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SUMMARY

For over a decade functional gene-to-gene interaction (epistasis) has been suspected to be a determinant
in the “missing heritability” of complex traits. However, searching for epistasis on the genome-wide
scale has been challenging due to the prohibitively large number of tests which result in a serious loss
of statistical power as well as computational challenges. In this article, we propose a two-stage method
applicable to existing case-control data sets, which aims to lessen both of these problems by pre-assessing
whether a candidate pair of genetic loci is involved in epistasis before it is actually tested for interaction
with respect to a complex phenotype. The pre-assessment is based on a two-locus genotype independence
test performed in the sample of cases. Only the pairs of loci that exhibit non-equilibrium frequencies are
analyzed via a logistic regression score test, thereby reducing the multiple testing burden. Since only the
computationally simple independence tests are performed for all pairs of loci while the more demanding
score tests are restricted to the most promising pairs, genome-wide association study (GWAS) for epistasis
becomes feasible. By design our method provides strong control of the type I error. Its favourable power
properties especially under the practically relevant misspecification of the interaction model are illustrated.
Ready-to-use software is available. Using the method we analyzed Parkinson’s disease in four cohorts
and identified possible interactions within several SNP pairs in multiple cohorts.
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1. INTRODUCTION

Functional gene-to-gene interaction, also known as epistasis, is a biologically plausible explanation for, at
least part of, the “missing heritability” of complex traits (Manolio and others, 2009; Hemani and others,
2013). Although this possibility is widely acknowledged, a straightforward scan for epistatic effects using
conventional statistical techniques has not been very successful at finding epistasis in a genome-wide
setting (Niel and others, 2015). The conventional approach to searching for interaction within pairs of
genetic loci is to model and test the presence of two-way interaction within all pairs available for the
analysis using a logistic regression model (LRM) (Cordell, 2002; Marchini and others, 2005; Park and
Hastie, 2008), where interaction amounts to departure from additive effects of genetic variants at different
loci with regard to their global contribution to the phenotype. Such approach requires the estimation of the
interaction effect for each pair of loci. Given that the number of pairs grows rapidly with the number of
loci, both the computational burden of such estimation and the loss of statistical power due to the need to
account for the multiplicity of testing make the conventional methods not very suitable for a truly genome-
wide search (Steen, 2012; Niel and others, 2015). Moreover, despite the novel methodology developed
in the last decade (see Section 2), the need for a scalable and powerful strategy to detect epistasis still
remains (Niel and others, 2015).

A possible way to avoid or at least lessen the two problems is to first identify pairs of genetic loci
that are a priori more likely to be involved in epistasis, and subsequently focus only on these pairs when
evaluating interaction. Not only is such two-stage design able to reduce the problem of multiplicity of
testing by eliminating a large portion of the tests via the pre-assessment, it is also able to lessen the overall
computational burden provided that the pre-assessment technique is computationally simpler than the
actual test for interaction. In this article, we propose a formal testing procedure for detecting epistasis in
precisely such two-stage manner. The initial stage of our method uses the computationally very simple
test to assess whether a pair of loci exhibits two-locus genotype dependence in the population of cases.
For the pairs that fail the independence test the method proceeds to model interaction via the LRM. The
two stages of testing are designed to be independent, which means that a correction for the multiplicity
of testing is necessary only in the second stage. In addition to the computational advantages, the non-
parametric nature of the independence test provides a crucial robustness of the two-stage method with
respect to misspecification of the interaction model, that is, the particular functional form of departure
from additivity of the effects. Given that the precise form of interaction is generally unknown in practice,
it is a nuisance that the classical parametric approach via the LRM requires its specification. And while
its misspecification does not affect the type I error of the interaction test, it can influence the power. Since
our two-stage procedure relies on the LRM in a comparatively limited way, the power of our method
is much less affected by such misspecification. In order to facilitate the use of the method in practice
we developed an open-source software package called EpiDetector, which provides an efficient multi-
threaded implementation of our two-stage method, making it readily deployable in a truly genome-wide
search for two-way interactions of genetic loci using existing data sets.

The outline of this paper is as follows. In Section 2, we give a motivation and context for our approach
and a brief overview of the available methods for detecting epistasis. In Section 3, we give the definition
of our two-stage method, a proof of type I error control and a strategy for selecting tuning parameters.
In Section 4, we present a simulation study which verifies both the type I error control and illustrates the
power performance of the method under several practically relevant scenarios. Finally, in Section 5, we
apply the new method to Parkinson’s disease data.

2. BACKGROUND

The concept of epistasis has been studied in the literature from several different perspectives (Wade
and others, 2001). Although a consensus definition of the phenomenon is yet to be reached, functional
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interactions between disease causing genetic loci have been shown to be closely related to their irreducible
dependencies (Wade and others, 2001). More specifically, interactions can lead to altered dependence
structure in the haplotypes (i.e. genetic sequences of alleles that progeny inherits from one parent) of the
disease causing loci in the population of cases, which translates into deviations of two-locus haplotype
frequencies from the products of the corresponding single locus allele frequencies in the population of
cases. Such deviations are referred to as linkage disequilibrium (LD) (Reich and others, 2001). Crucially,
if two non-interacting loci are located far apart in the genome (e.g. on different chromosomes), they
should be in linkage equilibrium (LE). Therefore, LD between them might be due to interaction (Wade
and others, 2001). Some authors even go as far as defining interaction of two loci as the presence of LD
between them in the subpopulation of cases Wu and others (2008). In any case, the link between epistasis
and LD in the case population is the motivation behind the independence test in the initial stage (S1) of
our two-stage procedure. Instead of focusing on the haplotypes, however, we test dependencies within
two-locus genotypes, which is motivated primarily by the fact that the resolution of haplotype frequencies
is often non-trivial due to the missing phase information (Li and others, 2003), and further justified by
the fact that dependence of haplotypes leads to dependence also at the genotype level (Wade and others,
2001; Wu and others, 2008).

In the second stage (S2) of our procedure we “verify” the results of S1 via a score test in the LRM,
where interaction is equivalent to non-nullity of the coefficient at a non-linear term. In S2, we correct for
multiplicity by the number of tests in S2 via the Bonferroni method, which guarantees strong control of
the family-wise error rate (FWER) under arbitrary dependence among the parallel tests in S2 provided
we make the test statistics in S2 independent of those in S1. Below we present two ways to achieve
such independence. For both we use a partial sample of cases in S1 and we either base the S2 tests only
on the remaining (disjoint) portion of the data, which leads to independence simply by the (presumed)
unrelatedness of the individuals, or we use all of the available data in S2 while adjusting the S2 statistic in
a way that removes the correlation between the two stages and thereby leads to asymptotic independence.

While our procedure combines two classical tests in a relatively novel way, historically, the idea of
two-stage testing in genetic applications is not new. Over the past decade similar statistical analyses have
been successfully utilized for instance in single-locus genome-wide association studies (GWAS) (Thomas
and others, 2004; Pahl and others, 2009), where multi-stage methods were shown to provide substantial
power improvements via efficient allocation of budget. Similarly, several of the approaches proposed in
the literature to tackle the problem of epistasis rely on multi-stage analyses. The rich landscape of the
available methods for searching for epistasis includes, among others, INTERSNP (Herold and others,
2009), epiMODE (Tang and others, 2008), EpiGPU (Hemani and others, 2011), EpiBLASTER (Kam-
Thong and others (2011), Gini impurity index based supervised learning algorithm (Li and others, 2011),
iLOCi (Piriyapongsa and others, 2012) and Lewinger’s pooled-sample two-stage approach (Lewinger
and others, 2013). The latter method is in fact quite similar to ours, but unlike our method it uses the
pooled sample of cases and controls in S1 and a LRM likelihood ratio test (LRT) in S2. As we show in
this article, compared to the case-only approach, the pooling of cases and controls in S1 yields an overall
less powerful procedure under several relevant scenarios. Particularly in case-control data sets where the
fraction of cases is close to the actual prevalence of the phenotype in the general population, the case-only
test is considerably more powerful than the pooled-sample test.

3. METHOD

Consider a sample of n independent individuals from a population P that can be split into two disjoint
subpopulations according to some binary trait (phenotype) �. Denote the number of controls (unaffected,
� = 0) and cases (affected, � = 1) in the sample by mu and ma, respectively. Consider two biallelic loci
�1 and �2 with genotypes AA, Aa, aa and BB, Bb, bb, where each individual has one of the nine possible
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two-locus genotypes. In other words, for each locus pair the available data consists of triplets (�i, xi, yi),
i = 1, . . . , n, where xi and yi are numerical representations of the genotypes at �1 and �2 of the i-th
individual. For simplicity, we assume that xi and yi count alleles a and b at the two loci, respectively, and
take values 0, 1, 2. Given a desired genome-wide significance level α, our two-stage procedure proceeds
as follows. All candidate pairs of loci enter the initial screening stage (S1), where genotype independence
is tested using a partial subsample of cases at a suitably chosen level α1. Denote as K1 the number of pairs
of loci passing through S1 by exhibiting sufficient dependence. The K1 pairs are subsequently entered
into the verification stage (S2), which tests for interaction in the LRM at level α2 = α/K1 using statistics
independent of those used in S1.

3.1. Screening stage tests (S1)

Denote the number of cases simply as m, fix δ ∈ (0, 1) and randomly split the m individuals into two parts
of sizes m1 and m2 such that m1 = �δm� and m2 = m−m1, where we assume that m = �γ n� for some fixed
γ ∈ (0, 1). This makes indexing of statistics by n and m1 equivalent, which is useful when formulating the
asymptotic results in Appendix A of supplementary material available at Biostatistics online. Moreover,
we assume that the data is sorted so that the first m of n individuals are cases and the first m1 cases belong
to the subsample used in S1. Denote the two-locus genotype probabilities in the population of cases by
pkl = P(X = k , Y = l | � = 1), where k , l = 0, 1, 2 and the random variables X and Y count alleles a
and b at �1 and �2, respectively. Moreover, put pk = P(X = k | � = 1) and ql = P(Y = l | � = 1). Using
the m1 randomly selected cases we estimate these probabilities via maximum likelihood by p̂kl = mkl/m1,
p̂k = mk ./m1, q̂l = m.l/m1, where mkl = ∑m1

i=1 I{xi=k , yi=l}, mk . = ∑m1
i=1 I{xi=k}, and m.l = ∑m1

i=1 I{yi=l}. The
null hypothesis of independence is H ind

0 : pkl = pkql for all k , l = 0, 1, 2, which we test against the omnibus
alternative (i.e. ¬H ind

0 ) using one of the two different statistics. The first choice is the Pearson chisquare
statistic

TA
n = ∑

k ,l=0,1,2 d2
kl/(̂pk q̂l), (3.1)

where dkl = √
m1(̂pkl − p̂k q̂l). It is a classical result that TA

n is asymptotically distributed according to
the chisquare-four distribution under H ind

0 . Moreover, TA
n is asymptotically equal to the squared Euclidean

norm of �AUn, where

Un = (dkl)k ,l=0,1,2, (3.2)

and �A = diag{((pkql)
−1/2)k ,l=0,1,2}. The elements of both Un and the diagonal elements of �A are double

indexed by k , l and will be ordered into vectors according to the “row-wise” ordering given by i = 3k + l.
(The particular ordering of the double indexed components into vectors is not essential as long as it is the
same for all such vectors.)

Inspired by Lewinger and others (2013), we also propose to use a generalized trend test statistic,
which tests independence of genotypes while assuming a particular mode of interaction modelled via a
non-constant interaction function z(x, y) (such as z(x, y) = xy or z(x, y) = min{1, xy}), where we only
care about its values on {0, 1, 2}× {0, 1, 2}. The function z(x, y) is known as interaction penetrance model
(Marchini and others, 2005; Piriyapongsa and others, 2012), or simply interaction model. The test statistic
is defined as

TB
n = r2

n/s2
n, (3.3)

where rn = ∑
k ,l=0,1,2 z(uk , vl) dkl , s2

n is a suitable estimator of var rn, and uk , vl are genotype based
weights such as uk = k and vl = l for k , l = 0, 1, 2. Using Un we write rn = (1, . . . , 1)�BUn, where
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�B = diag{(z(uk , vl))k ,l=0,1,2}, which makes TB
n (asymptotically) equal to a continuous function of Un. An

estimator of the variance of rn can be based on Lemma A.4 in Appendix A of supplementary material
available at Biostatistics online. The reason for writing both TA

n and TB
n as functions of Un will be clear

from the definition of the adjusted score statistic below.

3.2. Verification stage tests (S2)

Given a fixed interaction penetrance function z(x, y), the interaction LRM assumes

P(� = 1 | X , Y ) = [
1 + exp(−β0 − β1X − β2Y − β3 z(X , Y ))

]−1
. (3.4)

Under (3.4) we say that the loci �1 and �2 do not interact if the hypothesis H epi
0 :β3 = 0 is true. H epi

0 can
be tested using the score statistic (with estimated parameters)

Cn = n−1/2 ∑n
i=1(�i − 	̂i) z(xi, yi), (3.5)

where 	̂i = (1 + exp(−β̂0 − β̂1xi − β̂2yi))
−1, z(x, y) = (1, x, y, z(x, y))′ and β̂0, β̂1, β̂2 are the null

hypothesis ML estimators of the parameters β0, β1, β2. According to classical theory, under H epi
0 the score

statistic with true values of the parameters is asymptotically normal with zero expectation and the Fisher
information matrix (FIM) as its variance. Similarly, by Theorem A.2 of Appendix A of supplementary
material available at Biostatistics online, Cn is asymptotically normal with zero expectation and a related
variance matrix.

Disjoint score statistic Using the n − m1 individuals that were not used in S1 we define the “disjoint”
score statistic (with estimated parameters) Dn analogously to (3.5). Due to the independence of individuals,
Dn is independent of both TA

n and TB
n , which means that we can use Dn in conjunction with either TA

n or TB
n

to obtain a two-stage procedure (see Section 3.3) which strongly controls FWER (see Section 3.5). We
also note that the asymptotic variance of Dn follows directly from Theorem A.2.

Adjusted score statistic In addition to Dn, we define the “adjusted” score statistic as

An = Cn − B(Un − √
δ/(1 − δ) Ũn), (3.6)

where Ũn is based on the remaining m2 cases in an analogous way to Un of (3.2) and B = CSU V−
U with

V−
U denoting a pseudoinverse of VU , which is the asymptotic variance matrix of Un, and CSU denoting

the asymptotic covariance matrix of Cn and Un. The centering term Ũn in (3.6) ensures that An has
zero expectation under H epi

0 . The question of evaluating An is addressed in Section A.3 in Appendix A
of supplementary material available at Biostatistics online. The matrix B can be calculated using the
expressions for VU and CSU provided by Lemmas A.4 and A.5 and Theorem A.2 (all in Appendix A of
supplementary material available at Biostatistics online). Theorem A.3 in Appendix A of supplementary
material available at Biostatistics online gives the asymptotic variance of An and shows that under H epi

0 the
joint asymptotic distribution of An and Un is normal and the asymptotic covariance of An and Un is zero,
which makes An and Un asymptotically independent. Consequently, An is independent of both TA

n and TB
n

(or any continuous function of Un).
In the definition An, we regressed Cn onto the full vector Un in order to make An independent of both TA

n

and TB
n . However, for independence of An and TB

n it is sufficient to regress onto �BUn and doing so might
have slight power benefits since �BUn generates a smaller dimensional space compared to Un as soon as
z(x, y) yields zeros for some combination of x and y. In the accompanying software, we implemented the
slightly more powerful version when TB

n is selected.
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3.3. Two-stage testing scheme

In a search for epistasis, we start with K pairs of loci. Denote the set of all loci pairs as K = {1, . . . , K}.
For each pair, we formulate null hypotheses H ind

0k (independence of the k-th pair) and H epi
0k (no interaction

of the k-th pair). For a fixed S1 level α1 ∈ (0, 1), we calculate Tnk for each k ∈ K using the same m1 cases,
where Tnk is either TA

n or TB
n depending on the user’s choice. In S1, we reject H ind

0k if Tnk ≥ τα1 , where τα1

is the critical value corresponding to α1. This yields a set K1 ⊂ K of K1 = |K1| “flagged” loci pairs. If
K1 > 0, then for each pair in K1 we perform an S2 test at the level of significance α2 = α/K1 using the
statistics Rnk , where Rnk is either Dn or An corresponding to the k-th pair of loci. Given that both Dn and
An are asymptotically normal, for a two-sided test the standardized absolute values of Rnk are compared
with the standard normal critical value ξα2 (i.e. the (1 − α2/2)-quantile) and if ξα2 is exceeded we reject
H epi

0k and claim interaction for the k-th pair of loci.

3.4. Benchmark two-stage testing procedure

An interesting alternative two-stage procedure was proposed by Lewinger and others (2013), who suggest
to pool all available cases and controls into a single sample and use it to calculate T D

n analogously to
(3.3). Using the pooled sample, we further define T C

n analogously to (3.1). The method of Lewinger and
others (2013) is based on the combination of T D

n and the likelihood ratio test (LRT). However, the LRT
does not seem optimal for a large-scale application such as a genome-wide search for epistasis, because,
unlike the score test, it requires parameter estimation both in the null and the full model. Since the two
tests are asymptotically equivalent (equally powerful) it seems beneficial to use the score test instead.
For the special case of z(x, y) = xy Lewinger and others (2013) argue that the statistic T D

n and the LRT
statistic (and therefore also the score statistic Cn) are asymptotically independent. For a general penetrance
function z(x, y) a proof of asymptotic independence of both the score test and LRT statistics with both T C

n

and T D
n can be formulated along the lines of the proof of TheoremA.3 ofAppendixA of See supplementary

material available at Biostatistics online . Consequently, the asymptotic independence permits the two-
stage testing scheme of Section 3.3 for T C

n or T D
n combined with Cn. We use these two two-stage methods

as performance benchmarks for the two-stage procedures based on Dn and An in the simulation study of
Section 4.

3.5. Error control in two-stage testing with independent stages

Due to the (asymptotic) independence, the combinations of either Dn and An with either TA
n or TB

n lead to
valid (i.e. error controlling) two-stage procedures described in Section 3.3, and so do the combinations of
Cn with either T C

n or T D
n (see Table 1 for the permissible combinations of statistics). A theoretical proof of

sufficient error control is formulated in Section A.1 in Appendix A of supplementary material available at
Biostatistics online. The result is also verified numerically in the simulation study of Section 4.2, where
we show sufficient type I error control of the S2 tests regardless of the level α1 used in S1 for all procedures

Table 1. An overview of possible combinations of statistics (in each column) that lead to “valid” methods,
i.e. methods with independent stages. The statistic TA

n is defined in (3.1), TB
n in (3.3), T C

n and T D
n are the

pooled-sample analogues of TA
n and TB

n , respectively, Dn is the disjoint sample score statistic (see Section
3.2), and An is defined in (3.6).

Pca4–DS Pca4–AS Pca1–DS Pca1–AS Ppo4–CS Ppo1–CS

Stage 1 TA
n TA

n TB
n TB

n T C
n T D

n
Stage 2 Dn An Dn An Cn Cn
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in Table 1. In addition, in Section 4.2, we also illustrate the danger of using a two-stage procedure with
dependent tests. We show that the combination of the full sample score statistics Cn with S1 tests based
on TA

n and TB
n leads to strongly anti-conservative testing procedures.

3.6. Power within two-stage testing

In order to provide a fair comparison between the presented methods, we focus on their power performance
within a multiple testing context instead of the more usual single test comparison. We refer to such power
as MTC-power. If power was considered from the classical power perspective (i.e. single-stage testing
with one test), it is easy to see that both An and Dn have comparatively lower power than the full sample
score statistic Cn. In the case of Dn, this is a straightforward consequence of the smaller sample size
(compared to Cn) on which it is based. In the case of the adjusted score An the lower power is caused by
the inflated variance due to the presence of the regression term. However, the relative power performance
changes dramatically if the two statistics An and Dn are considered within a two-stage testing scheme
applied to a multiple testing scenario with a relatively small number of false hypotheses and unknown
(and therefore likely misspecified) interaction model. In Section 4.3, we show that in such setting the S1
tests can (for suitably chosen α1 and δ) dramatically lower the multiple testing burden faced by the S2
tests and their insensitivity to model misspecification can result in vastly superior procedures Pca4–DS and
Pca4–AS. For a well-specified interaction model the power advantage of Pca4–DS and Pca4–AS is less
pronounced or even vanishes. In such case, however, if the case/control ratio in the sample is different from
the population prevalence then the pooled-sample based procedures Ppo4–CS and (especially) Ppo1–CS
perform best among the considered procedures.

3.7. Choice of S1 level and sample split ratio

As we showed above, the choice of α1 is irrelevant with respect to the control of FWER by any two-stage
procedure with independent stages. On the other hand, in terms of power it is quite important to choose
a suitable value for α1. In the case of procedures based on Dn or An, we must also choose suitable values
for the sample split ratio δ, which we define as δ = m1/m. Therefore, both α1 and δ can be viewed
as tuning parameters of the methods. These parameters can for instance be selected based on a power
simulation under some reasonable setting. Alternatively, they can be chosen using a theoretical argument
presented in Section A.4 in Appendix A of supplementary material available at Biostatistics online, where
the optimization requires as input the distribution of genotypes in the general population (via πkl), the
values of β0, β1, β2, and finally the value of β3 towards which the method is tuned.

3.8. A possibility of control-based pre-assessment

In Section 2, we formulated an argument for performing the S1 tests using the cases. However, if two
interacting loci are in LE in the general population, any LD among the cases necessarily leads to LD also
among the controls. In other words, it is possible to base the S1 tests on the controls instead of the cases.
This seems desirable given that many existing data sets are imbalanced in favor of the controls, which
makes their usage in S1 ideal. Interestingly, our simulation study (results not shown) revealed that in a
setting with high population prevalence of cases and highly imbalanced data towards the controls, the two-
stage procedures with S1 tests performed using the controls are overall the best performers, regardless of
whether the interaction model is well-specified or not. The reason for this is the ever decreasing marginal
power gains by the score test in a setting with an increasing number of controls when the number of cases
remains fixed (Foppa and Spiegelman, 1997), or vice versa. Here we focus on the case-only based methods
because most relevant diseases have prevalence much lower than 50%, which makes the degree of LD
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induced among the controls much lower than among the cases, thus making the control-based methods
substantially less powerful in such a setting.

4. SIMULATION STUDY

In order to investigate the behavior of the two-stage methods, we performed a simulation study. First, we
verified type I error control by the two-stage methods listed in Table 1. Then, in order to illustrate the
potential anti-conservativeness of two-stage methods that improperly combine dependent test statistics, we
also considered two “invalid” two-stage procedures Pca4–CS and Pca1–CS, which use TA

n and TB
n in S1 and

the full sample score statistic Cn in S2. Second, we performed a power comparison of the methods, where
we also focused on the influence of the penetrance model (i.e. z(x, y)). We simulated a large number of
case-control data sets with interacting loci using several penetrance models (listed in Table 2) and analyzed
it using model A, where the interaction term is multiplicative in the minor allele counts. This is a popular
choice when modelling epistasis via LRM in practice, however, it is often assumed by default without
much justification. As we show below, a severe misspecification of z(x, y) can have a strong influence
on the performance of parametric tests that rely on it (e.g. the score test). Crucially, the Pearson-type
statistics TA

n and T C
n are non-parametric and do not assume any particular shape for z(x, y), which makes

the two-stage procedures based on TA
n and T C

n much more robust towards misspecification of z(x, y).

4.1. Software

The data simulation and analysis in this article were performed using an open-source software package
called EpiDetector, which we developed specifically for this purpose. EpiDetector is a command line tool
similar in usage to the popular genetic data analysis package PLINK (Purcell and others, 2007). The
software can be readily deployed to perform a GWAS search for interactions using the methods of this
paper. The source code is available upon request.

4.2. Type I error control

Using a fixed case count ma = 1000 and three different control counts mu = 500, mu = 3000, and
mu = 7000, we simulated 10 case-control data sets, each with 1000 non-interacting loci and a randomly
generated case-control status, which we subsequently analyzed using all of the considered two-stage meth-
ods, namely Pca4–DS, Pca4–AS, Pca1–DS, Pca1–AS, Ppo4–CS, Ppo1–CS. For the former four methods,

Table 2. Various choices of the interaction penetrance function z(x, y). The tables represent the interaction
models A, C, I , J , O, P, Z (top left to right; bottom left to right; the names were chosen completely
arbitrarily) and shows values of z(x, y) for the nine possible combinations of genotypes.

A
y

0 1 2
0 0 0 0

x 1 0 1 2
2 0 2 4

C
y

0 1 2
0 0 1 0

x 1 1 0 1
2 0 1 0

I
y

0 1 2
0 0 0 0

x 1 0 1 1
2 0 1 1

J
y

0 1 2
0 0 0 0

x 1 0 2 0
2 0 0 3

O
y

0 1 2
0 0 0 0

x 1 0 1 2
2 0 2 3

P
y

0 1 2
0 0 0 0

x 1 0 0 1
2 0 1 1

Z
y

0 1 2
0 0 0 0

x 1 0 0 1.2
2 0 1.2 2.5
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Fig. 1. Type I error rates for various two-stage methods with z(x, y) = xy as functions of α1 with five different values
of δ ranging between 0.1 and 0.9 (left to right) and m = 500, m = 3000, m = 7000 (top to bottom), ma = 1000 and
β1 = β2 = 0). In each plot the y-axes have the same range from 0 to 0.3.

we considered five different values of δ ranging between 0.1 and 0.9. Figure 1 shows the S2 type I error
rates of various two-stage methods as functions of α1. The error rates were calculated only among the
tests for which independence was rejected by the S1 tests at level α1. The plots confirm our expectations
about proper type I error control for all combinations of sample sizes and δ for all six “valid” two-stage
methods. Moreover, it is clear that for almost all combinations of δ and sample sizes the observed type I
error rates of the “invalid” procedures Pca1–CS and Pca4–CS skyrocket as α1 decreases. In fact, in most
plots the error rates very quickly approach one (not visible due to the y-axis upper bound of 0.3) providing
a very clear warning about improperly designed two-stage methods with dependent stages.

4.3. Power performance

In the power simulation, we considered all seven penetrance models A, C, I , J , O, P, Z of Table 2 with
ma = 2000 cases and mu = 3000, 7000, 11000 controls, where we aimed to reflect an often encountered
imbalance in favor of controls in real world data sets. Using the LRM we simulated cases and controls
from a population with prevalence of cases of around 5% until the desired sample sizes were reached by
discarding the excess cases and/or controls (i.e. case-control sampling). During the simulation the main
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effects were set to zero (i.e. β1 = β2 = 0). For each penetrance model and each combination of sample
sizes, we also considered three minor allele frequency (MAF) scenarios combining MAFs 0.35 and 0.1.
Using the LRM we simulated 5000 independent loci pairs for each such scenario with interaction effect
parametrized via OR = log β3. Each simulated data set was then analyzed using penetrance model A, that
is, with z(x, y) = xy. Each such test was assumed to be performed in the context of 108 tests, thus the
single-stage score test p-values were Bonferroni-corrected by 108, while the S2 tests were performed at
level α2 = 0.05/(108α1). Such S2 levels were motivated by the fact that 108α1 is the expected number of
tests in S2 under the combined null hypothesis of independence and no interaction. Given that in a large
epistasis search strong LD and epistasis are rare provided pairs of loci on the same chromosome are not
included in the two-stage analysis, the actual number of tests in S2 should in fact be near 108α1. Finally,
in the simulation study the values of α1 and δ were optimized to get the best empirical power for each
setting. This of course would not be directly possible in a real world data analysis, however, the theoretical
method for determining suitable values for the tuning parameters discussed in Section 3.7 provides a way
to solve this issue.

Figures 2–4 show the results. The total of 63 power plots provides a substantial insight into how the
various methods stack up against each other and against the classical single-stage test for different case-
control ratios and MAF combinations under various degrees of misspecified interaction model during
the analysis ranging from well-specified to strongly misspecified. Given the high number of considered
scenarios it is not straightforward to summarize the observed influences of parameter choices. However, it
is very clear that the various considered methods are influenced by these choices to a varying degree. This is
to say that in general it is clear that model misspecification alters the relative performance of the methods
and that the parametric single-stage CS test. Moreover, the parametric two-stage methods that require
specifying z(x, y) in both stages (i.e. Pca1–AS, Pca1–DS, Ppo1–CS) suffer more pronounced decrease
of power due to model misspecification compared to the methods that do not require it (i.e. Pca4–AS,
Pca4–DS, Ppo4–CS).Additionally, it is extremely noteworthy that under model misspecification (with fixed
population prevalence and fixed allele frequencies) not all methods benefit from an overall larger sample
size. This is particularly evident for the pooled-sample methods Ppo4–CS and Ppo1–CS, where under all
scenarios with misspecified model the two methods in fact lose power when the number of controls is
increased. Although this might seem somewhat counterintuitive, it is a direct consequence of the pooled-
sample tests losing power as the fraction of cases in the sample approaches the prevalence of cases in the
population. In the three considered case-control ratios in the simulation, by keeping the number of cases
fixed and increasing only the number of controls the sample prevalence of cases approaches the population
prevalence (around 5%), which results in a vast loss of overall power of the two-stage procedures based on
the pooled-sample test of independence. This effect is most pronounced under the high MAF scenario in
Figure 2, but it is present in the other two figures as well. On the other hand, the newly proposed two-stage
methods, especially the partially non-parametric Pca4–DS and Pca4–AS very desirably benefit from the
increased sample size. Moreover, not only are Pca4–DS and Pca4–AS positively affected by the increased
sample size, they are the top performers overall in many of the model misspecification scenarios and their
advantage over the competition increases with increased imbalance towards the controls (e.g., simulation
models C, J , P, Z). This is the case for both Pca4–DS and Pca4–AS under the high MAF scenario of
Figure 2, while for the other two MAF scenarios in Figures 3 and 4 Pca4–DS takes the upper hand over
Pca4–AS. Given that both Pca4–DS and Pca4–AS yield reasonable performance compared to the other
methods also under the correctly specified model, it seems safe to say that the two methods, and especially
Pca4–DS, are very strong performers and overall can be seen as superior to the other considered methods.

As for the comparison among Pca4–DS and Pca1–DS versus Pca4–AS and Pca1–AS it seems fair to
say that the disjoint tests (Pca4–DS and Pca1–DS) generally outperform the adjusted tests (Pca4–AS and
Pca1–AS). In terms of power, under many considered scenarios the two methods are equivalent, however,
under several scenarios the disjoint test was clearly superior. We also observed that the adjusted score test
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Fig. 2. Empirical MTC-powers at optimal input parameters α1 and δ for the nine testing methods as functions of
interaction odds ratio OR3 = log β3 for simulation models A,C,I,J,O,P,Z with analysis model A, ma = 2000 with
MAF close to 0.35 for both loci in each test, phenotype population prevalence of 5% and β1 = β2 = 0.
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Fig. 3. Empirical MTC-powers at optimal input parameters α1 and δ for the nine testing methods as functions of
interaction odds ratio OR3 = log β3 for simulation models A,C,I,J,O,P,Z with analysis model A, ma = 2000 with
MAF close to 0.35 and 0.1 for the two loci within each test, phenotype prevalence of 5% and β1 = β2 = 0.
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Fig. 4. Empirical MTC-powers at optimal input parameters α1 and δ for the nine testing methods as functions of
interaction odds ratio OR3 = log β3 for simulation models A,C,I,J,O,P,Z with analysis model A, ma = 2000 with
MAF close to 0.1 for both loci within each test, phenotype prevalence of 5% and β1 = β2 = 0.
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is more susceptible to numerical instability problems especially for very small allele frequencies. This is
probably due to the more involved nature of the statistic, which requires an estimation of a higher number
of variance and covariance matrices.

5. APPLICATION

We applied the two-stage methods to the analysis of four Parkinson’s disease (PD) cohorts from the
IPDGC. For a detailed description of the data see Pankratz and others (2009), IPDGC (2011); IPDGC and
WTCCC2 (2011). For the analysis we extracted those SNPs that could be assigned to protein coding genes,
which resulted in 11382 (USA-NIA), 13484 (NL), 13116 (GE) and 10602 (NINDS-CIDR) gene-based
SNPs to be tested for gene-to-gene interactions on PD status. Table 3 shows the numerical summary of the
data sets. Representing the genotypes numerically by counting the rarer allele at each SNP, we deployed
six two-stage methods, namely Pca4–DS, Pca1–DS, Pca4–AS, Pca1–AS, Ppo4–CS, Ppo1–CS. In order to
limit the influence of possible population differences among the four data sets, instead of merging the
data sets we performed the tests for each SNP-pair separately in each data set where the given pair was
present. Using 70% of the cases in S1 (i.e., δ = 0.7) for all four data sets yielded up to four S1 p-values
for each SNP-pair. We subsequently combined these p-values using a Fisher-type weighted combination
method (see Section A.5 in Appendix A of supplementary material available at Biostatistics online) with
the weights simply based on case counts underlying each S1 p-value. This yielded a single combined S1
p-value for each SNP-pair, which we compared with a selected level α1 for each method. Based on the
observed optimality of S1 levels in the simulation we selected α1 = 10−6 for Pca4–DS, Pca1–DS, Pca4–
AS and Pca1–AS, while for Ppo4–CS, Ppo1–CS we used α = 10−4. The S2 tests were also performed
separately for each data set (where present) and the resulting p-values were again combined using the
same combination method except this time the weights were based on the harmonic means of the case and
control counts used in each S2 test, since the harmonic mean gives the effective rate of convergence of
the score statistic in the LRM (Foppa and Spiegelman, 1997). Given that the resulting combined p-values
in S1 were independent of the combined p-values in S2, it was sufficient to correct the combined S2
p-values only by the number of tests in S2. In addition to the two-stage methods, we also calculated the
single-stage score test p-values in each cohort, which we combined using the same p-value combination
method. Given that there were 92 250 923 tests in total, the resulting combined p-values were compared
with the Bonferroni corrected level 5.4 · 10−10.

Using the corrected combined S2 p-values we identified several genome-wide significant SNP pairs,
while the single-stage tests yielded none. Aiming at maximizing the unambiguity of the results, we took
advantage of the availability of multiple cohorts and report only the SNP pairs for which the combined
S2 test was significant and nominally supported by more than one cohort. With multiple cohorts it would
have been possible to attempt replication directly by reserving one of the data sets, however, given that
majority of the replication data set would not have been used at all, attempting replication would have
come at a relatively high cost in terms of power. Therefore, we opted for a single analysis, but present

Table 3. Numerical summaries of the analyzed Parkinson’s disease
data sets.

Cohort SNPs Cases Controls Genotyping platform

USA-NIA 11382 971 3034 Illumina HapMap 550
Dutch (NL) 13484 772 2024 Illumina610-Quad
German (GE) 13116 742 944 Illumina HumanHap550
NINDS-CIDR 10602 876 857 IlluminaCNV370
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only the multi-cohort supported findings. While technically this does not amount to a replication of our
findings, we suggest that it increases their credibility substantially. Note that a significant S1 test was not
required to be supported by multiple cohorts, which is consistent with the rationale for the pre-tests as
providing primarily circumstantial evidence that guides the verification stage analyses. Any reasonable a
priori suggestion of a genetic interaction would then be formally tested in the S2 stage, hence nominal
support from multiple sources was only required for this stage.

Our analysis identified two SNP pairs with multi-cohort evidence of epistasis. For both pairs the multi-
cohort evidence for interaction comes from the Dutch (NL) and German (GE) cohorts where both of the
incriminated SNPs in each pair were present. Given that all SNPs in the analysis were gene based, our results
yield evidence for genome-wide significant gene-to-gene interaction for the risk to develop PD (Table 4).
The two identified gene pairs are DUSP12 in combination with DOCK4 and UBE2J1 in combination with
GPR107. Interestingly, at least three out of these four genes have biological functions that are closely
related to the pathogenesis of PD. DUSP12, also known as hYVH1, is a dual-specificity phosphatase that
was shown to physically interact with Hsp70 in order to prevent heat-shock induced cell death (Sharda
and others, 2009). Hsp70 in turn has been shown to affect PD pathogenesis by affecting aberrant alpha-
synuclein aggregation (Zhang and Cheng, 2014; Gao and others, 2015). DOCK4 is known to regulate
neurite differentiation by activation of Rac1 (Xiao and others, 2013). Rac1 in turn was shown to rescue
neurite retraction caused by G2019S LRRK2, a well-known pathogenic mutation causing familiar PD
(Chan and others, 2011). UBE2J1, also known as UBC6, is a member of the Parkin-Ubiquitin Proteasomal
System pathway (see NCBI - BioSystems) and directly interacts with Parkin (Mengesdorf and others,
2002), another well-known PD gene. Finally, GPR107 is a G-protein coupled receptor. While a different
G-protein coupled receptor gene, namely GPR37, is known to be a risk gene with respect to PD, a direct
connection between GPR107 and PD is unclear at this point.

Table 4. Results of the analysis of PD data sets. The table shows both combined and single-cohort p-
values and MAFs for two pairs of genes that were identified for interaction using Pca1–DS (first pair) and
Pca1–AS (second pair) with δ = 0.7 and α1 = 10−6. The implicating (i.e. leading to significance) p-values
for each pair are shown in bold.

GENE1 Chr1:RS1 GENE2 Chr2:RS2 T B
n An Dn Cn

UBE2J1 6:rs17798549 GPR107 9:rs4837460 8.27e-07 1.34e-02 5.97e-06 8.65e-02

T B
n (NL) An (NL) Dn (NL) Cn (NL)

9.32e-04 8.59e-02 2.60e-03 4.48e-01

T B
n (GE) An (GE) Dn (GE) Cn (GE)

4.60e-05 1.89e-02 4.56e-05 2.44e-02

f1 (NL) f2 (NL) f1 (GE) f2 (GE)
0.043 0.011 0.035 0.023

GENE1 Chr1:RS1 GENE2 Chr2:RS2 T B
n An Dn Cn

DUSP12 1:rs1063179 DOCK4 7:rs12705795 8.30e-07 3.59e-06 1.30e-01 8.88e-01

T B
n (NL) An (NL) Dn (NL) Cn (NL)

8.11e-08 3.45e-02 4.54e-02 9.17e-01

T B
n (GE) An (GE) Dn (GE) Cn (GE)

7.75e-01 2.78e-06 9.82e-01 5.79e-01

f1 (NL) f2 (NL) f1 (GE) f2 (GE)
0.04 0.062 0.05 0.064
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6. DISCUSSION

In this article, we formulated two variants of a two-stage method for genome-wide search for epistasis.
We compared the methods in terms of error control and power performance with the classical single-stage
approach and existing similar two-stage approaches. For a good power performance our approach requires
two things, which are a low level of background dependence in the general population and suitable choice
of input parameters, namely the interaction penetrance function and the S1 level and sample proportion.
Although the two-stage methods are valid in terms of type I error regardless of the degree of background
dependence among the loci in the data, a low level of background dependence allows the S1 tests to
substantially limit the multiple testing burden encountered by the S2 tests. Crucially, in a genome-wide
search for epistasis strong background dependence among a large portion of the tested loci pairs is unlikely.
Regarding the choices of input parameter, the fact that they influence the overall power performance of the
methods can be seen as both a limitation and a virtue in terms of the power potential, since their presence
creates a possibility for tailoring the methods towards specific practical scenarios. In any case, in order to
make the accompanying software as user-friendly as possible we made a default (but changeable) choice
for the interaction model and provided an automated way of choosing the parameters α1 and δ based on
the theoretical procedure described in Section 3.7.

We investigated the relative performance of the methods under various scenarios, which combined
different sample sizes, allele frequencies and interaction models. We showed that under many of those
scenarios our two-stage approach has the potential to significantly outperform both the classical single-
stage test and the competing two-stage procedures. Especially for misspecified interaction models our
method can achieve superior power performance. Such robustness with respect to the interaction model
is crucial in real world applications. The results of analysis of PD data sets further support this claim.
We believe that our results could move the problem of the “missing heritability” a step closer towards
unraveling.

ACKNOWLEDGMENTS

We would also like to thank all of the subjects who donated their time and biological samples to be a part
of the Parkinson’s disease study by IPDGC. Conflict of Interest: None declared.

FUNDING

This project was funded as part of Project 3.7.3 (Statistical Genetics) of the Center for Medical Systems
Biology of the Netherlands Genomics Initiative.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

REFERENCES

CHAN, D., CITRO, A., CORDY, J. M., SHEN, G. C. AND WOLOZIN, B. (2011). Rac1 protein rescues neurite retraction
caused by G2019S leucine-rich repeat kinase 2 (LRRK2). The Journal of Biological Chemistry 286, 16140–9.

CORDELL, H. J. (2002). Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans.
Human Molecular Genetics 11, 2463–2468.

FOPPA, I. AND SPIEGELMAN, D. (1997). Power and sample size calculations for case-control studies of gene-
environment interactions with a polytomous exposure variable. American Journal of Epidemiology 146,
596–604.

Downloaded from https://academic.oup.com/biostatistics/article-abstract/18/3/477/2970370
by GSF Forschungszentrum user
on 09 February 2018



A powerful and efficient two-stage method 493

GAO, X., CARRONI, M., NUSSBAUM-KRAMMER, C., MOGK, A., NILLEGODA, N. B., SZLACHCIC, A., GUILBRIDE, D. L.,
SAIBIL, H. R., MAYER, M. AND BUKAU, B. (2015). Human Hsp70 disaggregase reverses parkinson’s-linked α-
synuclein amyloid fibrils. Molecular Cell 59, 781–793.

HEMANI, G., KNOTT, S. AND HALEY, C. (2013). An evolutionary perspective on epistasis and the missing heritability.
PLoS Genetics 9, e1003295.

HEMANI, G., THEOCHARIDIS, A., WEI, W. AND HALEY, C. (2011). EpiGPU: exhaustive pairwise epistasis scans
parallelized on consumer level graphics cards. Bioinformatics 27, 1462–1465.

HEROLD, C., STEFFENS, M., BROCKSCHMIDT, F. F., BAUR, M. P. AND BECKER, T. (2009). INTERSNP: genome-wide
interaction analysis guided by a priori information. Bioinformatics 25, 3275–3281.

INTERNATIONAL PARKINSON DISEASE GENOMICS CONSORTIUM (IPDGC). (2011). Imputation of sequence variants
for identification of genetic risks for parkinson’s disease: a meta-analysis of genome-wide association studies.
Lancet 377, 641–649.

INTERNATIONAL PARKINSON DISEASE GENOMICS CONSORTIUM (IPDGC) and Wellcome Trust Case Control Consor-
tium 2 (WTCCC2). (2011). A two-stage meta-analysis identifies several new loci for parkinson’s disease. PLoS
Genetics 7, e1002142.

KAM-THONG, T., CZAMARA, D., TSUDA, K., BORGWARDT, K., LEWIS, C. M., ERHARDT-LEHMANN, A., HEMMER, B.,
RIECKMANN, P., DAAKE, M., WEBER, F., WOLF, C., ZIEGLER, A., PÜTZ, B., HOLSBOER, F., SCHÖLKOPF, B. and
others. (2011). EPIBLASTER – fast exhaustive two-locus epistasis detection strategy using graphical processing
units. European Journal of Human Genetics 19, 465–471.

LEWINGER, J. P., MORRISON, J. L., THOMAS, D. C., MURCRAY, C. E., CONTI, D. V., LI, D. AND GAUDERMAN,
W. J. (2013). Efficient two-step testing of gene-gene interactions in genomewide association studies. Genetic
Epidemiology 37, 440–451.

LI, J., HORSTMAN, B. AND CHEN, Y. (2011). Detecting epistatic effects in association studies at a genomic level based
on an ensemble approach. Bioinformatics 27, i222–i229.

LI, S.S., KHALID, N., CARLSON, C. AND ZHAO, L. P. (2003). Estimating haplotype frequencies and standard errors for
multiple single nucleotide polymorphisms. Biostatistics 4, 513–522.

MANOLIO, T. A., COLLINS, F. S., COX, N. J., GOLDSTEIN, D. B., HINDORFF, L. A., HUNTER, D. J., MCCARTHY, M.
I., RAMOS, E. M., CARDON, L. R., CHAKRAVARTI, A., CHO, J. H., GUTTMACHER, A. E., KONG, A., KRUGLYAK, L.,
MARDIS, E., ROTIMI, C. N., SLATKIN, M., VALLE, D., WHITTEMORE, A. S., BOEHNKE, M., CLARK, A. G., EICHLER,
E. E., GIBSON, G., HAINES, J. L., MACKAY, T. F., MCCARROLL, S. A. and others. (2009). Finding the missing
heritability of complex diseases. Nature 461, 747–753.

MARCHINI, J., DONNELLY, P. AND CARDON, L. R. (2005). Genome-wide strategies for detecting multiple loci that
influence complex diseases. Nature Genetics 37, 413–417.

MENGESDORF, T., JENSEN, P. H., MIES, G., AUFENBERG, C. AND PASCHEN, W. (2002). Down-regulation of parkin
protein in transient focal cerebral ischemia: a link between stroke and degenerative disease? PNAS 99, 15042–7.

NIEL, C., SINOQUET, C., DINA, C.AND ROCHELEAU, G. (2015).A survey about methods dedicated to epistasis detection.
Frontiers in Genetics 6, 1–19.

PAHL, R., SCHÄFER, H. AND MÜLLER, H. (2009). Optimal multistage designs – a general framework for efficient
genome-wide association studies. Biostatistics 10, 297–309.

PANKRATZ, N., WILK, J. B., LATOURELLE, J. C., DESTEFANO, A. L., HALTER, C., PUGH, E. W., DOHENY, K. F.,
GUSELLA, J. F., NICHOLS, W. C., FOROUD, T. and others. (2009). Genomewide association study for susceptibility
genes contributing to familial parkinson disease. Human Genetics 124, 593–605.

PARK, M. Y. AND HASTIE, T. (2008). Penalized logistic regression for detecting gene interactions. Biostatistics 9,
30–50.

Downloaded from https://academic.oup.com/biostatistics/article-abstract/18/3/477/2970370
by GSF Forschungszentrum user
on 09 February 2018



494 J. PECANKA AND OTHERS

PIRIYAPONGSA, J., NGAMPHIW, C., INTARAPANICH, A., KULAWONGANUNCHAI, S., ASSAWAMAKIN, A., BOOTCHAI, C.,
SHAW, P. J. AND TONGSIMA, S. (2012). iLOCi: a SNP interaction prioritization technique for detecting epistasis
in genome-wide association studies. BMC Genomics 13, 1–15.

PURCELL, S., NEALE, B., TODD-BROWN, K., THOMAS, L., FERREIRA, M. A. R., BENDER, D., MALLER, J., SKLAR,
P., DE BAKKER, P. I. W., DALY, M. J. and others. (2007). PLINK: a toolset for whole-genome association and
population-based linkage analysis. American Journal of Human Genetics 81, 559–575.

REICH, D. E., CARGILL, M., BOLK, S., IRELAND, J., SABETI, P. C., RICHTER, D. J., LAVERY, T., KOUYOUMJIAN, R.,
FARHADIAN, S. F., WARD, R. and others. (2001). Linkage disequilibrium in the human genome. Nature 411,
199–204.

SHARDA, P. R., BONHAM, C.A., MUCAKI, E. J., BUTT, Z.ANDVACRATSIS, P. O. (2009). The dual-specificity phosphatase
hYVH1 interacts with Hsp70 and prevents heat-shock-induced cell death. Biochemical Journal 418, 391–401.

STEEN, K. VAN. (2012). Travelling the world of gene–gene interactions. Briefings in Bioinformatics 13, 1–19.

TANG, W., WU, X., JIANG, R. AND LI,Y. (2008). Epistatic module detection for case-control studies: A bayesian model
with a gibbs sampling strategy. PLoS Genetics 5, e1000464.

THOMAS, D., XIE, R. AND GEBREGZIABHER, M. (2004). Two-stage sampling designs for gene association studies.
Genetic Epidemiology 27, 401–414.

WADE, M. J., WINTHER, R. G., AGRAWAL, A. F. AND GOODNIGHT, C. J. (2001). Alternative definitions of epistasis:
dependence and interaction. Trends in Ecology & Evolution 16, 498–504.

WU, X., JIN, L. AND XIONG, M. (2008). Composite measure of linkage disequilibrium for testing interaction between
unlinked loci. European Journal of Human Genetics 16, 644–651.

XIAO, Y., PENG, Y., WAN, J., TANG, G., CHEN, Y., TANG, J., YE, W. C., IP, N. Y. AND SHI, L. (2013). The atypical
guanine nucleotide exchange factor Dock4 regulates neurite differentiation through modulation of Rac1 GTPase
and actin dynamics. The Journal of Biological Chemistry 288, 20034–45.

ZHANG, Z. AND CHENG, Y. (2014). miR-16-1 promotes the aberrant α-synuclein accumulation in parkinson disease
via targeting heat shockprotein 70. Scientific World Journal 938348, 1–8.

[Received June 13, 2016; revised June 13, 2016; accepted for publication November 05, 2016]

Downloaded from https://academic.oup.com/biostatistics/article-abstract/18/3/477/2970370
by GSF Forschungszentrum user
on 09 February 2018


