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Abstract

The Online Chemical Modeling Environment (OCHEM, http://ochem.eu) \geh-based
platform that provides tools for automation of typical steps negessareate a predictie
QSAR/QSPR model. The platform consists of two major subsyst@mdatabase of
experimental measurements and a modeling framework. So far, OCtdEMeen limited to
the processing of individual compounds. In this work, we extended OCHEMawiiiw
ability to store and model properties of binary non-additive migtufbe developed system
is publicly accessible, meaning that any user on the Web canrsaredata for binary
mixtures and develop models to predict their non-additive properties.

The database already contains almost 10,000 data points for thty,deualsble point, and
azeotropic behavior of binary mixtures. For these data, we developeels for both
qualitative (azeotrope/zeotrope) and quantitative endpoints (densityudite points) usin
different learning methods and specially developed descriptomnifdures. The prediction
performance of the models was similar to or more acctiate results reported in previgus
studies. Thus, we have developed and made publicly available a poweitiern sigs
modeling mixtures of chemical compounds on the Web.

Background

Generally, QSPR (Quantitative Structure Property Relationsmpglels are limited to
predicting properties of pure compounds. However, in recent years Isstigtges have
attempted to develop QSPR models to predict non-additive propertiestydéhsinfinite
dilution activity coefficient [2], bubble temperature [3], azeotrapghavior [4], or excess
molar volume [5]) of mixtures. There is also very considerabladasten modeling the
toxicity of chemical mixtures.



The most challenging problem in QSARs of mixtures is represgatimixture by chemical
descriptors. Therefore, prior to modeling, investigators should dedidd descriptors are
appropriate for such modeling. A further question concerns the profeenaxvalidation of
models for mixtures, which is less obvious than in classical QSAR.

In our previous work [3,6] we developed new types of descriptors, basedsesitalgsingle
compound) descriptors derived from the mixture components. Further, algzeah two
different strategies of model validation: a “mixtures out” arfid@mpounds out” approach.
However, the development of models for mixtures requires very substeffitirt regarding
the storage and representation of mixtures, calculation of dessriptat implementation of
correct validation protocols. Thus, in our previous work modeling of mixtuesslimited to
only two sets of fragment-like descriptors, namely ISIDA fragise[7] and simplex
descriptors [8], plus a few machine-learning approaches.

In order to overcome these limitations, new features were ingoiesd in OCHEM [9] that
allow reading and uploading of data for mixtures, creating speciafipiss for mixtures,

and validating models. Further, data for binary mixtures were ctetlefrom different

sources[1,3,4] and analyzed to demonstrate the usefulness of the newheodeVvEloped
models for several target properties are publicly availabletpt//bthem.eu/article/23416.
The main goal of the project was to develop a web-based public cesfourstorage and
analysis of chemical mixtures. Further, we have demonstrateththgireviously proposed
methodology for calculating descriptors of mixtures using fragibaséd descriptors is
easily extendable and can provide high accuracy models for other types gitdescri

Descriptors for mixtures
Mixture descriptors developed in this study were constructed as sedjgegirevious work

[3,6], based on the descriptors of individual components of the mixtureeFigshows two
different descriptor types developed according to the modeled property.

Figure 1 Methodology used to calculate descriptors for mixtures.

() When the value of a mixture’s property does not depend on the concentration of its
components, mixture descriptors are obtained by a simple (unweighted) avenage or s
and the absolute difference of the descriptor values corresponding to the individual
constituents of the mixture. These mixture descriptors were successeitiyto predict
the azeotropic behavior of binary mixtures in a previous study [4] as well as in dur wor
It should be noted that each mixture corresponds to one property value.

(i) When the value of the mixture property changes with the concentration of its comf
mixture descriptors are calculated as mole-weighted sumsighted sums and weight
absolute differences, using the descriptor value and mole fraction of eaclompenen
in the mixture. These mixture descriptors have been used to predict the density and
bubble point of binary mixtures in previous studies [1,3] as well as in our work. It should
be noted that in this case each mixture is defined by several points (peopeaty
values) corresponding to the different concentration values of its components.

In our previous work, both types of mixture descriptors were basgdsively on the ISIDA
fragment descriptors. In the current study, we extended this appachitrary descriptor

types.



Validation protocol

As in classical QSAR, a rigorous external validation protocakauired to estimate the
modeling of mixtures. However, the conventional external cross-validptiocedure, where
the points (compounds) are randomly placed in the external set (@r ifoladhacceptable.
This results in overestimation of the predictive performanceth@fdeveloped models,
especially when mixtures of the same compounds with differeiosrate present several
times in the dataset. Indeed, if both training and external setsdénadata points

corresponding to the same mixture, the true predictive performareenafdel will not be

estimated properly.

Rigorous protocols for external validation were developed for QSAReting of mixtures
and are presented in [3,6]. They involve three different strategies (Figure 2):

Figure 2 Protocols for validation of mixture property models.

» “Points out”: data points are randomly placed in each fold of the external cross-validation
set. Each mixture is present simultaneously in both the training and the exéesndihss
is the weakest validation protocol.

* “Mixtures out: All data points corresponding to mixtures composed of the same
constituents, but in different ratios, are simultaneously removed and placedamthe s
external fold. Thus, every mixture is present in either the training or temakset, but
never in both sets.

» “Compounds ot Pure compounds and their mixtures are simultaneously placed in the
same external fold. Thus, every mixture in the external set contains airleastmpound
that is absent from the training set. This is the most rigorous validation protocol.

The “points out strategy reflects the ability of models to predict ergimixtures with novel

compositions and is rather limited. The second protocol evaluatesettietpn performance
of a model for new mixtures, while thecdmpounds oltprotocol does so for new
compounds. Therefore, only themixtures outand “compounds oltstrategies were used in
the current study.

Implementation

Integration with the Online Chemical Modeling Environment

OCHEM is a user-friendly tool allowing any user on the Web to upload new data ahopdeve
QSAR models as well as access data and models published ts/ tierexperimental data
stored in the database can be easily manipulated to build prediQ8BR models using
different machine-learning techniques (e.g., neural networks, suppaxr v@achines,
random forest, etc.).

Prior to the current work, OCHEM was limited to the analysisndfvidual compounds.
Based on knowledge of mixture predictions, new features were incagarab OCHEM
allowing users to store and model properties of binary non-additive mixtures.



Data format

A support for storing mixture data in the OCHEM database weasla®ed. To do so, an
Excel file is required containing the necessary informatiomfottures. Each data point is
represented by a row in the file. This must contain the stru@uye SMILES or SDF) of the
compound with the largest molar fraction in the mixture, its modantion, and the molecular
ID or structure (SMILES or SDF) corresponding to the second pomnep@und in the

OCHEM database. The experimental value of the mixture propertynit, and publication

source should be also provided. An example of the Excel file requirepldad mixtures is

available on the Wiki website at http://wiki.ochem.eu/w/Upload_of mixture_data.

The first compound in the binary mixture is always the one withidpeest molar fraction.
Thus, the molar fraction values reported in the database ramvgeened.5 and 1. It should be
noted that for a mixture the sum of the molar fractions of itspoorents always equal 1.
Therefore, the value of the molar fraction of the second compound inrg bindure can be
easily obtained when the molar fraction of the first compound is known.

Users can also specify the name of the second compound in the mixtcases where the
molar faction is <0.5, the first and second compound are interchanged adnghlement to
1 used as the molar fraction. This procedure allows one to avoid depliwhen uploading
mixtures.

The OCHEM record refers to one compound only. In order to allow esilealof descriptors
for mixtures, the second compound should be also present. This posegrgaiglbroblem
for the design of the descriptor calculation procedure. We solved yhieduiring all
compounds with a molar fraction >0.5 to be present in the trainirag &s=dst once, i.e., as a
first compound in the mixture record, and/or they should be included with ghee
properties. Indeed, the properties of pure compounds are alwaysasiseaccessible. For
all the studies reported below, we extended the datasets with pure compounds.

Descriptors and validation protocol

As mentioned in section 2.1, special descriptors for mixtures vegrgructed based on those
computed for the individual compounds constituting the mixture. Usershoase between
four different descriptor types, obtained by simple averagirtheotiescriptors, the sum and
absolute difference of the descriptors, the weighted sum of tlheigtess, or the weighted
sum and weighted absolute difference of the descriptors.

Further, two different validation types were implementedixtures out and “compounds

out” The default validation type wascémpounds o0t i.e., the most rigorous validation
protocol. Figure 3 shows a screenshot of the OCHEM Web interfageg ghe mixture

calculation options.

Figure 3 Screenshot of the OCHEM features implemented to analyze mixtures.




Results and discussion

Modeling properties of binary mixtures

Qualitative and quantitative models were developed using differemtirigamethods and
different sets of descriptors, implemented in OCHEM. In thisi@®ctwe report the
performances of the obtained models and then compare them with niedelsped in
previous studies.

Density

Ajmani et al. studied the density of binary mixtures in [1].their study, the QSPR
methodology was applied to 4679 data points of experimentally measun&tedeof binary
liquid mixtures compiled from the literature, corresponding to 271 bimaryures. QSPR
models were developed to predict the deviation of the experimentirendensity from the
“ideal” mixture density, calculated by combining the densibéghe single components
according to their ratio in the mixture. Two methods of trainisgAet creation were used,
QMD-1 and QMD-2, which correspond respectively to theirfits out and “mixtures odit
validation strategies (see section 2.2). In addition, the authors usedtl® 271 mixtures
(for the QMD-2 strategy) for external validation.

We found that the authors did not notice eight mixture duplicatestéh 144 data points),
which are shown in Table S1 (see Additional file 1: Table S1). Syrtieese duplicates were
between training and test sets. Such duplicates could bias tik@cslatesults of the models
for both strategies reported in the study. After eliminating daf@s, the training set
contained 3734 data points (we also included 124 pure compounds) and 672 for the test set.

Our first analysis was to attempt to reproduce the authors’ numl@loped using seven
Dragon descriptors, namely EEig04d, BEHv3, Mor1l5m, HOe, GATS1e, E2e, and Mior10e.
their original work the authors calculate these descriptors using E-Dragah, i&/lsupported
by the Virtual Computational Chemistry Laboratory (VCCLAB [10The VCCLAB used
Dragon version 5.4 [11], which is also available on OCHEM. The authorsausadple
averaging of descriptors according to their molar fractiom Jame descriptors were used to
develop a neural network model using the ASNN method with all defasémeters as
provided by the OCHEM website. The developed model predicted testosstules with a
squared Pearson correlation coefficienf)(Bf 0.73 + 0.04 and a root mean squared error
(RMSE) of 0.014 + 0.001. These coefficients are lower than thoSe (R86, RMSE =
0.0091) reported in Ajmani et al. for the same descriptors. The diffiereould originate
from for instance the preparation of chemical structures, the netdarning approaches
used, or the presence of duplicated structures. For example, we digtimoize structures
and simply used 2D to 3D conversion using Corina. However, with the fulifd8ragon
descriptors, ASNN calculated an accuracy 6f=R0.85 + 0.04, RMSE = 0.0099 + 0.00086,
which was similar to the aforementioned result reported by Ajmani et al.

Similar performances for the prediction of the test set compouraie walculated for
different methods and algorithms using a Comprehensive Modeling (@&turé of
OCHEM. With a few clicks, CM enables users to explore data usffegent descriptors and
machine-learning approaches. The models with the highest accaemyrding to



“compounds otit10-fold cross-validation are summarized in Table 1. Battixtures oduit
and ‘compounds outl0-fold cross-validation results are given.

Table 1 Statistical parameters of Online Chemical Modeling Environment (OCHEM|,
http://ochem.eumodels with the lowest RMSE according to thecompounds-out” cross-
validation protocol for the prediction of binary mixture densities

“Compounds olitvalidation  “Mixtures out validation Test set prediction
(“compounds oUtvalidation)
Method/descriptors R RMSE R RMSE R RMSE
LibSVM/Dragon 0.69 £0.05* 0.014+0.001 0.81+9.0 0.011 +0.002 0.88 £0.04 0.0089 +0.001

ASNN/Inductive descriptors[12] 0.68 £ 0.04 0.018.8008 0.72+0.04 0.0131+0.0009 0.81+0.06 D90.001
LibSVM/Inductive descriptors  0.71£0.05 0.014$6@1 0.81+0.03 0.0109 +0.0005 0.88+0.04 0.0984001
ASNN/Dragon[11] 0.56+£0.06 0.016+0.001 0.6964. 0.014+0.001 0.85+0.04 0.0099 +0.001
ASNN/ChemAxon[13] 0.55+0.06 0.017+0.001 0.60.84 0.0137 +0.0009 0.88 +0.03 0.0088 + 0.001

* 95% confidence intervals were calculated using a bootstrap procedsed ba 1,000
replicas (implemented for all models in OCHEM). RMSE — RoeaN Squared Error;’R-
square of the Pearson correlation coefficient.

As expected, the prediction performance estimated usingctirapbunds ottprotocol is
generally lower than that usingnixtures out validation. Cross-validation results calculated
using both protocols are lower (sometimes significantly so) comparthose calculated for
the test set, which corresponds to thextures out validation. As stated by the authors, the
test set of mixtures was generated using the Sphere iexclmgthod. Thus, it was selected
to provide the best possible coverage of the space of analyzédresi In practice, the
developed models are expected to be applicable to arbitrary nsixiithas, it is likely that
the performance of models for new data will be similar ta tdfan-fold cross-validation
rather than to those obtained for the specifically designed validation set.

So far we have used descriptors calculated as mole-weightes] cfuimdividual mixtures.
OCHEM also calculates the second type of descriptors, thahes weighted absolute
difference of the descriptors. Using these descriptors, the gdsulthe test set prediction
calculated by LibSVM with ChemAxon descriptors were=R0.94 + 0.02, RMSE = 0.006 +
0.001 - the highest prediction accuracy achieved for this test. Hqwibeeresults of the
same method, as well as of other methods for the “mixture-out” “emchpound-out”
validation protocols, are not significantly different from thosewated using the weighted
sum of individual mixtures.

Bubble temperature

Vapor-liquid equilibrium (VLE) data are one of the most importgpés$ of information for
evaluation of the phase behavior of binary liquid mixtures, which isadrfei the design of
separation processes [14]. Vapor-liquid equilibrium is a state vahegaid and its vapor are
in equilibrium with one another, i.e., when the rate of evaporation edoelgate of
condensation. A VLE curve shows the variation of the equilibrium composifi the liquid
mixture with temperature, at fixed pressure. The dew-point curveseqts the temperature
at which the saturated vapor starts to condense, whereas the bubbig tha@némperature at
which the liquid starts to boil.

Bubble points of 167 mixtures containing 3232 data points were modeledrisuGai al.
[3]. An external test set of 94 mixtures containing almost 2000 datdspwas also used.



Two versions of this set were used. For “compound-out” validation we @isedixtures,
which included 34 new compounds (in total 1309 measurements); for “mixttire-out
validation we used a set of 631 measurements, which included 27 neuwrasixin our
previous work, we developed a consensus model using nonlinear Support VectoneMa
(SVM), Associative Neural Networks (ASNN), and Random Fore$&) (&proaches. For
SVM and ASNN calculations, the ISIDA fragment descriptors wesed, whereas Simplex
descriptors were employed in RF models.

The same data were modeled with OCHEM using LibSVM machinaigpand the same
Dragon descriptors. Table 2 shows that the performances of the developels are similar
to or higher than those from the previous work, which demonstrates thénaessfof the
developed tool. Further, the results obtained in the previous studB]jrefere based on a
consensus prediction of three models, namely ASNN, SVM, and RF. Th¥Nilm$ethod
achieved similar performance without needing to build a consensus model.

Table 2 Comparison of performances of OCHEM models with the consensus model of
Oprisiu et al. [3] for the prediction of bubble temperatures of mixtures

“Mixtures out validation “Compounds oUtvalidation
OCHEM Ref [3] OCHEM Ref [3]
Training set 6} 0.93+0.01 0.95 0.92 +0.03 0.9
RMSE 6.2+0.6 5.2 6.5+0.5 7.0
Test set 6} 0.92+0.01 0.88 0.56 + 0.06 0.4
RMSE 5.7+0.3 5.9 19+1 21.4

Q° — coefficient of determination.
Azeotropic behavior

Azeotropic data are very important in the design of distillgtimtesses, and their theoretical
assessment could significantly reduce the costs of selectioropérpagents for industrial
processes. An azeotrope is a liquid mixture that boils at aasdrisimperature, keeping its
composition fixed. When an azeotrope boils, the resulting vapor hasniee @omponent
ratio as the liquid phase with which it is in equilibrium.

Classification models were developed using 400 mixtures (200 azeotropes/200 zgatrdpes
validated on a data set of 95 mixtures containing only pure compounddyaineluded in
the training set.

The same data sets were used in OCHEM. The pure compounds (n = 65) of the mixtires we
considered zeotropes and were included in the training set. ThusiXdBbeswere used as
the training set and 95 for the test set.

Table 3 shows the classification results obtained with OCHEMguigie Weka Random
Forest algorithm and Adriana descriptors. The performancebeobbtained models are
similar to those from previous work. OCHEM results calculated roxture-out and
compound-out protocols have similar accuracy.



Table 3Comparison of classification results for the azeotropic behavior of mixtures
calculated using OCHEM and Oprisiu[4] models

5-Fold Cross Validation (400 mixtures Test set (ggnxtures
OCHEM OCHEM Oprisiu[4] OCHEM Oprisiu[4]
compound out mixture out mixture out mixture out mixture out
Balanced Accuracy 0.80£0.04 0.78 £0.04 0.82 @.837 0.82
Recall of zeotrops 0.77 0.77 0.78 0.74 0.73
Recall of azeotropes 0.83 0.80 0.85 0.95 0.91

*OCHEM models were developed using 465 mixtures, which also included pure compounds.

Conclusion

OCHEM was extended with tools to store and model binary mixtuhesthieoretical part of
the modeling approach was based on the PhD research of 1.O. [3yé]l &s on previous
studies [1].

We have developed an original way of storing and processixigines in the database. New
descriptors for mixtures were used, based on classical (sioglpound) descriptors derived
from the mixture components. In addition, specific cross-validation pratdoolmixtures
were implemented: Mixtures out” and ‘tcompounds out To validate our implementation,
gualitative and quantitative models were developed with good predpivermance, using
different learning methods and different sets of descriptors. Thelaggped models are
available at http://ochem.eu/article/23416 and can be used to predicttipoopd new
mixtures.

The main purpose of this study was to contribute publicly available;based tools for the
modeling and prediction of mixtures of chemical compounds. The avdyatilsuch tools
will stimulate developments in this research area. Indeed, ptigpacd data, calculation of
mixture descriptors, and application of the correct validation prot@oplire considerable
effort and can be prone to error. The developed tools allow usaghiicantly simplify this
procedure and all analyses can be performed with a few cliblkesmixtures database also
inherits all the general features of OCHEM, namely stiettrol of the information source,
storage of records in original units (and automatic conversion to eqiiged for modeling),
tracking of changes, public and hidden records, storage of exmrioonditions, and
automatic detection of duplicates. The modeling of mixtures providesnatit calculation
of prediction accuracy, use of a wide spectrum of machine-learaiggrithms and
descriptors, and storage, publishing, and application of models.

In addition, while it was intuitive to propose descriptors for mixtures based ondragl and
simplex descriptors[1,3,4], the extension of this methodology to agbdescriptors was not
obvious. We have shown that the same methodology can be applied sulgcewsiul
different types of descriptors and different machine-learniethads, thus generalizing the
previous findings.

The approach developed here can be used to model any other non-gulditiggies of
binary mixtures, such as viscosity, toxicity, or antiviral ativirfhe methodology can be
straightforwardly extended to multiple compound mixtures contaimmge than two
compounds.



Availability and requirements

The developed software is publicly available on-line from On-line Gld&l database and
Modelling environment (OCHEM) platform http://ochem.eu. It can beesssd with any
modern web browser, which supports Javascript. We recommend thevéasesh of Firefox

http://www.mozilla.org/firefox.
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