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Hippurate as a metabolomic marker 
of gut microbiome diversity: 
Modulation by diet and relationship 
to metabolic syndrome
Tess Pallister1, Matthew A. Jackson  1, Tiphaine C. Martin1, Jonas Zierer  1,2, Amy Jennings3, 
Robert P. Mohney4, Alexander MacGregor3, Claire J. Steves1, Aedin Cassidy3, Tim D. Spector1 
& Cristina Menni1

Reduced gut microbiome diversity is associated with multiple disorders including metabolic syndrome 
(MetS) features, though metabolomic markers have not been investigated. Our objective was to 
identify blood metabolite markers of gut microbiome diversity, and explore their relationship with 
dietary intake and MetS. We examined associations between Shannon diversity and 292 metabolites 
profiled by the untargeted metabolomics provider Metabolon Inc. in 1529 females from TwinsUK using 
linear regressions adjusting for confounders and multiple testing (Bonferroni: P < 1.71 × 10−4). We 
replicated the top results in an independent sample of 420 individuals as well as discordant identical 
twin pairs and explored associations with self-reported intakes of 20 food groups. Longitudinal changes 
in circulating levels of the top metabolite, were examined for their association with food intake at 
baseline and with MetS at endpoint. Five metabolites were associated with microbiome diversity and 
replicated in the independent sample. Higher intakes of fruit and whole grains were associated with 
higher levels of hippurate cross-sectionally and longitudinally. An increasing hippurate trend was 
associated with reduced odds of having MetS (OR: 0.795[0.082]; P = 0.026). These data add further 
weight to the key role of the microbiome as a potential mediator of the impact of dietary intake on 
metabolic status and health.

The diversity of bacteria in the human gut, both in term of the number of different microbes and the compara-
tive evenness of their abundances, is associated with higher abundance of beneficial bacteria and is emerging as 
an important indicator of health1–6. Lower alpha-diversity (intra-individual diversity) is suggestive of dysbiosis 
(microbial imbalance) and has been associated with metabolic syndrome features6.

Microbes transform food- and host-derived metabolites, such as bile acids and fibre7, and polyphenols8. The 
profound contribution of the gut microbiome to metabolism has been shown in conventional versus germ-free 
mice, where conventional mice exhibited elevated blood levels of indole-containing compounds (e.g. indoxyl 
sulfate and indole-3-propionic acid), serotonin, sulfated compounds (e.g. phenyl and p-cresol sulfate), and 
glycine-conjugated compounds (hippuric acid, cinnamoylglycine and phenylpropionylglycine)9. Many of the 
above metabolites are food-derived; therefore, merging microbiome and metabolomics approaches with studies 
which capture habitual intake is the logical next step for improving our understanding of the complex interplay 
between diet, the microbiome and metabolic disease.

To date there are relatively few short-term human dietary intervention studies incorporating the microbiome 
and metabolome. It has been shown that daily consumption of 40 g of dark chocolate for 2 weeks altered urinary 
output of gut microbial metabolites, increasing hippurate and methylamines, and reducing p-cresol sulfate10. 
Moreover, a recent randomized controlled pilot study showed feeding 30 g/d of heat-stabilized rice bran for 28 
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days increased abundance of 11 operational taxonomic units (OTUs), and elevated faecal levels of secondary bile 
acids and metabolites derived from microbial modifications of plant-derived components11.

To our knowledge, the role of a diverse gut microbiome in humans as a potential mediator of the impact of 
dietary intake on metabolic status and health has not been robustly addressed. Therefore, the aims of this study 
are: to (i) identify blood metabolites correlated with gut microbiome diversity, (ii) examine the impact of food 
intake on these metabolites and to, (iii) examine if longitudinal changes in these metabolites are predictive of 
future development of the metabolic syndrome.

Results
Supplementary Table S1 provides the study population characteristics and subject numbers.

Microbiome diversity metabolomics associations. Eight metabolites significantly correlated with 
Shannon diversity in the discovery sample after adjusting for multiple testing (Table 1). These include hippurate, 
p-cresol sulfate, phenylacetylglutamine, 4-ethylphenolsulfate, indolepropionate and 3-phenylpropionate which 
were positively associated; and hyodeoxycholate and phenol sulphate which were negatively associated. Five 
metabolites were validated in the replication sample (Table 1). These include hippurate, p-cresol sulfate, pheny-
lacetylglutamine, 3-phenylpropionate, and hyodeoxycholate.

Higher circulating levels of the benzoate metabolite, hippurate, were also associated with higher fruit 
(0.012[0.002]; P = 7.36 × 10−8) and whole grains intake (0.013[0.003]; P = 2.05 × 10−5). Another benzoate metab-
olite, 3-phenylpropionate, was also positively associated with whole grain (0.018[0.004]; P = 2.71 × 10−6) and 
fruit intake (0.010[0.002]; P = 2.45 × 10−5) while higher levels were inversely associated with lower fried and fast 
food intake (−0.045[0.009]; P = 5.63 × 10−7). Hippurate and 3-phenylpropionate levels were correlated (r = 0.51; 
P < 0.001), although summing the two metabolites did not improve their association with Shannon diversity 
(hippurate R2: 0.0258; 3-phenylpropionate R2: 0.0122; and combined R2: 0.0236), therefore for the remainder of 
the analysis we focused on hippurate.

Food intakes predict longitudinal hippurate trajectories. In a subsample of the discov-
ery group higher baseline intakes of whole grains (1.70 × 10−4[3.84 × 10−5]; P = 9.54 × 10−6), coffee 
(1.03 × 10−4[2.82 × 10−5]; P = 2.73 × 10−4) and fruit (8.43 × 10−5[2.71 × 10−5]; P = 1.89 × 10−3) significantly 
(P < 0.0025) predicted increasing hippurate trends. All food associations were independent, remaining signifi-
cant in a multivariate linear regression model and together accounted for 5.3% of the variance in hippurate trend. 
We calculated a hippurate diet score (computed as the quartile sum of these three food intakes) in the discovery 
sample (hippurate association: 0.089[0.012]; P = 1.13 × 10−13, and Shannon diversity association: 0.031[0.009]; 
P = 5.76 × 10−4) and validated it in the validation sample against hippurate levels (0.089[0.024]; P = 3.21 × 10−4), 
and Shannon diversity (0.040[0.019]; P = 0.035) (independently of hippurate). The hippurate diet score was mod-
erately heritable (A: 0.3782 [0.3024, 0.4485]; E: 0.6218 [0.5515, 0.6976]). We confirmed the same directional 
effects for other diversity metrics for hippurate and the diet score (Supplementary Table S2).

OTU and collapsed taxa associations with hippurate. In the whole sample thirty OTUs and six-
teen collapsed taxa (Fig. 1) were significantly associated with blood levels of hippurate (P < 8.61 × 10−5 
[OTUs]−1.47 × 10−3 [phylum]). Direction of effect in significant OTU and taxa hits was consistent with 
taxonomic relationships across all results, except within Clostridia. However, this is a known polyphyletic 
taxon. The positively associated taxa or OTUs belonged to the Ruminococcaeae family and one OTU of the 
family Rikenellaceae. The negatively associated taxa or OTUs belonged to the class Erysipelotrichi, the order 
Actinomycetales, the Lachnospiraceae family and the collapsed Ralstonian genus.

Metabolite
Super-
pathway Sub-pathway

Discovery (n = 1529) Validation (n = 420)2

beta (SE) P beta (SE) P

Hippurate Xenobiotics Benzoate metabolism 0.230 (0.040) 3.72 × 10−8 0.238 (0.072) 0.001*

p-cresol sulfate Amino acid Phenylalanine & tyrosine 
metabolism 0.200 (0.040) 9.90 × 10−8 0.179 (0.063) 0.005*

phenol sulfate Amino acid Phenylalanine & tyrosine 
metabolism −0.200 (0.040) 5.82 × 10−7 −0.121 (0.063) 0.055

Phenylacetylglutamine Amino acid Phenylalanine & tyrosine 
metabolism 0.180 (0.040) 5.21 × 10−6 0.195 (0.062) 0.002*

3-phenylpropionate (hydrocinnamate) Amino acid Phenylalanine & tyrosine 
metabolism 0.160 (0.040) 3.43 × 10−5 0.185 (0.084) 0.028*

4-ethylphenylsulfate Xenobiotics Benzoate metabolism 0.190 (0.050) 5.12 × 10−5 0.062 (0.081) 0.441

Hyodeoxycholate Lipid Bile acid metabolism −0.190 (0.050) 8.66 × 10−5 −0.215 (0.089) 0.016*

Indolepropionate Amino acid Tryptophan metabolism 0.140 (0.040) 9.20 × 10−5 0.093 (0.083) 0.262

Table 1. Metabolites associated with Shannon diversity in the discovery sample (following backward stepwise 
linear regression) and in the validation sample1. *Statistically significant: P < 0.05. 1A linear regression was 
performed using Shannon diversity to predict levels of 292 metabolites adjusting for age, BMI, batch effects (and 
sex in the validation) and family relatedness. 2Statistically significant (P < 1.71 × 10−4) associations from the 
discovery group were validated in the validation group.
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Following a backward stepwise linear regression using P < 0.05 as the cut-off threshold, together the remain-
ing OTUs accounted for 58.0% of the variance in Shannon diversity and 7.1% of the variance in hippurate levels 
(adjusted for diversity).

OTU and Taxa associated with both hippurate and the hippurate diet score. Five OTUs and five 
taxa associated with hippurate were also associated with the diet score in the same direction (Table 2) in the 
whole sample. Specifically, reduced abundances of one OTU assigned to the genus Actinomyces were associated 
with an increased diet score, and similar to hippurate this trend was significant at both the family and order 
levels. At the genus level, reduced abundances of Ruminococcus (including 2 OTUs) and Eubacterium were asso-
ciated with increasing diet scores. Moreover, increased diet scores were associated with increased abundances of 
OTUs assigned to the species Faecalibacterium prausnitzii and the genus Clostridiales. Most associations appeared 
to be to be primarily related to intakes of fruit and whole grains (Table 2). Though higher abundances of one 
Clostridiales OTU were associated with increased coffee intake.

Relationship of diversity, the hippurate trend and diet to MetS and its components. Supplementary Table 3 pro-
vides the clinical characteristics of the subsample of individuals studied. Longitudinal hippurate trajectories were 
significantly associated with Shannon diversity, independently of diet and covariates in a subsample of 1032 
individuals (15.736[1.96]; P = 4.95 × 10−15), moreover the hippurate trend accounted for 6.5% of the variance in 
Shannon diversity.

Figure 2 shows the results of the analysis for associations between diversity, the hippurate trend and MetS. 
Higher Shannon diversity and an increasing hippurate trend were associated with a reduced risk of having 
MetS (Fig. 2a). 61.1% of the effect of the hippurate trend on MetS was accounted for by the association between 
Shannon diversity and MetS. Five collapsed taxa and 3 of the OTUs that were associated with both diet and 
hippurate were associated with MetS, including: the Actinomycetaceae family, and Actinomycetales order and 
Actinomyces genus within Actinomycetaceae, the Eubacterium and Ruminococcus genera (plus one OTU), which 
were positively associated; and OTUs assigned to the order Clostridiales and Faecalibacterium prausnitzii that 
were inversely associated. The percentage variance in the metabolite trend and MetS that was accounted for by 
the MetS association with these associated OTUs/taxa is shown in Fig. 2b.

Confirmation of results in discordant twins. We identified 55 MZ twin pairs who were discordant (1 SD apart) 
for Shannon diversity. Associations between Shannon diversity and hippurate were significant (P < 0.05) 

Figure 1. OTU and collapsed taxonomic associations with hippurate. Associations between blood hippurate 
and microbiome variables are represented the histogram bars on the right side of the plot. The histogram 
bars represent the −log10 of the P-value of the regression and the colour of the bars indicates the direction of 
association: green, positive; red, negative.

http://3


www.nature.com/scientificreports/

4Scientific RepoRts | 7: 13670  | DOI:10.1038/s41598-017-13722-4

cross-sectionally (0.208[0.081]; P = 0.013) and longitudinally (0.478[0.078]; P = 9.53 × 10−8), and associations 
for top variables were in the same direction as in the much larger whole group analysis (Supplementary Table S4), 
except for HDL-cholesterol.

Phylum Class Order Family Genus species
OTU/
Collapsed2

Hippurate Diet score Foods3

Beta (SE) P Beta (SE) P P < 0.05

Actinobacteria Actinobacteria Actinomycetales Collapsed −0.083(0.022) 1.31 × 10−4 −0.035(0.011) 1.67 × 10−3 Fruit: −0.004(0.002) 
WG: −0.007(0.003)

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Collapsed −0.089(0.021) 2.89 × 10−5 −0.036(0.011) 1.70 × 10−3 Fruit: −0.004(0.002) 
WG: −0.007(0.003)

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces Collapsed −0.101(0.021) 1.55 × 10−6 −0.045(0.011) 5.71 × 10−5 Fruit: −0.005(0.002) 
WG: −0.008(0.003)

Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces OTU −0.099(0.022) 5.14 × 10−6 −0.051(0.011) 2.81 × 10−6 Fruit: −0.005(0.002) 
WG: −0.009(0.003)

Firmicutes Clostridia Clostridiales OTU 0.113(0.024) 2.21 × 10−6 0.044(0.010) 9.76 × 10−6 Coffee: 0.013(0.002)*

Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus Collapsed −0.111(0.022) 4.03 × 10−7 −0.038(0.011) 6.35 × 10−4 Fruit: −0.005(0.002) 
WG: −0.008(0.003)

Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus OTU −0.123(0.021) 1.17 × 10−8 −0.054(0.011) 2.79 × 10−6 Fruit: −0.006(0.002)* 
WG: −0.009(0.003)

Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus 
gnavis OTU −0.107(0.023) 3.04 × 10−6 −0.064(0.011) 1.99 × 10−8 Fruit: −0.006(0.002)* 

WG: −0.009(0.003)

Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 
prausnitzii OTU 0.100(0.023) 1.66 × 10−5 0.034(0.010) 9.24 × 10−4 WG: 0.007(0.003)

Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Eubacterium Collapsed −0.083(0.021) 9.30 × 10−5 −0.040(0.012) 6.12 × 10−4 Fruit: −0.004(0.002) 
WG: −0.010(0.003)*

Table 2. List of taxa associated with hippurate, the hippurate diet score and foods1. *Statistically significant: 
P < 0.0017; WG: whole grain products. 1Microbiome OTUs and collapsed taxa significantly associated with 
both hippurate and the hippurate diet score (quartile-ranked, scored and summed intakes of coffee, fruit and 
whole grains) are shown. Associations were adjusted for covariates (age, Shannon Index, metabolite batch, BMI, 
sex and family relatedness) and multiple testing using Bonferroni correction. Hippurate diet score associations 
were also adjusted for hippurate. 2OTU or collapsed taxonomy. 3All foods included in the hippurate diet score 
were fitted into a backwards stepwise linear regression using P < 0.05 as the cut-off threshold with each taxa 
associated to both hippurate and the diet score. Results displayed are the betas with standard errors of foods at 
least nominally associated (P < 0.05). Statistical significance was defined as P < 0.0017 (Bonferroni: 0.05/[10 
taxa × 3 foods]).

Figure 2. Associations between diversity, the hippurate trend, diet and OTUs and collapsed taxa with MetS 
status. (a) Shows the associations between MetS with Shannon diversity, the hippurate trend, and OTUs/taxa 
(significantly associated with hippurate, the diet score and MetS) represented as betas with SEs; all variables 
have been standardized. The diet score was not significantly associated with MetS. (b) Shows the percentage 
variance in the metabolite trend and MetS that was accounted for by the MetS association with Shannon 
diversity or associated OTUs/taxa. Abbreviations: MetS, metabolic syndrome; OTU, operational taxonomic 
unit; NA, not applicable.
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Discussion
Here we have identified hippurate, through its relationship with microbiome diversity, as a potential modulator 
of MetS, independently of diet. Specifically, we find that circulating levels of five blood metabolites, including 
hippurate, are associated with greater gut microbiome diversity both cross-sectionally and longitudinally and 
higher intakes of fruit and whole grains. Hippurate and intakes of foods including coffee, fruit and whole grains 
also correlated with 5 OTUs and 5 collapsed taxa independent of diversity. In particular, hippurate was positively 
associated with an OTU within the order Clostridiales and the species Faecalibacterium prausnitzii and negatively 
with the Actinomycetaceae family, and the genera Eubacterium and Ruminococcus. Both an increasing Shannon 
diversity score and increasing hippurate levels were associated with a lower risk of MetS.

We identified and validated in an independent sample 5 metabolites associated with gut microbiome diversity: 
hippurate, p-cresol sulfate, phenylacetylglutamine and 3-phenylpropionate which were positively associated; and 
a negative association with hyodeoxycholate.

P-cresol sulfate (also p-cresyl sulfate) and phenylacetylglutamine are potentially toxic uremic solutes 
formed from the putrefication of undigested dietary proteins by colonic bacteria (and, in the case of p-cresol 
sulfate, subsequent modification by the liver). Our group previously showed higher p-cresol sulfate and phe-
nylacetylglutamine levels to be strongly associated with early kidney dysfunction and gut microbiome OTUs12. 
Hyodeoxycholate is a secondary bile acid, produced from intestinal bacterial metabolism. Hyodeoxycholate 
is metabolised by glucuronidation in the human liver and kidneys, a pathway for toxin elimination13. Both 
3-phenylpropionate and hippurate are derived from gut microbial metabolism of polyphenols to benzoates, 
though hippurate accounted for a larger portion of the variance in diversity. Hippurate is a glycine conjugate of 
benzoic acid formed in the mitochondria of the liver and kidneys14, and also through gut bacterial metabolism 
of dietary components, primarily polyphenols15,16. Although hippurate is also derived from the metabolism of 
quinic acid and/or shikimic acid17.

Overall, increased Shannon diversity and the hippurate trend were associated with a reduced odds of having 
MetS. Interestingly, 61.1% of the effect of the hippurate trend on MetS was mediated by the association between 
Shannon diversity and MetS. A previous study has shown reduced gut bacterial diversity of MetS features6. We 
believe the relationship between MetS and blood hippurate to be a novel finding, though studies have shown 
reduced urinary hippuric acid excretion in obesity18–20. We have previously found increasing circulating lev-
els of hippurate to be associated with adipose tissue gene expression levels of neuroglobin, a type of globin21. 
Neuroglobin expressed in neurons and some endocrine tissues acts to protect cells against hypoxia and oxidative 
stress22.

Overall increased abundances OTUs/taxa of the Actinomycetaceae family and the genera Eubacterium and 
Ruminococcus were associated with reduced hippurate and the diet and increased MetS risk, and increased abun-
dances of OTUs of the order Clostridiales and the species Faecalibacterium prausnitzii were associated with 
increased hippurate and diet score and reduced MetS risk.

The Actinomycetaceae family are typical commensals present within the oral cavity. In rare cases, an 
Actinomyces overgrowth contributes to an infection within the gut through forming filamentous branches that 
grow through damaged mucosal tissue penetrating the gut barrier, forming abscesses and fistula23. The relation-
ship between Actinomycetaceae and the foods forming the hippurate diet score is not entirely clear. We found 
increased abundance of the genus Eubacterium to be associated with lower hippurate and the diet score, par-
ticularly whole grain intake. Contrary to our findings, feeding of whole grains24 and switching from a Western 
to plant-based diet25 in 10 humans have enriched abundances of species Eubacterium rectale. Another species, 
Eubacterium dolichum was found to be elevated in mice fed a Western-style diet26. Higher abundances of the 
genus Ruminococcus (one OTU and collapsed taxonomy) were associated with higher MetS risk. Increased 
Ruminococcus abundances were associated with lower fruit intake. Ruminococcus abundances were reduced fol-
lowing 12-week feeding of schisandra chinensis fruit, which is high in flavonoids27.

Increased abundances of OTUs within Clostridiales and Faecalibacterium prausnitzii were associated with 
increased hippurate, dietary components and reduced risk of MetS. The Clostridiales OTU was strongly and 
positively associated with coffee intake. Significantly elevated levels of the Clostridium coccoides-Eubacterium 
rectale group have been shown following the incubation of human faecal microbiota with coffee samples28. 
Faecalibacterium prausnitzii has been shown to correlate with microbiome gene count and predict weight loss 
over time6. Faecalibacterium prausnitzii has been shown to be depleted in 239 MetS subjects and partially restored 
following a 2 year Mediterranean diet intervention29. Increased abundances of the Faecalibacterium prausnitzii 
OTU were mildly associated with higher whole grain intake. Whole grains appear to allow Faecalibacterium 
prausnitzii to flourish30.

There were a number of limitations to this study. Importantly, the metabolomics methods utilised in our 
study do not yield absolute concentrations. Ideally a targeted method that could provide robust validation of 
the quantitative results. These data however offer important insights that can be tested by other groups using 
targeted metabolomics methods. The use of targeted assays would have been an ideal way to validate our findings. 
Unfortunately it is not a viable option for our cohort. We included few males therefore these results may only 
apply to women. As the FFQ relies on subject reporting, the accuracy of this recall data is always to some extent 
problematic. If misclassification of intakes had occurred, it would appear as error and likely have obscured any 
real findings and not strengthened them. Furthermore, we replicated our findings in MZ twin pairs and from 
previous feeding studies which have shown hippurate excretion to be increased following the consumption of 
these foods. We have not considered the influence of freezing and transit time in these analyses. Whilst these 
may influence results we do not expect this to be a large effect as variations in sample collection would be dis-
tributed randomly in relation to the phenotypes assessed. However, future analyses could be improved by taking 
these into consideration in the experimental design and analysis stages. Moreover, it will be of interest to carry 
out further research to identify how the bacteria interact and how that might influence microbiome diversity, 
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related metabolites and be affected by diet. Finally, the range of time differences between sample collections is an 
issue throughout this paper. Though likely our results would have been stronger if closer time points were used 
between data collections.

There were also many advantages. We had a large number of twin subjects with the unique combination 
of metabolomics profiling, dietary information and gut microbiome profiling. We also had access to a unique 
longitudinal metabolomics dataset in order to evaluate the influence of changes in hippurate levels on MetS risk.

In conclusion, we identified novel diet-microbiome-metabolite relationships including five specific metabo-
lites that are related to a diverse microbiome profile. Hippurate in particular was strongly associated to increased 
gut microbiome diversity and consumption of polyphenol-rich foods including coffee, whole grains and fruit and 
reduced odds of MetS. The potential of hippurate as a marker of alpha-diversity and the interplay between a diet 
rich in these foods, gut microbes and hippurate production should now be established in dynamic mechanistic 
studies using a dietary intervention setting.

Materials and Methods
The study population included twins enrolled in the TwinsUK registry, which is a national register of healthy 
adult twins residing throughout the UK31. Twins included in the dataset all had completed food intake ques-
tionnaires, faecal microbiome and blood metabolomics profiling (Fig. 3a shows the dataset information). Food 
intakes were estimated by administering a 131-item validated Food Frequency Questionnaire (FFQ)32 between 
1995 and 2001, in 2007 and from 2014 to 2015. Food intake frequencies were collapsed into 20 different food 
types (Supplementary Table S5). The sample was divided into discovery and validation groups according to when 
FFQs were completed (before or in/after 2014). Female twins who completed FFQs collected between 1995 and 
2001 and in 2007 were used in the discovery analysis (n = 1529). New FFQ data was collected between 2014 and 
2015; 484 additional individuals had microbiome and metabolomics data and completed FFQs during this time, 
420 of these individuals who had no co-twin in the discovery sample were used as a validation sample. Quality 
control of the FFQ dataset has been outlined previously33. The study has been approved by the local St. Thomas’ 

Figure 3. Overview of the study datasets and flow chart of study design. (a) Provides an overview of the study 
datasets. There were 5 different datasets used in the study. The colors and outline of the boxes indicate the 
datasets used; color: blue, whole; green, discovery; orange, validation; outline: solid, whole; dashed, subsample. 
All individuals included in the study had FFQ, blood metabolomics and microbiome data available. For part 
1 cross-sectional analyses the whole sample was divided into discovery and validation groups based on when 
FFQs were completed. A subsample of individuals from the discovery group were used to examine baseline 
diet associations with longitudinal blood metabolomics. For part 2 analysis a subsample of individuals from the 
whole dataset were used to examine MetS associations with longitudinal metabolomics and cross-sectional diet 
and microbiome. (b) Shows the study outline for part 1 of the analysis where metabolite markers of microbiome 
diversity were identified and their relationship to diet examined. The flow chart is numbered in the order the 
analysis was conducted. On the left side of the figure the datasets used for each analysis step are indicated. 
(c) Shows the study outline for part 2 analysis where longitudinal levels of the top metabolite marker were 
examined for its relationship with MetS. Shannon diversity, the diet score, and metabolite- and diet-associated 
OTUs/taxa were investigated for their association with MetS status cross-sectionally.Abbreviations: MetS, 
metabolic syndrome; NA, not applicable.

http://S5
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Hospital Research Ethics Committee and was performed in accordance with the approved guidelines. All study 
participants provided written informed consent.

Faecal microbiome composition. Faecal samples were collected at follow-up between 2012 and 2016, and 
the composition of the gut microbiome was determined by 16 S rRNA gene sequencing carried out as previously 
described34. Details for the microbiome quality control are described in Supplementary Text S1. Shannon diver-
sity was the primary index considered for analysis, this index is normally distributed and most commonly used. 
There were on 5.46 (3.83) years between FFQ and faecal sample collection.

Metabolomic profiling. Non-targeted mass spectroscopy-based metabolomic profiling was undertaken 
in three batches all within 2 years by the metabolomics provider Metabolon, Inc. (Durham, NC) on 6056 fast-
ing blood samples (batch 1 in serum and batches 2 and 3 in plasma), as previously outlined35 and detailed in 
Supplementary Text S2. The Metabolon platform identified 292 structurally named biochemicals that belong to 
the following broad categories: amino acids, carbohydrates, vitamins, lipids, nucleotides, peptides, and xenobi-
otics (Supplementary Table S6). The associations between metabolite and batch adjusted for age, BMI and family 
relatedness can be found in Supplementary Table S7. Quality control on the metabolomics dataset was performed 
as previously described35 (Supplementary Text S2). Briefly, raw data were median-normalised by dividing the 
metabolite concentrations by the daily median for that metabolite. Metabolite concentrations did not follow a 
normal distribution and were therefore inverse-normalized. There were on average 3.13 (SD: 3.10) years between 
the FFQ and the blood sample collection.

Classification of the metabolic syndrome. Clinical visits were undertaken where a trained research 
nurse or assistant collected blood samples, waist circumference and blood pressure (Supplementary Text S3 for 
details).

MetS status was determined by the International Diabetes Federation and the American Heart Association/
National Heart, Lung, and Blood Institute criteria36.

Data Availability. TwinsUK omics and phenotypic data are publicly available upon request. Details can be 
found on the departmental website (http://www.twinsuk.ac.uk/data-access/accessmanagement/).

Statistical analysis. Statistical analysis was carried out using Stata version 12. The statistical analysis was 
undertaken in two parts. First, a metabolomic marker of microbiome diversity was identified, its relationship to 
food intake explored and associations with microbiome OTUs/collapsed taxonomies identified. In the second 
part, the relationship between longitudinal levels of the diversity metabolite marker, diet, diversity and associated 
OTUs/taxa with the risk of MetS was explored.

Part 1: Metabolomics associations with diversity, relationship to food intake and associations 
with microbiome OTUs/taxa. Figure 3b shows the study outline for this section.

Microbiome diversity-metabolite associations. A linear mixed regression model with Shannon diversity as a pre-
dictor of the metabolite level was undertaken in a group of 1529 females, adjusted for age, batch, BMI and family 
relatedness as random intercept and multiple testing (Bonferroni: 0.05/292 = 1.71 × 10−4). Significant metabolites 
from the discovery sample were then evaluated against Shannon diversity using the same linear regression (addi-
tionally including sex as a covariate) in the validation sample (including n = 113 males), associations passing the 
5% level of significance were considered validated.

Food intake associations with diversity-associated metabolites. In the discovery sample, reported intakes of 20 
food groups were used to predict levels of the validated metabolites (Bonferroni: 0.05/[5 metabolites × 20 food 
groups] = 5.00 × 10−4), adjusted for the same covariates as above. In a subsample of individuals from the discov-
ery group (n = 788) longitudinal metabolomics data was available (n = 705 3 time points, n = 83 2 time points) 
as well as reported food group intake at the same time or 5 years before the first blood sample. Trajectories of 
change (indicated as ‘trend’ from here forward) in the top diversity-associated metabolite (years after baseline: 2nd 
time point: 7.4 [range: 2.3–12.8]; 3rd time point: 13.9 [range: 8.3–17.9]) were determined by empirical Bayes pre-
dictions (adjusted for age and BMI) which estimates the rate of change in standard deviations/year37. Using this 
method, point estimates were calculated and a slope of change determined. Food group intake at or before base-
line metabolite levels was then used to predict the metabolite trends (Bonferroni: 0.05/20 food groups = 0.0025).

A dietary score predictive of the metabolite trend was created from quartile (Q)-ranking significantly asso-
ciated foods, scoring according to the direction of association (i.e. positive association: Q1 = 0-Q4 = 3; negative 
association: Q1 = 3-Q4 = 0) and summing. The heritability of the score was determined by structural equation 
modelling using Mx (Supplementary Text S4 for details).

To establish the association between the metabolite and diet score with richness (defined here as number of 
observed OTUs) and additional diversity metrics (Simpson and Chao1), these associations were run using the 
same linear regression as for the Shannon diversity discovery analysis, though in the whole sample.

Food-microbiome-metabolite axis. To identify associations between the metabolite and the microbiome, the 
discovery and validation samples were combined (n = 2013). Associations with the microbiome were evaluated 
by calculating a linear regression model using the OTUs and OTUs collapsed at each taxonomic level (phylum, 
class, order, family, genus) as predictors of the metabolite adjusted for covariates (age, BMI, batch, sex and fam-
ily relatedness), Shannon diversity and multiple-testing (Bonferroni cut-off; Supplementary Table S8 shows the 
significance threshold for the OTUs and each taxonomic level). To determine the total variance of both Shannon 
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diversity and the metabolite explained by the metabolite-associated OTUs, we included all associated OTUs in a 
backwards stepwise linear regression using P < 0.05 as the threshold cut-off and we report theR2 for each model. 
We then calculated linear mixed models of metabolite-associated OTUs/taxa using the diet score as a predictor 
of abundances adjusted for covariates, the metabolite and multiple testing (assigned at each taxonomic level; 
Supplementary Table S8). To investigate if any of the foods forming the score were driving associations, we ran a 
multivariate regression model including all metabolite-associated foods and the same covariates.

Part 2: The relationship between longitudinal levels of the diversity metabolite marker, diet, 
diversity and associated OTUs/taxa with the risk of MetS. Figure 3c shows the analysis pipeline for 
this section.

Relationship between microbiome diversity, longitudinal metabolite and the MetS. A subsample of 1032 individ-
uals (primarily female) had longitudinal levels of the blood metabolite (n = 533 with 2 time points, n = 499 with 
3 time points; range: 2.4–17.9 years). To evaluate whether longitudinal levels of the top diversity metabolite pre-
dicted MetS status, we ran independent linear regression models each for Shannon diversity, the metabolite trend 
(determined using empirical Bayes predictions as above), the diet score, and metabolite/diet-associated OTUs/
taxa to predict MetS status adjusting for age, sex, and family relatedness.

Longitudinal Metabolite association with MetS mediated by Shannon diversity, the diet score and specific taxa. The 
aim of this analysis was to determine how much of the variance in the metabolite trend and MetS was accounted 
for by the MetS association with Shannon diversity, the diet score or specific OTUs/taxa. Details are provided in 
Supplementary Text S5.

Confirmation of findings in twins discordant for Shannon diversity. In 55 MZ twin pairs discordant (≥1 SD) for 
Shannon diversity, we confirmed associations between Shannon diversity and the longitudinal metabolite trend, 
also cross-sectional metabolite, diet score and MetS using the same regression models as the discovery analysis.
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