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ABSTRACT

Objective: Shared genetic background may explain phenotypic associations between depression and Type 2 diabetes (T2D). We aimed to
study, on a genome-wide level, if genetic correlation and pleiotropic loci exist between depressive symptoms and T2D or glycemic traits.

Methods: We estimated single-nucleotide polymorphism (SNP)-based heritability and analyzed genetic correlation between depressive
symptoms and T2D and glycemic traits with the linkage disequilibrium score regression by combining summary statistics of previously
conducted meta-analyses for depressive symptoms by CHARGE consortium (N = 51,258), T2D by DIAGRAM consortium (N = 34,840
patients and 114,981 controls), fasting glucose, fasting insulin, and homeostatic model assessment of (3-cell function and insulin resistance
by MAGIC consortium (N = 58,074). Finally, we investigated pleiotropic loci using a bivariate genome-wide association study approach
with summary statistics from genome-wide association study meta-analyses and reported loci with genome-wide significant bivariate as-
sociation p value (p <5 x 10 ®). Biological annotation and function of significant pleiotropic SNPs were assessed in several databases.
Results: The SNP-based heritability ranged from 0.04 to 0.10 in each individual trait. In the linkage disequilibrium score regression anal-
yses, depressive symptoms showed no significant genetic correlation with T2D or glycemic traits (p > 0.37). However, we identified pleio-
tropic genetic variations for depressive symptoms and T2D (in the /GF2BP2, CDKALI, CDKN2B-AS, and PLEKHAI genes), and fasting
glucose (in the MADD, CDKN2B-AS, PEX16, and MTNRIB genes).

Conclusions: We found no significant overall genetic correlations between depressive symptoms, T2D, or glycemic traits suggesting ma-
jor differences in underlying biology of these traits. However, several potential pleiotropic loci were identified between depressive symp-
toms, T2D, and fasting glucose, suggesting that previously established phenotypic associations may be partly explained by genetic
variation in these specific loci.

Key words: depression, meta-analysis, Type 2 diabetes, pleiotropy, GWAS.

INTRODUCTION For prevention, it is important to unravel the reasons why an indi-
vidual is susceptible to develop diabetes.

D iabet'es, prirparily Type 2 diabetes (T2D) presents a majo'r CFS = chronic fatigue syndrome, GWAS = genome-wide associa-
and increasing health burden globally, and it has been esti- tion study, HOMA-B = homeostatic model assessment of B-cell
mated that 415 million people had diabetes in 2015 (approxi- function, HOMA-IR = homeostatic model assessment of insulin

mately 10% of the world adult population) (1). This figure is resistance, LDSC = linkage disequilibrium score regression,
e MDD = major depressive disorder, SNP = single-nucleotide poly-
expected to exceed 700 million by 2025 (1). Many people have . ;
. . . . morphism, T2D = Type 2 diabetes
undiagnosed diabetes and many more are at increased risk (2).
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T2D and another growing health problem (3), depression,
show bidirectional relationship (4). Based on a meta-analysis in-
volving 172,521 participants, individuals with T2D have a 24% in-
creased risk of incident depression compared with people without
diabetes (5). On the other hand, based on a meta-analysis involv-
ing 2,411,641 participants, individuals with depression have a
41% increased risk for developing any type of diabetes and 32%
increased risk for developing T2D (6). Moreover, major depres-
sive disorder (MDD) and subclinical depressive symptoms are as-
sociated with abnormal glucose metabolism, impaired insulin
secretion, and insulin resistance (7,8). However, the underlying
mechanisms linking these conditions are unknown. One possibil-
ity is that these moderately heritable (9,10) conditions share a com-
mon genetic basis. Studies examining this hypothesis are still
scarce and show conflicting results. A recent twin study using
Swedish and Danish population registries (N = 68,606 and
N =95,403, respectively) found a moderate but significant genetic
correlation between depressive disorders and diabetes among fe-
males from both cohorts ranging between 0.18 and 0.23 and
among Danish male twins (genetic correlation, 0.25) suggesting
significant overall shared genomic background between these dis-
orders (11). Conversely, a recent single-nucleotide polymorphism
(SNP)-based study using linkage disequilibrium score regression
(LDSC) failed to show genetic correlations between MDD and
T2D or quantitative glycemic traits (12). Similarly, a population-
based study of 21,516 individuals showed no genetic overlap be-
tween MDD and T2D using polygenic risk score analysis, and
Mendelian randomization in addition to LDSC (13).

Currently, there are no studies on genetic overlap between de-
pressive symptoms and T2D or glycemic traits. There are several
reasons why focusing on depressive symptoms rather than MDD
is justified: most of the longitudinal studies investigating bidirec-
tional associations between these traits use measures of depres-
sive symptoms. Moreover, psychiatric patients may be reluctant
to seek help or be suboptimally treated for their nonpsychiatric
disorders (14). Finally, because depression in the population
may be best characterized dimensionally as a continuum from de-
pressive symptoms to subthreshold depression and finally to
MDD (15), each step increasing adverse health influences (16,17),
treating depression dimensionally rather than categorically could
increase statistical power to detect phenotypic associations (18).

In addition to investigating overall genetic correlation between
the traits, examining specific SNPs that associate with both condi-
tions may increase our understanding in the common underlying
biology of the traits (19). Methods to study these pleiotropic asso-
ciations based on genome-wide meta-analyses summary data have
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become only recently available (20). For example, a recent study
applied bivariate genome-wide association study (GWAS) analy-
ses and identified several pleiotropic loci that associated with both
C-reactive protein and lipids and suggested potential genetic inter-
relation between these traits (21).

Here, we report findings from a study that applied a bivariate
genome-wide association analysis using summary statistics from
three relatively large univariate GWAS for depressive symptoms
and glycemic traits (22-24). In these studies, Dupuis and col-
leagues (23) identified 25 independent loci and conducted follow-
up analysis leading to 16 loci that associated with fasting glucose/
homeostatic model assessment of (3-cell function (HOMA-f3) and
two that associated with fasting insulin/homeostatic model assess-
ment of insulin resistance (HOMA-IR), and Morris and colleagues
(24) found 10 new loci that associated with T2D. For depressive
symptoms, one SNP in the 5q21 region reached genome-wide sig-
nificance (22). In sum, we first tested in large genome-wide meta-
analyses data sets (22-24) the hypothesis that a positive genetic
correlation between depressive symptoms and T2D or glycemic
traits exists. Second, in the same data sets, we also explored if
there are potential pleiotropic SNPs that are associated with both
depressive symptoms and T2D and the glycemic traits. Because
of the vast number of tests in genome-wide analyses and our lim-
ited understanding on the etiology of these traits, we did not place
specific hypothesis on SNPs and their direction.

METHODS

GWAS Summary Statistics

Our analyses are based on previously published univariate GWAS sum-
mary statistics. Data on T2D were contributed by DIAGRAM investigators
and include 34,840 cases with T2D and 114,981 controls without T2D
(www.diagram-consortium.org, accessed October 10, 2015)(24). T2D di-
agnosis in DIAGRAM was based on several different criteria including
self-reported T2D, physician's diagnosis, registry data, and oral glucose
tolerance test applying World Health Organization criteria (25). Data on
glycemic traits were contributed by MAGIC investigators and downloaded
from www.magicinvestigators.org (accessed November 26, 2015). The
quantitative glycemic traits in MAGIC included fasting insulin, fasting
glucose, HOMA-f3 [(20 x fasting plasma insulin)/(fasting plasma glu-
cose — 3.5)] for assessment of 3-cell function, and HOMA-IR (fasting
plasma insulin x fasting plasma glucose/22.5) for estimation of the degree
of insulin resistance (26) involving up to 46,186 participants without dia-
betes from up to 21 cohorts (23). Data on depressive symptoms were con-
tributed by the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) Depression Working Group investigators and
include 51,258 individuals (22). Most cohorts used the Center for
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Epidemiological Studies Depression Scale 10-, 11-, or 20-item versions
(27) to assess depressive symptoms, but some cohorts used the Geriatric
Depression Scale, Patient Health Questionnaire, Maastricht Questionnaire,
or Beck Depression Inventory-II.

Statistical Analyses

To estimate genetic correlation of depressive symptoms with T2D and
quantitative glycemic traits, we combined results from univariate GWAS
meta-analyses using the LDSC tool (28) according to the manual with de-
fault options. This command line tool is for estimating heritability and ge-
netic correlation from GWAS summary statistics that relies on the fact that
the GWAS effect size estimate for a given SNP incorporates the effects of
all SNPs in linkage disequilibrium with that SNP. LDSC is not biased by
sample overlap and has been described in detail elsewhere (12).

To simultaneously analyze two outcome variables (phenotypes) at
once, we performed bivariate (or multivariate with more than two pheno-
types at once) GWAS analyses. Such bivariate analysis by jointing associ-
ation analysis of two traits in a GWAS allows us to identify potential
pleiotropic genetic effects and offers several advantages over analyzing
each trait in a separate GWAS. To identify potential pleiotropic SNPs asso-
ciated with both depressive symptoms and each of the T2D and quanti-
tative glycemic traits, we performed bivariate GWAS analyses using
empirical-weighted linear-combined test statistics (eLC) (29) with aggregate
data (Z test statistics) from each univariate GWAS meta-analysis (inverse-var-
iance meta-analysis with GC controls). Briefly, eL.C directly combines corre-
lated test statistics obtained from univariate GWAS meta-analyses with a
weighted sum of univariate test statistics to empirically maximize the overall
association signals and to account for the phenotypical correlation between
the phenotypes of interest. The eLC approach is expressed as (29):

K

Sac = > [max(|Tx], )| T3]
1

where ¢ is some given nonnegative constant. The weight in this new test
statistics will be optimally determined by the specific data structure. For in-
stance, when ¢ = 0, the test statistics simply reduces into sum of squares of
T}. When c is relatively large, equal weight is assigned to each 7. Ideally, we
would like to find an optimal value of ¢, so the S ¢ performs as a linear com-
bination of 7; when under the H, but under the alternative HA, more weight is
given to the larger true 7;. The bona fide p value for S ¢ then can be estimated
by applying permutation or perturbation techniques. The variance-covariance
matrix 3 of univariate test statistics uses the sample covariance matrix of the test
statistics of all SNPs from univariate GWAS analyses as an approximation.

Var(Z;)

Z o COV(Zl, Zz)
N COV(ZI7 Zz)

Var(Z,)

where Z; consists of unbiased univariate test statistics of all the SNPs for
the first trait on genome-wide scale, so does Z,. On the other hand, ¥ can
be estimated by using generalized least squares from individual-level data.
The eL.C method is implemented in eL.X package using C++ and publicly
available at https:/sites.google.com/site/multivariateyihsianghsu/.

As suggested in the earlier study (21), we only performed bivariate
GWAS analyses for those SNPs with nominal p values of less than.05 in
univariate GWAS meta-analyses for both phenotypes analyzed. We report
potential pleiotropic SNPs based on a) p value <5 x 10~ from the bivar-
iate GWAS analyses and b) the bivariate p value being at least one order of
magnitude smaller than the univariate p values.

Functionality of the SNPs
We examined the influence of identified potential pleiotropic SNPs on gene
expression in the Brain eQTL Almanac (BRAINEAC, www.braineac.org)
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database and GTEx portal V6 (dbGaP Accession phs000424.v6.pl, www.
gtexportal.org). The BRAINEAC comprises genotype data and gene ex-
pression data in brain regions (frontal cortex, hippocampus, white matter,
putamen, cerebellar cortex, medulla, temporal cortex, hippocampus, and
substantia nigra) from 134 individuals free of neurodegenerative disorders,
and the GTEx database contains information on expression quantitative
traits (eQTL) in 44 different tissues from 449 donors. In the BRAINEAC
eQTL analysis, we set the Bonferroni-corrected significance level at
5.7 x 10°* (0.05/[11 brain regions x 8 SNPs]).

RESULTS

Heritability Estimates and Genetic Correlation
Between the Traits

Based on the LDSC analysis, we found that SNP-based heritability
estimates were 0.09 [0.07, 0.12] for T2D, 0.10 [0.06, 0.15] for
fasting glucose, 0.07 [0.05, 0.10] for fasting insulin, 0.07 [0.05,
0.09] for HOMA-f3, 0.05 [0.03, 0.07] for HOMA-IR, and 0.04
[0.01, 0.07] for depressive symptoms. There were no significant
SNP-based genetic correlations between depressive symptoms
and T2D and quantitative glycemic traits; however, all correlations
were negative (Table 1). T2D and all quantitative glycemic traits
showed significant SNP-based genetic correlations, except for
T2D and HOMA-3 (Table S1, Supplemental Digital Content 1,
http:/links.lww.com/PSYMED/A435).

Potential Pleiotropic Loci

We found several SNPs showing potential pleiotropic effects be-
tween depressive symptoms and T2D and fasting glucose (Fig. 1,
Tables S2 and S3, Fig. S1, Supplemental Digital Content 1, http://
links.lww.com/PSYMED/A435). Bivariate GWAS analysis for de-
pressive symptoms and T2D implicated two intronic SNPs in the in-
sulin-like growth factor 2 mRNA binding protein 2 (/GF2BP2; chr 3;
156769511; bivariate p value = 3.32 x 10"'") and CDKS5 regulatory
subunit associated protein 1-like 1 (CDKALI; chr 6; rs10946398; bi-
variate p value = 4.49 x 10 %) genes and two intergenic SNPs close
to the CDKN2B antisense RNA 1 (CDKN2B-AS; chr 9; rs10965250;
bivariate p value = 6.18 x 10 ') and pleckstrin homology domain-
containing family A member 1 (PLEKHAI; chr 10;rs10510110; bi-
variate p value = 1.83 x 10°®) gene (Fig. 1A, Table S2, Fig. S1,

TABLE 1. SNP-based Genetic Correlations Between
Depressive Symptoms, Diabetes, and Quantitative Glycemic
Traits Based on LD Score Regression on Meta-analyses
Summary Statistics of DIAGRAM, MAGIC, and CHARGE Consortia

Genetic Correlation Between Depressive

Symptoms and rG SE p
12D -0.03 0.13 .82
Fasting glucose —-0.003 0.150 .98
Fasting insulin -0.16 0.17 .37

HOMA-B
HOMA-IR

-0.10 0.17 .55
-0.07 0.18 .70

Data on T2D are based on up to 149,821 participants (34,840 cases). Data on fasting
glucose, fasting insulin, HOMA-f3, and HOMA-IR are based on up to 46,286
participants.

SNP = single-nucleotide polymorphism; LD = linkage disequilibrium; T2D = Type 2
diabetes; HOMA-3 = homeostatic model assessment of 3-cell function;

HOMA-IR = homeostatic model assessment of insulin resistance.
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Supplemental Digital Content 1, http://links.lww.com/PSYMED/
A435). Of these SNPs, 156769511 in /GFBP2 and rs10965250 in
CDKN2B-AS showed an association in the same direction with de-
pression and T2D, whereas for rs10946398 in CDKALII and
rs10510110 in PLEKHAI, the effect was opposite. All these SNPs

were associated with significant alterations in expression of several
genes in brain tissues in the BRAINEAC database, as well as
156769511 and rs10510110 with expression in other tissues in the
GTEXx database (Table S4, Supplemental Digital Content 1, http://
links.lww.com/PSYMED/A435).

Manhattan plot of bivariate GWAS for depressive symptoms and T2D
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FIGURE 1. Manbhattan plots showing bivariate p values against genomic positions for associations between depressive symptoms and
T2D (A), fasting glucose (B), and fasting insulin (C). Red line is indicating bivariate genome-wide significance [logl0(5 x 10 %)].

All variants here have univariate p values of less than.05. GWAS =

genome-wide association study; T2D = Type 2 diabetes. Color

image is available only in online version (www.psychosomaticmedicine.org).
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Bivariate GWAS analysis for depressive symptoms and fasting
glucose implicated intronic SNPs in the MAP kinase—activating
death domain protein (MADD; chrll; rs11039183; bivariate
p value = 440 x 107'%) and peroxisomal biogenesis factor 16
(PEX16; chr 11; rs11038708; bivariate p value = 1.27 X 10_8)
genes and two intergenic SNPs near CDKN2B-AS (chr 9;
1s7020996; bivariate p value =2.08 x 10~%) and melatonin recep-
tor 1B (MTNRIB; chr 11; rs6483221; bivariate p value = 2.99 x

1078) (Figs. 1B and 2—4; Table S3, Supplemental Digital Con-

Fig 2 4/C

tent 1, http://links.lww.com/PSYMED/A435). The associations
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ofrs11039183 (MADD) and of rs7020996 (CDKN2B-AS) with de-
pression and glucose levels were in the same direction, whereas
for rs11038708 and rs10510110 in PEX16 and MTNR B, the ef-
fect was opposite. Of these four SNPs, rs11039183 was associated
with expression of several genes in the brain and other tissues in
the BRAINEAC and GTEx databases (Table S4, Supplemental
Digital Content 1, http://links.lww.com/PSYMED/A435).
Bivariate GWAS analyses for depressive symptoms and
a) fasting insulin (Fig. 1), b) HOMA- (Fig. S2, Supplemental
Digital Content 1, http://links.lww.com/PSYMED/A435), and
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FIGURE 2. Regional visualization for rs7020996 of univariate and bivariate GWAS results for depressive symptoms and fasting glucose.

GWAS = genome-wide association study.
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FIGURE 3. Regional visualization for rs11039183 of univariate and bivariate GWAS results for depressive symptoms and fasting glucose.

GWAS = genome-wide association study.

c) HOMA-IR (Fig. S2, Supplemental Digital Content 1, http://
links.lww.com/PSYMED/A435) did not result in any genome-
wide significance.

DISCUSSION

We first showed that SNP-based heritability estimate for depres-
sive symptoms was 4% in the 51,258 individuals of the CHARGE
consortium GWA meta-analyses. As shown earlier (12), SNP-
based heritability estimates for T2D and quantitative glycemic
traits were between 5% and 10% in the GWA meta-analyses of
the DIAGRAM and MAGIC consortia. The heritability estimates

Psychosomatic Medicine, V 00 « 00-00

are low compared with heritability estimates from Nordic twin
study for depression (40%—52%) and T2D (72%—73%)(11). How-
ever, heritability estimates based on family or twin data may show
inflated values due to biases related to study designs, such as as-
sumption of size of common environmental factors (30). At the
same time, heritability estimates based on SNPs may be deflated
for several reasons: we may not be able to capture relevant geno-
mic variation with the current genome-wide genotyping arrays,
and we may lack power in our original GWA analyses. Conse-
quently, our results on the heritability of depressive symptoms
and T2D and quantitative glycemic traits are in line with the
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FIGURE 4. Regional visualization for rs6483221 of univariate and bivariate GWAS results for depressive symptoms and fasting glucose.

GWAS = genome-wide association study.

missing heritability gap between the SNP-based studies and
twin studies.

Next, we tested, to our knowledge for the first time with GWA
data, whether there are genetic correlations between depressive
symptoms and T2D or quantitative glycemic traits. These correla-
tions might explain the well-established phenotypic relationship
between depression and T2D and quantitative glycemic traits
(4,7,31-33). Contrary to our hypothesis, we did not find a signif-
icant overall genetic correlation between depressive symptoms
and T2D or with quantitative glycemic traits by using data from

Psychosomatic Medicine, V 00 « 00-00

more than 2.3 million SNPs, suggesting that the contribution of
genetic variation to the phenotypic association is relatively small
or nonexisting.

Our results are in line with previous studies suggesting lack of
significant genetic overlap between MDD and T2D and glycemic
traits. A recent SNP-based genetic correlation study applying
GWAS meta-analyses data using LDSC showed a nonsignificant
overall genetic correlation between MDD and T2D, fasting glu-
cose, fasting insulin, HOMA-f3, or HOMA-IR (12). Another re-
cent population-based study found no genetic overlap between
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MDD and T2D using several different methods including LDSC
(13). These studies rely on available summary statistic data of con-
temporary GWA studies, and their ability to detect genetic correla-
tions is determined by the ability of the original GWA studies to
detect genetic associations. Thus, future studies on genetic correla-
tion between depressive symptoms and T2D or glycemic traits will
benefit from GWA meta-analyses with even larger samples provid-
ing increased power to detect genetic correlations. Moreover, also
twin studies have pointed toward the role of nongenetic factors
explaining the link between depression and T2D. Mezuk and col-
leagues (34) showed in twins that unique environmental factors
contribute significantly to the association between MDD and
T2D in a study of 37,043 twins. Moreover, another recent twin
study concluded that environmental factors unique to the individual
but common to both depressive disorders and T2D, for example,
psychosocial stress, contribute to their co-occurrence in males (11).
Although major part of the link between depression and T2D
or glycemic traits may be due to nongenetic factors, some propor-
tion may still be explained by genetic overlap, as suggested by a
recent twin study showing moderate, but significant, genetic corre-
lation between MDD and T2D in two Nordic samples, especially
in females (11). Despite our limited understanding of the etiology
of depression, previous research suggests that common biological
pathways for both disorders may relate to functions of the hypo-
thalamic-pituitary-adrenocortical axis, autonomic nervous system,
cytokine-mediated inflammatory response, or aberrations in circa-
dian rhythms (35,36). Moreover, it has been proposed that the re-
ciprocal relationship between depressive symptoms and T2D may
be mediated by behavioral risk factors that are partially affected by
genetic makeup, such as eating habits and life-style choices (37).
To get better insight into the possible biological processes and
shared genomic background linking depressive symptoms and
glycemic traits, we next identified potential pleiotropic loci be-
tween the traits of interest. We observed potential pleiotropic loci
for depressive symptoms and T2D in the IGF2BP2 and CDKALI
genes and near the CDKN2B-AS and PLEKHAI genes. Variants in
the CDKALII and PLEKHAI showed associations in the opposite
direction with depressive symptoms and T2D. However, such
findings are not uncommon: rs12720356 in the TYK?2 is associated
with both Crohn's disease and psoriasis, yet the G allele increases
risk for Crohn's disease and decreases risk for psoriasis (38,39).
Similarly, Sirota and colleagues (40) show cross-autoimmune dis-
eases that opposite effects are frequent. These results address the
fact that biological processes underlying phenotypic correlation
may operate in both directions. Moreover, depression is a heterog-
enous disorder and it is possible that some subtypes of depression
show associations with genomic variation opposite to the others:
McCaffery and colleagues (41) recently tried to replicate the most
significant signals in the study by Hek et al. (22) and found that of
the eight top SNPs, three associated nominally with depressive
symptoms in the opposite direction as in the original study in a
sample of overweight/obese subjects with T2D. Of identified var-
iants, CDKALII and PLEKHAI have been implicated not only in
T2D and metabolic traits (9,42) but also in neurodevelopmental
traits. /GF2BP2 variants have been implicated in schizophrenia
(43) and CDKN2B-AS variants in Parkinson's and Alzheimer's dis-
eases, albeit showing only modest association with cognitive func-
tion (44). In the same study, no significant associations were found
between CDKALI variants and Parkinson's and Alzheimer's
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diseases (44). However, CDKALI was 1 of the 226 genes associ-
ated with bipolar disorder in a gene-based meta-analyses of four
studies (45), and in another study, CDKAL harbored an SNP with
potential association with externalizing symptoms in bipolar disor-
der (rs17622252; p = 4.39 x 107%) (46). Interestingly, the minor
allele of our top SNP rs10510110, an intergenic variant near
PLEKHAI, was associated with down-regulated FGFR2 expression
in substantia nigra. FGFR2 abnormalities have been linked with
aberrant glia cell function (47), and MDD patients have shown
down-regulated FGFR2 in several brain regions (48). Moreover,
an SNP in FGFR2 has been implicated in bipolar disorder (49).
Although associated with neurodevelopmental traits, these intronic
variants in the IGF2BP2 and CDKAL1 genes and intergenic vari-
ants near the CDKN2B-AS and PLEKHAI genes are novel in rela-
tion to depressive symptoms. Interestingly, all the potentially
pleiotropic variants that associated with depressive symptoms
and T2D altered an expression of genes in various regions of the
brain. Future research should focus on those associations and the
biological relevance of those SNPs on depression.

For depressive symptoms and fasting glucose, we identified
potential pleiotropic loci in the MADD and in PEX16 genes as well
as close to the CDKN2B-AS and MTNRIB genes, all novel in rela-
tion to depressive symptoms. Importantly, variants in the PEX16
and MTNRIB showed associations in the opposite direction with
depressive symptoms and fasting glucose. MADD has been associ-
ated with fasting glucose (23), insulin (50), and high-density lipo-
protein values (51), but its variation also influences apoptosis and
it plays an essential role in Ca®'-dependent neurotransmitter re-
lease (52). Recent studies reported up-regulation of PEX16 in pa-
tients with chronic fatigue syndrome (CFS) (53,54), and one study
showed that allelic distribution of rs3802758 in PEX16 differed
between those with CFS and healthy controls (55).This is interest-
ing because CFS often show symptoms typical to depression such
as lack of energy and sleep problems (56). Genetic variation in the
PEXI6 gene has also been associated with fatty acid oxidation
(57). The nearest gene to rs6483221 is melatonin receptor 1B gene
(MTNR1B). Genetic variation in the MTNRIB gene has been asso-
ciated not only with T2D-related outcomes (58) but also with sleep
(59) and recurrent MDD (60). A possibility that variation in the
MTNRIB gene could affect both depression and T2D through ef-
fects on circadian regulation also exists (61,62).

Together, these data could suggest that genetic variation in the
IGF2BP2, CDKALI, CDKN2B-AS, MADD, PEX16, and MTNR1B
genes may be associated with both metabolic traits and symptoms
of depression. Variation in the PLEKHAI gene could modulate ex-
pression of the FGFR2 gene, which, in turn, could influence the de-
velopment of neurodevelopment diseases. The direction of the
association, however, can vary and risk SNPs associated with T2D
can show protection against depressive symptoms as seen for SNPs
in the /GF2BP2 and in CDKN2B-AS genes. A similar situation was
observed for the obesity-associated rs9939609 A-variant in the F7O
gene, which has also been associated with reduced risk of MDD (63).

There are some limitations of our study. First, heterogeneity of
the phenotypes may alleviate our ability to detect genomic risk
loci. In addition, combining results from meta-analyses misses
several SNPs, although after quality control, the number of SNPs
remained between 2,351,566 and 2,390,179, which should provide
adequate genomic coverage. We lacked data sets for replication, and
we were not able to test these differences separately in men and
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women. Future studies should replicate our findings in larger data
sets with higher genotypic resolution. Moreover, these analyses
should be run separately in males and females. Not only may the
factors that influence the association between depression and T2D
or glycemic traits differ, but also women may be more vulnerable
to comorbid depression and T2D (64). Despite these limitations,
we showed that in the currently existing GWAS data sets, no overall
genetic relation exists between depressive symptoms and glycemic
traits. However, were able to identify several SNPs that showed po-
tential pleiotropy by being associated both with depressive symp-
toms and T2D and glycemic traits. Although our findings should
be replicated in the future studies, these genomic loci implicate bi-
ological processes that may explain the bidirectional relationship
between depressive symptoms and T2D or glycemic traits. Under-
standing of the comorbidity may help in classifying biologically
more homogenous subtypes of depression and T2D.
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