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Abstract 

The Online Chemical Modeling Environment (OCHEM, http://ochem.eu) is a web-based 
platform that provides tools for automation of typical steps necessary to create a predictive 
QSAR/QSPR model. The platform consists of two major subsystems: a database of 
experimental measurements and a modeling framework. So far, OCHEM has been limited to 
the processing of individual compounds. In this work, we extended OCHEM with a new 
ability to store and model properties of binary non-additive mixtures. The developed system 
is publicly accessible, meaning that any user on the Web can store new data for binary 
mixtures and develop models to predict their non-additive properties. 

The database already contains almost 10,000 data points for the density, bubble point, and 
azeotropic behavior of binary mixtures. For these data, we developed models for both 
qualitative (azeotrope/zeotrope) and quantitative endpoints (density and bubble points) using 
different learning methods and specially developed descriptors for mixtures. The prediction 
performance of the models was similar to or more accurate than results reported in previous 
studies. Thus, we have developed and made publicly available a powerful system for 
modeling mixtures of chemical compounds on the Web. 

Background 

Generally, QSPR (Quantitative Structure Property Relationship) models are limited to 
predicting properties of pure compounds. However, in recent years several studies have 
attempted to develop QSPR models to predict non-additive properties (density [1], infinite 
dilution activity coefficient [2], bubble temperature [3], azeotropic behavior [4], or excess 
molar volume [5]) of mixtures. There is also very considerable interest in modeling the 
toxicity of chemical mixtures. 



The most challenging problem in QSARs of mixtures is representing a mixture by chemical 
descriptors. Therefore, prior to modeling, investigators should decide which descriptors are 
appropriate for such modeling. A further question concerns the proper external validation of 
models for mixtures, which is less obvious than in classical QSAR. 

In our previous work [3,6] we developed new types of descriptors, based on classical (single 
compound) descriptors derived from the mixture components. Further, we analyzed two 
different strategies of model validation: a “mixtures out” and a “compounds out” approach. 
However, the development of models for mixtures requires very substantial effort regarding 
the storage and representation of mixtures, calculation of descriptors, and implementation of 
correct validation protocols. Thus, in our previous work modeling of mixtures was limited to 
only two sets of fragment-like descriptors, namely ISIDA fragments [7] and simplex 
descriptors [8], plus a few machine-learning approaches. 

In order to overcome these limitations, new features were implemented in OCHEM [9] that 
allow reading and uploading of data for mixtures, creating special descriptors for mixtures, 
and validating models. Further, data for binary mixtures were collected from different 
sources[1,3,4] and analyzed to demonstrate the usefulness of the new tool. The developed 
models for several target properties are publicly available at http://ochem.eu/article/23416. 
The main goal of the project was to develop a web-based public resource for storage and 
analysis of chemical mixtures. Further, we have demonstrated that the previously proposed 
methodology for calculating descriptors of mixtures using fragment-based descriptors is 
easily extendable and can provide high accuracy models for other types of descriptors. 

Descriptors for mixtures 

Mixture descriptors developed in this study were constructed as suggested in previous work 
[3,6], based on the descriptors of individual components of the mixture. Figure 1 shows two 
different descriptor types developed according to the modeled property. 

Figure 1 Methodology used to calculate descriptors for mixtures. 

(i) When the value of a mixture’s property does not depend on the concentration of its 
components, mixture descriptors are obtained by a simple (unweighted) average or sum 
and the absolute difference of the descriptor values corresponding to the individual 
constituents of the mixture. These mixture descriptors were successfully used to predict 
the azeotropic behavior of binary mixtures in a previous study [4] as well as in our work. 
It should be noted that each mixture corresponds to one property value. 

(ii)  When the value of the mixture property changes with the concentration of its components, 
mixture descriptors are calculated as mole-weighted sums or weighted sums and weighted 
absolute differences, using the descriptor value and mole fraction of each pure component 
in the mixture. These mixture descriptors have been used to predict the density and 
bubble point of binary mixtures in previous studies [1,3] as well as in our work. It should 
be noted that in this case each mixture is defined by several points (several property 
values) corresponding to the different concentration values of its components. 

In our previous work, both types of mixture descriptors were based exclusively on the ISIDA 
fragment descriptors. In the current study, we extended this approach to arbitrary descriptor 
types. 



Validation protocol 

As in classical QSAR, a rigorous external validation protocol is required to estimate the 
modeling of mixtures. However, the conventional external cross-validation procedure, where 
the points (compounds) are randomly placed in the external set (or fold), is unacceptable. 
This results in overestimation of the predictive performances of the developed models, 
especially when mixtures of the same compounds with different ratios are present several 
times in the dataset. Indeed, if both training and external sets include data points 
corresponding to the same mixture, the true predictive performance of a model will not be 
estimated properly. 

Rigorous protocols for external validation were developed for QSAR modeling of mixtures 
and are presented in [3,6]. They involve three different strategies (Figure 2): 

Figure 2 Protocols for validation of mixture property models. 

• “Points out”: data points are randomly placed in each fold of the external cross-validation 
set. Each mixture is present simultaneously in both the training and the external sets. This 
is the weakest validation protocol. 

• “Mixtures out”: All data points corresponding to mixtures composed of the same 
constituents, but in different ratios, are simultaneously removed and placed in the same 
external fold. Thus, every mixture is present in either the training or the external set, but 
never in both sets. 

• “Compounds out”: Pure compounds and their mixtures are simultaneously placed in the 
same external fold. Thus, every mixture in the external set contains at least one compound 
that is absent from the training set. This is the most rigorous validation protocol. 

The “points out” strategy reflects the ability of models to predict existing mixtures with novel 
compositions and is rather limited. The second protocol evaluates the prediction performance 
of a model for new mixtures, while the “compounds out” protocol does so for new 
compounds. Therefore, only the “mixtures out” and “compounds out” strategies were used in 
the current study. 

Implementation 

Integration with the Online Chemical Modeling Environment 

OCHEM is a user-friendly tool allowing any user on the Web to upload new data and develop 
QSAR models as well as access data and models published by others. The experimental data 
stored in the database can be easily manipulated to build predictable QSAR models using 
different machine-learning techniques (e.g., neural networks, support vector machines, 
random forest, etc.). 

Prior to the current work, OCHEM was limited to the analysis of individual compounds. 
Based on knowledge of mixture predictions, new features were incorporated into OCHEM 
allowing users to store and model properties of binary non-additive mixtures. 



Data format 

A support for storing mixture data in the OCHEM database was developed. To do so, an 
Excel file is required containing the necessary information for mixtures. Each data point is 
represented by a row in the file. This must contain the structure (e.g., SMILES or SDF) of the 
compound with the largest molar fraction in the mixture, its molar fraction, and the molecular 
ID or structure (SMILES or SDF) corresponding to the second pure compound in the 
OCHEM database. The experimental value of the mixture property, its unit, and publication 
source should be also provided. An example of the Excel file required to upload mixtures is 
available on the Wiki website at http://wiki.ochem.eu/w/Upload_of_mixture_data. 

The first compound in the binary mixture is always the one with the highest molar fraction. 
Thus, the molar fraction values reported in the database range between 0.5 and 1. It should be 
noted that for a mixture the sum of the molar fractions of its components always equal 1. 
Therefore, the value of the molar fraction of the second compound in a binary mixture can be 
easily obtained when the molar fraction of the first compound is known. 

Users can also specify the name of the second compound in the mixture. In cases where the 
molar faction is <0.5, the first and second compound are interchanged and the complement to 
1 used as the molar fraction. This procedure allows one to avoid duplicates when uploading 
mixtures. 

The OCHEM record refers to one compound only. In order to allow calculation of descriptors 
for mixtures, the second compound should be also present. This poses a challenging problem 
for the design of the descriptor calculation procedure. We solved this by requiring all 
compounds with a molar fraction >0.5 to be present in the training set at least once, i.e., as a 
first compound in the mixture record, and/or they should be included with their pure 
properties. Indeed, the properties of pure compounds are always more easily accessible. For 
all the studies reported below, we extended the datasets with pure compounds. 

Descriptors and validation protocol 

As mentioned in section 2.1, special descriptors for mixtures were constructed based on those 
computed for the individual compounds constituting the mixture. Users can choose between 
four different descriptor types, obtained by simple averaging of the descriptors, the sum and 
absolute difference of the descriptors, the weighted sum of the descriptors, or the weighted 
sum and weighted absolute difference of the descriptors. 

Further, two different validation types were implemented: “mixtures out” and “compounds 
out.” The default validation type was “compounds out”, i.e., the most rigorous validation 
protocol. Figure 3 shows a screenshot of the OCHEM Web interface giving the mixture 
calculation options. 

Figure 3 Screenshot of the OCHEM features implemented to analyze mixtures. 



Results and discussion 

Modeling properties of binary mixtures 

Qualitative and quantitative models were developed using different learning methods and 
different sets of descriptors, implemented in OCHEM. In this section, we report the 
performances of the obtained models and then compare them with models developed in 
previous studies. 

Density 

Ajmani et al. studied the density of binary mixtures in [1]. In their study, the QSPR 
methodology was applied to 4679 data points of experimentally measured densities of binary 
liquid mixtures compiled from the literature, corresponding to 271 binary mixtures. QSPR 
models were developed to predict the deviation of the experimental mixture density from the 
“ideal” mixture density, calculated by combining the densities of the single components 
according to their ratio in the mixture. Two methods of training/test set creation were used, 
QMD-1 and QMD-2, which correspond respectively to the “points out” and “mixtures out” 
validation strategies (see section 2.2). In addition, the authors used 39 of the 271 mixtures 
(for the QMD-2 strategy) for external validation. 

We found that the authors did not notice eight mixture duplicates (in total 144 data points), 
which are shown in Table S1 (see Additional file 1: Table S1). Some of these duplicates were 
between training and test sets. Such duplicates could bias the statistical results of the models 
for both strategies reported in the study. After eliminating duplicates, the training set 
contained 3734 data points (we also included 124 pure compounds) and 672 for the test set. 

Our first analysis was to attempt to reproduce the authors’ model developed using seven 
Dragon descriptors, namely EEig04d, BEHv3, Mor15m, H0e, GATS1e, E2e, and Mor10e. In 
their original work the authors calculate these descriptors using E-Dragon, which is supported 
by the Virtual Computational Chemistry Laboratory (VCCLAB [10]). The VCCLAB used 
Dragon version 5.4 [11], which is also available on OCHEM. The authors used a simple 
averaging of descriptors according to their molar fraction. The same descriptors were used to 
develop a neural network model using the ASNN method with all default parameters as 
provided by the OCHEM website. The developed model predicted test set molecules with a 
squared Pearson correlation coefficient (R2) of 0.73 ± 0.04 and a root mean squared error 
(RMSE) of 0.014 ± 0.001. These coefficients are lower than those (R2 = 0.86, RMSE = 
0.0091) reported in Ajmani et al. for the same descriptors. The difference could originate 
from for instance the preparation of chemical structures, the machine-learning approaches 
used, or the presence of duplicated structures. For example, we did not optimize structures 
and simply used 2D to 3D conversion using Corina. However, with the full set of Dragon 
descriptors, ASNN calculated an accuracy of R2 = 0.85 ± 0.04, RMSE = 0.0099 ± 0.0006, 
which was similar to the aforementioned result reported by Ajmani et al. 

Similar performances for the prediction of the test set compounds were calculated for 
different methods and algorithms using a Comprehensive Modeling (CM) feature of 
OCHEM. With a few clicks, CM enables users to explore data using different descriptors and 
machine-learning approaches. The models with the highest accuracy according to 



“compounds out” 10-fold cross-validation are summarized in Table 1. Both “mixtures out” 
and “compounds out” 10-fold cross-validation results are given. 

Table 1 Statistical parameters of Online Chemical Modeling Environment (OCHEM, 
http://ochem.eu) models with the lowest RMSE according to the “compounds-out” cross-
validation protocol for the prediction of binary mixture densities 

 “Compounds out” validation “Mixtures out” validation Test set prediction 
(“compounds out” validation) 

Method/descriptors R2 RMSE R2 RMSE R2 RMSE 
LibSVM/Dragon 0.69 ± 0.05* 0.014 ± 0.001 0.81 ± 0.09 0.011 ± 0.002 0.88 ± 0.04 0.0089 ± 0.001 
ASNN/Inductive descriptors[12] 0.68 ± 0.04 0.014 ± 0.0008 0.72 ± 0.04 0.0131 ± 0.0009 0.81 ± 0.06 0.011 ± 0.001 
LibSVM/Inductive descriptors 0.71 ± 0.05 0.014 ± 0.001 0.81 ± 0.03 0.0109 ± 0.0005 0.88 ± 0.04 0.0084 ± 0.001 
ASNN/Dragon[11] 0.56 ± 0.06 0.016 ± 0.001 0.69 ± 0.04 0.014 ± 0.001 0.85 ± 0.04 0.0099 ± 0.001 
ASNN/ChemAxon[13] 0.55 ± 0.06 0.017 ± 0.001 0.69 ± 0.04 0.0137 ± 0.0009 0.88 ± 0.03 0.0088 ± 0.001 

* 95% confidence intervals were calculated using a bootstrap procedure based on 1,000 
replicas (implemented for all models in OCHEM). RMSE – Root Mean Squared Error; R2 – 
square of the Pearson correlation coefficient. 

As expected, the prediction performance estimated using the “compounds out” protocol is 
generally lower than that using “mixtures out” validation. Cross-validation results calculated 
using both protocols are lower (sometimes significantly so) compared to those calculated for 
the test set, which corresponds to the “mixtures out” validation. As stated by the authors, the 
test set of mixtures was generated using the Sphere exclusion method. Thus, it was selected 
to provide the best possible coverage of the space of analyzed mixtures. In practice, the 
developed models are expected to be applicable to arbitrary mixtures. Thus, it is likely that 
the performance of models for new data will be similar to that of n-fold cross-validation 
rather than to those obtained for the specifically designed validation set. 

So far we have used descriptors calculated as mole-weighted sums of individual mixtures. 
OCHEM also calculates the second type of descriptors, that is, the weighted absolute 
difference of the descriptors. Using these descriptors, the results for the test set prediction 
calculated by LibSVM with ChemAxon descriptors were R2 = 0.94 ± 0.02, RMSE = 0.006 ± 
0.001 – the highest prediction accuracy achieved for this test. However, the results of the 
same method, as well as of other methods for the “mixture-out” and “compound-out” 
validation protocols, are not significantly different from those calculated using the weighted 
sum of individual mixtures. 

Bubble temperature 

Vapor–liquid equilibrium (VLE) data are one of the most important types of information for 
evaluation of the phase behavior of binary liquid mixtures, which is crucial for the design of 
separation processes [14]. Vapor–liquid equilibrium is a state where a liquid and its vapor are 
in equilibrium with one another, i.e., when the rate of evaporation equals the rate of 
condensation. A VLE curve shows the variation of the equilibrium composition of the liquid 
mixture with temperature, at fixed pressure. The dew-point curve represents the temperature 
at which the saturated vapor starts to condense, whereas the bubble point is the temperature at 
which the liquid starts to boil. 

Bubble points of 167 mixtures containing 3232 data points were modeled by Oprisiu et al. 
[3]. An external test set of 94 mixtures containing almost 2000 data points was also used. 



Two versions of this set were used. For “compound-out” validation we used 67 mixtures, 
which included 34 new compounds (in total 1309 measurements); for “mixture-out” 
validation we used a set of 631 measurements, which included 27 new mixtures. In our 
previous work, we developed a consensus model using nonlinear Support Vector Machine 
(SVM), Associative Neural Networks (ASNN), and Random Forest (RF) approaches. For 
SVM and ASNN calculations, the ISIDA fragment descriptors were used, whereas Simplex 
descriptors were employed in RF models. 

The same data were modeled with OCHEM using LibSVM machine-learning and the same 
Dragon descriptors. Table 2 shows that the performances of the developed models are similar 
to or higher than those from the previous work, which demonstrates the usefulness of the 
developed tool. Further, the results obtained in the previous study (ref [3]) were based on a 
consensus prediction of three models, namely ASNN, SVM, and RF. The LibSVM method 
achieved similar performance without needing to build a consensus model. 

Table 2 Comparison of performances of OCHEM models with the consensus model of 
Oprisiu et al. [3] for the prediction of bubble temperatures of mixtures 

  “Mixtures out” validation “Compounds out” validation 
 OCHEM Ref [3] OCHEM Ref [3] 

Training set Q2 0.93 ± 0.01 0.95 0.92 ± 0.03 0.9 
RMSE 6.2 ± 0.6 5.2 6.5 ± 0.5 7.0 

Test set Q2 0.92 ± 0.01 0.88 0.56 ± 0.06 0.4 
RMSE 5.7 ± 0.3 5.9 19 ± 1 21.4 

Q2 – coefficient of determination. 

Azeotropic behavior 

Azeotropic data are very important in the design of distillation processes, and their theoretical 
assessment could significantly reduce the costs of selection of proper agents for industrial 
processes. An azeotrope is a liquid mixture that boils at a constant temperature, keeping its 
composition fixed. When an azeotrope boils, the resulting vapor has the same component 
ratio as the liquid phase with which it is in equilibrium. 

Classification models were developed using 400 mixtures (200 azeotropes/200 zeotropes) and 
validated on a data set of 95 mixtures containing only pure compounds already included in 
the training set. 

The same data sets were used in OCHEM. The pure compounds (n = 65) of the mixtures were 
considered zeotropes and were included in the training set. Thus 465 mixtures were used as 
the training set and 95 for the test set. 

Table 3 shows the classification results obtained with OCHEM, using the Weka Random 
Forest algorithm and Adriana descriptors. The performances of the obtained models are 
similar to those from previous work. OCHEM results calculated for mixture-out and 
compound-out protocols have similar accuracy. 



Table 3 Comparison of classification results for the azeotropic behavior of mixtures 
calculated using OCHEM and Oprisiu [4] models 

 5-Fold Cross Validation (400 mixtures)* Test set (95 mixtures) 
 OCHEM 

compound out 
OCHEM 

mixture out 
Oprisiu[4] 
mixture out 

OCHEM 
mixture out 

Oprisiu[4] 
mixture out 

Balanced Accuracy 0.80 ± 0.04 0.78 ± 0.04 0.82 0.85 ± 0.07 0.82 
Recall of zeotrops 0.77 0.77 0.78 0.74 0.73 
Recall of azeotropes 0.83 0.80 0.85 0.95 0.91 

*OCHEM models were developed using 465 mixtures, which also included pure compounds. 

Conclusion 

OCHEM was extended with tools to store and model binary mixtures. The theoretical part of 
the modeling approach was based on the PhD research of I.O. [3,4] as well as on previous 
studies [1]. 

We have developed an original way of storing and processing mixtures in the database. New 
descriptors for mixtures were used, based on classical (single compound) descriptors derived 
from the mixture components. In addition, specific cross-validation protocols for mixtures 
were implemented: “mixtures out” and “compounds out.” To validate our implementation, 
qualitative and quantitative models were developed with good predictive performance, using 
different learning methods and different sets of descriptors. The developed models are 
available at http://ochem.eu/article/23416 and can be used to predict properties of new 
mixtures. 

The main purpose of this study was to contribute publicly available, web-based tools for the 
modeling and prediction of mixtures of chemical compounds. The availability of such tools 
will stimulate developments in this research area. Indeed, preparation of data, calculation of 
mixture descriptors, and application of the correct validation protocol require considerable 
effort and can be prone to error. The developed tools allow users to significantly simplify this 
procedure and all analyses can be performed with a few clicks. The mixtures database also 
inherits all the general features of OCHEM, namely strict control of the information source, 
storage of records in original units (and automatic conversion to units required for modeling), 
tracking of changes, public and hidden records, storage of experiment conditions, and 
automatic detection of duplicates. The modeling of mixtures provides automatic calculation 
of prediction accuracy, use of a wide spectrum of machine-learning algorithms and 
descriptors, and storage, publishing, and application of models. 

In addition, while it was intuitive to propose descriptors for mixtures based on fragmental and 
simplex descriptors[1,3,4], the extension of this methodology to arbitrary descriptors was not 
obvious. We have shown that the same methodology can be applied successfully with 
different types of descriptors and different machine-learning methods, thus generalizing the 
previous findings. 

The approach developed here can be used to model any other non-additive properties of 
binary mixtures, such as viscosity, toxicity, or antiviral activity. The methodology can be 
straightforwardly extended to multiple compound mixtures containing more than two 
compounds. 



Availability and requirements 

The developed software is publicly available on-line from On-line CHEmical database and 
Modelling environment (OCHEM) platform http://ochem.eu. It can be accessed with any 
modern web browser, which supports Javascript. We recommend the latest version of Firefox 
http://www.mozilla.org/firefox. 
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