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15	Abstract

16

17 This study assesses the ability of 21 crop models to capture the impact of elevated CO2

18 concentration ([CO2]) on maize yield and water use as measured in a 2-year Free Air

19 Carbon dioxide Enrichment experiment conducted at the Thünen Institute in

20 Braunschweig, Germany (Manderscheid et al. 2014). Data for ambient [CO2] and irrigated

21 treatments were provided to the 21 models for calibrating plant traits, including weather,

22 soil and management data as well as yield, grain number, above ground biomass, leaf area

23 index, nitrogen concentration in biomass and grain, water use and soil water content.

24 Models differed in their representation of carbon assimilation and evapotranspiration

25 processes. The models reproduced the absence of yield response to elevated [CO2] under

26 well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50
 (
3
)


1 % of models within a range of +/- 1 Mg.ha-1 around the mean. The bias of the median of

2 the 21 models was less than 1 Mg.ha-1. However under water deficit in one of the two

3 years, the models captured only 30% of the exceptionally high [CO2] enhancement on

4 yield observed. Furthermore the ensemble of models was unable to simulate the very low

5 soil water content at anthesis and the increase of soil water and grain number brought

6 about by the elevated [CO2] under dry conditions. Overall, we found models with explicit

7 stomatal control on transpiration tended to perform better. Our results highlight the

8 need for model improvement with respect to simulating transpirational water use and its

9 impact on water status during the kernel-set phase.

10 Keywords.

11 Zea mays, atmospheric carbon dioxide concentration, multi-model ensemble, water use, stomatal

12 conductance, grain number

13

14 Highlights.

15 	Simulations using a 21-model ensemble may overestimate the impact of soil water

16 deficit.

17 	Under water deficit, the simulated impact of elevated [CO2] on maize yield may be

18 significantly underestimated.

19 	The largest uncertainty between models comes from the simulation of the soil and crop

20 water balance.

21 	Stomatal conductance should be better parameterized and simulated for predicting the

22 impact of [CO2] on yield under water deficits.
23

24 Introduction

25 Given population growth and changes in dietary habits, global maize demands are

26 expected to increase (Pingali, 2001). Water deficits, air temperature and atmospheric CO2

27 concentrations ([CO2]) are expected to rise significantly by 2050 and beyond (IPCC



1 2013). For instance, [CO2] of approximately 540 parts per million (ppm) is projected for

2 2050 to 2100 under the radiative concentration pathways (RCP) 8.5 or 4.5 scenarios,

3 respectively (Van Vurren et al., 2011). Projections of maize production remain unclear

4 partly due to the large uncertainty in the response of C4 crops to elevated [CO2] and

5 interaction with water and temperature stresses ( Markelz et al. 2011, Deryng et al., 2016,

6 ); a better mechanistic understanding of the underlying processes as they are affected by

7 climate change can reduce that uncertainty. Mechanistic crop models are valuable tools to

8 both integrate the complex interactions of climate variables and to make reliable

9 estimates of projected impacts of rising [CO2] on crop yields and resource use. During

10 the last few decades, the models have evolved from cropping system models to

11 agricultural production system models and are used in a large variety of domains or

12 sectors like food security (Matthews et al. 2013), agricultural policy assessment (Bryan et

13 al., 2011; Van Ittersum and Cassman, 2013; Gutzler et al., 2015), plant breeding

14 (Banterng et al., 2004; Boote et al., 2011, Heinemann et al., 2015), climate change impacts

15 assessment (Kapetanaki and Rosenzweig, 1997; Kassie et al., 2015; Southworth et al.,

16 2000; Ringem et al., 2008; Tao et al., 2009; Sultan et al 2013, Deryng et al., 2014;

17 Rosenzweig et al., 2014, Nendel et al.2014) and adaptation design (Tao and Zhang, 2010).

18 The various crop models use different coding and parameterizations in their simulation

19 of [CO2] effects on key crop processes and yield under climate scenarios (White et al.,

20 2011; Kersebaum and Nendel, 2014; Deryng et al., 2016). These approaches may provide

21 useful insights on the direction and magnitude of the impacts of expected climate change

22 effects and scenarios on important crops, such as maize.

23 Nevertheless, the uncertainty due to the way models simulate maize growth responses to

24 increasing [CO2] concentrations precludes more precise projections of maize production

25 and related food security scenarios (Leakey et al., 2012; Deryng et al., 2016). Crop plants

26 respond to [CO2] via its impact on stomatal conductance. For wheat, Yin (2013)



1 suggested that many crop models, for which parameters were identified with growth

2 chamber experiments, tend to overestimate the beneficial effects of elevated [CO2] on

3 productivity. The knowledge and testing of [CO2] effects to simulate the reduced

4 transpiration rate using maize models is even more rudimentary.

5 A previous intercomparison study of multiple maize models, based on experimental data

6 at four sites in France, Brazil, USA, and Tanzania, showed large variability in simulated

7 yield responses to different levels of [CO2] and under non-limiting water conditions

8 (Bassu et al., 2014). In that study, models that explicitly considered effects of doubled

9 [CO2] between 360 and 720 ppm on carbon assimilation and transpiration via stomatal

10 conductance resulted in yield increase of 0 to 19%. The study also revealed that the

11 simulated crop water use through evapotranspiration exhibited even higher variability

12 among models. These modeling uncertainties can partly be explained by the different

13 formalisms used in the models to represent the CO2 fertilization effect, often based on

14 empirical functions (Yin, 2013) or developed and/or calibrated using data from

15 experiments that failed to represent open-field responses (Long et al., 2005, 2006;

16 Ainsworth et al., 2008). Furthermore, the development of these models’ parameters were

17 made using a very limited number of data, thus reducing their reliability. For that reason,

18 complex interactions between water, temperature, radiation and [CO2] have not been

19 investigated fully. We believe that gathering the experience of many years of

20 improvement of models and their embedded formalisms and parameters may provide

21 insight into these complex interactions and may advance our capacities for a more certain

22 projection of climate change on maize yield. This approach may be implemented by

23 cross-comparing model results with open-field Free Air CO2 Enrichment (FACE) data,

24 as FACE experiments provide more realistic production conditions (O’Leary et al., 2015,

25 Boote et al., 1996, Tubiello and Ewert, 2012). In this way, possible sources of model



1 discrepancies can be examined, hints on specific weaknesses extracted, and overall model

2 ability to simulate response to varying [CO2] conditions enhanced.

3 While the response of C3 crops to CO2 fertilization is comparatively better documented

4 and analyzed in the scientific community, the response of C4 crops to elevated [CO2] is

5 much smaller and is also less documented in chamber and FACE experiments. The

6 effect is expected to be small due to the C4 photosynthesis pathway in which CO2 is pre-

7 fixed by PEP-Carboxylase and substrate saturation of that carboxylase occurs at about

8 400 ppm i.e. the current ambient [CO2]. Two papers on FACE-experiments on C4 crops

9 report very little yield sensitivity under good water supply, but show greater response,

10 near 20% yield increase under dry conditions. This effect of CO2 on C4 crops is

11 illustrated by the results of Manderscheid et al. (2014) and Manderscheid et al. (2015),

12 who conducted a maize-FACE experiment in Braunschweig, Germany, in 2007 and

13 2008. The experiment evaluated two [CO2] levels at two water regimes. Under dry

14 conditions only, significant effects on maize yields were observed in 1 of 2 years with a

15 very large [CO2]-induced increase in yields of 40% and with the same total crop water use

16 as the ambient [CO2] levels. That experiment provided results of an unusually positive

17 CO2 fertilization effect of 550 ppm [CO2] on maize yields under water limited conditions.

18 The data of that experiment are therefore valuable for evaluating the variability of maize

19 models to simulate such considerable impacts.

20 The objectives of this study were:

21 (i)	to test the ability of multiple maize models to simulate the yield response to

22 the different [CO2] levels and water regimes of the two year FACE

23 experiment (Manderscheid et al. 2014), notably the strong response to [CO2]

24 under water limitation,



1 (ii)	to test the degree to which the models could correctly simulate the measured

2 low soil water contents, and the complex relationships between CO2 and crop

3 water relations,

4 (iii)	to compare simulated responses of relevant variables among groups of

5 models, using as grouping criteria, contrasting approaches to compute such

6 variables, to gain insight into the possible reasons for model variability,

7 (iv)	to highlight potential model improvements for enhancing their abilities to

8 simulate the response of maize plant growth to the increasing [CO2 ].

9

10 This study is the second phase of the Maize pilot of the Agricultural Model

11 Intercomparison and Improvement Project (AgMIP), which is a major international

12 research effort that brings together climate, crop and economic modelling communities

13 with cutting-edge information technology to conduct model intercomparisons and

14 improvements, and to coordinate multi-assessments of future climate impacts and

15 adaptation on the agri-food sector (Bassu et al., 2014; Rosenzweig et al., 2013).

16

17	Materials and Methods

18

19 Here we: 1) briefly describe the conditions and design of the field experiment, 2)

20 present the data supplied to the 21 individual modelling groups to perform this work,

21 and 3) provide a short overview of the CO2 response mechanisms used in the

22 participating models.

23

24 Field Experimentation Background

25 The underlying data of the presented simulations originate from a FACE-experiment

26 performed on a 10-ha research field site at the Thünen Institute, Braunschweig, Germany



1 (N 52°18’, E 10°26’, 79 m a.s.l.) in two consecutive growing seasons 2007 and 2008. The

2 FACE-experiment is described in detail by Manderscheid et al. (2014). Additional details

3 on sap flow in plants and crop microclimate are given in Manderscheid et al. (2015). To

4 test the interactions of [CO2] levels and water availability on Zea mays L. cv. ‘Romario’

5 growth, a modified 2 x 2 factorial experiment with three replications was set up in a fully

6 randomized design. Sarlangue et al.(2007) measured approximately 1595 growing degree

7 days for the cultivar ‘Romario’ from emergence to physiological maturity. The texture of

8 the Luvisol soil is characterized by 6-7% clay, 24-32% silt and 61-70% sand (0-40cm soil

9 depth) with an increasing sand fraction with soil depth (40-60 cm). The maximum

10 rooting depth (i.e. depth of root water uptake) is limited to 60 cm.

11 The FACE system used a modified set up with 6 circular rings (diameters: 20 m) installed

12 following Weigel et al. (2005). The factors controlled included (a) two levels of [CO2]

13 concentrations: AMBIENT (387 ppm) and (b) FACE (550 ppm) and two levels of water

14 supply: IRR and DRY giving four treatments in total: IRR_AMBIENT, IRR_FACE,

15 DRY_AMBIENT, DRY FACE. IRR comprised non-limiting water conditions by rainfall

16 and drip irrigation as required. DRY comprised operation of rain shelter from mid July to

17 exclude most of heavy daily rainfalls (>10 mm). Atmospheric CO2 enrichment started in
18 early June of both years, when leaf area index (LAI) exceeded 0.5 m2 m-2. Pest control

19 and fertilisation were performed based on best farmers practice. The applied total

20 irrigation amounts and total fertilizer applications are presented in Table 1.

21 Daily air temperature, relative humidity, global radiation and precipitation were measured

22 in a nearby weather station. Soil water content was measured 20 (2007) and 25 (2008)

23 times per growth period using TDR probes down to 60 cm depth. Total aboveground

24 dry matter, grain yield, LAI, and grain number were measured four and five times during

25 the season in 2007 and 2008, respectively.

26



1	Simulation Protocol

2

3 The 21 modellers involved in this work were provided with basic information on the

4 experimental field conditions (physical and chemical soil properties and initial conditions,

5 weather data, maximum rooting depth), management of the different treatments (tillage,

6 fertilizer application, nitrogen fertilization, CO2 enrichment; Table 1), and essential

7 information on measurements (development stages and dates: sowing, anthesis and

8 physiological maturity, harvest) and limited cultivar information from the seed company

9 (approx. degree days from emergence to maturity). Modellers were asked to calibrate and

10 run their models based on the provided information for the treatments IRR_AMBIENT

11 for 2007 and 2008. Subsequently they applied their models to simulate all treatments of

12 both years (see Table 1).

13 Evaluation of Simulation Results

14

15 The simulation results of the individual models and multi-model ensemble were

16 compared to the respective measured values and evaluated by means of absolute and

17 relative (response ratios) graphical representations using boxplots and time series

18 analysis. Additionally, a number of statistical tools were used to evaluate the ability of

19 the models to simulate the measured plant growth and soil water dynamics of the FACE

20 experiment.

21 Nash-Sutcliffe-Efficiency

22 The Nash-Sutcliffe efficiency (NSE) is related to the RMSE and defined by Nash and

23 Sutcliffe (1970) (Eq 1).

24	(1)


1 Where mi and si are the measured and simulated values, and     is the measured mean.

2 The NSE values are dimensionless and can take values from –∞ to 1.0. A NSE value of

3 1.0 is given for a perfect match of simulation and measurement, if NSE ≥ 0, the model is

4 better than when the observed mean is used as a predictor, while negative values indicate

5 that the observed means is a better estimate.

6

7 Root Mean Square Error

8 Deviations from the measurements are estimated by the root mean square error (RMSE,

9 Eq. 2) in total values and units with respect to the observed variable:


10	(2)

11 Key Characteristics of the Participating models.

12 The main characteristics of the participating maize and agroecosystem models

13 can be found in Bassu et al. (2014) and in the individual model documentations. Eleven

14 models consider the [CO2] effects on maize growth through the primary modification of

15 daily biomass accumulation using either coefficients for the radiation use efficiency

16 (RUE) or transpiration efficiency (TE) or both simultaneously. Ten more mechanistic

17 maize models used algorithms based on biochemical photosynthesis processes (Table 2).

18 Six models specifically used routines to compute the grain number, all based on the

19 growth rate of the above ground biomass during a short period from anthesis to

20 beginning grain growth. Finally, 15 models included an explicit impact of [CO2] on leaf

21 (or canopy) stomatal resistance and hence transpiration rate, although 6 did not (Table2).

22

23 Results

24 General agreement with experimental data.
 (
10
)



1 The median simulated date of anthesis was similar for all treatments and 3 days

2 earlier than the measured values (Table1), within a range of 4 and 6 days for 50 % of

3 models in 2007 and 2008, respectively.


4 For the 21 models used here, the median RMSEs of yield, AGB at anthesis, AGB

5 at harvest and soil plant available water in the 60 cm soil layer (SPAW) were 1.8, 1.5 and

6 2.1 Mg.ha-1 and 81 mm, respectively. As expected, the RMSEs of the model ensemble,

7 computed with the median of the 21 model’s results, and for the same variables were

8 much smaller except for crop water use (Table 3).


9 Models exhibited an especially high variability for water use and that was also reflected in

10 the variability of ET/ET° and SPAW. For the latter, the Nash-Suttclife coefficient varied

11 between 0.74 and -35, with a median value of -0.39 for the 21 models. The main

12 discrepancies between simulations of observations came from a very variable estimate of

13 the initial soil water content in the 60 rooting depth, on sowing date, i.e. 30 days before

14 the first data measured in the experiment.


15 Interactions of water deficit and CO2 on crop yield and water use


16 The response of simulations to the various crop treatment conditions was analysed as

17 followed. First we compared the models and the results at ambient CO2 and well-

18 watered conditions. Secondly, we studied the impact of water deficit at AMBIENT CO2

19 and finally, we analysed the impact of [CO2], first under well-watered conditions then

20 during the drought of 2008.


21 At Ambient [CO2] and optimal water conditions


22 The models were calibrated on the IRR AMBIENT treatments observations for 2007

23 and 2008. Not surprisingly, the median of model simulations were close to observations,
 (
19
)



1 showing a slight overestimation only of yields in 2007 and slight underestimate in 2008.

2 50 % of models varied within a 1.8 and 1.4 Mg.ha-1 interval around the median in 2007

3 and 2008, respectively (Fig 1). The median of the 9 models having an explicit function

4 for kernel number was also close to the observations (Fig 2), i.e. approximately 4200

5 grains.m-2. 50 % of models were within 600 grains m-2 in 2007 but that range nearly

6 doubled in 2008 up to 1165 grains m-2. The above ground biomass (AGB) was also

7 rather well simulated in 2007 and 2008 although the median of models slightly

8 underestimated the observed value (Fig 3). The inter model range for 50 % of models

9 was similar both years and close to 1.6 Mg.ha-1, i.e. also similar to the range found for

10 yields. Finally, the median of simulated ET/ET° ratio did not differ largely between two

11 years at approximately 0.8 on average, with 50 % of models ranging within an interval

12 close to 0.2 around that median values (Fig 4).


13 Impact of drought at AMBIENT [CO2]


14 In 2007 the water deficit treatment had no impact on simulated yields so that the

15 AMBIENT DRY treatment could be considered as a replicate of the AMBIENT IRR

16 treatment. This was fully consistent with the observations (Fig 1). The same could be

17 concluded for simulated kernel numbers (Fig 2), AGB (Fig 3) and ET/ET° (Fig 4). The

18 inter-model variability for the 2007 AMBIENT DRY treatments was also similar to IRR

19 treatments for the same variables. In the following, the drought response will then only

20 be considered for the year 2008, and the 2007 AMBIENT DRY will be considered a

21 mere replicate of the AMBIENT IRR treatment.


22 In 2008 however, a significant impact of water limitation was simulated. Indeed drought

23 reduced the median of 21 simulated values of ET/ET° from 0.75 to 0.58 (Fig 4).

24 Interestingly, the variability of that variable also diminished under DRY conditions in



1 2008. In that year, the simulated SPAW was close or higher than 53 mm (Fig S1), half of

2 the field capacity, in the AMBIENT IRR treatment whereas it remained lower than 40

3 mm for most of the growing season in the AMBIENT DRY plots, even declining down

4 to 12 mm approximately at the date of anthesis. The 21 models’ median simulated LAI

5 (Fig S2) in the second experimental year followed the general trend of the data except at

6 the end of the growth cycle where simulated results of the DRY treatment declined

7 much less rapidly than in the experiment. In 2008 the simulated impact of drought on

8 AGB at ambient [CO2] in the DRY treatment was very clear (Fig 3), the median of 21
9 models decreasing from 20.3 down to 14.5 Mg.ha-1. Simulations also exhibited an impact

10 of water deficit on the grain number (Fig 2), the median of the 9 relevant models

11 decreasing to 3250 grains m-2 instead of 4100 in the IRR treatment. The inter-model

12 variability also increased, models varying within a range of 1800 grains m-2. These

13 features were consistent with a simulated drought–induced decline in yield to

14 approximately 6.1 Mg.ha-1 instead of 10.8 Mg.ha-1 in the control (Fig1). As for the IRR

15 treatment, these simulated data generally were slightly lower than the measured yields.

16 The variability between models increased in comparison to the range found in the three

17 other IRR treatments (including the DRY AMBIENT in 2007). 50 % of models

18 simulated values within 2.86 Mg.ha-1 instead of 1.6 Mg.ha-1 in the IRR treatments on

19 average.


20 Impact of CO2 in irrigated conditions


21 As in the experiment in the treatments receiving sufficient water (including the DRY

22 treatments of 2007), there was no impact of [CO2] level on yields (Fig 5) or AGB (Fig 6).

23 There was no impact of [CO2] on ET/ET° (Fig 4) in the same situations and no

24 significant impact on the simulated water consumptions exhibited either (Table 1).



1 However, the 21 models’ medians of SPAW tended to be higher for the FACE treatment

2 (Fig S1 for 2008, 2007 not shown).


3 Impact of [CO2] in water restricted conditions.


4 When water deficit had an impact (DRY treatments in 2008), models were able to

5 simulate a compensating impact of [CO2] but with less intensity than the one measured

6	(Fig 5 ).


7 At 550 ppm, the median simulated yield was 7.4 instead of 6.2 MG.ha-1 at ambient

8 concentration, i.e. a 19 % increase for the median of the model ensemble. However,

9 because of the variability of the relative [CO2] increase between models, the median

10 increase of the 21 models was 10 % only. This [CO2] positive impact on yield under
11 water deficit was less than half the measured increase, between 7 and 9.8 Mg.ha-1 i.e., 40

12 % with 550 ppm compared to the ambient [CO2] (Fig 5).


13 The median simulated increase in grain number under high [CO2] was negligible

14 under well-watered conditions (Fig 2), including the non-irrigated plots in 2007, and 13.0

15 % for the dry treatment in 2008, again, less than the experimental result, where the grain

16 number was increased by 25 % with 550 ppm [CO2]. The median decrease of SPAW in

17 response to raising [CO2] in the water limited treatment of 2008 was also less than the

18 one measured (Fig S1), with no impact on total water use (Table 1) or ET/ET° (Fig 4) of

19 the crop. However, the median simulated ET /ET° during the period of flowering, I.e.

20	+/- 5 days around anthesis, among all models rose from 0.63 up to 0.88 at 550 ppm

21 [CO2] (Table 4), indicating a more severe water deficit at ambient [CO2] than at elevated

22 [CO2] during that particular phase, in line with the maximum soil water deficit as

23 expressed by SPAW.



1 For the 6 models that simulated grain number, simulated growth rates of AGB

2 between 5 days before and 5 days after flowering was computed. On average, models

3 generally showed no [CO2] effect on that variable. Even at low water availability in 2008,

4 the difference between the two [CO2] regimes i.e. at ambient and elevated [CO2],
5 respectively was not significant (156 and 176 Kg.ha-1.day-1, respectively, Table 4).


6 Finally, the median of the ensemble model’s simulation of AGB increased by 11

7 % in the 2008 DRY FACE treatment, which was considerably less than the 24 %

8 observed in the experiment (Fig 6).


9


10	Discussion.

11

12 Yields and primary productivity.

13 As previously reported in other work, the simulated maize yield was not increased

14 by elevated CO2 under well-watered conditions (Ghannoum et al. 2000, Leakey et al.2006,

15 Twine et al. 2013). For the 2008 season which exhibited significant water deficit;

16 however, simulations were able to simulate a significant increase in yield with CO2

17 enrichment, although less than observed in the same season. The measured impact of

18 CO2 was more than three times as large as the simulated one, considering the median of

19 the 21 models. This is one of the highest experimental impacts of [CO2] increase on

20 maize recorded in the literature (Kimball et al.2002, Leakey et al. 2006; Long et al. 2007,

21 Meng et al. 2014). Because no impact was found for the simulations of the 2008

22 experiment and in the 2007 wet treatments, and because the measured CO2 impacts were

23 not significant either, we concentrated the analysis of modeling of CO2 impact on the dry

24 treatment of 2008 only. It is under such conditions where model uncertainty (both



1 precision and accuracy) may seriously challenge our capacity to understand climate

2 change impacts and assess the effectiveness of long term adaptation options to climate

3 change.

4 As analysed by Manderscheid et al. (2014), and further documented in their later

5 paper (Manderscheid et al. 2015), the reasons for the dramatic increase of yield under 550

6 ppm [CO2] as compared to the ambient concentration resulted from a reduction of

7 transpiration rates at early stages of the crop cycle, enabling plants to conserve soil water

8 when water was still non limiting. During the time period –5 and + 5 days of anthesis,

9 the actual difference in SPAW between the two [CO2] levels in the dry and well-watered

10 situation was approximately 18 mm. That was approximately five times more than the

11 difference simulated by the models in general. Such higher SPAW under 550 ppm [CO2]

12 which brought about a much less stressful situation condition during kernel set and grain

13 formation for the high [CO2] treatment were, in general, not captured correctly by the

14 models. This cumulative water-saving effect appears to occur primarily because the

15 simulated CO2 effect to reduce transpiration appears to be too weak in most of these

16 maize models. Another causal factor is that the models on the whole also predicted ET

17 to be too high compared to measured (Table 1 and Figure S1), which would make this

18 [CO2] effect even more critical. Later, in August, the larger leaf area of the crop in the

19 elevated [CO2] treatment compensated the CO2-induced decline in transpiration rate so

20 that the water use from the beginning of June until harvest was similar in both

21 treatments. Models were able to partially represent that complex kinetics, although

22 missed the precise magnitude. This suggests that the response functions parameterized in

23 some of the models may simulate interactions at the process level correctly. In the field,

24 the decrease of the intensity of the transpiration rate induced by an increase in [CO2] was

25 almost exactly compensated by (i) the availability of more soil water at the time where

26 ETo was highest and (ii) an increase in green leaf area. FACE treatments generally bring



1 about a hotter and drier local microclimate (Twine et al 2013, Manderscheid et al. 2015,

2 Webber et al. 2016), resulting in very similar quantities of water use in both CO2

3 treatments until the end of the growth cycle. Under ambient [CO2] at the end of July, the

4 observed fraction of SPAW reached levels lower than the 0.5 ratio of water holding

5 capacity, which is often interpreted as a threshold for crop productivity (Allen et al.

6 2006). The saved water that was observed in the root zone provided a much higher

7 SPAW and enabled the crop grown at 550 ppm [CO2] to maintain a better water status,

8 longer green leaf area duration and hence to harvest more energy and therefore produce

9 more biomass. Again, all this could be followed in the kinetics of simulated variables,

10 showing that the ensemble of models actually reproduced some of the impacts. What the

11 models did not take into account was (i) the consequence of the altered water regime of

12 plants on the microclimate (Twine et al. 2013, Manderscheid et al. 2015, Webber et al.

13 2016) and (ii) the absorption of light by the rainout shelters. But even if considered, these

14 factors could not account for the full difference observed, all together. More important,

15 was the impact of [CO2] level on the timing of the maximum water stress 3 days after the

16 anthesis date, coincided with a very sensitive phase of kernel set in maize to plant water

17 status (Turc et al. 2016).

18 The simulated timing of the maximum stress for the crop was fairly precise, with

19 only 3 days difference. Therefore the drought relief effect of prior water conservation

20 (partial stomatal closure induced by the elevated [CO2]) would have impacted yield if the

21 water conservation had been enough. Indeed, ensemble models simulated the ambient

22 situation fairly well (Fig S1) but largely underestimated the impact of CO2. . Model

23 algorithms to reflect the effect on stomata resistance are mainly based on findings for C3

24 crops (e.g. Yu et al.2001; Nendel et al. 2009, but see Markelz et al. 2011). However, Akita

25 and Moss (1972) showed that the response curve of the stomatal resistance to increasing

26 CO2 was much steeper for C4 than for C3 crops. This could be an indication that the



1 main reason for a lesser impact of [CO2] in the simulation was an insufficient reduction

2 in plant transpiration in the early part of the season leading up to anthesis.

3 These data alone, based on one season of water use estimated by soil water

4 balance, are not sufficient to verify the magnitude of reduction of transpiration under

5 elevated [CO2]. Additional testing of transpiration and evapotranspiration of maize

6 models under elevated [CO2] is needed, and present evidence indicates that the maize

7 models are not sufficiently reducing transpiration with elevated [CO2]. In the prior

8 sensitivity evaluation of maize models to CO2 by Bassu et al.(2014), the median simulated

9 reduction in transpiration was 8 % for a doubling of [CO2] from 360 to 720 ppm. By

10 comparison, an 18 % reduction in transpiration was reported for maize grown at 720

11 versus 360 ppm [CO2] in two studies on maize conducted in sunlit, controlled-

12 environment chambers (Allen et al., 2011; Kim et al. 2006, Chun et al., 2011,). We

13 propose that if the maize models were updated to reflect this greater observed reduction

14 in transpiration, that the model simulations of water conservation during the pre-anthesis

15 phase would have been substantial, both improving the simulated soil water balance and

16 giving a larger benefit of elevated [CO2] for the water-stressed treatment in 2008.

17 Some consistency to that statement is given by the comparison of two groups of models:

18 those which have an explicit impact of [CO2] on the stomatal conductance and those

19 which do not (Table 3.) For those models with explicit stomatal conductance, the

20 seasonal water use was less and the mean RMSE for yield was significantly less,

21 sustaining the hypothesis that a more mechanistical approach for the response of crop

22 transpiration to [CO2] is better. The RMSE for yield of the ensemble model made of the

23 models with explicit stomatal conductance response was 0.7, i.e. even less than for the

24 other ensemble, which did not differ from the median value of the models’ RMSE of 2.3

25 for yield.



1 Although the main source of uncertainty in this study comes from the variability

2 in water use, the grain number issue must be considered as well as shown by the

3 experiment itself. It may be expected that once the water economy of the crop is

4 improved, the setting of kernel number (sink strength) could be the next to be improved,

5 because occurrence of water deficits at the critical timing of kernel number determination

6 should have caused more [CO2] effect on kernel number, but did not do so because the

7 water conservation effect (transpiration reduction) was insufficient. Indeed, models with

8 explicit grain number did not perform significantly better than those without simulating

9 grain number (Table 3). Lack of significance might be due to the insufficient number of

10 models in the first category (6), given the minimum number of maize crop models in an

11 ensemble able to securely match the actual yields was found to be close to 10 in a

12 previous study (Bassu et al. 2014). But above all, improved models also improve the

13 ensemble of models (Martre et al 2016). Also, the routines used to take this effect into

14 account might not be relevant. In all 6 models able to compute a grain number, the

15 process is based on the AGB growth rate around anthesis. But that variable averaged –

16 /+ 5 days around anthesis for the DRY treatment in 2008 did not differ between both

17 [CO2] treatments (Table 4). Indeed recent findings by Turc et al. (2016) suggest that direct

18 hydraulic influence on silk elongation set (i.e., affecting anthesis-silking-interval) might

19 cause the decrease in grain number. The follow-on or feed-forward effect was that

20 reduced kernel number on the ambient [CO2] treatment actually caused sink limitation

21 later during grain-filling when rains were received. Evidence for this sink limitation is

22 provided by Manderscheid et al. (unpublished data) who observed less carbohydrate

23 remobilization from the ambient treatment than observed for the elevated CO2 treatment

24 for the 2008 dry case. This interaction of water stress timing with kernel number set is

25 what makes the CO2 impact larger for this experiment.

26



1 Conclusions

2 In this study, CO2 affected maize yield primarily through crop water balance.

3 The coincidence of prior water conservation under elevated CO2 and because most

4 severe water stress occurred at anthesis can explain the particularly high impact of CO2 in

5 the data set and therefore, models missing this critical point in crop phenology cannot

6 adequately simulate the high impact of CO2 for this situation, regardless of the CO2

7 impact algorithm implemented in the model. This poses a great challenge to regional

8 applications of maize models in climate change impact assessments, since the accurate

9 reproduction of sowing dates (which determines the subsequent simulation of

10 phenology) at the regional scale is already very difficult. Probabilistic approaches to cover

11 a satisfying representation of phenology could overcome this problem and prepare the

12 way for making full use of improved CO2 impact algorithms.

13 Crop transpiration/water balance and kernel number set (sink strength) are the modules

14 that require special attention. More robust functions and good input data are required for

15 making these model adjustments

16

17 Figure Captions

18 Figure 1. Inter model variability for yield in 2007 and 2008 under dry or wet conditions,

19 at ambient or elevated [CO2]. The box includes 50 % of models, the error bars include 90

20 % of models. The plain horizontal line in the boxes indicates the median and the dotted

21 line indicates the mean. The triangles indicate the experimental means. Dots show

22 outliers.

23

24 Figure 2. Inter model variability for kernel number in 2007 and 2008 under dry or wet

25 conditions, at ambient or elevated [CO2]. The box includes 50 % of models, the error

26 bars include 90 % of models. The plain horizontal line in the boxes indicates the median
 (
20
)



1 and the dotted line indicates the means. The triangles indicate the experimental means.

2 Dots show outliers.

3

4 Figure 3. Inter model variability for above ground biomass (AGB) in 2007 and 2008

5 under dry or wet conditions, at ambient or elevated [CO2]. The box includes 50 % of

6 models, the error bars include 90 % of models. The plain horizontal line in the boxes

7 indicates the median and the dotted line indicates the means. The triangles indicate the

8 experimental means. Dots show outliers.

9

10 Figure 4. Inter model variability for ratio of ET/ET° over the whole growing season in

11 2007 and 2008 under dry or wet conditions, at ambient or elevated [CO2]. The box

12 includes 50 % of models, the error bars include 90 % of models. The plain horizontal

13 line in the boxes indicates the median and the dotted line indicates the mean. Dots show

14 outliers.

15

16 Figure 5. Simulated relative increase of maize yield at 550 ppm versus the ambient air

17 [CO2] in 2007 and 2008 for irrigated and dry plots: ((FACE – AMBIENT)/AMBIENT).

18 Triangles are from average measured yields.

19

20 Figure 6: Simulated relative increase of maize Above Ground Biomass at 550 ppm versus

21 the ambient air [CO2] in 2007 and 2008 for irrigated and dry plots: ((FACE-

22 AMBIENT)/AMBIENT).

23

24 Figure S1: Simulated and experimental time course of the plant available water in the 0-

25 60 cm soil layer in 2008. Circles: Dry plots, Triangles: irrigated plots. Black: ambient

26 [CO2]. White: elevated [CO2]. Small symbols are the ensemble means of simulated values.
 (
28
)



1 The bars indicate +/- standard error of the means (n =21). Large symbols indicate the

2 measured water soil content in the 60 cm layer.

3

4 FigureS2: Simulated and experimental time course of the green leaf area in 2008. Circles:

5 Dry plots, Triangles: irrigated plots. Black: ambient [CO2]. White: elevated [CO2]. Small

6 symbols are the ensemble means of simulated values. The bars indicate +/- standard

7 error of the means (n =21). Large symbols show the measured values of LAI.

8
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Table1 Total irrigation and fertilization amounts for the individual treatments, as well as averaged [CO2] concentrations. Dates of anthesis and observed total water use (estimated from soil water content measurements). Underlined and bold figures were provided to modellers. After
Manderscheid et al. (2014). The last column shows the median of models’simulations. Figure in brackets are one standard deviation, n=3 for measurements and n=21 for simulations.

	
	Irrigation

[mm]
	Atm.

CO2
	Nitrogen

fertilization
	Date of

anthesis
	Water

use
	Water use

simulations

	
	
	[ppm]
	[kg N/ha]
	
	measured (mm)
	(mm)

	2007
	AMBIENT/IRRIGATED
	34
	387
	173
	18 July
	320 (6)
	391 (69)

	
	AMBIENT/DRY
	0
	387
	173
	18 July
	277 (5)
	376 (72)

	
	FACE/IRRIGATED
	34
	550
	173
	18 July
	327 (1)
	364 (70)

	
	FACE/DRY
	0
	550
	173
	18 July
	277 (7)
	364 (74)

	2008
	AMBIENT/IRRIGATED
	119
	387
	198
	25 July
	300 (1)
	392 (63)

	
	AMBIENT/DRY
	20
	387
	198
	25 July
	198 (5)
	284 (68)

	
	FACE/IRRIGATED
	94
	550
	198
	25 July
	273 (0)
	360( 49)

	
	FACE/DRY
	20
	550
	198
	25 July
	201 (5)
	284 (51)




 (
Table 
1
)








Table 2. Traits of the 21 models in terms of biomass production, stomatal conductance and grain number simulation. More information on models can be found in Bassu et al. 2014 and in individual model’s papers.

	
	RUE or leaf photosynthesis (Lp)
	Stomatal conductance1
	Grain number

	Agro-IBIS
	Lp
	Yes
	No

	APSIM
	RUE
	No
	Yes

	CERES-Maize
	RUE
	Yes
	Yes

	Daisy
	Lp
	No
	No

	EXPERT-N-Ceres
	RUE
	No
	Yes

	EXPERT-N-Spass
	Lp
	Yes
	No

	EXPERT-N-Sucros
	Lp
	No
	No

	GLAM
	RUE
	Yes
	No

	HERMES
	Lp
	Yes
	No

	IXIM
	Lp
	Yes
	Yes

	LP
	Lp
	Yes
	No

	MAIZSIM
	Lp
	Yes
	No

	MCWLA
	Lp
	Yes
	No

	Monica
	Lp
	Yes
	No

	PEGASUS
	RUE
	Yes
	No

	RZWQM2
	RUE
	Yes
	Yes

	SALUS
	RUE
	Yes
	No

	SARRA-H
	RUE
	No
	No

	SIMPLACE<1>
	RUE
	No
	No

	SIMPLACE<2>
	RUE
	Yes
	No

	STICS
	RUE
	Yes
	Yes







 (
2
)1 Only models identifying an independent stomatal conductance variable responding to CO considered.

were








Table 3. Mean RMSEs for yield, above ground biomass at anthesis, above-ground biomass at harvest and crop water use simulations depending on (i) the way the biomass production is formalized (RUE: based on the simulation of radiation use efficiency of biomass production or based on a leaf photosynthesis response to light and [CO2]) and (ii) whether an explicit stomatal conductance function is used to simulate the response of crop transpiration to [CO2] or not and
(iii) whether the grain number is computed or not. In each cell the left hand side figure is the median of individual model’s RMSE and the right hand side figure is the RMSE for the model ensemble of each category. The superscript HS indicates a highly significant difference between the category of models.

	
	Number of models in category
	Yield RMSE
(Mg.ha-1)
	Above Ground Biomass at anthesis RMSE
(Mg.ha-1)
	Above Ground Biomass at harvest RMSE (Mg.ha-1)
	Total water use RMSE (mm)

	RUE
	11
	1.8/1.6
	1.5/0.6
	2.1/1.6
	95/83

	Leaf photosynthesis
	10
	1.8/1.2
	1.2/0.9
	1.8/1.0
	57/66

	Response of Stomatal conductance to [CO2]
	15
	1.4/0.7
	1.3/0.4
	2.0/1.2
	78/72

	No response of stomatal conductance to [CO2]
	6
	2.4HS/2.3
	1.9/1.0
	2.3/1.6
	121/123

	With Grain simulation
	6
	1.5/0.8
	1.2/0.4
	1.5/1.6
	86/87

	No grain simulation
	15
	1.8/1.1
	1.5/0.9
	2.1/1.9
	81/83

	All models
	21
	1.8/1.0
	1.5/0.6
	2.1/1.2
	81/82








Table 4 Median values for 21 models of the impact of CO2 on soil water content, biomass growth rate and ET/ET° in the DRY treatment in 2008.



[bookmark: _GoBack]Median fraction of total plant available water in the 0-60 cm soil horizon during the growth cycle

Median rate of above ground dry matter increase around anthesis (20-30 July, Kg.ha-1.day-1)

Median ratio ET/ET° at anthesis (25 July)



AMBIENT	0.39	156	0.63
FACE	0.40	176	0.88
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