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Effective radiotherapeutic treatment
intensification in patients with pancreatic
cancer: higher doses alone, higher RBE or
both?
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Abstract

Pancreatic cancer, especially in case of locally advanced stage has a poor prognosis. Radiotherapy in general can
lead to tumor volume reduction, but further improvements, such as ion beam therapy have to be promoted in
order to enable dose escalation, which in turn results in better local control rates and downsizing of the tumor
itself. Ion beam therapy with its highly promising physical properties is also accompanied by distinct inter- and
intrafractional challenges in case of robustness. First clinical results are promising, but further research in motion
mitigation and biological treatment planning is necessary, in order to determine the best clinical rationales and
conditions of ion beam therapy of pancreatic cancer. This review summarizes the current knowledge and studies
on ion beam therapy of pancreatic cancer.
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Exploring the rationale for particle radiotherapy
in pancreatic cancer
Pancreatic cancer is one of the most devastating tumors
in oncology. With median survival times of about 2 years –
after complete resection – and survival times of a few
months in the metastasized situation, novel treatment
concepts are urgently required. In the setting of non-
metastasized, locally advanced pancreatic cancer (LAPC),
intensification of local treatment can lead to size reduction
enabling complete surgical resection – which correlated
significantly with outcome [1, 2]. The role of conventional
normofractionated radiotherapy with simultaneous chemo-
therapy has recently lost importance because of the very
effective FOLFIRINOX regime [3]. Nevertheless, sequential
radiotherapy and combined chemoradiation is frequently
used in case of persistent non-resectability after FOLFIRI-
NOX and often contributes to a secondary resectability

with negative resection margins [4, 5]. An evolving new
photon-based concept in pancreatic cancer treatment
beside intensity-modulated radiotherapy (IMRT) and
volumetric-modulated arc therapy (VMAT) is stereotactic
body radiotherapy (SBRT). SBRT uses higher single doses
and first studies have proven the efficacy of this concept,
which could even lead to better treatment results than
conventional chemoradiation regimes [5–8]. Due to the
known dose-response-relationship in pancreatic cancer,
increased dose deposition is necessary, which is possible
with modern radiation techniques [9]. In this context dose
painting is also of utmost importance, enabling an in-
crease or decrease of the delivered dose, e.g. in regions
of high PET signals and vessel involvement or adjusted
organs at risks (OAR) [10–12].
Nevertheless, photon-based radiotherapy cannot exceed

the physical properties of particle radiotherapy. Both
proton and carbon ion radiotherapy are characterized by
physical properties, that lead to a dose decline within the
entry channel and a high local dose deposition in the
Spread Out Bragg Peak (SOBP) region, that is to say high
dose deposition in the target volume while at the same
time little dose exposure to the surrounding normal
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tissues [13]. Furthermore, high-LET (linear energy transfer)
radiotherapy, such as carbon ion radiotherapy is character-
ized by high energy deposition in the trajectory, resulting
in clustered double-strand breaks in the cells’ DNA
(Deoxyribonucleic acid) and the generation of bulky
lesions [14–16]. So, carbon and oxygen ion beams have
a higher relative biological effectiveness (RBE) than
photon and proton beams, thus leading to an enhanced
reduction in clonogenic survival of pancreatic and also
of hepatic cell lines [14, 15, 17–19]. El Shafie et al. at
HIT could show, that on the one hand clonogenic sur-
vival is directly dependent on the dose, and on the
other hand pancreatic cancer is characterized by high
radioresistance in case of photon, but not heavier
particle beams [14]. So, high-LET beams can overcome
the tissue’s radioresistance for photons - this can be
partly explained by the hypoxic metabolism of pancre-
atic cancer. High-LET is characterized by a reduced
oxygen enhancement ratio, thus leading to high efficacy
against hypoxic tumors [20, 21]. With regard to these
results, particle beams seem to be promising.
With highly radiosensitive normal tissues surrounding

hepatobiliary and pancreatic malignancies, ion beams are
thought to be of special interest in this setting because
they offer the possibility to significantly reduce dose to the
small intestine [22, 23]. However, gastrointestinal toxicity
is still a major issue in high dose regions and caution must
still be given when introducing combined treatment
protocols with chemotherapy [24]. First clinical results,
although mostly of retrospective nature, are promising
and the aim of this article is to summarize the current
knowledge and possible clinical rationales for ion beam
therapy of pancreatic cancer.

Treatment planning
Treatment planning system
The ion beam facilities around the world are using dif-
ferent treatment planning systems (TPS) with different
dose calculation models. For example, at the heavy-ion
medical accelerator in Chiba (HIMAC) a treatment
planning system based on the first calculations of Sihver
et al. was established [25, 26]. Ion beam radiotherapy of
pancreatic cancer is based on passive scattering so far and
assumes an average RBE of 3.0 at mid-SOBP for all tissues
[27]. Nevertheless, there are first planning studies on the
basis of scanning ion beam radiotherapy of pancreatic
cancer at HIMAC [27–30]. At HIT treatment planning is
performed using the raster-scanning technique [31]. The
TPS called “Syngo RT Planning” (Siemens, Erlangen,
Germany) uses the effective dose calculation model (Local
Effect Model, LEM) as described by Krämer & Scholz
[32]. This dose calculation model has already been estab-
lished at the “Gesellschaft für Schwerionenforschung”
(GSI) and has been integrated in the TPS TrIP [33]. In

case of proton beams a fixed RBE value of 1.1 is
assumed, even if there is still discussion about whether
the value is adequate [34]. The RBE of carbon ion beams
depends on different factors, including the α

β

�
-value,

which is the main input parameter for LEM and its dose
calculations [35].

Target delineation
The gross tumor volume (GTV) is delineated as the
macroscopic tumor in the treatment planning computed
tomography (CT) scan. By including elective microscopic
expansion the clinical tumor volume (CTV) is created.
The planning target volume (PTV) is including the elective
local lymph node area and dose delivery uncertainties.
Dose prescription in photon radiotherapy is often defined
as 50.4 Gy for the PTV, followed by a “boost” irradiation of
an expanded GTV (by 2–4 mm) [2, 36]. In case of ion
beam therapy, no homogenous target description has been
established, although, the target delineation in high-LET
radiotherapy is of utmost importance. With ion beam ther-
apy being able to irradiate with very sharp dose gradients,
uncertainty in dose delivery is even more important than
in case of photon radiotherapy, which is why ion beam
radiotherapy has to include the concept of PTV, analogic-
ally to Japanese reports [27, 37, 38].

Beam setups
The central position of pancreatic cancer is a major
problem of radiotherapy in general. With ion beam
therapy being highly conformal with sharp dose gradi-
ents, and at the same time being very time consuming,
the number of beams is restricted to a realistic level, in
order to preserve the advantages over photon radio-
therapy. Three to four fields ion beam radiotherapy
have already been used in Japanese trials [27, 38]. But,
Shiomi et al. could show an advantage of three-fields
setups, although one has to be clear about the fact, that
both setups use beams in anatomic regions with high
intra- and interfractional dosimetric uncertainties (e.g.
colon). Other possible, realistic field setups are two-
fields setups from posterior and one single (posterior)
field setup. In this case, dose exposure to radiosensitive
organs such as the spinal cord has to be critically ana-
lyzed. In-silico studies at HIT showed the superiority of
three-fields setups (Fig. 1) [39]. The one-field setup
with a single posterior field was also promising,
although the maximum doses in the myelon were
thoroughly high [40]. This can be due to many reasons,
however, one explanation can be overdosage in the
Bragg Peak region potentially due to higher biological
effects in the distal edge of the Bragg Peak of particle
beams.

Dreher et al. Radiation Oncology  (2017) 12:203 Page 2 of 8



Plan optimization
Generally, the different TPS offer two kinds of planning: in
case of the TPS “syngo RT Planning” (Siemens, Erlangen,
Germany) they are called single field uniform dose
optimization (SBO, Single Beam Optimization) or multiple
field optimization (IMPT, Intensity Modulated Particle
Therapy). Both tools are based on intensity modulation, but
SBO includes relative weighting factors for each beam. Each
beam is optimized independently to a homogenous dose
level and all beams add up to 100% of the prescribed dose.
IMPT directly integrates all beams and optimizes simultan-
eously. So, IMPT is able to compensate bad characteristics
of one field with another, nevertheless being at the same
time prone to distance uncertainty of the ion beam [41–43].

Biological plan optimization
In case of proton radiotherapy a general RBE of 1.1 is
assumed but still remains questioned, at least in SOBP
region [34, 44].
So far, treatment planning and application of carbon

ion beams is usually based on a fixed RBE or α
β

�
-value,

although carbon ion radiotherapy is highly dependent on
the biological characteristics of the tissues (represented
by the α

β

�
-value). At HIMAC an average RBE of 3.0 is

usually assumed at mid-SOBP, at HIT clinical practice usu-
ally assumes a general α

β

�
-value of 2 Gy - this α

β

�
-value

has been chosen, in order to represent a worst-case
calculation of the risk of high grade myelopathy [45–47].
RBE values in the established hypofractionated dose
prescription setting are about 3 in the target volume
and vary from about 2–7 in the OARs, depending on
the dose distribution.
However, in order to increase the accuracy of treatment

planning, one has to take all the tissues’ specific α
β

�
-values

into account, and LEM at HIT is able to do so. An
in-silico study could show its establishment and the
tissue specific dose distribution in case of LAPC

(Fig. 2) [48]. The specific α
β

�
-value for pancreatic

cancer of 4.5 Gy has been identified by El-Shafie et al. at
HIT [14].
In summary, the integration of tissue specific α

β

�
-values

increases the accuracy of plan optimization. Nevertheless,
tolerance doses of the normal tissues are not well defined
for ion beam irradiation - so far, the α

β

�
-values are extrap-

olated almost exclusively from photon-based data. Further
research in the exact radiobiological characteristics after
ion beam radiotherapy are needed, in order to implement
tissue specific biological treatment planning in daily
clinical routine.

Treatment challenges
Organs at risk
Surely, treatment concepts are highly influencing the
clinical outcome, but target volumes, field setups and
the consecutive dose distributions can directly be trans-
lated into different risk profiles. Posterior fields deposit
high doses to the spinal cord and the kidneys, right
lateral fields result in dose exposure to the liver. Higher
doses in intestinal structures are generated by left lateral
and anterior fields.
A possible single posterior field setup is of major

concern, because of its steep RBE-increase at the distal
end of the SOBP, leading to unexpected high doses to
the small intestine. Based on SBRT trials, less than
4%/ 5 ccm of the stomach should receive more than
22.5 Gy [49]. With ion beam therapy being accompanied
by RBE-increase at the distal end, this constraint might be
exceeded. There is a retrospective analysis of a small
cohort with promising results after high dose proton
radiotherapy with little adverse side effects [50]. Unfortu-
nately, M.D. Anderson Cancer Center and Takatori et al.
reported several events of intestinal ulcerations after
high dose proton radiotherapy of pancreatic cancer
[24, 51–54]. So, the stomach/small bowel is one of the

Fig. 1 Two relevant Field-setups of carbon ion beams of pancreatic cancer: a One-Field Setup with a single posterior field. b Three-Fields Setup
with posterior, right lateral and left lateral fields (decreasing weighting factors of Single Beam Optimization)
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main OARs in ion beam therapy of pancreatic cancer –
there are up to 50% radiation-induced ulcers after high
dose proton radiotherapy with concurrent gemcitabine
application [24]. Similarly, Terashima et al. reported
high intestinal toxicity after aggressive simultaneous
radiochemotherapy [55]. Shinoto et al. could show, that
a possible constraint for ulcerations of the upper gastro-
intestinal tract might be D2ccm < 46 Gy(RBE) [23].
High dose deposition in the colon might also result in

clinically relevant complications, which is why Terashima
et al. divided their patient collective into those with con-
tact to the intestines and those without, thus applying
50 Gy(RBE) or 70.2 Gy(RBE) to the target volume [55].
Another possibility might be simultaneous integrated
protection in the target volume, which has also been used
by Terashima et al. [55]. With regard to gastrointestinal
complications, at HIT there is experience on comparable
dose protocols with intestinal structures adjacent to the
target volume, such as carbon ion therapy of sacral
chordoma and locally recurrent rectal cancer, where no
higher gastrointestinal toxicities were recorded [56, 57].

Intra- and interfractional variability and dosimetric
changes
As described before, ion beam radiotherapy is on the
one hand characterized by very sharp dose gradients,
but on the other hand these sharp dose gradients lead
to great challenges in case of dosimetric uncertainties.
Robustness in ion beam therapy of pancreatic cancer is
dependent on patient immobilization, target volume,
beam optimization, beam setups, interfractional and
intrafractional changes:
Due to tumor and OAR movements during radiotherapy

a robust patient immobilization setup has to be established,
especially in highly precise hypofractionated particle

therapy [58, 59]. To date, no general recommendation
on the most reliable setup in pancreatic cancer patients
can be given, but the different setups lead to significant
movement reductions of the tumor, the pancreas in total
and the OARs compared to without any immobilization
[60–62]. Further studies on the exact tumor movement by
the use of 4D–MRI (magnetic resonance imaging) and
4D–CT scans have to be conducted, in order to improve
treatment planning and enable dose escalation in particle
therapy.
In case of photon radiotherapy these challenges

resulted in the PTV concept and obviously, this has to
be taken over in ion beam therapy, despite of limiting
the advantages of the sharp dose gradients with regard
to dose exposure to the OARs [37]. Nevertheless, the
exact margins of the different treatment volumes have to
be re-evaluated for ion beam radiotherapy.
Based on the central position in the abdomen, pancreatic

cancer is totally surrounded by OARs, and that’s the reason
why ion beam therapy of abdominal organs, and especially
pancreatic cancer is very complex. Inter- and intraindivi-
dual (inter- and intrafractional) changes in organ motion
and intestinal fillings anterior and left laterally of the target
volume are a great challenge for robust ion beam therapy.
Kumagai et al. reported an analysis of passive scattered
carbon ion beams, showing that anterior-posterior and
left-right field setups cause the highest dose affections [63].
Therefore, the established 4- and 3-fields setups have to be
critically analyzed. Steitz et al. at HIT could also show
that SBO plan optimization is able to compensate inter-
fractional bowel movement in case of dose deposition
in the target volume [64].
Intrafractional movements due to breathing lead to a

decrease in robustness, possibly resulting in overdosage
in OARs and underdosage in the target volume [65–67].

Fig. 2 Three-Fields setup of carbon ion beams of pancreatic cancer: dose distribution after allocating tissue specific α/β-values
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As breathing itself obviously influences all organs and
tissues, gating might be a solution. Taniguchi et al. ana-
lyzed doses in duodenum and stomach in patients with
LAPC treated with a five-fraction protocol: results show a
decreasing dose exposure of the OARs during expiration
compared to inspiration [67]. Furthermore, Fontana et al.
could show, that the expiration phase also has the highest
stability of pancreatic cancer motion in 4D–MRI [60]. So,
including breathing phases in treatment planning and
gating in general is highly promising in pancreatic cancer
patients [68].
With regard to the above-mentioned robustness challenge,

one could assume that ion beam therapy of pancreatic can-
cer should be conducted by the use of a single posterior
field. A single posterior beam might be robust, but small
rotations of the processi transversi can lead to different dose
depositions in the pancreatic cancer. Nevertheless, Batista et
al. have presented data about pancreatic cancer, that
supported this hypothesis. A single posterior field and two
oblique posterior fields are superior in case of robustness
[40]. But, dose deposition by a single field leads to high
integral dose in its trajectory, resulting in high dose
deposition in the spinal cord itself, probably violating
general QUANTEC (Quantitative Analyses of Normal
Tissue Effects in the Clinic) constraints [69].
However, intra- and interfractional changes are not

totally understood. We need re-planning scenarios, as
slight changes result in significant dose variations espe-
cially in case of scanned particle therapy, which is used
at HIT [63, 67, 70, 71]. Of course, there are advantages
of scanning, e.g. in case of conformal and highly precise
dose deposition in the target volume [30]. But active
scanning is at the same time highly vulnerable due to
robustness problems, such as interplay effects. At least,
Richter et al. at HIT were able to show, that fraction-
ation is a potential tool to reduce dose inhomogeneity
by interplay effects [66, 72]. This in return promotes
normofractionated radiotherapy, instead of the established
hypofractionated dose regimes. Additionally other methods
of compensation, such as tracking, are currently under
critical investigation and might provide additional benefit
for moving targets.

Dose delivery and clinical outcome
The facilities around the world generally accelerate the
ion beams in different ways. In case of pancreatic cancer,
the HIT Linac-Synchrotron needs to assemble ion energies
of 160 MeV for proton beams and up to 430 MeV/u for
carbon ion beams [73].
Ion beam has the great potential to increase secondary

resectability and prognosis of LAPC patients, but at the
same time it has to be critically evaluated with regard to
adverse side effects. Despite of the risk of radiation induced
complications, proton radiotherapy of 50 Gy(RBE) with

concurrent gemcitabine and proton radiotherapy of 50.4–
59.4 Gy(RBE) with concurrent capecitabine are well
tolerated [55, 74]. Nevertheless, there are also reports
on combined treatment regimes with proton beam therapy
and concurrent gemcitabine, that show radiation-induced
ulcers in stomach and duodenum in approximately 50% of
all treated patients [24]. Furthermore, preoperative short-
course chemoradiotherapy with proton beams (25 Gy(RBE)
in 5 fractions) and capecitabine could prove its feasibility
in resectable pancreatic cancer [75].
Carbon ion beams in particular offer a higher RBE

compared to proton beams, which might further increase
the response rate and resectability of LAPC, and decrease
radiation induced complications [14–16]. There are
encouraging clinical results of hypofractionated carbon
ion radiotherapy of up to 55.2 Gy(RBE) and concurrent
gemcitabine of LAPC [38, 76, 77]. A phase I trial of
neoadjuvant carbon ion radiotherapy of up to 36.8 Gy(RBE)
in patients with resectable pancreatic cancer resulted in
5-year overall survival rates of 42 and 52% for all
patients and those with surgery afterwards [38]. In
general, it remains unclear, whether high dose or high
RBE are more beneficial in case of pancreatic cancer.
Nevertheless, we are in desperate need of the latest
advances in radiation oncology to improve the prognosis
of pancreatic cancer. Modern radiotherapy techniques
such as SBRT with high fraction doses and carbon ion
beams with high RBE values are promising – but, to date
there is no evidence of improved prognosis by the use of
SBRT or ion beam therapy, even in the setting of
combined chemoradiotherapy. Randomized trials about
modern photon radiotherapy and ion beam therapy with
and without simultaneous chemotherapy are needed.

Summary
Ion beam therapy of pancreatic cancer is very complex.
There are a lot of challenges to overcome. First clinical
results are very promising, as presumed before, with
regard to preclinical analysis of particle beams and
pancreatic cancer. The KFO “Schwerionentherapie” at
HIT was able to do the first steps in this research topic.
Nevertheless, robust treatment planning and dose delivery
has to be ensured and the optimal treatment concepts -
also whether or not particle therapy should be combined
with systemic agents- are still to be identified in future
projects.
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