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Objective: 3-Methylglutaconic aciduria, dystonia—deafness, hepatopathy, encephalopathy, Leigh-like syndrome
(MEGDHEL) syndrome is caused by biallelic variants in SERACT.
Methods: This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiologi-
cal, and genetic findings are reported.
Results: Sixty-seven individuals (39 previously unreported) from 59 families were included (age range =5 days-33.4
years, median age =9 years). A total of 41 different SERACT variants were identified, including 20 that have not
been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a
strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia
were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed
by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected
individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and
nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homoge-
nous, with bilateral basal ganglia involvement (98%); the characteristic “putaminal eye” was seen in 53%. The urinary
marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spas-
ticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve
communication skills.
Interpretation: MEGDHEL syndrome is a progressive deafness—dystonia syndrome with frequent and reversible neo-
natal liver involvement and a strikingly homogenous course of disease.
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he first clinical description of 4 individuals with

MEGDEL  (3-methylglutaconic aciduria, dystonia—
deafness, encephalopathy, Leigh-like) syndrome was pub-
lished in 2006." In 2012, biallelic variants in SERACI
(serine active site containing 1) were shown to cause this
autosomal-recessive  deafness—dystonia disorder.” Soon
afterward, with the description of liver involvement as an
additional clinical feature, hepatopathy was incorporated
into the acronym (MEGDHEL; Mendelian Inheritance
in Man [MIM] #614739).°

SERACI encodes a protein with a serine-lipase domain,
which is a member of the PGAP-like protein domain family.
SERACI is localized at the mitochondria-associated mem-
branes, the contact sites between endoplasmic reticulum and
the mitochondrial interface, which are crucial for phospho-
lipid exchange.” The enzyme is involved in the remodeling of
the phospholipid phosphatidylglycerol, the precursor of both
cardiolipin, essential for proper mitochondrial function, and
bis(monoacylglycerol)phosphate, essential for intracellular
cholesterol trafficking, respectively.”
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SERACI deficiency is one of the signature disor-
ders of an emerging and rapidly growing new class of
disorders affecting the biosynthesis and remodeling of
complex lipids.s’6 So far, 2 further genetic syndromes
have been linked to the cardiolipin biosynthetic pathway:
AGK deficiency (Sengers syndrome, consisting of 3-
methylglutaconic aciduria [3-MGA-uria], cardiomyopa-
thy, and cataracts, MIM #212350) and TAZ deficiency
(Barth syndrome, consisting of 3-MGA-uria, cardiomy-
opathy, and neutropenia, MIM #302060).

Here, we describe the results of a detailed system-
atic, multicenter study of the genetic, biochemical, radio-
logical, and clinical findings of a cohort of 67 individuals
(including 39 previously unreported cases) with MEGD-
HEL syndrome. We present 20 novel variants in SERACI
and a complete phenotypic description, thereby facilitat-
ing diagnosis, and providing a proper prognosis for
patients with this disorder.

Patients and Methods

Informed Consent

All procedures followed were in accordance with the ethical
standards of the Helsinki Declaration of 1975 as revised in
2000.”

Cohort and Phenotypic Evaluation

All individuals in this study had rare biallelic variants in
SERACI and typical phenotypic findings leading to the diagno-
sis of MEGDHEL syndrome (detailed in the Results section).
Their respective physicians completed a questionnaire concern-
ing the course of disease for each organ system, together with
metabolic, radiological, and genetic findings. GraphPad (La

Jolla, CA) Prism7 was used for Kaplan—Meier survival analysis.

Biochemical Investigations in Tissues and
Specimens of Affected Individuals

Urinary organic acid analysis; serum/plasma amino acid analy-
sis; histological and immunohistochemical evaluation, measure-
ment of the oxidative phosphorylation system (OXPHOS), and
quantitation of mtDNA in muscle, liver, or cultured fibroblasts;
and filipin staining in cultured fibroblasts were performed using

standard methods as described before.>®

Identification of SERAC1 Variants

Variants were found either by Sanger sequencing, exome
sequencing as previously described,””™"> or genome sequenc-
ing.m All variants found in individuals, and carrier status of
parents, were confirmed by Sanger sequencing (details available
upon request). The deletion of exon 4 to exon 8 in P18 was
identified by genomic quantitative polymerase chain reaction
(qPCR) as described previously.17 qPCR primers of exon 3
through exon 13 of SERACI are available upon request.
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Results

Genetic Findings and Incidence of MEGDHEL
Syndrome

A total of 41 different SERACI (NM_032861.3) variants
were identified in the 67 individuals described, including
20 that have not been reported before (Fig 1, Supplemen-
tary Table 1). Fifteen individuals had compound heterozy-
gous variants and 52 a homozygous variant. Variants were
categorized as frameshift (n = 13), nonsense (n = 11), mis-
sense (n =8), canonical splice site (n=3), splice site
(n = 3), frameshift/canonical splice site (n = 1), extension
(n=1), and in-frame deletion variants (n = 1). These var-
iants were predicted to result either in nonsense-mediated
mRNA decay (n=29), a truncated protein (n=2),
impaired lipase function (n = 5), or extension of SERAC1
of 32 amino-acid residues (n = 1). For 4 missense variants,
the effect on protein level is uncertain, as they are not
located in the lipase domain (see Fig 1). However, they
affected amino acids that are conserved down to zebrafish,
indicating that they are essential for proper protein
function.

Four variants were found multiple times (see Fig
1). The «¢.1822_ 1828 + 10delinsACCAACAGG, p.(?)
was detected in 14 European families, indicating that it
could be a founder variant. Likewise, the ¢.1493G>C;
p-(Ser498Thr) was found in 4 other European families;
for 2 of them, common ancestry has been shown previ-
ously via haplogroup analysis.” The c.1403 + 1G>C;
p.(Arg446*) was detected in 5 families (and 1 additional
from the literature)'® The ¢.202C>T; p.(Arg68*) was
documented in 3 families from the greater Mediterranean
area, and c.442C>T; p.(Argl48*) was seen in 6 families
from Turkey, Saudi Arabia, and China, which may reflect
distribution of the variant along the Silk Route.

Based on the prevalence of deleterious SERACI
alleles in the normal population (ExAC database; Lek
et al'®, we estimate that approximately 27 children with
MEGDHEL will be born each year worldwide (Supple-
mentary Table 2).

General Characteristics of Affected Individuals
and Survival

A total of 67 individuals from 59 families were included,
of whom 28 individuals have been published previously
(P1-15,% P35,'° P42, P49, P50, P51-52,"% P58,
P60-64,>" and P66."

Most of the individuals reported here are of Euro-
pean ancestry (see Supplementary Table 1, n=41),
although we have also ascertained individuals from Africa
(n=4), Asia (n=12), the Middle East (n=12), and
Australia (n = 1), showing that MEGDHEL syndrome is
a panethnic condition.
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N-

Maas et al: MEGDHEL Syndrome

p.(Leu193Serfs*16) p.(Gly401Asp)
p.(Leu193Serfs*9) p.(Gly404Glu)p.(Trp410Arg) p.(Tyr548Leufs*20)
p.(Asp224Gly) p.(GIn390Profs*29) p.(Val544Leufs*43) p.(Tyr548"%)
p.(Arg183*) p.(Val371Alafs*22) p.(Gly536llefs*56
p.(Ser156fsCys*17) p.(Pro258Metfs*22) p.(Arg368*) p.(Serd498Thr) p.(Leu550Serfs*19)
p.(Arg148*) p.(Gly339Arg) p.(Leud79del) p.(Val556Asp)
p-(Arg31*)  p.(Thr147Argfs*22) p.(Arg306*) p.(Trp438*) p.(*655Leuext*32)
p.(Arg31Lysfs*3) p.(Lys104%) p.(Pro267Leufs*10) | p.(GInB42*)
| p.(Arg68*) | |p.(GIn315Argfs'4) p.(Argdd7*) p.(Ser608Thr)
| I |

Del exon 4-8

Q96JX3_SRAC1_Homo_sapiens I GLARSEESDL RFFLLPPPLP SLKEDSSTEE ELRQLLASLP QTEIBECIQY FTSLALSES 238
Q3U213_SRACL_Mus_musculus I GLARSKESDL RFFLPPPPLP SLKEDSSTEE ELRHLLASLP QTEUSECLQY FTSLALSES 238
Q5SNQ7_SRAC1_Danio_rerio V ALARIPNVDL RFFLPPPPLP HTEDDISIED GLRQLLASLP QSDVEQCVQY FTSLALRES 240
Q961H4_Drosophila_melanogaster T SIS MRS (SISO SR e S 0

Q96JX3_SRAC1_Homo_sapiens Q LLQRLYRLHK DCPKVQRNIM RVIGNMALNE HLHSSIVRSE WVSIMAEAMK SPHIMESSH 358
Q3U213_SRAC1_Mus_musculus Q LLORLYQLHK DCPKVQRNVM RIIGNMALNE HLHPAIVHS[E WVSLMAEALK SSHIMEASH 358
Q5SNQ7_SRAC1_Danio_rerio Q LLORVYQLRR DSPKIQRNIV RIIGNLALNE NLHTTIVQSE WMSVLAEMIQ SPHIMQASH 360
Q961H4_Drosophila_melanogaster - —--MELRKIFN DDNETLSTLC KVLANMSLVP DAVEHFFTHg WVGALAEWQQ CPDLRLQVI 57

Q96JX3_SRAC1_Homo_sapiens GSRL AEYSVNIRYL LFPSLEgKEL SKDSPALKTL QDDFLEFAKD --KNFQVLNF VETLPT 593
Q30213_SRAC1_Mus_musculus GSRL AEYSVNIRYL LFPSLEgKEL SKDSPALKTL QDDFLEFAKD --KNFQVLNF VETQPT 593
Q5SNQ7_SRAC1_Danio_rerio GTFM AEYSVSVRYL LFPSIEMKEL CRDSPALRDL NENFLNIAKD --REFKVLSF AETVPT 597
Q961H4_Drosophila_melanogaster GSPI AKWKQHMQMI LSPSIEUKEM EENSPKLLEM HRRFMGCLHT LLRHVKVVSV AEGSPT 417
Q96JX3_SRAC1_Homo_sapiens YIGSM-I KLHVVPV DLGIGDLIPV DVNHLNICKP KKKDAFLYQR TLQFIREALA KDL 652
Q3U213_SRAC1_Mus_musculus FIGSM-I KLHVVPV DLGIGDLIPV DVNHLNICKP KTKDAFLYQR TLQFICETLA RDL 652
Q5SNQ7_SRAC1_Danio_rerio YIGPM-L KILVVPAH DLGIGDLIQV DVDHLNICKP EKKDTFLYKR TLQFIQDALG GRR 656
Q961H4_Droscphila_melanogaster MLTSFKF PLRIVTEES KIDFGDFYLL KDDHLSLSKP IYRQSFLYQR LLHVIREAIK ERS 477

-C

FIGURE 1: The upper panel shows a schematic representation of the human SERAC1 protein with the positions of all variants
identified. The black box represents the lipase/esterase domain. The lower panel shows the Cross-species alignment. Clustal
Omega®* targeted the protein sequences directly surrounding the 4 missense variants, p.(Asp224Gly), p.(Gly339Arg),
p.(Val556Asp), and p.(Ser608Thr). The changes are highlighted by the black boxes; all conserved down to the zebrafish. Pro-
tein accession numbers used for alignment are given before the sequences and include the specific species. The position of
the last amino acid residue in each row is given right after the respective sequences.

In 38 of 59 (64%) families, consanguinity was
reported. The male to female ratio was 1:1.3 and the
median age of individuals (as of September 2016) in our
cohort was 9 years (range = 5 days—33.4 years).

The median age at diagnosis (the age at the date of
the genetic report was used for calculations; if individuals
were deceased, the age at death was used for calculation)
was 7.2 years. Thirty-two individuals were diagnosed
with targeted SERACI Sanger sequencing (median age at
diagnosis = 5.7 years), 26 via next generation sequencing
techniques (7.2 years), and 9 via family screening by
Sanger sequencing (3.7 years). Seven individuals were
diagnosed at <1.5 years, of whom 2 had liver failure as
the dominating finding, 2 had the typical neurological
signs and symptoms, 1 was based on the magnetic reso-
nance imaging (MRI), and 2 were diagnosed due to vari-
ous reasons and a positive family history.

Sixteen individuals passed away at a median age of
9 years (range =5 days—16 years; for Kaplan—Meier sur-
vival curves, see Fig 2). The main causes of death were
respiratory infections (10/16 = 63%) and multiorgan fail-

ure (1 child), and were unknown in 5 cases.

December 2017

Major Clinical Features

PREGNANCY AND DELIVERY. Problems during preg-
nancy (data were available for 55 pregnancies) were
uncommon; 8 pregnancies (8/55, 15%) were reported as
having been complicated by intrauterine growth retarda-
tion, 1 with oligohydramnios and none with polyhy-
dramnios; decreased movements were described in 1
fetus. Forty-six individuals were delivered by a normal
vaginal delivery (84%) and 9 by Caesarean section (16%;

no details about the indication were available).

NEONATAL COURSE. Forty-seven 471
67 =70%) presented in the neonatal period and required

individuals

inpatient observation or treatment. Twenty-two of 45
(49%) had suspected neonatal sepsis, and 30/62 (48%)
had severe liver dysfunction. Twenty-nine individuals had
recurrent hypoglycemia (glucose values < 2mmol/l in 29/
65 = 44%), 9/53 (17%) were ventilated due to respira-
tory insufficiency, and 31/67 (46%) were reported to
have other neonatal adaptation problems. Two individu-
als died in the neonatal period, 1 due to respiratory
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Kaplan Meier survival plot
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FIGURE 2: (A) Kaplan-Maier Survival plot showing overall survival for 67 individuals. (A-E) clinical photos of P28 at the age (B)
18 months, (C) 3 years, (D) 5 years, and (E) 8 years. Note the progressive spasticity and the dystonic posture of the limbs. The
patients’ parents gave written permission for showing the face of their child. (F) T2-weighted magnetic resonance image of the
same individual at the age of 5 years showing bilateral ganglia involvement sparing the central putamen (“putaminal eye”).

insufficiency at 5 days of age (P7) and 1 due to multior-
gan failure at 6 days of age (P31).

Neurological Features, Developmental
Milestones, Intellectual Abilities, and Daily
Living

Neurological features followed a specific pattern in
almost all individuals. The first signs were delayed motor
development (57/66 = 86%) and muscular hypotonia
(59/65 = 90%), recognized at a median age of 6 months.
Twenty-cight of 59 individuals (47%) presented with
axial hypotonia, 17 with generalized hypotonia (17/
59 =29%); for 14, no details were available. Previously
obtained skills were lost, starting from a median of

1008

12 months of age, in the majority of individuals (50/
67 =75%). Progressive spasticity of the limbs developed
at a median age of 15 months (53/65 = 82%, range of
onset = 1-48 months), and dystonia at a median age of
18 months (53/65=82%, range of onset= 1-84
months). Dystonia mainly involved the upper extremities
and to a lesser extent the lower extremides. Typically,
individuals presented oropharyngeal ~dyskinesia with
repetitive protrusion of the tongue, dysphagia, and exces-
sive drooling (34/59 [58%]). For clinical photographs,
see Figure 2.

Seventy-eight percent (26/38) of the individuals
never learned to walk. Of the 12 individuals who walked

Volume 82, No. 6



independently, 3 lost this skill within 1 year, and 2 had
preserved ambulation up to the age of 6 and 7 years,
respectively; 5 individuals from 1 family (Family 56,
P60-64) and another female (P56) have preserved ambu-
lation into their 20s and up to 8 years, respectively. With
disease progression, 39% (19/49) of individuals devel-
oped scoliosis. Epilepsy was reported in 23/66 individuals
(35%). All 67 individuals had intellectual disability, vary-
ing in severity (severe, 37/51 =73%; moderate, 8/
51 =16%; mild, 6/51=12%; data on severity were
lacking for 16 individuals). Nearly all individuals (62/
67 =93%) were completely dependent on others for all
activities of daily living.

It is important to note that 1 family of 5 affected
individuals (Family 56, P60-64, details will be reported
separately21 and 1 female individual (P67) had a milder
course of disease. In Family 56, the presentation was
spasticity and loss of skills starting at the age of 5 years
in 2 siblings, whereas spasticity did not start before ado-
lescence in 2 other siblings and is still absent in the fifth
sibling at the current age of 11 years. Only 2 of the sib-
lings showed dystonia. They all learned to walk; the old-
est lost this ability at the age of 12 years, and the other
individuals are still ambulatory at ages between 12 and
24 years. They all have a mild intellectual disability, are
able to communicate with words, with the exception of
the oldest individual, who has lost this ability. They
never displayed hepatic dysfunction and have normal
hearing.

The female (P67) presented with delayed develop-
ment, general muscular hypotonia, and failure to thrive
at the age of 3 years. She is currently aged 8 years, is
able to walk independently, has a mild intellectual dis-
ability, but is in a mainstream school with additional
support. She never had any significant hepatic dysfunc-
tion, has normal hearing, and does not exhibit spasticity
or a movement disorder.

Neuroradiological Findings

Individuals with MEGDHEL syndrome show a character-
istic MRI pattern with 5 distinctive disease stages affecting
the basal ganglia and especially the putamen; these data
have been reported in detail separately.”* First, in stage 1,
T2 signal changes of the pallidum are seen. Stage 2 is
characterized by swelling of the putamen and caudate
nucleus. The dorsal putamen contains an “eye” that
showed no signal alteration and so seemed to be spared
during this stage of the disease. From stage 3 onward, the
“putaminal eye” (see Fig 2) gradually decreases, mirroring
progressive basal ganglia dysfunction. Finally, stage 4 is
characterized by shrunken basal ganglia, which further
atrophy in stage 5. Brain MRI studies were available for
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55/67 individuals. In all individuals, alterations of the
basal ganglia at different stages were observed. In 29 of 55

individuals, the pathognomic putaminal “eye” was
reported, which is visible in stages 2 and 3.

Hearing Impairment and Speech Development
Forty of 52 individuals passed the neonatal hearing
screen. Forty-eight of 61 individuals (79%) were diag-
nosed with sensorineural hearing impairment; this was
diagnosed in the neonatal period in 11/48 (23%), before
the age of 1 year in 7/48 (15%), and later in 25/48
(52%). In 56% of individuals (34/61), speech was
completely absent. Four children (7%) could use sounds
to communicate (dis)comfort; an additional 5 had lost
this skill (8%). Eleven of the 61 individuals (18%) were
able to use words for a limited period of time
(maximum = 1.5 years) before losing this skill. Seven
individuals (11%) were still able to communicate with
words at the ages of 8 years (P48, P67) and 12 to 24
years (Family 56, P60—64), respectively.

Thirty-two children were fitted with hearing aids.
Appropriate tolerance of reinforcement/sounds was seen
in all cases, with improvement of formal hearing test
results. The behavioral reactions during fitting included
smiling, articulation of sounds, or quieting. However, 10
individuals did not continue to tolerate the hearing aids
and showed agitated and frightened behavior. Another 4
individuals underwent cochlear implantation, which was
also not tolerated. None of these 36 individuals showed
improvement in speech development following auditory
augmentation, but the parents of 4 children reported
improved interaction with the environment. The mecha-
nism of hearing impairment in MEGDHEL is probably
sensorineural (cochlear), but the coexistence of a neural
or central component is likely. The limited data on the
age of hearing loss appearance and progression mean that
it is currently impossible to draw firm conclusions about
the pathomechanism. A simple explanation that this
reflects high energy demand of sensory tissues is inade-
quate, as hearing loss occurs selectively only in some
mitochondrial disorders and is absent in others with
comparable course and severity.

An even more complex clinical finding is the near
complete lack of speech development in most MEGD-
HEL cases. Although the hearing loss seems to be the
major cause of loss of verbal abilities, a multifactorial
contribution of intellectual impairment, oropharyngeal
dyskinesia, extrapyramidal movements of the tongue,
dysphagia, and drooling is almost certain. Furthermore,
the characteristic basal ganglia involvement could be
important. In the procedural/declarative model of
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language learning, an important role for the basal ganglia
in the assembly of phonemes into words is suggested.”

Visual Impairment

A total of 26 individuals of 62 (42%) were reported to
have impaired vision. Four of 64 (6%) individuals had
retinal pigmentary changes. Fourteen of 55 individuals
(25%) had signs of optic atrophy documented on fundo-
scopy or MRI, which is the common morphological end-
point of any disease-causing axonal degeneration. The
underlying pathophysiology is speculative but in line
with the neuronal degeneration of basal ganglia. A possi-
ble explanation is mitochondrial dysfunction in the
broadest sense impairing axonal transport and leading to

.24
axonal degeneration.

Liver Involvement

Severe neonatal liver dysfunction was reported in 30/62
(48%) individuals. Nine of these 30 (30%) individuals
fulfilled the criteria of neonatal liver failure (elevated
aspartate aminotransferase (ASAT), alanine aminotrans-
ferase (ALAT), and/or conjugated bilirubin, disturbed
coagulation with international normalized ratio >2, and
encephalopathy). Seven individuals did not meet the full
definition of liver failure but presented hyperammonemia
(maximum level = 600 pumol/l, reference range < 100
pmol/l), and were treated with protein restriction and
ammonia scavengers, and 1 individual additionally
underwent hemofiltration. Two individuals were given
galactose-free formulas in the neonatal period due to the
combination of jaundice, neurological features, and a
suspicion of sepsis, raising a possible diagnosis of
galactosemia.

Beyond the neonatal period, no individual exhib-
ited features of liver failure; however, signs of hepatic
dysfunction were frequently reported. During the first
year of life, 24/50 (48%) individuals were reported with
transient cholestasis and jaundice. Hepatomegaly at any
age during their lifetime was reported in 17/64 (27%)
individuals, and disturbed coagulation tests were docu-
mented in 18 of 55 individuals (33%), but only 1 (1/55)
had subsequent bleeding problems.

During the course of a life ASAT/ALAT were tran-
siently increased on multiple occasions in 42/55 (76%)
individuals (range = 1.5-60-fold elevated). The duration
of elevation lasted for up to 9 months and was most
prominent during the first year of life.

A liver biopsy was obtained from 11 individuals
and showed nonspecific histopathological changes (fibro-
sis n =8, cholestasis n =5, steatosis n = 6, and ductope-
nia n=1) in 8/11 cases (73%). The OXPHOS system
was evaluated in 6 liver biopsies, and 3 of these samples
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showed deficiencies of different OXPHOS enzymes.
Mild mtDNA depletion was measured in 3 of 4 liver
biopsies compared to age-matched controls.

Renal, Cardiac, and Other Organ Involvement
Eight individuals showed impaired tubular function (8/
66 = 12%; eg, P35'0) mostly transient and in the neona-
tal period. One individual had hypophosphatemic rickets,
possibly due to incapacity of the renal tubules to reab-
sorb phosphate (further evaluation was not performed).

In 5 of 67 individuals (7%), cardiac abnormalities
were reported. These were congenital heart defects (mild
pulmonary stenosis, patent foramen ovale, and a small
atrium septum defect were reported in 1 individual each)
without hemodynamic consequences. In 2 individuals
suffering multiorgan failure during an infection, left ven-
tricular hypertrophy with good function (n = 1) and par-
oxysmal bradycardia (n = 1) were seen.

Many individuals suffered recurrent respiratory
infections (28/66 = 42%), which were also the main
cause of death. No immunological problems have been
reported in our cohort. We consider it likely that the
combination of scoliosis, gastroesophageal reflux, insuffi-
cient clearing of the airway with pharyngeal pooling of
secretions, and subsequent microaspirations causes the
frequent respiratory infections.

Failure to thrive and feeding problems were a com-
mon and concomitant problem (52/66 individu-
als = 79%). Thirty-seven of 58 individuals (64%) were
given tube feeding.

Disease Management

More detailed data on drug treatment were available for
22 individuals. Oral baclofen was given to 15 individu-
als. It was reported as having a positive effect in 11 indi-
viduals, whereas in 2 no change was observed, and in
another 2, clinical deterioration of spasticity was seen.
Four individuals received oral L-dopa, with improvement
of the movement disorder in 1 case, no clinical improve-
ment in 2 individuals, and worsening of dystonia in the
fourth case.

Many individuals were reported to be on proton
pump inhibitors (indication was gastroesophageal reflux)
or macrogols (constipation), although detailed data were
not available. Cessation of seizures was reported follow-
ing antiepileptic drugs in 10 individuals; the other indi-
viduals with epilepsy were given only rescue medicines
such as midazolam, which was well tolerated. Four indi-
viduals were reported to take melatonin for sleeping
problems with good effect.

“Multivitamin cocktails” containing for example
coenzyme Qqq, riboflavin, and biotin, ecither prescribed
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Finding Cobhort,
n =67
Ethnicity b

47167 (70%)
29/65 (44%)
30/62 (48%)
15/65 (23%)
59/65 (91%)
50/67 (75%)
53/65 (82%)
53165 (82%)
34/59 (58%)

Any neonatal problem

Neonatal hypoglycemia

Severe neonatal liver dysfunction
Neonatal liver failure

Muscular hypotonia

Loss of skills

Progressive spasticity

Dystonia

Oropharyngeal dyskinesia,
protrusion of the tongue

Never learning to walk 26/38 (68%)
48/61 (79%)
34/59 (58%)
45/51 (88%)
23166 (35%)
55/56 (98%)
14/55 (25%)
61/62 (98%)
51/61 (84%)
6/10 (60%)

Sensorineural hearing loss

Never learning to speak

Moderate to severe intellectual disability
Epilepsy

MRI: basal ganglia involvement

Optic atrophy

3-methylglutaconic aciduria

Lactic acidosis

Positive filipin staining in fibroblasts

“In our cohort.

(n=12): Saudi Arabia (n =7); Iraq (n =5). Australia (n = 1).

available.

TABLE 1. Most Frequent Clinical, Radiological, and Metabolic Findings in Individuals with MEGDHEL Syndrome

bEurope (n =41): Turkey (n=17); Poland (n = 6); Sweden (n = 4); Finland, Spain (n = 2); Latvia, Ukraine, Rumania, Italy, Croatia, Portugal, the
Netherlands, Belgium, Germany, (1/4 German, /4 Curacao, 1/> Polish; n = 1). Africa (n = 4): Somalia (n = 2), South Africa, French African country
(no details available; n = 1). Asia (n = 9): Pakistan (n = 3); India (n = 2); Malaysia (n = 2); Afghanistan, Bangladesh, China (n = 1). Middle East

“Arab Muslim (n = 2), Druze (n = 2), Palestine (n = 1), Pakistan (n = 2).
MEGDEL = 3-methylglutaconic aciduria, dystonia—deafness, encephalopathy, Leigh-like syndrome; MRI = magnetic resonance imaging; n/a = not

Total,
n=74

Literature,
n=7

Median Age
of Onset, yr*

c

717 (100%)
5/5 (100%)
5/5 (100%)
717 (100%)

54174 (73%)
34/70 (49%)
35/67 (52%)
22/72 (30%)

5/5 (100%) 64170 (91%) 6 mo
n/a 50/67 (75%) 12 mo
4/5 (80%) 57170 (81%) 15 mo
4/5 (80%) 57170 (81%) 18 mo
n/a 34/59 (58%)

n/a 26/38 (68%)

5/5 (100%) 53/66 (80%)

n/a 34/59 (58%)

1/1 (100%)
4/6 (67%)
5/5 (100%)
0/1 (0%)

6/6 (100%)
6/6 (100%)
2/2 (100%)

46/52 (88%)
27172 (38%)
60/61 (98%)
14/56 (25%)
67/68 (99%)
57167 (85%)
8/12 (67%)

by their physician or as over-the-counter drugs in differ-
ent combinations and with different doses, were taken by
many individuals. Reliable data were available for only 5
individuals, for whom none of the caretakers or physi-
cians reported any discernible clinical difference.

Treatment of drooling in MEGDHEL syndrome
has been evaluated separately.”® In addition to the
described successful surgical correction, P28 and P65
were given atropine 0.5% eye drops orally (1 drop every
6 hours), which reduced drooling to a normal level with-
out any side effects.
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Metabolic Findings in Blood and Urine

The most striking metabolic finding in MEGDHEL syn-
drome was the increased urinary excretion of 3-MGA.
Sixty-one of 62 (98%) individuals had 3-MGA-uria (for
47 individuals, quantitative values of several investigations
were available; median lowest values = 63mmol/mol creat-
inine, median highest values = 141mmol/mol creatinine,
reference range < 20mmol/mol creatinine). Remarkably, in
1 individual no 3-MGA-uria was detected (P41). In all
patients for whom multiple 3-MGA measurements were
available, these fluctuated up to a 3-fold increase. Serum
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Key Features

(Reversible, neonatal) liver failure,
lactic acidosis

Isolated, significantly (>40mmol/mol
creatinine, reference < 20) and repetitively
elevated urinary 3-methylglutaconic acid
without elevation of 3-hydroxyisovaleric acid

Deafness—dystonia

recessive.

TABLE 2. The Differential Diagnoses of MEGDEL Syndrome Based on Key Features

Diagnoses

Mitochondrial DNA depletion syndromes (MPV17 [MIM #256810],
DGUOK [MIM #251880], TFAM [MIM #617156], TWNK [MIM
#271245], POLG [MIM #203700], AR)

Transient infantile liver failure due to variants in 7TRMU (MIM #613070,
AR; caveat: often presents only in 2nd/3rd months of life)

Niemann-Pick disease type C (NPCI (MIM #257220, AR; caveat: no
lactic acidosis)

TAZ deficiency (Barth syndrome, 74Z, MIM #302060, XLR): (cardio)-
myopathy, neutropenia, growth failure, DD

OPA3 deficiency (Costeff syndrome, OPA3, MIM #258501, AR): optic
atrophy, extrapyramidal symptoms (ataxia), DD

DNAJC19 deficiency (DCMA syndrome, DNA/CI19, MIM #610198,
AR): dilated cardiomyopathy, ataxia, growth failure, endocrinological
features, ID/DD?”

TMEM?70 deficiency (TMEM70, MIM #614052, AR): neonatal hyper-
ammonemia, (cardio)myopathy, metabolic crises, ID/DD

CLPB deficiency (CLPB, MIM #616271, AR): cataracts, neutropenia,

. . 28
variable neurological course

AGK deficiency (Sengers syndrome, AGK, MIM #212350, AR):

cardiomyopathy, cataracts; isolated cataracts

HTRA?2 deficiency (HTRA2, AR): neonatal encephalopathy, neutropenia,
muscular hypo- and hypertonia, seizures, ID/DD***°

TIMMS50 deficiency (7IMM50, AR): intractable seizures, ID/DD?!
SUCLA2 deficiency (SUCLA2, MIM #612073, AR), marker: mildly

increased methylmalonate combined with elevated carnitine esters

(C4DCQ) in both plasma and urine
Mohr-Tranebjerg syndrome (7IMM8A, MIM #241080, XLR)
Woodhouse-Sakati syndrome (DCAF17, MIM #241080, AR)

Deafness, dystonia and cerebral hypomyelination (BCAP31, MIM
#300398, XLR)

AR = autosomal recessive; DCMA = dilated cardiomyopathy with ataxia; DD = developmental delay; ID = intellectual disability; MEGDEL = 3-
methylglutaconic aciduria, dystonia—deafness, encephalopathy, Leigh-like syndrome; MIM = Mendelian Inheritance in Man; XLR = X-linked

lactate levels were increased in 51 of 61 (84%) individuals;
the median of the respective maximum values was

Smmol/l (range = 1-53.3, normal value < 2mmol/l).

Evaluation of Tissues (Muscle, Liver, Cultured
Fibroblasts)

Histological and  immunohistochemical  evaluation
revealed  nonspecific  alterations  (eg,  fiber  size
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disproportion, mild accumulation of lipids or glycogen)
in 24/37 (65%) available muscle biopsies. Eleven of 20
(55%) muscle samples showed abnormalities by electron
microscopy; these were also nonspecific changes, includ-
ing abnormally shaped or damaged mitochondria, tubu-
lar aggregations'' in the subsarcolemmal regions, fatty
vacuoles, and oil droplets. Filipin staining of fibroblasts
was abnormal in 6 of 10 (60%) individuals.
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In 14/32 (44%) muscle biopsies, a deficiency of 1 or
more of OXPHOS enzymes was observed. OXPHOS
complex deficiencies were also found in 8/22 (36%) indi-
viduals’ fibroblast cell lines and in 3 of 6 liver biopsies.
No specific pattern of deficiencies was observed. Addition-
ally, mild mtDNA depletion compared to age-matched
controls was reported in 3 of 4 liver biopsies. As the
underlying protein defect is not thought to influence
mtDNA translation, this might well be a secondary effect.

Discussion

We describe the results of a systematic, multicenter study
on the genetic, clinical, neuroradiological, metabolic, and
biochemical findings of a cohort of 67 individuals with
MEGDHEL syndrome. Additionally, 7 individuals—who
were not included in this study—have been reported in
the literature with a comparable course of disease (Table
1, Supplementary Table 3).>!'%2¢

We report 20 new sequence variants, which,
together with the already known sequence variants, make
a total of 44 different known SERACI sequence variants.
The sequence variants are located throughout the whole

gene, with no hotspots. There are more loss-of-function

Maas et al: MEGDHEL Syndrome

(stop, frameshift, and splice site) variants than missense
variants, with a respective ratio of 30:8, suggesting that
most missense variants are nondeleterious. This could
consequently suggest that milder clinical phenotypes are
currently underdiagnosed. The missense sequence variants
that we have identified inside and outside the highly con-
served lipase domain are all conserved down to the zebra-
fish, indicating that they are essential for SERACI
function, thus supporting causality.

We here report 1 family*' and—for the first
time—1 female and with a significantly milder course of
disease than known before. The mild phenotype in the
family might be related to the nature of the respective
SERACI sequence variant, a noncanonical splice site
change, ¢.91 + 6T>C, for which aberrant splicing was
proven.”' The reason for the mild course in the female
cannot be explained on genetic grounds.

MEGDHEL syndrome is best described as a pro-
gressive deafness—dystonia syndrome with frequent liver
involvement. Despite the severity of neurological impair-
ment, most affected individuals survive into adulthood.
The clinical phenotype of the 67 individuals reported
here and the 7 reported in the literature is strikingly

System Involvement

Predominant Clinical Finding

Hereditary spastic paraparesis

Movement disorders

Complex or syndromic
developmental delay/intellectual

disability

Epilepsy

Adapted and updated from Garcia-Cazorla et al.*’

NBIA = neurodegeneration with brain iron accumulation.

TABLE 3. Overview of Disorders of the Biosynthesis and Remodeling of Phospholipids with Central Nervous

Disorders (gene in which mutations are found)

Calcium-independent phospholipase A2y (PLA2G6), fatty acid elongase ELOVL4
(ELOVL4), cytochrome P450 hydroxylase (CYP2UI), GPI-anchor synthesis pathway
(PGAPI), phospholipase Al (DDHD?2), arylsulfatase family member I (ARS]), phos-
pholipase Al (DDHD]I), fatty acid-2 hydroxylase (FA2H), neuropathy target ester-
ase (PNPLAG), nonlysosomal glucosidase 2 (GBA2), GM2 synthase deficiency
(B46ALNTY1), serine active site containing 1 (SERACT),*! ethanolaminephospho-
transferase 1 (EPT1)>°

NBIA Calcium-independent phospholipase A2y (PLA2G6), pantothenate kinase 2
(PANK?), fatty acid-2 hydroxylase (FA2H), CoA synthase deficiency (COASY),
phospholipase Al (DDHD1)*!

Ataxia Neuropathy target esterase (PNPLAG), coenzyme Q10 deficiency (COQ8-ADCK3)

Serine active site containing 1 (SERACI), coenzyme Q deficiency (COQI-PDSS2),
lactosylceramide 0-2,3 sialyltransferase (GM3 synthase; ST3GALS5), calcium-
independent phospholipase A2y (PLA2G6)

Defects in the glycosylphosphatidylinositol-anchor biosynthesis pathway (PGAP2,
PGAP3, PIGA, PIGN, PIGL, PIGO, PIGT, PIGV, PIGW, PIGY)***

Lactosylceramide o-2,3 sialyltransferase (GM3 synthase; ST3GALS), defects in the
glycosylphosphatidylinositol-anchor biosynthesis pathway (PIGM, PIGN, PIGA)
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homogenous with regard to the specific clinical findings
reported (eg, hearing impairment, basal ganglia involve-
ment), the age of onset of these, and their severity.
Besides the neuro(radiological) findings including affec-
tion of the sense organs (hearing loss, optic atrophy) and
the liver involvement that is of clinical impact only in
the neonatal period, no other organ systems are involved
in MEGDHEL syndrome. We can only speculate about
the cause for this distribution of organ involvement.
With regard to the homogeneity of the clinical pheno-
type, we cannot exclude that our data may be biased, as
the vast majority of patients were only diagnosed after
occurrence of neurological symptoms. However, the indi-
viduals in our cohort diagnosed in the first months of
life as well as the ones with the milder phenotypes also
developed the characteristic combination of signs and
symptoms. Furthermore, from our experience with
exome sequencing for rare pediatric disorders (the
Munich databases [12,000 exomes] encompass, eg,
>1,000 exomes of suspected mitochondrial cases,
>1,000 intellectual disability cases, >500 epilepsy cases,
and >100 acute liver failure cases), we did not identify
individuals with different or partial phenotypes.

We classify MEGDHEL syndrome primarily as a
disorder of the biosynthesis of complex lipids with second-
ary mitochondrial dysfunction, although MEGDHEL syn-
drome displays typical findings and the progressive course
of a mitochondrial disorder, including lactic acidosis and
3-MGA-uria.”” However, when measuring the OXPHOS
system in tissues of affected individuals, the mitochondrial
dysfunction greatly varies, and often measurements are
unremarkable. The same holds for the disturbed choles-
terol trafficking seen in MEGDHEL syndrome (visualized
by abnormal filipin staining of fibroblasts of affected indi-
viduals), which may underlie the neonatal liver involve-
ment. This combination of early liver pathology followed
by later onset neurological sequelae is also seen in Nie-
mann-Pick disease, type C. Neonatal liver failure is also a
frequent finding of mtDNA depletion disorders (eg, due
to variants in POLG, DGUOK, MPV17) and in some of
the liver biopsies of affected MEGDHEL individuals mild
mitochondrial depletion was reported. Based on the path-
ophysiology, we would not consider this a primary effect
of SERACI variants, but would regard this as a secondary
effect, as it has been reported similarly in several nonmito-
chondrial disorders (eg, propionic academia).”®

The differential diagnosis of MEGDHEL syndrome
depends on the “key” sign or symptom an individual
presents; Table 2 provides an overview. In general, MEGD-
HEL should be considered in individuals with (1) neonatal
adaptation problems in combination with hypoglycemia
and/or (reversible) liver failure, (2) the rare clinical
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combination of deafness and dystonia, (3) a clinical course
with rapid regression and development of spasticity and
dystonia starting around 18 months of age, and (4) the
pathognomonic finding of the “putaminal eye” on cerebral
MRI. In all these cases, urinary organic acid analysis and
appropriate genetic testing for SERACI variants should be
performed.

MEGDHEL syndrome is one of the signature dis-
orders of a new group of disorders with a defect in the
biosynthesis of phospholipid; Table 3 provides an over-
view of the subgroup of these disorders with central ner-
vous system involvement.””™?

Currently, no effective treatment for MEGDHEL
syndrome is available. Disease management options are

directed toward proper supportive care.

Acknowledgment

M.S. was supported by the Else Kroner-Fresenius
Stiftung” This study was supported by the German Bun-
desministerium fur Bildung und Forschung (BMBF) and
Horizon2020 through the E-Rare project GENOMIT
(01GM1603 and 01GM1207 for HP and FWEF I 2741-
B26 for JJAM. JJAM., SB.W., W.S. were supported by
the Vereinigung zur Forderung Padiatrischer Forschung
und Fortbildung Salzburg. R.W.T. was supported by
the Wellcome Centre for Mitochondrial Research
(203105/Z/16/Z), the Medical Research Council (MRC)
Centre for Translational Research in Neuromuscular Dis-
ease, Mitochondrial Disease Patient Cohort (UK)
(G0800674), the Lily Foundation and the UK NHS
Highly Specialised Service for Rare Mitochondrial Dis-
orders of Adults and Children.

Author Contributions

Study concept and design: S.B.W., RA.W., A.P.d.B. Data
acquisition and analysis: K.I.-P, S.K.U., B.A., M.A,,
M.AA-O., HIA-Z, SB., 1B, DB. AB, ]JC,
WK.C, RC, N.D, PE, MTGS., S.G., TBH,
PM.vH., O.H., EH., PI, KR., RK.-N., ZK., EM.-
H., JJAM., PM,, LD.M,, KN., LHN., M., SR,
G.R.,, LR, BR, ER, RS., M.Sc.,, M.Se., S.S., W.S,,
CS., MS., RW.T, J.T,, KT, O.U, EW.,, YW, T.W,
H.P, EM.,, EDP Drafting manuscript and figures:
R.R.M., SB.W,, RAW,, APd.B.

Potential Conflicts of Interest

Nothing to report.

References

1. Wortmann S, Rodenburg RJ, Huizing M, et al. Association of 3-

methylglutaconic  aciduria ~ with  sensori-neural  deafness,

Volume 82, No. 6



10.

11.

12.

13.

14.

15.

16.

17.

encephalopathy, and Leigh-like syndrome (MEGDEL association)
in four patients with a disorder of the oxidative phosphorylation.
Mol Genet Metab 2006;88:47-52.

Wortmann SB, Vaz FM, Gardeitchik T, et al. Mutations in the
phospholipid remodeling gene SERACT impair mitochondrial
function and intracellular cholesterol trafficking and cause dystonia
and deafness. Nat Genet 2012;44:797-802.

Sarig O, Goldsher D, Nousbeck J, et al. Infantile mitochondrial
hepatopathy is a cardinal feature of MEGDEL syndrome (3-methyl-
glutaconic aciduria type IV with sensorineural deafness, encepha-
lopathy and Leigh-like syndrome) caused by novel mutations in
SERACT. Am J Med Genet A 2013;161A:2204-2215.

Vance JE. Phospholipid synthesis in a membrane fraction associ-
ated with mitochondria. J Biol Chem 1990;265:7248-7256.

Wortmann SB, Espeel M, Almeida L, et al. Inborn errors of metab-
olism in the biosynthesis and remodelling of phospholipids.
J Inherit Metab Dis 2015;38:99-110.

Lamari F, Mochel F, Sedel F, Saudubray JM. Disorders of phos-
pholipids, sphingolipids and fatty acids biosynthesis: toward a
new category of inherited metabolic diseases. J Inherit Metab Dis
2013;36:411-425.

World Medical Association Declaration of Helsinki: ethical princi-
ples for medical research involving human subjects. JAMA 2013;
310:2191-2194.

Acham-Roschitz B, Plecko B, Lindbichler F, et al. A novel mutation
of the RRM2B gene in an infant with early fatal encephalomyop-
athy, central hypomyelination, and tubulopathy. Mol Genet Metab
2009;98:300-304.

Haack TB, Gorza M, Danhauser K, et al. Phenotypic spectrum of
eleven patients and five novel MTFMT mutations identified by
exome sequencing and candidate gene screening. Mol Genet
Metab 2014;111:342-352.

Harbulot C, Paquay S, Dorboz |, et al. Transient neonatal renal
failure and massive polyuria in MEGDEL syndrome. Mol Genet
Metab Rep 2016;7:8-10.

Wedatilake Y, Plagnol V, Anderson G, et al. Tubular aggregates
caused by serine active site containing 1 (SERAC1) mutations in a
patient with a mitochondrial encephalopathy. Neuropathol Appl
Neurobiol 2015;41:399-402.

Tort F, Garcia-Silva MT, Ferrer-Cortes X, et al. Exome sequencing
identifies a new mutation in SERAC1 in a patient with 3-
methylglutaconic aciduria. Mol Genet Metab 2013;110:73-77.

Unal O, Ozgul RK, Yucel D, et al. Two Turkish siblings with MEG-
DEL syndrome due to novel SERACT gene mutation. Turk J
Pediatr 2015;57:388-393.

Lumish HS, Yang Y, Xia F, et al. The expanding MEGDEL pheno-
type: optic nerve atrophy, microcephaly, and myoclonic epilepsy
in a child with SERAC1 mutations. JIMD Rep 2014;16:75-79.

Rodriguez-Garcia ME, Martin-Hernandez E, de Aragon AM, et al.
First missense mutation outside of SERAC1 lipase domain affecting
intracellular cholesterol trafficking. Neurogenetics 2016;17:51-56.

Riley LG, Cowley MJ, Gayevskiy V, et al. A SLC39A8 variant
causes manganese deficiency, and glycosylation and mitochon-
drial disorders. J Inherit Metab Dis 2017;40:261-269.

de Leeuw N, Bulk S, Green A, et al. UBE2A deficiency syndrome:
mild to severe intellectual disability accompanied by seizures,

December 2017

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Maas et al: MEGDHEL Syndrome

absent speech, urogenital, and skin anomalies in male patients.
Am J Med Genet A 2010;152A:3084-3090.

Vilarinho S, Choi M, Jain D, et al. Individual exome analysis in
diagnosis and management of paediatric liver failure of indetermi-
nate aetiology. J Hepatol 2014;61:1056-1063.

Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding
genetic variation in 60,706 humans. Nature 2016;536:285-291.

Sequeira S, Rodrigues M, Jacinto S, et al. MEGDEL syndrome:
expanding the phenotype and new mutations. Neuropediatrics
2017,;48:382-384.

Roeben B, Schule R, Ruf S, et al. SERAC1 deficiency causes com-
plicated HSP: evidence from a novel splice mutation in a large
family. J Med Genet (in press).

Wortmann SB, van Hasselt PM, Baric |, et al. Eyes on MEGDEL:
distinctive basal ganglia involvement in dystonia deafness syn-
drome. Neuropediatrics 2015;46:98-103.

Ullman MT. A neurocognitive perspective on language: the
declarative/procedural model. Nat Rev Neurosci 2001;2:717-726.

Dutta R, McDonough J, Yin X, et al. Mitochondrial dysfunction as
a cause of axonal degeneration in multiple sclerosis patients. Ann
Neurol 2006;59:478-489.

Blommaert D, van Hulst K, Hoogen FJ, et al. Diagnosis and man-
agement of drooling in children with progressive dystonia: a case
series of patients with MEGDEL syndrome. J Child Neurol 2016;
31:1220-1226.

Dweikat IM, Abdelrazeq S, Ayesh S, Jundi T. MEGDEL syndrome
in a child from Palestine: report of a novel mutation in SERAC1
gene. J Child Neurol 2015;30:1053-1056.

Wortmann SB, Kluijtmans LA, Rodenburg RJ, et al. 3-Methylgluta-
conic aciduria—lessons from 50 genes and 977 patients. J Inherit
Metab Dis 2013;36:913-921.

Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial
dysfunction in propionic aciduria: a pathogenic role for endoge-
nous mitochondrial toxins. Biochem J 2006;398:107-112.

Garcia-Cazorla A, Mochel F, Lamari F, Saudubray JM. The clinical
spectrum of inherited diseases involved in the synthesis and
remodeling of complex lipids. A tentative overview. J Inherit
Metab Dis 2015;38:19-40.

Ahmed MY, Al-Khayat A, Al-Murshedi F, et al. A mutation of EPT1
(SELENOQI) underlies a new disorder of Kennedy pathway phos-
pholipid biosynthesis. Brain 2017;140:547-554.

Dard R, Meyniel C, Touitou V, et al. Mutations in DDHD1, encod-
ing a phospholipase A1, is a novel cause of retinopathy and neu-
rodegeneration with brain iron accumulation. Eur J Med Genet
2017;60:639-642.

llkovski B, Pagnamenta AT, O'Grady GL, et al. Mutations in PIGY:
expanding the phenotype of inherited glycosylphosphatidylinosi-
tol deficiencies. Hum Mol Genet 2015;24:6146-6159.

Kvarnung M, Nilsson D, Lindstrand A, et al. A novel intellectual
disability syndrome caused by GPI anchor deficiency due to
homozygous mutations in PIGT. J Med Genet 2013;50:521-
528.

Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of
high-quality protein multiple sequence alignments using Clustal
Omega. Mol Syst Biol 2011;7:539.

1015



