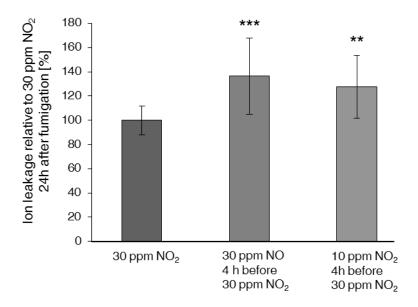
Supplemental table S1 Mutant lines used in NO ₂ fumigation experiments			
Mutant line	Mutated gene(s)	Donated by	Reference
nia1nia2noa1	AT1G77760 (NIA1), AT1G37130 (NIA2), AT3G47450 (NOA1)	Wenbiao Shen	Xie <i>et al.</i> , 2013
nox1 (cue1)	AT5G33320	Elizabeth Vierling	He et al., 2004
gsnor (hot5-2)	AT5G43940	Elizabeth Vierling	Lee et al., 2008
GSNOR-AS	AT5G43940	Carmen Martinez	Rusterucci et al., 2007
rbohD	AT5G47910	Own stocks	Pogány et al., 2009
rbohF	AT1G64060	Own stocks	Pogány et al., 2009
gsh1 (cad2)	AT4G23100	Markus Wirtz	Cobbett et al., 1998
vtc1	AT2G39770	Mikael Brosché	Conklin et al., 1996
aos ^a	AT5G42650	Mikael Brosché	Park et al., 2002
coi1-16 ^b	AT2G39940	Mikael Brosché	Xu et al., 2015
jar1	AT2G46370	Susanne Berger	Staswick et al., 1992
sid2	AT1G74710	Mikael Brosché	Wildermuth et al., 2001
NahG		Novartis AG	Lawton et al., 1995
npr1	AT1G64280	Xinnian Dong	Cao et al., 1994
ein2	AT5G03280	Mikael Brosché	Guzmán and Ecker, 1990
eto1	AT3G51770	Mikael Brosché	Guzmán and Ecker, 1990
etr1	AT1G66340	Own stocks	Bleecker et al., 1988
aba2	AT1G52340	Mikael Brosché	Léon-Kloosterziel et al., 1996
aba3	AT1G16540	Mikael Brosché	Léon-Kloosterziel et al., 1996
abi4	AT2G40220	Mikael Brosché	Finkelstein, 1994

^aaos was compared with Col-glabra1 (Col-gl1) background line.

REFERENCES

Bleecker AB, Estelle MA, Somerville C, Kende H. 1988. Insensitivity to ethylene conferred by a dominant mutation in *Arabidopsis thaliana*. Science **241**, 1086–1089.

Cao H, Bowling SA, Gordon AS. 1994. Characterization of an *Arabidopsis* mutant that is nonresponsive to inducers of systemic acquired resistance. The Plant Cell **6**, 1583–1592. **Guzmán and Ecker**. 1990. Exploiting the triple response of *Arabidopsis* to identify ethylene-realted mutants. The Plant Cell **2**, 513–523.


Finkelstein RR. 1994. Mutations at two new *Arabidopsis* ABA response loci are similar to the *abi3* mutations. The Plant Journal **5**, 765–771.

He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM. 2004. Nitric oxide represses the *Arabidopsis* floral transition. Science **305**, 1968–1971.

Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J. 1995. Systemic acquired resistance in *Arabidopsis* requires salicylic acid but not ethylene. Molecular Plant Microbe Interactions **8**, 863-870.

^bcoi1-16 was back-crossed with Col-0 for removing the *glabra1* and *penetration2* mutations (Xu et al., 2015).

- **Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E**. 2008. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in *Arabidopsis*. The Plant Cell **20**, 786–802.
- Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JA, Koornneef M. 1996. Isolation and characterization of abscisic acid-deficient *Arabidopsis* mutants at two new loci. The Plant Journal 10, 655-61.
- Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R. 2002. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. The Plant Journal 31, 1–12.
- Pogány M, von Rad U, Grün S, Dongó A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J. 2009. Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an *Arabidopsis-Alternaria* pathosystem. Plant Physiology **151**, 1459–1475.
- Rusterucci C, Espunya MC, Diaz M, Chabannes M, Martinez MC. 2007. S-Nitrosoglutathione reductase affords protection against pathogens in *Arabidopsis*, both locally and systemically. Plant Physiology **143**, 1282–1292.
- **Staswick PE, Su W, Howell SH**. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an *Arabidopsis thaliana* mutant. Proceedings of the National Academy of Sciences, USA **89**, 6837–6840.
- Wildermuth MC, Dewdney J, Wu G, Ausubel FM. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562–565.
- **Xie Y, Mao Y, Lai D, Zhang W, Zheng T, Shen W**. 2013. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of *Arabidopsis* salt tolerance. Journal of Experimental Botany **6**, :3045-60.
- **Xu E, Vaahtera L, Brosché M**. 2015. Roles of defense hormones in the regulation of ozone-induced changes in gene expression and cell death. Molecular Plant **8**, 1776–1794.

Supplemental figure S1. Pre-fumigation with 30 ppm NO or 10 ppm NO_2 promotes NO_2 -induced cell death. 4 h before inducing cell death with 30 pm NO_2 , plants were pretreated with 30 ppm NO or 10 ppm NO_2 for 1 h. Rosettes were harvested directly after the 1 h fumigation with 30 ppm NO_2 and ion leakage was measured 24 h after fumigation. Data were normalized to fumigation with 30 ppm NO_2 alone. Columns represent means (\pm SD, n = 10-19 (B), 15-19 (C)). Asterisks indicate significant differences from control samples (One Way ANOVA with Holm-Sidak post-hoc test for multiple comparisons versus control group, **p < 0.01, ***p < 0.001).