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Appendix A

A.1 Error control in two-stage testing with independent stages

Denote by K0 ⊂ K the set of true null hypotheses Hepi
0k . Given levels α1, α2 ∈ (0, 1) the FWER of

the two-stage procedure described in Section 3.3 is λn = P(∃k ∈ K0 s.t. Tnk > τα1
, |Rnk| > ξα2

).

The procedure controls FWER by α ∈ (0, 1) if λn 6 α. In agreement with our two-stage testing

scheme, we use level α2 = α/K1, where K1 is the number of rejections in S1. Then, assuming the

independence of (Rnk, k ∈ K) and (Tnk, k ∈ K), and denoting Ak = {Tnk > τα1
}, we get

λn = P
(
∃k ∈ K0 s.t. |Rnk| > ξα/K1

, Ak

)

=
∑

C⊂K P(K1 = C)P
(
∃k ∈ K0 s.t. |Rnk| > ξα/|C|, Ak

∣∣K1 = C
)

=
∑

C⊂K P(K1 = C)P
(
∃k ∈ K0 ∩ K1 s.t. |Rnk| > ξα/|C|, Ak

∣∣K1 = C
)

=
∑

C⊂K P(K1 = C)P
(
∃k ∈ K0 ∩ K1 s.t. |Rnk| > ξα/|C|

∣∣K1 = C
)

6
∑

C⊂K P(K1 = C)
∑

k∈K0∩C P
(
|Rnk| > ξα/|C|

∣∣K1 = C
)

=
∑

C⊂K P(K1 = C)
∑

k∈K0∩C α/|C| 6 α
∑

C⊂K P(K1 = C) = α.

Thus, under independence between the two stages the procedure with α2 = α/K1 controls FWER

in the strong sense for any α1. Regarding the assumption of independence between the two stages,

we note that the independence is exact when Dn is used in S2 in conjunction with either TA
n or

TB
n , while it is asymptotic when An combined with either TA

n or TB
n or when Cn is combined with

either TC
n or TD

n .

A.2 Asymptotic theoretical results

Unlike the classical random sample design (i.e. independent and identically distributed (iid)

individuals), the case-control design consists of two random samples from each subpopulation

with a fixed sample size ratio between them. However, from the perspective of inference about
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the parameters of the logistic regression model this difference between the two designs is of little

importance. In fact, it is well known that the coefficients of all non-trivial regressors in the logistic

regression model are identifiable under both designs and (profile) likelihood functions for the two

designs are proportional for these coefficients. It is only the penetrance parameter β0 that is not

estimable under the case-control design, which, however, is irrelevant for our purposes. Therefore,

we can use this ”near-equivalence” of the two designs to conveniently prove the theoretical results

below using the iid design.

Definition A.1 (Asymptotic independence) Fix m ∈ N and let X1
n, . . . , X

m
n , n = 1, 2, . . ., be

random vectors of dimensions k1, . . . , km ∈ N. The random sequences (X1
n)

∞
n=1, . . . , (X

m
n )∞n=1

are said to be (weakly) asymptotically independent as n → ∞ if there exist sequences (an)
∞
n=1

and (bn)
∞
n=1 both of dimension k =

∑m
i=1 ki, where the coordinates of an are all positive, such

that the sequence (an ⊗ (X1′
n , . . . , Xm′

n )′ − bn)
∞
n=1, where ⊗ denotes coordinate-wise product,

converges in distribution to a random vector with non-degenerate distribution function F such

that F (x1, . . . , xm) =
∏m

i=1 Fi(xi) for all xi ∈ R
ki , i = 1, . . . ,m, and for some distribution

functions F1, . . . , Fm.

Theorem A.2 below gives an asymptotic linear relationship which links the score statistic Cn

with the (vector) score statistic evaluated at the true values of the LRM nuisance parameters

β0, β1, β2. Even though the theorem is formulated for the score statistic in the LRM, in the

proof we take a more general approach using the asymptotic machinery found in Van der Vaart

(1998). Consequently, the theorem could easily be reformulated for many other sufficiently regular

statistical models. For details see Van der Vaart (1998), Sections 7.4 and 16.3. In the proof we

parameterize the model by θ ∈ R
k, which in the LRM corresponds to β ∈ R

4. We also use the

concept of convergence of sets defined in Section 7.4 of Van der Vaart (1998), which postulates

that a sequence of sets Hn is said to converge to H if H is the set of all limits limn→∞ hn of
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converging sequences hn with hn ∈ Hn for every n and, more over, the limit h = limi→∞ hni of

every converging sequence hni with hni ∈ Hni for every i is contained in H .

Theorem A.2 (Asymptotic representation of the score statistic) Assume the LRM of (3.4) holds,

let Cn be defined by (3.5), and let Sn be the (vector) score statistic of the LRM at the true

values of β0, β1, β2 defined as Sn = n−1/2
∑n

i=1(∆i −Ψ0
i ) z(xi, yi), where Ψ0

i = (1 + exp(−β0 −

β1xi − β2yi))
−1 and z = (1, xi, yi, z(xi, yi))

′. If β3 = 0, then Cn = e′4MSn + oP (1), where M =

I
1/2
β (1 − Π) I

−1/2
β , and Iβ is the Fisher information matrix (FIM), and e4 = (0, 0, 0, 1)′, and 1 is

the unit matrix in R
4, and Π is a projection onto the space I

1/2
β H0, and H0 = R

3 ×{0} is the null

hypothesis parameter space. Consequently, the statistic Cn is asymptotically zero-mean normal

with asymptotic variance matrix e′4MIβM
′e4.

Proof. Given a statistical model {Pθ s.t. θ ∈ Θ}, where Θ ∈ R
k is an open subset of Rk and Pθ

is a probability distribution for every θ ∈ Θ, the k-dimensional vector score statistic of a sample

of iid random variables X1, . . . , Xn is defined as Sn,θ = n−1/2 ℓ̇n(X ; θ), where X = (X1, . . . , Xn)
′

and ℓn(X ; θ) =
∑n

i=1 log pθ(Xi) and ℓ̇n = (∂/∂θ) ℓn is the score function. Then, the probability

model for X seen as a single variable is Mn
θ = {Pn

θ s.t. θ ∈ Θ}. Denote by ϑ the (unknown) true

value of the parameter θ. The goal is to test the null hypothesis H0:ϑ ∈ Θ0 for some Θ0 ⊂ Θ

within such model. We estimate the unknown value of θ by θ̂0n = arg maxθ∈Θ0
ℓn(X ; θ) and use

it to calculate the null hypothesis (vector) score statistic C0
n = n−1/2 ℓ̇n(X ; θ̂0n ).

Instead of working with Mn
θ it is convenient to work with the equivalent experiment Mn

ϑ,h

parameterized by h =
√
n(θ − ϑ). In Mn

ϑ,h the null hypothesis local parameter space is Hn,0 =

√
n(Θ0−ϑ) and the null hypothesis ML estimator of h is ĥ 0

n = arg maxh∈Hn,0
Λϑ
n(h), where Λ

ϑ
n(h)

is the log-likelihood withinMn
ϑ,h. Denote the FIM ofMn

ϑ,h by Iϑ. Under sufficiently regular model

with sufficiently smooth Λϑ
n(h) (such as the LRM), the score statistic can be Taylor expanded as

C0
n = Sn,ϑ − Iϑ ĥ 0

n + oPϑ
(1). (A.1)
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Moreover, using arguments analogous to those employed in the proofs of Theorems 7.12 and 16.7

in Van der Vaart (1998) together with Lemma 7.13 therein, it can be shown that

ĥ 0
n = arg minh∈H0

‖ I 1/2
ϑ h− I −1/2

ϑ Sn,ϑ‖2 + oP (1), (A.2)

where H0 is the limit set of Hn,0. Combining (A.1) and (A.2) then yields

C0
n = Sn,ϑ − Iϑ arg minh∈H0

‖ I 1/2
ϑ h− I −1/2

ϑ Sn,ϑ‖2 + oPθ
(1).

Simple arithmetics applied to the right-hand side of the equality above yields

C0
n = I 1/2

ϑ

(
I −1/2
ϑ Sn,ϑ − I 1/2

ϑ arg minh∈H0
‖ I 1/2

ϑ h− I −1/2
ϑ Sn,ϑ‖2

)
+ oPϑ

(1)

= I 1/2
ϑ

(
I −1/2
ϑ Sn,ϑ − arg min

g∈I
1/2
ϑ H0

‖ g − I −1/2
ϑ Sn,ϑ‖2

)
+ oPϑ

(1). (A.3)

The term gnmin = arg min
g∈I

1/2
ϑ H0

‖ g − I −1/2
ϑ Sn,ϑ‖2 above is a solution to the minimization

problem of finding an element in the space I 1/2
ϑ H0 that is closest to I −1/2

ϑ Sn,ϑ, or in other words,

finding an orthogonal projection of I −1/2
ϑ Sn,ϑ onto I 1/2

ϑ H0. Denoting as ΠIH the projection

operator onto I 1/2
ϑ H0, we get gnmin = ΠIH(I −1/2

ϑ Sn,ϑ). Finally, plugging this into (A.3) yields

C0
n = I 1/2

ϑ (1− ΠIH) I −1/2
ϑ Sn,ϑ + oPϑ

(1), (A.4)

where 1 is the identity matrix (of the same dimension as ϑ). Given (A.4), the definition of M in

the theorem is obvious, while e4 is added because Cn is the last (fourth) coordinate of the vector

score statistic. Finally, the asymptotic normality of C0
n and the variance follow by Slutsky lemma

from (A.4) and the asymptotic normality of Sn,ϑ given by the central limit theorem (CLT). �

The following theorem yields joint asymptotic distribution of the adjusted score statistic An

and the case-based partial sample Pearson chisquare statistic TA
n or the trend test statistic TB

n .

Theorem A.3 (Normality and independence) Denote δ = m1/m and let Cn be defined by (3.5),

and let An, Un, Ũn be defined by (3.6). If Hepi
0 holds, then the random vector En = (C′

n, (Un −
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EUn)
′, (Ũn − EŨn)

′)′, as n → ∞, converges in distribution to the zero-mean normal distribution

with variance

W =




MIβM
′ MCSU

√
(1− δ)/δMCSU

C′
SU

M′ VU 0√
(1− δ)/δ C′

SU
M′ 0 VU


 ,

where VU is the asymptotic variance matrix of Un and CSU is the asymptotic covariance matrix

of Sn and Un. Moreover, for any δ ∈ (0, 1) the random vectors An and Un are asymptotically inde-

pendent, thus making An asymptotically independent with both TA
n and TB

n . Finally, An is asymp-

totically normal with zero expectation and variance matrix VA = M(Iβ + δ
1−δ CSUV−

U
C′
SU

)M′.

Proof. We first derive the asymptotic distribution of Fn = (S′
n, (Un−EUn)

′, (Ũn−EŨn)
′)′. Define

the random variables Bi ∈ {0, 1}, i = 1, . . . , n as indicators of whether the i-th individual belongs

to the subsample of m1 cases from which Un is calculated. Consequently, Bi = 0 for all controls

(∆i = 0) and
∑n

i=1 Bi = m1. Using these indicators, we write mkl =
∑n

i=1 Bi∆iI{xi=k, yi=l},

mk. =
∑n

i=1 Bi∆iI{xi=k} and m.l =
∑n

i=1 Bi∆iI{yi=l}, while analogous equalities hold for the

counts based on the sample of the remaining m2 controls used to calculate Ũn. Using CLT we

get the asymptotic normality of n−1/2
∑n

i=1 Zi, where

Zi =




(∆i −Ψ0
i ) z(Xi, Yi)

Bi∆i ( I{Xi=k, Yi=l} − pkl, I{Xi=k} − pk, I{Yi=l} − ql)
′
k,l

(1 −Bi)∆i ( I{Xi=k, Yi=l} − pkl, I{Xi=k} − pk, I{Yi=l} − ql)
′
k,l


 ,

where pkl, pk, ql, were defined in Section 3.1. Then, using the delta method, we get the asymptotic

normality of (S′
n, Z

′
n1, Z

′
n2)

′, where

Zn1 = (δγn)1/2
(
(p̂kl − pkl − pk(q̂l − ql)− ql(p̂k − pk))

)
k,l
, (A.5)

Zn2 = ((1− δ)γn)1/2
(
(p̃kl − pkl − pk(q̃l − ql)− ql(p̃k − pk))

)
k,l
,

with p̂kl, p̂k, q̂l and p̃kl, p̃k, q̃l denoting the ML estimators of pkl, pk and ql based on the m1

and m2 cases, respectively. Since Fn = (S′
n, Z

′
n1, Z

′
n2)

′ + OP (n
−1/2), Slutsky lemma yields the
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asymptotic normality of Fn with zero mean under Hepi
0 and variance




Iβ CSU

√
(1− δ)/δ CSU

C′
SU

VU 0√
(1 − δ)/δ C′

SU
0 VU


 ,

where the diagonal block elements of the matrix above come from the asymptotic variance of Sn,

which is the Fisher information matrix Iβ , and the fact that the asymptotic variance matrices

of Un, Ũn, Zn1 and Zn2 are all equal. The zero covariance blocks of Un and Ũn (or Zn1 and

Zn2) come from their independence, while the covariance blocks of Sn with Un and Ũn (or with

Zn1 and Zn2) again follow from the symmetry of Un and Ũn and the fact that going from

cov(Cn, Un) to cov(Cn, Ũn) requires only scaling by
√
(1− δ)/δ to account for the difference

in sample sizes (see Lemma A.5 below). The asymptotic normality of En now follows from the

asymptotic representation Cn = MSn+oP (1) given by Theorem A.2 by Slutsky lemma. Moreover,

since the vector (A′
n, (Un − EUn)

′)′ is asymptotically equal to a linear transformation of En,

the joint asymptotic normality of An and Un follows by the delta method and Slutsky lemma.

Furthermore, the asymptotic variance matrix of (A′
n, (Un−EUn)

′)′ is block diagonal, which yields

the asymptotic independence of An and Un. Since both TA
n and TB

n are smooth functions of only

Un, the asymptotic independence of An with TA
n and TB

n follows. �

A.3 Evaluating the adjusted score statistic An

Theorem A.3 gives the asymptotic distribution of the adjusted score statistic An defined in (3.6).

In order to use An in practice we need to be able to evaluate the matrix M defined in Theorem

A.2 as well as the asymptotic variance of Un and the asymptotic covariance of Sn and Un.

By definition 1−ΠIH of Theorem A.2 is a projection onto the orthogonal complement space

of I
1/2
β H0. For a space generated by a matrix X ∈ R

m×p, which we denote by S(X), the projection

matrix H of a vector y ∈ R
m onto S(X) can be written using the matrix X as H = X(X′X)−X′.

To find the projection matrix onto the space I
1/2
β H0 we have to find a base of the limiting local
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parameter space H0 = {(β0, β1, β2, β3)
′ ∈ R

4:β3 = 0}, which is the column space of the matrix

J4 = diag((1, 1, 1, 0)). Thus, the space I
1/2
β H0 is generated by the matrix X = I

1/2
β J4. Since both

Iβ and J4 are symmetric, plugging X into the hat matrix H = X(X′X)−X′ yields

ΠIH = I
1/2
β J4(J4Iβ J4)

−J4 I
1/2
β = I

1/2
β (J4Iβ J4)

−I
1/2
β . (A.6)

The second equality above follows from the fact that a (pseudo)inverse of a block-diagonal ma-

trix is obtained by (pseudo)inverting the individual blocks. Consequently, the multiplication of

(J4Iβ J4)
− by J4 from left and right does not modify (J4Iβ J4)

−. Defining an estimator Îβ for

Iβ is completely straight forward, and so is calculating its square-root and a square-root of its

(pseudo)inverse. Plugging them into (A.6) yields an estimator Π̂IH = Î
1/2
β (J4 ÎβJ4)

− Î
1/2
β , which in

turn yields M̂ = Î
1/2
β (1− Π̂IH) Î

−1/2
β .

Lemma A.4 gives an expression for the asymptotic variance of Un, while Lemma A.5 gives

the asymptotic covariance of Sn and Un. Combining Lemma A.5 and Theorem A.2 yields the

asymptotic covariance of Cn and Un. In the definition of Un in (3.2) we indexed the elements

by two indices k, l = 0, 1, 2. As explained in Section , throughout this paper we use the same

row-wise ordering of the elements of Un given by i = 3k+ l. The same ordering is used in Lemmas

A.4 and A.5.

Lemma A.4 Let Un be defined by (3.2) and let its elements be ordered according to 3k+ l, where

k, l = 0, 1, 2. Then, the elements of the asymptotic variance matrix VU = (vij)i,j=0,...,8 of Un are

vii = pkl(1 + pkql − pk − ql) + (pk + ql + pkl)(pkql − pkl) + 4pkql(pkl − pkql),

for k = r, l = s,

(A.7)

vij = pkl(2prqs − prs) + 2pkql(prs − prqs) + prql(pks − pkqs) + pkqs(prl − prql),

for k 6= r, l 6= s,

(A.8)

= prl(2pkql − pkl) + prql(3pkl − pkql) + pkql(prl − 3prql) + pk(prql − prl)− prpkl,

for k 6= r, l = s,

(A.9)
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= pks(2pkql − pkl) + pkqs(3pkl − pkql) + pkql(pks − 3pkqs) + qs(pkql − pkl)− qlpks,

for k = r, l 6= s,

(A.10)

where i = 3k + l and j = 3r + s for k, l, r, s = 0, 1, 2.

Proof. For the terms dkl inside Un defined in (3.2) it holds

dkl =
√
m1

[
(p̂kl − pkl)− pk(q̂l − ql)− ql(p̂k − pk) + (pkl − pkql)

]
+OP (n

−1/2).

Denote elements of the (finite sample) variance matrix of Un by vnij , where i = 3k + l and

j = 3r + s, with k, l, r, s = 0, 1, 2. Just like any other variance terms, the elements vnij have the

form vnij = E(dkl − E dkl)(drs − E drs), where the terms (dkl − E dkl)(drs − E drs) equal

m1

[
(p̂kl − pkl)(p̂rs − prs)− pk(q̂l − ql)(p̂rs − prs)− pr(p̂kl − pkl)(q̂s − qs)

− ql(p̂k − pk)(p̂rs − prs)− qs(p̂kl − pkl)(p̂r − pr) + pkpr(q̂l − ql)(q̂s − qs) (A.11)

+ qlqs(p̂k − pk)(p̂r − pr) + prql(p̂k − pk)(q̂s − qs) + pkqs(q̂l − ql)(p̂r − pr)
]
+OP (n

−1/2).

Working out the expectations of the individual terms in (A.11) by considering the different

combinations of k, l, r, s and combining the results yields (A.7) – (A.10). �

Lemma A.5 Let Sn and Un be defined by (3.5) and (3.2), respectively. Denote by CSU the

asymptotic covariance matrix under Hepi
0 of Sn and Un and let m/n → γ ∈ (0, 1) and m1/m →

δ ∈ (0, 1) as n → ∞. The columns c3k+l, k, l = 0, 1, 2, of CSU are

c3k+l = (δ/γ)1/2
(
dkl − pkq

1/2
l

∑
j dkjq

−1/2
j − qlp

1/2
k

∑
i dilp

−1/2
i

)
, (A.12)

where dkl = Ψ′
1(β0 + β1k + β2l) z(k, l)πkl, z(a, b) = (1, a, b, z(a, b))′, Ψ′

1(x) = e−x /(1 + e−x)2,

pk = P(X = k |∆ = 1), ql = P(Y = l |∆ = 1) and πkl = γP(X = k, Y = l |∆ = 1)+(1−γ)P(X =

k, Y = l |∆ = 0). In other words, πkl are the genotype frequencies in a case-control population

with the prevalence of the case phenotype (∆ = 1) equal to γ.
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Proof. Since (S′
n, (Un − EUn)

′)′ and (S′
n, Z

′
n1)

′ have the same asymptotic distribution, we can

determine CSU by calculating cov(Sn, Zn1), which in turn can be determined by calculating

cov(Sn, p̂kl), cov(Sn, p̂k) and cov(Sn, q̂l). Similarly to the proof of Theorem A.3, write Sn =

n−1/2
∑n

i=1(∆i−Ψ0
i ) z(Xi, Yi) and p̂kl = m−1

1

∑n
j=1 Bi∆j I{Xj=k, Yj=l}. By taking the expectation

when calculating cov(Sn, p̂kl) the cross-product terms with i 6= j drop due to independence of

individuals. Since also ESn = 0 under Hepi
0 , the calculation of the covariance boils down to

ckl = E
(
(∆1 −Ψ0

1) z(X1, Y1)∆1 I{X1=k, Y1=l}

)

= E
(
E
(
(∆1 −Ψ0

1) z(X1, Y1)∆1 I{X1=k, Y1=l} | X1, Y1

))

= E
(
E
(
(∆1 −Ψ0

1)∆1 | X1, Y1

)
z(X1, Y1) I{X1=k, Y1=l}

)

= E
(
Ψ0

1(1−Ψ0
1) z(X1, Y1) I{X1=k, Y1=l}

)

= E
(
Ψ′

1(β0 + β1X1 + β2Y1) z(X1, Y1) I{X1=k, Y1=l}

)

= Ψ′
1(β0 + β1k + β2l) z(k, l)E I{X1=k, Y1=l}

= Ψ′
1(β0 + β1k + β2l) z(k, l)πkl,

where we used Ψ′
1(x) = Ψ0

1(x)(1−Ψ0
1(x)). Finally, since p̂k =

∑
l p̂kl and q̂l =

∑
k p̂kl, the columns

of the covariances cov(Sn, p̂k) and cov(Sn, q̂l) are ck. =
∑

j ckj and c.l =
∑

i cil, respectively.

Combining these results with (A.5) finally yields (A.12). �

A.4 Choice of S1 level and sample split ratio

In this section we present a theory based method for choosing the input parameters α1 and δ

in our two-stage methods by maximizing the overall power. For the sake of simplicity, we focus

on testing β3 = 0 against the one-sided alternative β3 > 0 using a two-stage procedure based on

TA
n and Dn, which we refer to as Pca4–DS. We consider a multiple testing scenario where a vast

majority of the interaction hypothesesHepi
01 , . . . , Hepi

0K are true. Consequently,K1 is approximately

equal to α1K. For the theory below we also assume no background dependence, which means
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that all of the dependence between the genotypes is attributable to the presence of interaction.

Such assumption is realistic for loci far enough from each other on the genome (such as located

on different chromosomes).

Focusing on the power function of the Pearson chisquare statistic TA
n , according to Cohen

(1988) for large sample size the distribution of TA
n is well-approximated by the non-central

chisquare distribution with non-centrality parameter ηδ = ‖µ‖2, where µ = (µkl)k,l and µkl =

√
δm (pkl−pkql)/

√
pkql. Its limiting power function is Π(1)(α1, δ) = 1−G(G−1(1−α1, 4, 0), 4, ηδ),

where G(·, 4, η) is the non-central chisquare-four distribution function with non-centrality param-

eter η. Given that ηδ is a simple function of pkl, under the LRM it is a matter of straightforward

arithmetics to express it as a function of β3. Doing so yields

ηδ = δm
∑

k,l

[
πklΨkl − (

∑
i,j πij Ψij)

−1
∑

i,j πkjπilΨkjΨil

]2
∑

i,j πkjπilΨkjΨil
,

where Ψkl = Ψ(β0+β1k+β2l+β3kl) and πkl = P(X = k, Y = l), πk. = P(X = k), π.l = P(Y = l),

which are the genotype frequencies in a hypothetical case-control population with the same

prevalence of ∆ = 1 as in the case-control sample at hand.

Next we determine the power of the score test based on Dn. We focus on the local alternative

of type β3 = h/
√
n2 for some h > 0, where n2 = n−m1 is the size of the sample size underlying

Dn. The limiting power function of Dn is Π(2)(α1, δ) = 1 − Φ(Φ−1(1 − α/(α1K)) − Fh), where

Φ denotes the standard normal distribution function and F is the slope of Dn. The slope of the

score statistic Dn can be determined using Theorem 15.4 and Addendum 15.5 in Van der Vaart

(1998) as F = (e′4I
−1
β0

e4)
−1/2, where Iβ0

is the null hypothesis FIM and e4 = (0, 0, 0, 1)′. Due

to the independence of two tests the limiting power function of the combined test is Π(α1, δ) =

Π(1)(α1, δ) Π
(2)(α1, δ). By maximizing this power function with respect to α1 and δ we can obtain

suitable values for the two input parameters. The optimization requires as input the distribution

of genotypes in the general population (via πkl), the values of β0, β1, β2 and finally the value of

β3 towards which the method is tuned, which can all be reasonably specified by the user.
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A.5 Fisher-type p-value combination method

In the real data analysis of Section 5 instead of merging the four cohorts directly we instead

combined the p-values using the weighted Fisher combination method (Fisher (1932), Box (1954)).

For a general set of k p-values p1, . . . , pk the combination method utilizes the statistic F =

−2
∑k

i=1 wi log pi, where the weights wi are based directly on the sample sizes underlying each

p-value. The null hypothesis distribution of F is given by Theorem 2.4 of Box (1954).

Appendix B: List of IPDGC members and affiliations

Mike A Nalls (Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda,

MD, USA), Vincent Plagnol (UCL Genetics Institute, London, UK), Dena G Hernandez (Laboratory of Neuro-

genetics, National Institute on Aging; and Department of Molecular Neuroscience, UCL Institute of Neurology,

London, UK), Manu Sharma (Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Re-

search, University of Tübingen, and DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany),

Una-Marie Sheerin (Department of Molecular Neuroscience, UCL Institute of Neurology), Mohamad Saad (IN-

SERM U563, CPTP, Toulouse, France; and Paul Sabatier University, Toulouse, France), Javier Simón-Sánchez

(Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen,

and DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany), Claudia Schulte (Department

for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research), Suzanne Lesage (INSERM, UMR

S975 [formerly UMR S679], Paris, France; Université Pierre et Marie Curie-Paris, Centre de Recherche de l’Institut

du Cerveau et de la Moelle épinière, Paris, France; and CNRS, Paris, France), Sigurlaug Sveinbjörnsdóttir (De-

partment of Neurology, Landsṕıtali University Hospital, Reykjav́ık, Iceland; Department of Neurology, MEHT

Broomfield Hospital, Chelmsford, Essex, UK; and Queen Mary College, University of London, London, UK),

Sampath Arepalli (Laboratory of Neurogenetics, National Institute on Aging), Roger Barker (Department of Neu-

rology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK), Yoav Ben-Shlomo (School of Social

and Community Medicine, University of Bristol), Henk W Berendse (Department of Neurology and Alzheimer
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Center, VU University Medical Center), Daniela Berg (Department for Neurodegenerative Diseases, Hertie In-

stitute for Clinical Brain Research and DZNE, German Center for Neurodegenerative diseases), Kailash Bhatia

(Department of Motor Neuroscience, UCL Institute of Neurology), Rob M A de Bie (Department of Neurol-

ogy, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands), Alessandro Biffi (Center

for Human Genetic Research and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA;

and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA), Bas Bloem (Depart-

ment of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands), Zoltan Bochdanovits

(Department of Clinical Genetics, Section of Medical Genomics, VU University Medical Centre), Michael Bonin

(Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany),

Jose M Bras (Department of Molecular Neuroscience, UCL Institute of Neurology), Kathrin Brockmann (Depart-

ment for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and DZNE, German Center

for Neurodegenerative diseases), Janet Brooks (Laboratory of Neurogenetics, National Institute on Aging), David

J Burn (Newcastle University Clinical Ageing Research Unit, Campus for Ageing and Vitality, Newcastle upon

Tyne, UK), Elisa Majounie (Laboratory of Neurogenetics, National Institute on Aging), Gavin Charlesworth (De-

partment of Molecular Neuroscience, UCL Institute of Neurology), Codrin Lungu (National Institutes of Health

Parkinson Clinic, NINDS, National Institutes of Health), Honglei Chen (Epidemiology Branch, National Insti-

tute of Environmental Health Sciences, National Institutes of Health, NC, USA), Patrick F Chinnery (Neurology

M4104, The Medical School, Framlington Place, Newcastle upon Tyne, UK), Sean Chong (Laboratory of Neuro-

genetics, National Institute on Aging), Carl E Clarke (School of Clinical and Experimental Medicine, University

of Birmingham, Birmingham, UK; and Department of Neurology, City Hospital, Sandwell and West Birmingham

Hospitals NHS Trust, Birmingham, UK), Mark R Cookson (Laboratory of Neurogenetics, National Institute on

Aging), J Mark Cooper (Department of Clinical Neurosciences, UCL Institute of Neurology), Jean Christophe

Corvol (INSERM, UMR S975; Université Pierre et Marie Curie-Paris; CNRS; and INSERM CIC-9503, Hôpital

Pitié-Salpêtrière, Paris, France), Carl Counsell (University of Aberdeen, Division of Applied Health Sciences, Pop-

ulation Health Section, Aberdeen, UK), Philippe Damier (CHU Nantes, CIC0004, Service de Neurologie, Nantes,
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France), Jean-François Dartigues (INSERM U897, Université Victor Segalen, Bordeaux, France), Panos Deloukas

(Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK), Günther Deuschl (Klinik

für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-AlbrechtsUniversität Kiel, Kiel,

Germany), David T Dexter (Parkinson’s Disease Research Group, Faculty of Medicine, Imperial College London,

London, UK), Karin D van Dijk (Department of Neurology and Alzheimer Center, VU University Medical Center),

Allissa Dillman (Laboratory of Neurogenetics, National Institute on Aging), Frank Durif (Service de Neurologie,

Hôpital Gabriel Montpied, Clermont-Ferrand, France), Alexandra Dürr (INSERM, UMR S975; Université Pierre

et Marie Curie-Paris; CNRS; and AP-HP, Pitié-Salpêtrière Hospital), Sarah Edkins (Wellcome Trust Sanger Insti-

tute), Jonathan R Evans (Cambridge Centre for Brain Repair, Cambridge, UK), Thomas Foltynie (UCL Institute

of Neurology), Jing Dong (Epidemiology Branch, National Institute of Environmental Health Sciences), Michelle

Gardner (Department of Molecular Neuroscience, UCL Institute of Neurology), J Raphael Gibbs (Laboratory of

Neurogenetics, National Institute on Aging; and Department of Molecular Neuroscience, UCL Institute of Neu-

rology), Alison Goate (Department of Psychiatry, Department of Neurology, Washington University School of

Medicine, MI, USA), Emma Gray (Wellcome Trust Sanger Institute), Rita Guerreiro (Department of Molecular

Neuroscience, UCL Institute of Neurology), Clare Harris (University of Aberdeen), Jacobus J van Hilten (De-

partment of Neurology, Leiden University Medical Center, Leiden, Netherlands), Albert Hofman (Department of

Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands), Albert Hollenbeck (AARP, Washing-

ton DC, USA), Janice Holton (Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology),

Michele Hu (Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK), Xuemei Huang (Depart-

ments of Neurology, Radiology, Neurosurgery, Pharmacology, Kinesiology, and Bioengineering, Pennsylvania State

University Milton S Hershey Medical Center, Hershey, PA, USA), Isabel Wurster (Department for Neurodegener-

ative Diseases, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative diseases),

Walter Mätzler (Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Ger-

man Center for Neurodegenerative diseases), Gavin Hudson (Neurology M4104, The Medical School, Newcastle

upon Tyne, UK), Sarah E Hunt (Wellcome Trust Sanger Institute), Johanna Huttenlocher (deCODE genetics),
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Thomas Illig (Institute of Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmen-

tal Health, Neuherberg, Germany), Pálmi V Jónsson (Department of Geriatrics, Landsṕıtali University Hospital,

Reykjav́ık, Iceland), Jean-Charles Lambert (INSERM U744, Lille, France; and Institut Pasteur de Lille, Univer-

sité de Lille Nord, Lille, France), Cordelia Langford (Cambridge Centre for Brain Repair), Andrew Lees (Queen

Square Brain Bank for Neurological Disorders), Peter Lichtner (Institute of Human Genetics, Helmholtz Zentrum

München, German Research Centre for Environmental Health, Neuherberg, Germany), Patricia Limousin (Insti-

tute of Neurology, Sobell Department, Unit of Functional Neurosurgery, London, UK), Grisel Lopez (Section on

Molecular Neurogenetics, Medical Genetics Branch, NHGRI, National Institutes of Health), Delia Lorenz (Klinik

für Neurologie, Universitätsklinikum Schleswig-Holstein), Codrin Lungu (National Institutes of Health Parkinson

Clinic, NINDS, National Institutes of Health), Alisdair McNeill (Department of Clinical Neurosciences, UCL Insti-

tute of Neurology), Catriona Moorby (School of Clinical and Experimental Medicine, University of Birmingham),

Matthew Moore (Laboratory of Neurogenetics, National Institute on Aging), Huw R Morris (National Hospital

for Neurology and Neurosurgery, University College London, London, UK), Karen E Morrison (School of Clinical

and Experimental Medicine, University of Birmingham; and Neurosciences Department, Queen Elizabeth Hospi-

tal, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK), Valentina EscottPrice (MRC

Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, UK), Ese

Mudanohwo (Neurogenetics Unit, UCL Institute of Neurology and National Hospital for Neurology and Neuro-

surgery), Sean S O’Sullivan (Queen Square Brain Bank for Neurological Disorders), Justin Pearson (MRC Centre

for Neuropsychiatric Genetics and Genomics), Joel S Perlmutter (Department of Neurology, Radiology, and Neu-

robiology at Washington University, St Louis), Hjörvar Pétursson (deCODE genetics; and Department of Medical

Genetics, Institute of Human Genetics, University of Tübingen), Pierre Pollak (Service de Neurologie, CHU de

Grenoble, Grenoble, France), Bart Post (Department of Neurology, Radboud University Nijmegen Medical Cen-

tre), Simon Potter (Wellcome Trust Sanger Institute), Bernard Ravina (Translational Neurology, Biogen Idec,

MA, USA), Tamas Revesz (Queen Square Brain Bank for Neurological Disorders), Olaf Riess (Department of

Medical Genetics, Institute of Human Genetics, University of Tübingen), Fernando Rivadeneira (Departments
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of Epidemiology and Internal Medicine, Erasmus University Medical Center), Patrizia Rizzu (Department of

Clinical Genetics, Section of Medical Genomics, VU University Medical Centre), Mina Ryten (Department of

Molecular Neuroscience, UCL Institute of Neurology), Stephen Sawcer (University of Cambridge, Department

of Clinical Neurosciences, Addenbrooke’s hospital, Cambridge, UK), Anthony Schapira (Department of Clinical

Neurosciences, UCL Institute of Neurology), Hans Scheffer (Department of Human Genetics, Radboud University

Nijmegen Medical Centre, Nijmegen, Netherlands), Karen Shaw (Queen Square Brain Bank for Neurological Dis-

orders), Ira Shoulson (Department of Neurology, University of Rochester, Rochester, NY, USA), Joshua Shulman

(Baylor College of Medicine, Houston, Texas), Ellen Sidransky (Section on Molecular Neurogenetics, Medical Ge-

netics Branch, NHGRI), Colin Smith (Department of Pathology, University of Edinburgh, Edinburgh, UK), Chris

C A Spencer (Wellcome Trust Centre for Human Genetics, Oxford, UK), Hreinn Stefánsson (deCODE genet-

ics), Francesco Bettella (deCODE genetics), Joanna D Stockton (School of Clinical and Experimental Medicine),

Amy Strange (Wellcome Trust Centre for Human Genetics), Kevin Talbot (University of Oxford, Department

of Clinical Neurology, John Radcliffe Hospital, Oxford, UK), Carlie M Tanner (Clinical Research Department,

The Parkinson’s Institute and Clinical Center, Sunnyvale, CA, USA), Avazeh Tashakkori-Ghanbaria (Wellcome

Trust Sanger Institute), François Tison (Service de Neurologie, Hôpital HautLévêque, Pessac, France), Daniah

Trabzuni (Department of Molecular Neuroscience, UCL Institute of Neurology), Bryan J Traynor (Laboratory of

Neurogenetics, National Institute on Aging), André G Uitterlinden (Departments of Epidemiology and Internal

Medicine, Erasmus University Medical Center), Daan Velseboer (Department of Neurology, Academic Medical

Center), Marie Vidailhet (INSERM, UMR S975, Université Pierre et Marie Curie-Paris, CNRS, UMR 7225),

Robert Walker (Department of Pathology, University of Edinburgh), Bart van de Warrenburg (Department of

Neurology, Radboud University Nijmegen Medical Centre), Mirdhu Wickremaratchi (Department of Neurology,

Cardiff University, Cardiff, UK), Nigel Williams (MRC Centre for Neuropsychiatric Genetics and Genomics), Car-

oline H Williams-Gray (Department of Neurology, Addenbrooke’s Hospital), Sophie Winder-Rhodes (Department

of Psychiatry and Medical Research Council and Wellcome Trust Behavioural and Clinical Neurosciences Institute,

University of Cambridge), Kári Stefánsson (deCODE genetics), Maria Martinez (INSERM UMR 1043; and Paul
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Sabatier University), Nicholas W Wood (UCL Genetics Institute; and Department of Molecular Neuroscience,

UCL Institute of Neurology), John Hardy (Department of Molecular Neuroscience, UCL Institute of Neurology),

Peter Heutink (DZNE, German Center for Neurodegenerative Diseases and Department for Neurodegenerative

Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany), Alexis Brice

(INSERM, UMR S975, Université Pierre et Marie Curie-Paris, CNRS, UMR 7225, AP-HP, Pitié- Salpêtrière Hos-

pital), Thomas Gasser (Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research,

and DZNE, German Center for Neurodegenerative Diseases), Andrew B Singleton.
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