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A comparative study of machine 
learning methods for time-to-event 
survival data for radiomics risk 
modelling
Stefan Leger1,2, Alex Zwanenburg  1,2,8,9, Karoline Pilz1,2,8,10, Fabian Lohaus1,2,8,10, Annett 
Linge  1,2,8,10, Klaus Zöphel12,13, Jörg Kotzerke12,13, Andreas Schreiber14, Inge Tinhofer3,15, 
Volker Budach3,15, Ali Sak  4,16, Martin Stuschke4,16, Panagiotis Balermpas5,17, Claus Rödel5,17, 
Ute Ganswindt18,19,20, Claus Belka6,18,19,20, Steffi Pigorsch6,21, Stephanie E. Combs6,21,22, David 
Mönnich7,23, Daniel Zips7,23, Mechthild Krause1,2,8,10,11, Michael Baumann1,2,8,9,10,11,  
Esther G. C. Troost1,2,8,10,11, Steffen Löck1,2,10 & Christian Richter1,2,10,11

Radiomics applies machine learning algorithms to quantitative imaging data to characterise the 
tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a 
variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, 
we assessed the performance of 11 machine learning algorithms combined with 12 feature selection 
methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall 
survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to 
deal with continuous time-to-event survival data. Feature selection and model building were performed 
on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We 
found several combinations of machine learning algorithms and feature selection methods which 
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achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with 
Spearman feature selection. Using the best performing models, patients were stratified into groups 
of low and high risk of recurrence. Significant differences in LRC were obtained between both groups 
on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which 
should be considered in future radiomics studies to develop stable and clinically relevant predictive 
models for time-to-event endpoints.

In the era of patient specific cancer therapy, radiomics is a new and promising field in radiation oncology1. 
Radiomics aims to predict patient specific outcomes based on high-throughput analysis and mining of advanced 
imaging biomarkers by machine learning algorithms. It has shown promising results in several studies on lung, 
head and neck, breast as well as brain tumours2–7. In radiomics, feature selection is used to identify prognostic 
biomarkers (signature) and to reduce the dimensionality of the feature space8. Machine learning algorithms sub-
sequently use the signature to construct predictive models by learning the decision boundaries of the underly-
ing data distribution. A variety of feature selection methods and machine learning approaches exist. However, 
most radiomics studies only consider the combination of one feature selection with one learning algorithm. For 
instance, L. van Dijk et al.9 used the Pearson correlation coefficient to identify relevant image features in combina-
tion with the Lasso regularisation to develop a multivariable logistic regression model. In contrast, Kickingereder 
et al.3, used a supervised principal component analysis based on coefficients of the Cox regression model to 
develop the radiomics signature in combination with a multivariate Cox regression model for prediction of sur-
vival. To date it is not clear whether these methodological choices led to models with the highest prognostic 
accuracy.

Therefore, a systemic evaluation to identify a set of suitable feature selection methods and learning algorithms 
is a critical step to develop clinically relevant radiomics risk models. Thus far, only few studies have performed 
such an evaluation. Recently, Parmar et al.10,11, investigated different algorithms in two different studies for 
patients with non-small cell lung (NSCLC) cancer and locally advanced head and neck squamous cell carcinoma 
(HNSCC). However, in these studies the outcome of interest, overall survival (OS), was transformed to a binary 
endpoint. While dichotomisation of the endpoint is a method for stratifying patient groups, it incurs the risk of 
biasing prediction accuracy12. Therefore we avoid dichotomisation of continuous time-to-event data, and instead 
base patient stratification on the predicted risk.

In the present study we systematically assessed 11 machine learning algorithms and 12 feature selection meth-
ods for the prediction of continuous time-to-event data. Pre-treatment computed tomography (CT) scans were 
recorded in 293 HNSCC patients from a multicentre cohort. The patients were divided into strictly separated 
exploratory (n = 213) and validation (n = 80) cohorts. We then used the CT images of the exploratory cohort to 
build risk models for loco-regional tumour control (LRC) and overall survival (OS). Subsequently, we assessed 
both, predictive performance of the models and patient risk stratification, for each combination of feature selec-
tion and learning algorithm on the validation cohort. Furthermore we assessed the robustness of the selected 
signatures for each feature selection method using the intra-class correlation coefficient (ICC)12 calculated for 
rotated and translated images of the exploratory cohort. In addition we evaluated the predictive performance of 
our models to the radiomics signature previously defined by Aerts et al.5. The evaluations above led to the identi-
fication of a subset of useful feature selection and learning algorithms for time-to-event survival data.

Material and Methods
Patient cohorts. In this study, two cohorts with a total of 293 patients from different institutions were 
included. All patients suffered from histologically confirmed loco-regionally advanced HNSCC and received 
primary radiochemotherapy. Patients were allocated to an exploratory and validation cohort with a ratio of 2:1 
based on the different included studies rather than on the treatment places. The exploratory cohort included 213 
patients. 152 of the 213 patients were treated in one of the seven partner sites of the German Cancer Consortium 
Radiation Oncology Group (DKTK-ROG)13 between 2005 and 2011. The remaining 61 patients of the explor-
atory cohort were treated at the University Hospital Dresden (UKD, Germany) between 1999 and 2006. The 
validation cohort consisted of 80 patients. 50 of the 80 patients were treated within a prospective clinical trial 
[NCT00180180, ref.14] at the UKD between 2006 and 2012. The remaining 30 patients were treated at the UKD 
and the Radiotherapy Center Dresden-Friedrichstadt (RCDF) between 2005 and 2009. The clinical characteris-
tics of both cohorts are summarised in Supplement A. Ethical approval for the multicentre retrospective analyses 
of clinical and imaging data was obtained from the Ethics Committee at the Technische Universität Dresden, 
Germany, EK177042017. All analyses were carried out in accordance with the relevant guidelines and regulations. 
Informed consent was obtained from all patients.

Image pre-processing and feature extraction. Figure 1 illustrates the image pre-processing and feature 
extraction workflow. Prior to analysing the pre-treatment computed tomography (CT) scans without contrast 
agent, the gross tumour volume (GTV) was manually delineated taking into account patient examination and the 
findings of additional imaging modalities. Voxels in each CT image volume were re-sampled to an isotropic voxel 
size of 1.0 × 1.0 × 1.0 mm3 to correct for different voxel spacings and slice thicknesses between different centres5. 
Subsequently, the GTV was re-segmented to cover only soft tissue voxels between −150 and 180 Hounsfield units, 
removing voxels containing air and bone. Spatial filtering was applied to the base image to quantify additional 
image characteristics such as edges and blobs. We performed a stationary coiflet-1 wavelet transformation along 
the three spatial dimensions which produced eight transformed images in addition to the base image. A mean 



www.nature.com/scientificreports/

3SCIENTIFIC RePoRTS | 7: 13206  | DOI:10.1038/s41598-017-13448-3

Laplacian of Gaussian (LoG) image of five different kernel widths (0.5 mm, 1.0 mm, 2.0 mm 3.0 mm, 5.0 mm, 
respectively, ref.15) was generated from the base CT image as a further image volume.

In each image set 18 statistical, 18 morphological, 30 histogram-based and 95 texture features were 
extracted from the GTV, leading to 1610 features in total. The following texture matrices were used: grey-level 
co-occurrence (GLCM)16, grey-level run length (GRLM)17,18, neighbourhood grey tone difference (NGTDM)19, 
grey-level size zone (GLZSM)20, grey-level distance zone (GLDZM)21 and neighbourhood grey level dependence 
(NGLDM)22 matrix. All features were calculated using a volumetric approach, and not by slice. Mathematical 
descriptions of all features are published in ref.23. The GTV was discretised using 64 quantization levels before 
calculation of texture matrices and the intensity histogram24,25. GLCM and GLRLM-based features were first 
calculated for each of the 13 different spatial directions and subsequently averaged. All features were normalised 
on the exploratory cohort using z-score normalisation. The resulting scale and shift constants were applied to the 
independent validation cohort. For image pre-processing and feature extraction we developed in-house software 
based on Python 2.7 (Python Software Foundation).

Feature selection methods and machine learning algorithms. In the present study different fea-
ture selection methods were considered: (I) correlation-based methods: Pearson, Spearman; (II) feature selection 
algorithms based on mutual information optimisation: mutual information maximisation (MIM), mutual infor-
mation feature selection (MIFS), minimum redundancy maximum relevance (MRMR); and (III) model-based 
approaches: a univariate (uni)- and a multivariate (multi)-Cox-regression model, a random forest minimal depth 
(RF-MD), a random forest variable importance (RF-VI), a random forest based on maximally selected rank statis-
tics variable importance (MSR-RFVI) and a random forest based on permutation variable importance (PVI-RF). 
Additionally, we selected features at random (RAND) and performed no feature selection (None).

The comparison of different machine learning algorithms included the following non-parametric models: (I) 
the Cox model, the NET-Cox method with lasso and elastic-net regularisation; (II) models based on boosting 
trees (BT): BT-Cox, BT-CIndex; (III) boosting gradient linear models (BGLM): BGLM-Cox, BGLM-CIndex; and 
(IV) random forest based methods: random survival forest (RSF), random forest using maximally selected rank 
statistics (MSR-RF). Furthermore we investigated the following full-parametric models (V): survival regression 
(Survival-Regression) and models based on the Weibull distribution: BT- and BGLM-Weibull. A short descrip-
tion of all of these methods can be found in Supplement B. All feature selection methods and machine learning 
algorithms assessed here are able to handle continuous time-to-event data.

Radiomics modelling framework. A radiomics modelling framework (RMF) was developed to create 
radiomics signatures, to optimise the hyper-parameters of machine learning algorithms, to train predictive mod-
els, and subsequently determine the predictive performance of the models as well as to perform the Kaplan-Meier 
survival analyses on validation data. Figure 2 shows the RMF and its four major processing steps: (I) feature selec-
tion, (II) hyper-parameter selection, (III) model building and (IV) model validation. The RMF was developed 
in-house using R 3.3.226.

Feature selection. After feature extraction, feature clustering was performed on the exploratory cohort to 
obtain an initial non-redundant set of biomarkers27. Highly correlated imaging biomarkers (Spearman correlation 
coefficient (SCC) >0.90) were clustered using hierarchical clustering28. The resulting clusters were represented 
by a meta-feature calculated by averaging over all features within the cluster. Negatively correlated features were 
inverted before averaging. A total of 229 non-singular clusters were created. The same clusters and meta-features 
were also generated for the validation cohort.

After clustering, the feature set of the exploratory cohort was used to identify the most relevant features using 
feature selection algorithms. Feature selection was repeated n = 100 times using n bootstrap samples (i.e., 0.632 
bootstrap method with replacement) of the exploratory cohort to ensure the selection of stable features. Feature 
selection ranks each feature according to a score, which depends on the method used. The top 20 best ranking 

Figure 1. Illustration of image pre-processing and feature extraction.
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features were selected from each bootstrap sample. We subsequently aggregated the selected features j over the 
bootstraps by calculating an importance score Ij, defined as
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where Rij defines the rank within the i-th bootstrap sample and occj the frequency of occurrence of feature j over 
all bootstrap samples. The feature rank aggregation score is based on the enhanced Borda score29, with the differ-
ence being that feature occurrence receives a greater weight.

Hyper-parameter optimisation. After feature selection and rank aggregation, hyper-parameters of the 
machine learning algorithms, such as signature size or algorithm-specific settings were optimised for each com-
bination of feature selection and machine learning algorithm. A major objective of hyper-parameter tuning is to 
limit model overfitting. Overfitting would otherwise lead to poor predictive performance on unseen data. The 
individual hyper-parameter set Ω of each learning algorithm A was tuned by using an internal 2-fold cross vali-
dation scheme which was repeated 40 times (nRep = 40) based on the exploratory cohort.

Hyper-parameter optimisation was performed using a grid search through a pre-defined hyper-parameter 
space. The objective of the hyper-parameter optimisation is to minimise a loss function L(Y, X, A) over the inter-
nal training and validation folds, X and Y, respectively, by a trained learning algorithm A to obtain an optimal set 
of parameters Ω*:
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Figure 2. Illustration of the major radiomics processing chain within the radiomics modelling framework 
(RMF). (I) feature clustering and selection to identify prognostic biomarkers, (II) automatic hyper-parameter 
optimisation Θ for each model using a 2-fold cross validation with 40 times repetitions based on the exploratory 
cohort, (III) model building and (IV) model validation were performed.
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Here, μtrain and μvalid are the average prediction accuracy of the internal training and validation folds and μbal is 
the difference in average prediction accuracy between training and validation folds. The correction factor α = 0.5 
represents the performance of a random experiment. The terms γ1, γ2 define penalties for the training-test error 
to minimise both test error and differences between training and test error. This leads to hyper-parameter sets 
where train and test error are more similar (balanced), which may increase model generalisability. The penalty 
term γ3 accounts for the discordance in train and test errors, to avoid selecting hyper-parameter sets where the 
predictions on the training set were concordant with the outcome, yet discordant on the test set.

Model building and validation. Model training was performed m = 100 times using bootstrap samples 
(i.e., 0.632 bootstrap method with replacement) of the exploratory cohort for each combination of feature selec-
tion method and machine learning algorithm. The learning algorithms were trained on the generated bootstrap 
samples based on the top rank features as well as the optimised hyper-parameter set. Afterwards, an ensemble 
prediction30 was made by averaging the predicted risk scores for each model using data of the independent valida-
tion cohort. The ensemble model performance on the validation cohort was assessed using the concordance index 
(C-Index)31,32. The C-Index is a generalisation of the area under the curve for continuous time-to-event survival 
data. C-Index = 0.5 describes a random prediction whereas a perfectly predicting model has C-Index = 1.0.

Clinical endpoints and statistical analysis. The clinical endpoints LRC and OS were calculated from the 
first day of radiochemotherapy to the date of event or censoring. The number of events for LRC and OS were 86 
and 120 for the exploratory cohort, and 26 and 51 for the validation cohort, respectively.

In the present study, four analyses were performed: (I) the predictive performance of all combinations of 
feature selection methods and machine learning algorithms was evaluated based on the validation C-Index of 
the ensemble of models. (II) The median and standard deviation of the validation C-Indices of a feature selection 
method over all machine learning algorithms and vice versa was assessed to measure the variance induced by the 
respective algorithms. (III) The robustness of the radiomic signatures was assessed by applying different image 
rotations (±2°, ±6°, ±10°) and translations in x-y-direction (0.25 mm, 0.75 mm) for all combinations to the 
exploratory cohort and subsequently calculating the ICC for each feature selected by the various feature selection 
methods. (IV) Patients were stratified into a low and high risk group based on the predicted risk of the radiomics 
models. The cut-off value used for stratification was selected by using 1000 bootstrap samples based on the explor-
atory cohort. The fraction of significant stratification results (power) was calculated for each cut-off, leading to 
the optimal value which has the largest power33. Cut-off values were applied to the validation cohort unchanged. 
Survival curves were estimated by the Kaplan-Meier method and compared by log-rank tests. Finally, (V) val-
idation performance for both endpoints was determined for the external signature, obtained by Aerts et al.5.  
In addition, we performed a statistical test to compare the C-Indices of the best performing models for LRC using 
the R package “compareC”34. Two-sided tests were applied and p-values < 0.05 were considered as statistically 
significant.

Results
Prognostic performance of feature selection and machine learning methods. The prognostic 
performance of different feature selection methods combined with machine learning algorithms was evaluated 
for the clinical endpoint LRC. Figure 3 shows the resulting concordance indices (C-Index) for the validation 
cohort.

The considered learning algorithms achieved in general a high prognostic performance on the validation 
cohort. The best single performances were obtained by the MSR-RF (C-Index: 0.71, 95% confidence interval 
[0.62–0.83]), the BT-CIndex (C-Index: 0.71, [0.62–0.82]), the BT-Weibull (C-Index: 0.70, [0.60–0.82]) and the 
BT-COX (C-Index: 0.70, [0.59–0.81]) algorithms, all in combination with the Spearman feature selection method.

For OS, the performance was in general lower in comparison to LRC and similar between the different 
learning algorithms (Fig. 4). The highest single prediction performances were obtained by the BGLM-CIndex 
(C-Index: 0.64, [0.53–0.71]), the BGLM-Weibull (C-Index: 0.64, [0.52–0.70]) and the BGLM-COX (C-Index: 
0.64, [0.51–0.68]), all in combination with the random feature selection. The resulting C-Index for the exploratory 
cohort for both clinical endpoints are shown in Supplementary Figures S4 and S5, respectively.

Median performance of feature selection and machine learning methods. For LRC, the median 
performance of the learning algorithms over all feature selection methods was in general similar. The highest 
median performances were obtained by the RSF (C-Index: 0.64 ± 0.03, median ± std), the MSR-RF (C-Index: 
0.64 ± 0.04) followed by the NET-COX (C-Index: 0.63 ± 0.04) and the BGLM-CIndex (C-Index: 0.63 ± 0.03). 
The highest performance of the feature selection methods was achieved by the Spearman correlation coeffi-
cient (C-Index: 0.68 ± 0.01). Further methods that performed well were: MRMR (C-Index: 0.65 ± 0.01), MIFS 
(C-Index: 0.64 ± 0.01), multi-Cox (C-Index: 0.64 ± 0.01), PVI-RF (C-Index: 0.63 ± 0.01) and RF-VI (C-Index: 
0.63 ± 0.01).

http://S4
http://S5
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For OS, the highest median performances were shown by the BGLM-COX (C-Index: 0.61 ± 0.02) and the 
Survival-Regression (C-Index: 0.61 ± 0.03) algorithm. The performance of feature selection methods was in 
general similar between the methods. The highest median performances were achieved by the: MIM (C-Index: 
0.61 ± 0.01), MRMR (C-Index: 0.61 ± 0.01), None (C-Index: 0.61 ± 0.04) and uni-Cox (C-Index: 0.61 ± 0.01) 
feature selection methods.

Robustness of developed radiomic signatures. The features selected into the signature by multi-Cox 
and uni-Cox feature selection achieved the highest average ICC values for LRC (both ICC: 0.95). The signature 
determined by spearman feature selection showed a good feature robustness (ICC: 0.69). For OS the highest aver-
age ICC values were achieved for Pearson (ICC: 0.96). The lowest average ICC value was shown for the MSR-RFVI 
feature selection (ICC: 0.86). The average ICC values for both endpoints are depicted in Supplementary Table S6.

Figure 3. Heatmap depicting the concordance indices depending on the feature selection method (rows) and 
learning algorithm (columns) for the validation cohort as well as the Aerts et al.5 signature for loco-regional 
tumour control.

Figure 4. Heatmap depicting the concordance indices depending on the feature selection method (rows) and 
learning algorithm (columns) for the validation cohort as well as the Aerts et al.5 signature for overall survival.

http://S6
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Kaplan-Meier survival analyses. For each combination of feature selection method and learning algo-
rithm, patients were stratified into a low and a high risk group based on the predicted risk of the radiomics sig-
nature on the exploratory cohort. The resulting cut-off values were applied to the validation cohort. For LRC the 
best stratification result on the validation cohort was achieved by the Survival-Regression method trained by the 
Spearman signature (p = 0.004). The four best performing learning algorithms in combination with Spearman 
feature selection were able to stratify the patients into a low and high risk group with a significant difference in 
LRC, confirming the applicability of each model (MSR-RF: p = 0.008, BT-Weibull: p = 0.004 (Fig. 5a), BT-COX: 
p = 0.023, BT-CIndex: p = 0.032).

However, different models with a high predictive performance were not able to stratify the patients into 
two groups with significantly different LRC on the validation cohort, e.g., the Cox model in combination with 
Spearman feature selection (C-Index: 0.68, p = 0.27, Fig. 5b), whereas models which showed a low predictive 
performance could stratify patient into two significantly different groups, e.g., the Cox model trained with the 
signature determined by the Pearson algorithm (C-Index: 0.58, p = 0.047).

For OS, the best stratification result was obtained for the RSF trained with the signature obtained by the RF-VI 
algorithm (p = 0.007, Fig. 6a). Again, this learning algorithm achieved only a moderate predictive performance 
(C-Index: 0.60). The BGLM-Weibull in combination with random feature selection achieved a high performance 
(C-Index: 0.64) as well as a significant patient stratification (p = 0.008, Fig. 6b).

The Kaplan-Meier estimates of the exploratory cohort for the shown examples are depicted in Supplementary 
Figures S7 and S8 for LRC and OS, respectively. The p-values of the log-rank test for all combinations of feature 
selection methods and learning algorithms on the validation cohort for both clinical endpoints are depicted in 
Supplementary Figures S10 and S11, respectively.

Evaluation of Aerts signature. The signature by Aerts et al.5 showed a good performance on the validation 
cohort for LRC in combination with different learning algorithms. The highest predictive performance could be 
achieved by the BT-COX (C-Index: 0.65, [0.56–0.76]) and by the BT-Weibull (C-Index: 0.64, [0.55–0.75]) (Fig. 3). 
From the best performing models (C-Index: 0.71) trained with the signatures determined by the Spearman fea-
ture selection, the BT-CIndex model achieved a significantly improved accuracy compared to the BT-COX model 
trained with the Aerts signature (p < 0.001). For OS the highest performance was achieved by the RSF (C-Index: 
0.63, [0.54–0.70]), BGLM-Weibull (C-Index: 0.63, [0.55–0.72]), and NET-Cox (C-Index: 0.63, [0.54–0.71]; 
Fig. 4). Patients were stratified into a low and a high risk group based on the Aerts et al.5 signature trained by 
the BT-Cox model for LRC and the BGLM-Weibull model for OS (Fig. 7). In the validation cohort, both cut-off 
values could stratify patients with significant differences in LRC (p = 0.019) and OS (p = 0.026), respectively. 
The Kaplan-Meier estimates of the exploratory cohort for the shown examples are depicted in Supplementary 
Figure S9.

Discussion
The identification of suitable feature selection methods and learning algorithms is a critical step to develop accu-
rate radiomics models. We therefore performed a systematic evaluation of different feature selection methods and 
learning algorithms in predicting LRC and OS for patients with locally advanced HNSCC. All algorithms were 
able to deal with continuous time-to-event survival data and have not been investigated previously.

Figure 5. Examples of Kaplan-Meier estimates of loco-regional tumour control for patients of the validation 
cohort stratified into a low and a high risk group based on a cut-off value determined on the exploratory 
cohort. (a) The BT-Weibull model in combination with Spearman feature selection showed a significant patient 
stratification as well as a high predictive performance (C-Index: 0.71). (b) The Cox model in combination with 
Spearman feature selection achieved a high predictive performance (C-Index: 0.68) but the difference in LRC 
between low and high risk group was not significant.
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In general, the systematic evaluation showed a good predictive performance for LRC. However, there was 
no method which noticeably outperformed all others. Instead, a subset of different feature selection methods 
and learning algorithms led to similar results. This indicates that a wide range of different methods are useful 
and should be considered for further radiomics analyses. Moreover, applying multiple methods may decrease 
the influence of random effects which may occur in selecting one single approach. Furthermore, the evaluation 
showed that the performance differences between the learning algorithms were smaller than between the feature 
selection methods. In line with Parmar et al.10,11, this indicates that feature selection is more important in the pro-
cess of developing an accurate radiomics model. In contrast to LRC, the predictive performance for OS was gen-
erally lower. This may occur since the cause of death does not necessarily have to be related to cancer, and due to 
the corresponding increase in “noise” on the outcome. Furthermore the best performances were achieved by the 
BGLM-CIndex, -Weibull and -Cox models in combination with the random feature selection. One explanation 

Figure 6. Examples of Kaplan-Meier estimates of overall survival for patients of the validation cohort stratified 
into a low and a high risk group based on the cut-off determined on the exploratory cohort. (a) The RSF model 
in combination with RF-VI feature selection achieved the most significant patient stratification result although 
the predicate performance was only moderate (C-Index: 0.60). (b) The BGLM-Weibull model in combination 
with random feature selection achieved a high predictive accuracy (C-Index: 0.64) as well as a significant patient 
stratification.

Figure 7. Examples of Kaplan-Meier estimates for (a) loco-regional tumour control and (b) overall survival 
for patients of the validation cohort stratified into a low and a high risk group by the cut-off determined on the 
exploratory cohort. The Aerts et al.5 signature in combination with the BT-Cox and the BGLM-Weibull model 
showed a significant patient stratification as well as a high performance (C-Index: 0.65 and C-Index: 0.63, 
respectively).
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for the good performance of random feature selection may be that the hyper-parameter optimisation combined 
with feature selection, which is performed internally by several of the classifiers, leads to a better model accuracy. 
However, the results on the training set (Supplementary Figure S5) show that the train error is actually greater 
than the test error for the cases with high prognostic performance. This indicates that the resulting validation 
performance may be a statistical fluke. A significant difference in LRC was found between patients stratified into 
a low and a high risk group using the best performing models, which confirms their clinical potential. However, 
the results strongly depend on the process of selecting the stratification cut-off, and not necessarily on the per-
formance of the risk model. This was the case for multiple models which predicted risk well, yet did not lead to a 
stratification of patients to risk groups with significant differences in loco-regional tumour recurrence. Still, the 
applied cut-off selection process, which is based on different bootstrap samples, may lead to more robust results 
compared to, e.g., a median cut-off. For instance, the cut-off determination based on bootstrap samples led to 
more significant results (n = 30) than the median cut-off (n = 20) on the validation cohort for LRC.

The signature obtained by the Spearman feature selection method achieved a higher validation performance 
than the signature by Aerts et al.5, which, however, was developed on a dataset of lung cancer patients. The fea-
tures included in the signature by Aerts et al.5 were selected based on their stability across test-retest image scans, 
multiple tumour delineations and 100 bootstrap samples on the exploratory cohort. They represent the single 
best feature from each of four feature groups (statistical, shape, texture and wavelet features). In contrast, our 
radiomics signature for the Spearman method consisted mainly of features extracted from transformed images 
(e.g., wavelet), leading to more sensitivity to image perturbations, e.g., image rotations and translations. However, 
models trained using Spearman method showed the highest validation performance which indicates that those 
image perturbations had in the end a limited effect on the model accuracy.

The robustness of the signatures obtained by the different feature selection methods was in general very high 
against image rotations and translations. We included 293 HNSCC patients from different institutions in our 
study, resulting in a highly heterogeneous dataset, which captures the variability between different CT settings 
and reconstruction parameters usually affecting the model accuracy35,36. Therefore the obtained signatures might 
be less biased from single-centre selection effects and thereby more generalisable and robust. Furthermore the 
stability of feature selection methods was not assessed directly, as we observed that selected features in a particu-
lar bootstrap varied greatly from one bootstrap to the next, i.e., we found low overlap. Therefore we aggregate 
feature ranks and select features based on rank and occurrence using an adaptation of the enhanced Borda score29 
which may also increase the stability. To further enhance its robustness, feature stability information, e.g., from 
test re-test datasets, could be included in the future. To improve the comparability and applicability of radiomics 
signatures, image processing should be done according to the recommendations of the imaging biomarker stand-
ardization initiative23.

The prognostic performance of radiomic analyses may in principle be further improved using the deep-learning 
approach. In particular convolutional neural networks (CNNs) are able to learn feature representations directly 
from the imaging data instead of using hand-crafted features. The application of CNNs have already showed 
promising results in the medical imaging domain37 such as image segmentation38 or lesion detection39. However, 
only few studies so far investigated the potential of the deep learning approach for radiomics40. Paul et al.41  
showed that deep learning features alone did not improve the model accuracy in comparison to traditional quan-
titative imaging features. Therefore, in the present study we decided to focus on traditional quantitative imaging 
features because investigation of CNNs still requires substantial fundamental research concerning the application 
of deep learning in radiomics: Deep learning is usually based on 2D images, which reduces the available infor-
mation of the tumour. In general 3D-CNNs are possible, however, for such an approach no pre-trained networks 
are available which requires sufficient more data samples for training to avoid e.g., model overfitting. A further, 
unresolved, limitation is the missing ability to handle (censored) continuous time-to-event survival data, which 
was the main focus of our study. Still, deep-learning is a promising approach for radiomics and requires further 
investigation. Therefore we are focusing on both extending our curated medical image data set and addressing 
several open methodological questions to adapt deep learning to radiomic risk modelling in the future.

We developed a radiomics modelling framework (RMF) to perform unbiased automatic radiomics analyses. 
Before feature selection, unsupervised feature clustering was performed to reduce and group redundant features. 
The hierarchical clustering process depends on the cut-off threshold. The cut-off height was set manually, based 
on considerations for the resulting number of clusters and likely redundancy. The selection of a different cut-off 
height may result in slightly different findings. Furthermore, it is conceivable to perform a model-based feature 
pre-selection on the exploratory cohort. For instance, a univariate Cox regression model may be used to remove 
non-informative features, followed by feature clustering to optimise the cut-off value at the beginning of the 
processing chain.

After the feature selection process, automatic hyper-parameter optimisation was performed by the RMF, 
which has not been considered in most of the previously radiomics studies. One reason is the computational 
resources required to optimise the model parameters. To limit these resources, we defined hyper-parameter 
ranges for each algorithm with the aim to reduce the parameter space. The parameter space was defined based 
on prior knowledge, e.g., the maximum signature size was derived by the number of events, i.e., 10 events per 
predictor variable as well as identifying those settings that led to balanced performance in cross-validation of the 
exploratory cohort. A further time reduction could be achieved by replacing the exhaustive grid search optimisa-
tion by a random search strategy42. Nevertheless, the automatic hyper-parameter optimisation at the beginning of 
the model training adjusts the model to the specific prediction task, which may improve the prediction accuracy 
and reduce the influence of model overfitting. This is particularly important for the more complex models (e.g., 
BT-Weibull, BT-Cox and MSR-RF), as the choice of their hyper-parameters influences how well they can learn 
the underlying data distribution.
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Based on our systematic evaluation of machine-learning algorithms for continuous time-to event survival data 
we conclude that the Cox model can be used as a baseline predictive model. The Cox model, despite its simplicity 
was able to achieve results comparable to the more complex models. In addition, the tree based methods (BT-Cox, 
RSF, MSR-RF) or full-parametric models like BT-Weibull and the boosted gradient linear model (BGLM-Cox) 
should be considered. In the case of feature selection methods we recommend the Spearman correlation coeffi-
cient and mutual information based methods (MRMR, MIM, MIFS). Multivariate-Cox feature selection as well 
as the random forest based method (RF-VI, PVI-RF) led to acceptable performance and may also be evaluated.

In conclusion, a wide range of available machine-learning methods appears useful in future radiomics studies. 
The application of suitable feature selection methods and learning algorithms is an important step to increase the 
robustness of future radiomics studies. Furthermore, it helps to standardise the methods within the radiomics 
processing chain towards more stable and relevant clinical risk models.

Data availability. The datasets used and analysed during the current study are available from the corre-
sponding author on reasonable request.
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