88, 90, 92–102, 107–112, 114–124,
126–152, 154–160, 162, 164–170).

To monitor the exchange times of bound GDP to

GppNHp in 15N-RhebDCT in the absence and presence of

FKBP38-BD and/or Antarctic phosphatase (= PPase) by

NMR (Table 1), the samples were brought to the NMR

machine right after mixing. The times given in the spectra

pictures (Fig. 4A,C,D, Figs S8–S9, S10A,B) refer to the

time the respective 1H-15N HSQC experiment was started

after mixing of the sample. To determine the exchange

times, only backbone amide resonances for residues sensi-

tive to the nucleotide exchange and thus showing a signifi-

cant change in the 1H and 15N chemical shifts between the

GDP- and the GppNHp-bound states were analyzed

(Fig. 1C). Usually, I9, A10, S16, K19, S20, V32, Y35, E40,

G63, Q64, and E66 were considered. Exchange times

(sex = 1/kex) were obtained by fitting the signal intensity for

the recorded time points to an exponential decay function

(y = A exp(�t/B) + C, where B corresponds to sex and A

to the signal intensity in the 1H-15N HSQC spectrum corre-

sponding to the first time point, and C to the offset along

the y-axis), using the rate analysis tool provided in

NMRView. In some series the error of the fitted exchange

times were very high (> 30 min) because of too low signal

intensity in most of the spectra of the respective time series.

Accordingly, the corresponding values were not used to cal-

culate average exchange times (sex(average), Table 1). As a

control, we looked at the 1H-15N peak intensity of I90,

which is not affected by the GDP to GppNHp exchange

and which thus should not show an exponential decay of

its signal intensity.

Table 1. Overview of the analysis of the GDP to GppNHp exchange of RhebDCT in the absence and presence of FKBP38-BD and/or

Antarctic phosphatase (= PPase) by real-time NMR spectroscopy.

Series

name

[RhebDCT]:

[FKBP38-BD]a
Addition

of PPase

[EDTA]

(mM) Analyzed residues

Average exchange time sex
(min) � standard deviationb

A1 1 : 0 Yes 1 A10, G13, K19, S20, V32,

Y35, E40, D60, G63, Q64

132 � 55

A2 102 : 1 Yes 1 297 � 77

A3 102 : 1 No 1 52 � 30

B1 1 : 0 Yes 1 I9, A10, G13, S20, V32, Y35, E40, G63 128 � 35

B2 102 : 1 Yes 1 163 � 62

B3 102 : 1 No 1 133 � 46

C1 1 : 0 Yes 1 A10, S20, Y35, E40, D60, G63, Q64 329 � 108

C2 102 : 1 Yes 1 239 � 108

C3 102 : 1 No 1 267 � 120

F1 1 : 0 Yes 10 I9, A10, G13, S16, K19, S20, V32,

Y35, E40, D60, G63, Q64, E66

108 � 19

F2 96 : 1 Yes 10 101 � 17

F3 96 : 1 No 10 74 � 38

G2 29 : 1 Yes 10 None, because of too fast exchange –

G3 29 : 1 No 10 –

H2 15 : 1 Yes 10 –

H3 15 : 1 No 10 –

aThe RhebDCT concentration in the samples was always � 100 lM (A series: 98, B series: 114, C series: 106 lM). The concentration of

GppNHp was always 0.5 mM.
bThe average was taken over all residues analyzed for a particular series (see column labeled ‘analyzed residues’).
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Results

The inactive GDP- and the active-like GppNHp-

bound states of C-terminally truncated Rheb

show differences in the backbone dynamics in

GTPase-specific regulatory regions

In line with published crystal structure data [4], the

superposition of the 1H-15N HSQC spectra of

RhebDCT-GDP and RhebDCT-GppNHp (Fig. 1C)

indicates that GDP to GTP cycling results in signifi-

cant conformational changes. In order to determine if

the inactive GDP- and the active GTP-bound state of

Rheb show differences in the backbone dynamics that

may play a functional role, we analyzed 15N-relaxation

data including T1, T2 and {1H}-15N NOE for

RhebDCT in the GDP- and two GTP analogue-bound

states, namely RhebDCT-GppNHp and RhebDCT-
GppCp (Fig. 2, Figs S4 and S7, Tables S1–S6 &

Results S1).

The average 15N-T1 values for RhebDCT-GDP are

676 � 34 ms and 716 � 41 ms for the GppNHp-

bound state at 500-MHz field strength and 298 K. The

average 15N-T2 values are 90 � 15 ms and 87 � 17 ms

and the average {1H}-15N NOE values are 0.78 � 0.10

and 0.79 � 0.11 for the GDP- and GppNHp-bound
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Fig. 2. The two switch regions as well as some other residues show increased backbone dynamics. Plots of the 15N-relaxation data of

RhebDCT in the GDP- (black) and GppNHp- (red) bound states including 15N-T1 (top panel), 15N-T2 (second panel), and {1H}-15N NOE (third

panel) values and uncertainties and results of the Lipari-Szabo model-free analysis including the order parameter S2 (fourth panel) and the

contribution of chemical exchange Rex to the observed transverse relaxation rate 1/T2 (fifth panel). The model-free analysis of the 15N
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states, respectively. Overall, the 15N-relaxation param-

eters are in the range expected for an about 19.3-kDa

molecule (GS-human Rheb 1-170). A more extended

analysis of the 15N-relaxation data based on a model-

free approach using the program TENSOR2 [61] and

an isotropic diffusion tumbling model provides overall

rotational correlation times sc of 9.9 ns for RhebDCT-
GDP and of 10.4 ns for RhebDCT-GppNHp at 298 K

as well as the subnanosecond order parameter S2 and

the parameter Rex, which contains information about

the contribution of conformational exchange to the

relaxation process (Fig. 2, bottom two panels, Tables

S5 and S6). The fitted sc values are 1–2 ns lower than

estimated based on the number of residues and the

molecular weight (� 11–12 ns). This can be explained

with the well-defined and compact folds observed for

C-terminally truncated rat Rheb-GDP (PDB-ID

2L0X) and mouse Rheb-GppNHp (PDB-ID 4O25)

[5,52]. In line with this, most residues show high S2

order parameter values (Fig. 2, Tables S5 and S6),

which are on average 0.84 � 0.15 and 0.89 � 0.09 for

RhebDCT-GDP and RhebDCT-GppNHp, respectively.

Most differences in the backbone dynamics between

the inactive GDP- and the active GTP-bound form of

RhebDCT occur in the G2/switch 1 and G3/switch 2

regions (Fig. 2). In the GDP-bound state, Y35 in the

switch 1 regions shows higher 15N-T1 and 15N-T2 and

lower {1H}-15N NOE values, indicating increased

backbone dynamics on the ns-ps time scale around this

residue. For residues 30–42 of the GppNHp-bound

state, no 15N-relaxation data could be measured since

the respective peaks were broadened beyond detection.

This suggests that the switch1 region in the GppNHp-

bound state shows also increased backbone dynamics,

however, on a slightly slower time scale as the GDP-

bound state. The same is true for several residues of

the G3 box/switch 2 region (63–75) in both states,

since residues 70–73 in the GDP and residues 69–76 in

the GppNHp-bound state could also not be detected.

Differences in the backbone dynamics between

RhebDCT-GDP and RhebDCT-GppNHp are further

observed for residues 18–19 in the P-loop, which are

spatially close to the phosphates of the nucleotide and

some residues in the subsequent helical region. Finally,

for both RhebDCT-GDP and RhebDCT-GppNHp

residues, G109 to Q112 show higher 15N-T1 and 15N-

T2 and lower than average {1H}-15N NOE values.

Thus, the loop around residues 108–114, which is spa-

tially close to the C-terminal half of the switch 2

region, shows also increased backbone dynamics on

the subnanosecond timescale. As expected the dynamic

behavior of RhebDCT in both GTP analogue-bound

states (RhebDCT-GppNHp and RhebDCT-GppCp) is

overall similar, some differences are seen for residues

affected by the type of bound nucleotide (Fig. S4 and

Results S1).

Only RhebDCT in the active-like GppNHp-bound

state weakly interacts with FKBP38-BD

In order to resolve the conflicting results [32,45,46]

about the interaction between Rheb and FKBP38 and

how far it depends on the nucleotide-binding state of

Rheb, NMR-monitored interaction studies were per-

formed. For FKBP38, a protein fragment was used

that corresponds to the earlier determined binding

domain (BD), which overlaps with the FKBP12-like

domain (Fig. 1) [62]. Figure 3A shows the superposi-

tion of the 1H-15NHSQC spectra of GDP-bound 15N-

RhebΔCT in the absence and presence of unlabeled

FKBP38-BD and in B that of 15N-FKBP38-BD in the

absence and presence of unlabeled RhebΔCT-GDP.

Fig. S5C shows further the titration of 15N-FKBP38-

BD with unlabeled RhebΔCT-GDP up to a molar

ratio of 1 : 2. In all cases, no significant spectral

changes can be observed, indicating that RhebΔCT-
GDP does apparently not interact with FKBP38-BD.
15N-Rheb-GppNHp in the presence of unlabeled

FKBP38-BD (Fig. 3C) shows, consistent with the liter-

ature suggesting a GTP-dependent interaction [32,62],

spectral changes for several residues. Mapping these

onto the crystal structure of mouse Rheb-GppNHp

(PDB-ID 4O25) [52] (Fig. 3E and Fig. S5A) indicates

that the presence of FKBP38-BD affects the long helix

containing K97-D105, the nearby W141 and the subse-

quent loop encompassing residues 108–114. These

regions are spatially close to the switch 2 region and

based on the 15N-relaxation data show increased back-

bone dynamics (Fig. 2). In addition, several residues in

the b-sheet region facing the switch 2 region on the

other side show medium to weak shifts (e.g. R7, K45,

I47, and H55-Q57, respectively). For the part of the

switch 2 region that is localized between the mentioned

regions, chemical shift changes could mostly not be

observed since the backbone amide resonances for resi-

dues 69–76 were broadened beyond detection. The

chemical shift changes observed in the about 1 : 1

sample of 15N-RhebΔCT-GppNHp and FKBP38-BD

are overall reproduced in the additionally performed

titration of 15N-RhebΔCT-GppNHp with unlabeled

FKBP38-BD up to a molar ratio of about 1 : 2

(Fig. S5B). That the 1H-15N-HSQC spectrum of 15N-

FKBP38-BD in the presence of unlabeled RhebΔCT-
GppNHp (Fig. 3D) or different concentrations of

RhebΔCT-GppCp (Fig. S5D) shows no significant

spectral changes may be explained by the interaction
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Fig. 3. RhebDCT interacts only weakly and/or transiently with FKBP38-BD in the active GTP-bound state. (A–D) Superposition of the 1H-15N

HSQC spectra of 15N-RhebDCT in the GDP- and GppNHp-bound states in the presence of unlabeled FKBP38-BD (A & C) and vice versa (B &
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being only weak and/or by the fact that the regions of

FKBP38-BD mediating it do not significantly alter

their conformation. Addition of unlabeled FKBP38-

BD to 15N-RhebΔCT-GppCp resulted only in a

decrease of the GDP state signals that were still pre-

sent due to a yet incomplete exchange (Fig. S5F, see

also next section). Since it had been proposed in the

literature that the switch1 region of Rheb plays an

important role for the interaction with FKBP38 [62],

we further titrated 15N-FKBP38-BD with a 13mer pep-

tide encompassing the switch 1 region (Fig. S5E). In

agreement with the data using RhebΔCT-GDP and

RhebΔCT-GppNHp, no significant spectral changes

could be observed.

FKBP38 has been shown to contain a low-affinity

Ca2+-binding site around residues L90-I96 corre-

sponding to residues L147-I153 in the full-length

sequence, which modulates the interaction with Bcl-2

[35]. Because of this, we additionally analyzed if

FKBP38-BD in the presence of CaCl2 interacts stron-

ger with RhebΔCT-GppNHp (Fig. S6). In agreement

with published data [35], addition of CaCl2 results in

very weak shifts for two residues of FKBP38 involved

in Ca2+ binding (C93 and D94, corresponding to

C150 and D151 in the full-length sequence)

(Fig. S6A). However, Ca2+ binding to FKBP38-BD

appears not to have a significant effect on the affinity

for RhebΔCT-GppNHp or vice versa (Fig. S6B,C).

Compared with the observed chemical shift changes

for 15N-RhebΔCT-GppNHp in the presence of

FKBP38-BD without Ca2+ (Fig. 3C), those in the

presence of CaCl2 are similar for the side chain amide

of W141 and the backbone amides of the nearby heli-

cal residues K97-G101, but the backbone amide cross-

peaks of R7, K45, H55-Q57, L83, D105, K109-I112,

and A167 showed no significant spectral changes

(Fig. S6C). This may at least in part be explained by

the fact that the molar ratio of RhebDCT to FKBP38-

BD was lower, only 1 : 0.82 compared to about 1 : 1

in the absence of CaCl2, and that the presence of

CaCl2 might even have weakened the interaction with

the b-sheet region and the loop region around K109-

I112. In three independent interaction experiments

(Fig. 3C, Figs S5B and S6C) between 15N-Rheb-

GppNHp and FKBP38-BD, the amide cross-peaks of

K97 to G101 of the helix next to the switch 2 region

and of the nearby W141 (Fig. 3E, Fig. S5A) were con-

sistently showing chemical shift changes. Thus, this

region of Rheb appears to be the major interaction

side for the GTP-dependent interaction with FKBP38-

BD. In line with the above suggestion that this interac-

tion may only be weak, the presence of FKBP38-BD

lowered the average 15N-T2 values of 15N-RhebDCT-

GppNHp only slightly from 87 � 17 ms to

81 � 24 ms. Moreover, the average 15N-T1 and

{1H}-15N NOE values got also only weakly modulated

from 716 � 41 ms and 0.79 � 0.12, respectively, in

the absence to 704 � 52 ms and 0.79 � 0.11, respec-

tively, in the presence of FKBP38-BD (Fig. S7, Tables

S2 and S4). K97 that shows consistently strong chemi-

cal shift changes in 15N-RhebDCT-GppNHp in the

presence of FKBP38-BD (Fig. 3C, Figs S5B and S6C)

shows further a very strong decrease in its 15N-T2 time

from 79 to 30 ms (Tables S2 and S4).

Weak interactions of the proposed Rheb-binding

domain of FKBP38 with the GppNHp- but not the

GDP-bound state accelerate the GDP to GTP

exchange markedly, but only if FKBP38 is present

at a molar ratio to Rheb of 1 : 30 or more

Guanine nucleotide exchange factors (Fig. 1) typically

form ternary complexes with the GDP-bound state in

which the GEF is bound loosely and shows the highest

affinity for the nucleotide-free state. The affinity for

the GTP-bound state is in principle similarly low to

that for the GDP-bound one [63,64]. Because the inter-

action between RhebΔCT-GppNHp and FKBP38-BD

is only weak and may be even weaker and thus not

detectable for RhebΔCT-GDP, a real-time NMR study

was performed (Fig. 4, Figs S8–S10, Table 1) to evalu-

ate if FKBP38 may stimulate the exchange of GDP

bound to RhebDCT for GppNHp. Fig. 4 and Figs S8–
S10 show superpositions of the 1H-15N HSQC spectra

of 15N-RhebDCT-GDP (about 100 lM) at different

time points after adding GppNHp (0.5 mM) in the

absence or presence of unlabeled FKBP38-BD at dif-

ferent molar ratios and/or Antarctic phosphatase (=
PPase, 5 U) and with 1 or 10 mM EDTA in the buffer.

If FKBP38-BD is a GEF (guanine nucleotide exchange

factor), the rates for the exchange from GDP to

GppNHp should be significantly increased in the pres-

ence of low catalytic amounts. For ratios of 15N-

RhebDCT-GDP to FKBP38-BD of 1 : 102 (series A3,

B3, C3, Fig. S8C,F and S9C) or 1 : 96 (series F3,

Fig. S9F), the fitted exchange times sex (Table 1,

Fig. S10C–F) were overall similar or lower than that

in the presence of only PPase (series A1, B1, C1, and

F1, Fig. S8A,D and S9A, D). If both FKBP38-BD

and PPase were present (series A2, B2, C2, and F2,

Fig. 4A, Figs S8B,E and S9B,E), the exchange times

were higher than with only FKBP38-BD or PPase pre-

sent in the A2 and B2 series but lower than with PPase

alone in the C2 and F2 series (Table 1, Fig. S10C–F).
Overall, the exchange time in series A1-3, B1-3, C1-3,

and F1-3 was of comparable magnitude (Table 1).

9FEBS Letters (2017) ª 2017 Federation of European Biochemical Societies

M. De Cicco et al. Regulation of Rheb by FKBP38



Thus, at a molar rate of about 1 : 100 of FKBP38-BD

to RhebDCT-GDP, the presence of FKBP38-BD did

not strongly accelerate the GDP to GTP exchange. At

molar ratios of 1 : 29 (series G2-G3, Fig. 4C,D) or

1 : 15 (series H2-H3, Fig. S10A,B) of 15N-RhebDCT-
GDP to FKBP38-BD, the exchange of GDP to

GppNHp was significantly faster and the spectrum of

the first time point looked already almost like the one

of the final fully GppNHp-bound state of RhebDCT.
Because the affinities of the binary complexes between

the GTPase and either the nucleotide or its GEF are

very high [64], we further prepared a mutant of

RhebDCT (D60K) that cannot interact with nucleo-

tides by site-directed mutagenesis [14]. Presumably due
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Fig. 4. The presence of FKBP38-BD stimulates the GDP to GppNHp exchange of RhebDCT only weakly if present at low concentrations but
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amino acid code and the sequence position.
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to the high expression rates in E. coli, all the protein

was present in inclusion bodies and we did not succeed

refolding it (data not shown) and thus were not able

to test its interaction with FKBP38-BD.

Discussion

The role of increased backbone dynamics in the

two switch regions and around residues 98-115

in the inactive GDP- and the active-like GppNHp-

bound state of Rheb for the interaction with

regulators and effectors

The switch 1 region has generally a critical role in the

on- and off-switching cycle of GTPases and for the

interaction with other proteins [1,2]. In line with this,

the switch 1 region and especially Y35 showed

increased backbone dynamics on the ps-ns time scale

in Rheb-GDP. The broadening of the peaks for Y35

and the surrounding residues in the GppNHp-bound

state indicates also increased backbone dynamics in

this state (Fig. 2). Increased mobility around Y32 of

Ras (p21ras), corresponding to Y35 of Rheb (Fig. S11),

was first indicated by 31P-NMR and EPR data of wild

type and mutant proteins and assigned to an interplay

with the terminal phosphate groups (b, c) of the

bound nucleotide [65]. This observation led to the

detection of at least two conformational states of

GTP- and GTP analogue-bound Ras [51,65–67]. For

the small GTPase Cdc42, it has been shown that

replacement of T35, corresponding to T38 in Rheb

(Fig. S11), with alanine reduces the conformational

freedom and thereby the affinity for a regulatory pro-

tein inhibiting GTP hydrolysis [68]. With respect to

Rheb, it has been suggested that the switch 1 region

plays an important role for the interaction with

FKBP38 [62]. However, based on our interaction data

(Fig. 3, Figs S5 and S6), the switch 1 region may only

indirectly influence the interaction with FKBP38-BD,

which is discussed in more detail below. Whereas the

switch 1 region shows higher B-factors in the crystal

structures of Rheb-GDP and Rheb-GppNHp (55 ver-

sus 28.1 and 50 versus 31.1 �A2 for the whole protein),

the switch 2 region shows only somewhat higher B-fac-

tors in the GDP- and GppNHp-bound states com-

pared with the whole protein (38.8 versus 28.1 and

35.0 versus 31.1 �A2) [4]. Since a few residues of the G3

box/switch 2 region (63–75, Fig. 1A) could not be

detected in the GDP- (70–73) and a larger number in

the GppNHp-bound (69–76) state (Fig. 2), the switch

2 region shows as the switch 1 region increased back-

bone dynamics in both nucleotide-binding states

(Fig. 2). However, the type of bound nucleotide

modulates the dynamic behavior (Fig. 2, Fig. S4,

Tables S1–S6). A similar broadening of NMR signals

of the switch 1 and 2 regions in the GppNHp-bound

state compared with the GDP-bound state has also

been observed for Ras [69]. Regarding this and the

overall dynamic properties, our 15N-relaxation data

including besides {1H}-15N NOE further T1 and T2

are in agreement with earlier published {1H}-15N NOE

data for rat Rheb (1-184)-GDP and -GppNHp that

differs within 1-170 only at positions 1 and 170 (S1

and I170 compared with M1 and M170 in human

Rheb) [5]. The importance of increased backbone

dynamics around G63 in the G3 box may explain the

finding that replacement of glycine 63 to alanine

makes Rheb a more potent mTORC1 activator [52].

In addition, it had already earlier been suggested that

the switch 2 region of Rheb is critical for signaling to

mTORC1 [70]. Besides the G2 box/switch 1 and the

G3 box/switch 2 regions, the region around residues

97–115, which is overall spatially close to the G3/

switch 2 region (Fig. 3E), shows similarly increased

backbone dynamics in all states of Rheb. A functional

role of the region around residues 97–115 is in line

with the interaction data for 15N-RhebDCT-GppNHp

and FKBP38-BD and the 15N-relaxation data of

RhebDCT-GppNHp in the presence of FKBP38-BD

(Fig. S7). Together these indicate that residues 97–101
together with W141 represent the major interaction

side of FKBP38-BD on RhebDCT-GppNHp (Fig. 3,

Figs S5 and S6). Interestingly, Rheb-GDP and Rheb-

GppNHp tethered to protein–lipid nanodiscs showed

increased backbone dynamics for residues in and

around the switch regions as well as around residues

90–115 [71]. The increased dynamics of the switch but

also the other mentioned regions are expected to facili-

tate or even enable the interaction with various regula-

tory proteins [2].

The Rheb effector FKBP38 accelerates the GDP to

GTP exchange by interacting weakly with the

active but apparently not the inactive state and

may further play a role for membrane targeting

In line with the suggestion that the interaction between

Rheb and FKPB38 is GTP-dependent [32], we

observed chemical shifts changes for several residues in

regions spatially close to the in part undetectable

switch 2 region of 15N-RhebDCT in the GppNHp-

bound state (Fig. 3C,E, Figs S5A,B and S6C) but not

the GDP-bound state (Fig. 3A). Since the spectrum of
15N-FKBP38-BD in the presence of Rheb-GppNHp

(Fig. 3D) showed, however, no significant spectral

changes, the interaction appears to be only weak or
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transient and has only an effect on the structure and

dynamics of RhebDCT but not FKBP38-BD. More-

over, the chemical shifts changes of RhebDCT-
GppNHp in the presence of FKBP38-BD become only

clearly visible once the GDP to GTP analogue

exchange is complete (Fig. 3, Figs S5B and S6C).

These two observations and the only weak spectral

changes of RhebDCT-GppNHp in the presence of

FKBP38-BD, which nevertheless have been largely

reproduced using three different samples (Fig. 3C,E,

Figs S5A,B and S6C), may also explain why one group

could not verify this interaction [46], which, however,

had been observed by other groups albeit Wang et al.

mentioned that it must not necessarily be direct

[32,45,62]. Discrepancies between the different interac-

tion studies may further be accounted for by differ-

ences in the used protein preparation and experimental

protocols [32,45,46] and regarding the fact whether

Rheb is present in farnesylated form and thus able to

localize to membranes or not (see also below) and if

other cellular proteins may stabilize the interaction in

the pull-downs. It has been proposed that the switch 1

region of Rheb is critical for the interaction with

FKBP38 [62]. The presented interaction data between

RhebDCT and FKBP38-BD (Fig. 3, Figs S5 and S6)

including a titration of 15N-FKBP38-BD with a 13mer

Rheb switch 1 peptide (Fig. S5E) indicated no chemi-

cal shift changes for the switch 1 region if looking at
15N-Rheb or of 15N-FKBP38 in the presence of

RhebDCT or only the respective switch 1 peptide.

Thus, this may be an indirect effect, which reflects the

role of the switch I region for the nucleotide binding.

The three main small GTPase-interacting and

GTPase-regulatory proteins are GTPase-activating

proteins (GAPs) that stimulate GTP hydrolysis and

thus deactivation, guanine nucleotide exchange factors

(GEFs) that facilitate GDP dissociation and thus acti-

vation, and nucleotide dissociation inhibitors (GDI)

that regulate the membrane/cytosol alternation

[2,63,64]. A GAP for Rheb has been described, namely

the TSC complex [15,22]. Since the function of transla-

tionally controlled tumor protein (TCTP) as a Rheb

GEF [23] has been questioned [24], proteins acting as

GEF or GDI for Rheb have still to be found. Because

it has already been shown that FKBP38 acts not as

GDI for Rheb [46], another aim of this study was to

evaluate if FKBP38 might have a GEF-like or another

effector effect on Rheb. The presented real-time NMR

rate analysis data indicated that the presence of

FKBP38-BD in a range more typical for a catalytically

acting protein ([RhebDCT]:[FKBP38-BD] = � 100 : 1)

did not strongly accelerate the exchange of GDP to

GppNHp (Fig. 4A,B, Table 1, Figs S8 and S9, S10C–

F). However, at molar ratios of Rheb-GDP to

FKBP38-BD of 29 : 1 or 15 : 1, FKBP38-BD this was

the case (Fig. 4C,D, Fig. S10A,B). For the following

reasons, FKBP38 is, however, most likely not a GEF.

First, usually low catalytic amounts of GEFs acceler-

ate the GDP to GTP exchange much faster than

observed for FKBP38. In a real-time NMR study ana-

lyzing the effect of a Rho GEF, it stimulated the

exchange about 200-fold if only present at a molar

ratio of 1 : 8000 with respect to Rho [72]. Second,

GEFs form initially a low-affinity ternary complex

with the GDP-bound GTPase, where the nucleotide is

still bound tightly. Following a conformational

change, the interaction with the nucleotide is weakened

and the ternary complex converts into a high-affinity

nucleotide-free binary complex. Following binding of

GTP, the GEF is released [2,63,64]. In principle, a

GEF could also catalyze the reverse reaction, which in

the cell does not happen because of the higher concen-

tration of GTP compared with GDP [63]. However,

FKBP38-BD appears to have only a weak affinity for

the GTP-bound but no significant or if only a very

low, in our NMR titrations not detectable, affinity for

the GDP-bound form of Rheb (Fig. 3, Figs S5 and

S6). Thus, FKBP38-BD shows rather properties typi-

cal for a GTPase effector [73], and its apparent GEF-

like activity arises because it interacts more favorably

with the GppNHp-bound than with the GDP-bound

state, thereby driving the equilibrium of the exchange

reaction toward the GppNHp-bound state. This

happens the faster the more FKBP38-BD is present

relative to Rheb-GDP at constant GppNHp concen-

trations (Table 1). Finally, the known GEFs for Ras

family members typically contain a Cdc25-homology

catalytic domain [2], which is not the case for

FKBP38.

Rheb localizes by a C-terminal farnesyl modification

to endomembranes and FKBP38 by a transmembrane

domain to the outer mitochondrial membrane [26,41].

Based on NMR studies of Rheb tethered to protein–
lipid nanodiscs, it has been shown that the GTPase

domain interacts transiently with the bilayer surface

with two distinct preferred orientations, which are

determined by the bound nucleotide. Moreover, mem-

brane conjugation markedly reduced the rate of intrin-

sic nucleotide exchange, while GTP hydrolysis was

unchanged [71]. Thus, membrane association of Rheb

but also of FKBP38 may enhance their interaction

and maybe also the newly detected accelerating effect

of FKBP38 on the Rheb GDP to GTP exchange. This

suggestion would be in line with the observation that

the Rheb mutant C181S, which cannot be farnesylated

and thus not localize to endomembranes, does not
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interact with FKBP38 [45]. Whether FKBP38 is just

an effector regulating membrane targeting or shows a

more typical GEF-like activity if both Rheb and

FKBP38 are membrane bound and present as full-

length proteins may be clarified in future studies by a

suitable kinetic analysis. In addition, the interaction

between Rheb and FKBP38 may be stabilized by the

presence of other proteins, which may also be mem-

brane localized, such as components of the mTORC1

complex including TOR itself at the lysosomal mem-

brane or the enzyme phospholipase D1 [74–76]. The

proposed low-affinity Ca2+-binding site in FKBP38-

BD [35] had no significant influence on the interaction

with Rheb; however, to date, it has not been analyzed

if binding of calmodulin may affect the interaction of

FKBP38 with Rheb similarly as that with the apopto-

sis regulator protein Bcl-2 [39]. Therefore, the role of

membrane tethering, other proteins, as well as phos-

phorylation at S130 of Rheb [77] on the Rheb-

FKBP38 interaction, which plays not only a role for

mTORC1 signaling [74–76] but also for the regulation

of apoptosis [78], should be targeted in more detail

within future studies.
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Supporting information

Additional Supporting Information may be found

online in the supporting information tab for this arti-

cle:
Fig. S1.

1H-15N spectrum of RhebDCT in the GDP-

bound state.

Fig. S2. 1H-15N HSQC spectrum of RhebDCT in the

GppNHp-bound state.

Fig. S3. (A) Superposition of the 1H-15N HSQC spec-

tra of RhebDCT in the GppNHp- (red) and GppCp-

(green) bound states. (B) Larger 1H-15N HSQC spec-

trum of RhebDCT in the GppCp-bound state.

Fig. S4. Comparison of the backbone dynamics of

RhebDCT in the GppNHp- (red) and GppCp- (green)

bound states. Shown are plots of the 15N-relaxation data

including 15N-T1 (top panel), 15N-T2 (second panel), and

{1H}-15N NOE (third panel) values.

Fig. S5. More NMR data recorded to characterize the

interaction between RhebDCT and FKBP38-BD.

Fig. S6. NMR data recorded to characterize a potential

influence of the addition of CaCl2 on the interaction

between FKBP38-BD and RhebDCT.
Fig. S7. Comparison of the backbone dynamics of

RhebDCT in the GppNHp-bound state in the absence

(red) and presence (blue) of unlabeled FKBP38-BD.

Shown are plots of the 15N relaxation data including 15N-

T1 (top panel), 15N-T2 (second panel), and {1H}-15N NOE

(third panel) values.

Fig. S8. More NMR data regarding the effect of

FKBP38-BD on the GDP to GppNHp exchange of

RhebDCT.
Fig. S9. More NMR data regarding the effect of

FKBP38-BD on the GDP to GppNHp exchange of

RhebDCT.
Fig. S10. Superposition of the 1H-15N HSQC spectra of
15N-RhebDCT-GDP in the presence of GppNHp and

unlabeled FKBP38-BD at a molar rate of 1 : 15 (series H)
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and either catalytic amounts of Antarctic phosphatase (=
PPase) (A) or no Antarctic phosphatase (B) after different

incubation times.

Fig. S11. Picture of the alignment of the amino acid

sequences of human Rheb, Ras (p21ras), and Cdc42.

Table S1. 15N-relaxation times T1 and T2, and {1H}-15N
NOE values and corresponding errors for the GDP-bound

form of RhebDCT.
Table S2.

15N-relaxation times T1 and T2, and {1H}-15N
NOE values and corresponding errors for the GppNHp-

bound form of RhebDCT.
Table S3. 15N-relaxation times T1 and T2, and {1H}-15N
NOE values and corresponding errors for the GppCp-

bound form of RhebDCT.
Table S4. 15N-relaxation times T1 and T2, and {1H}-15N
NOE values and corresponding errors for the GppNHp-

bound form of RhebDCT in the presence of FKBP38-BD.

Table S5. Results from the Lipari and Szabo model-free

analysis of the 15N-relaxation data of RhebDCT bound to

GDP with TENSOR2.

Table S6. Results from the Lipari and Szabo model-free

analysis of the 15N-relaxation data of RhebDCT bound to

GppNHp with TENSOR2.

Results S1. Comparison of the backbone dynamics of two

different GTP analogue-bound states of RhebDCT.
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