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SUMMARY

Trained innate immunity fosters a sustained favor-
able response of myeloid cells to a secondary
challenge, despite their short lifespan in circulation.
We thus hypothesized that trained immunity
acts via modulation of hematopoietic stem and
progenitor cells (HSPCs). Administration of b-glucan
(prototypical trained-immunity-inducing agonist) to
mice induced expansion of progenitors of the
myeloid lineage, which was associated with elevated
signaling by innate immune mediators, such as IL-1b
and granulocyte-macrophage colony-stimulating
factor (GM-CSF), and with adaptations in glucose
metabolism and cholesterol biosynthesis. The
trained-immunity-related increase in myelopoiesis
resulted in a beneficial response to secondary
LPS challenge and protection from chemotherapy-
induced myelosuppression in mice. Therefore, mod-
ulation of myeloid progenitors in the bone marrow is
an integral component of trained immunity, which to
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date, was considered to involve functional changes
of mature myeloid cells in the periphery.
INTRODUCTION

Recent studies have shown that certain microbial challenges

or vaccines promote a heightened response of myeloid cell

populations to a subsequent infection with the same or even

different pathogens. This process involves changes in cell

transcription and is designated ‘‘trained immunity’’ (Goodridge

et al., 2016; Jensen et al., 2015; Netea and van Crevel, 2014;

Netea et al., 2016; Quintin et al., 2012). Pathogen-associated

molecular patterns or cytokines induce a complex immuno-

metabolic program in monocytes and macrophages, enabling

a robust cellular response to re-stimulation, especially with

regard to cytokine production (Arts et al., 2016a; Netea

et al., 2016; Quintin et al., 2012). Transcriptomic and metabo-

lomic analysis have implicated metabolic pathways, especially

glucose metabolism, in the adaptation of monocytes and

macrophages in the context of innate immune memory (Arts

et al., 2016a, 2016b; Cheng et al., 2014; Netea et al., 2016).

However, the long-term effects (up to months) of trained
uary 11, 2018 ª 2017 The Author(s). Published by Elsevier Inc. 147
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immunity on circulating monocytes are puzzling, as these cells

have a relatively short lifespan in the circulation. We have,

thus, hypothesized that the adaptive processes induced

by trained immunity involve alterations to progenitors of

the hematopoietic system, a concept that has not been

addressed yet.

Hematopoiesis is a hierarchical system, inwhich hematopoiet-

ic stem and progenitor cells (HSPCs) are responsible for itsmain-

tenance via their differentiation into progressively committed

progenitors and mature cells (Trumpp et al., 2010). HSPCs are

able to respond to stress, such as severe infection, systemic

inflammation, or iatrogenic myeloablation, by increasing their

proliferation rate and hematopoiesis (Trumpp et al., 2010; Zhao

and Baltimore, 2015). Myeloid lineage commitment and differen-

tiation of hematopoietic and myeloid progenitors are orches-

trated by myeloid-lineage-specific growth factors (Boettcher

and Manz, 2017; Mossadegh-Keller et al., 2013; Sarrazin and

Sieweke, 2011) and cytokines, such as interleukin (IL)-1b (Pietras

et al., 2016). These mediators act on HSPCs and myeloid

progenitors driving myelopoiesis via inducing transcriptional

networks involving transcription factors (TFs) and expression of

myeloid-lineage-specific genes (Boettcher and Manz, 2017;

Rosenbauer and Tenen, 2007).

Cell metabolic pathways have been implicated in the regula-

tion of HSPC function. Aerobic glycolysis promotes the quies-

cence—and, thus, maintenance—of long-term hematopoietic

stem cells (LT-HSCs) (Simsek et al., 2010; Takubo et al., 2013;

Wang et al., 2014), whereas oxidative phosphorylation

(OXPHOS) is prominent in less primitive progenitors (Simsek

et al., 2010). Accordingly, disruption of the glycolytic process

impairs LT-HSC stemness, leading to loss of their self-renewal

potential (Simsek et al., 2010; Takubo et al., 2013; Wang et al.,

2014). In turn, fatty acid oxidation drives asymmetric division

and differentiation (Ito et al., 2012), while cholesterol accumula-

tion is associatedwith skewing of hematopoiesis towardmyeloid

lineage (Murphy et al., 2011; Yvan-Charvet et al., 2010).

Our present findings support the hypothesis stated earlier that

trained immunity acts at the level of hematopoietic progenitors

and specifically involves favorable adaptations in myelopoiesis.

Indeed, we show that b-glucan administration induced the

expansion of HSPCs, which was associated with IL-1b and

GM-CSF (granulocyte-macrophage colony-stimulating factor)

signaling as well as with changes in glucose and lipid meta-

bolism. Importantly, these progenitor adaptations, as conferred

by trained immunity, promoted a beneficial response to a

secondary inflammatory challenge and gave protection from

chemotherapy-induced myeloablation.

RESULTS

b-Glucan-Induced Trained Immunity Acts in the Bone
Marrow and Enhances Myelopoiesis
To study the response of the hematopoietic and myeloid

progenitor pool to agonists implicated in innate immune training,

mice received a single intraperitoneal injection of b-glucan.

After 24 hr, b-glucan increased the numbers and frequency of

hematopoietic progenitors (LSKs; Lin�cKit+Sca1+) and multipo-

tent progenitors (MPPs; CD48+CD150�LSK) in the bonemarrow
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(BM), as compared to injection of PBS (Figures 1A–1C).

No difference was observed in LT-HSCs (CD48�CD150+LSK),
while the numbers and frequency of short-term (ST)-HSCs

(CD48�CD150�LSK) were decreased (Figures 1A–1C). Cell-cy-

cle analysis in LT-HSCs revealed that b-glucan led to enhanced

cell-cycle progression in HSPCs (Figure S1), thus suggesting

enhanced differentiation-associated proliferation of LT-HSCs

upon b-glucan administration. The b-glucan-induced increase

in MPPs was linked to an increase in the frequency of the

MPP3 subset (Flt3�CD48+CD150�LSK), which is biased toward

the myeloid lineage (Pietras et al., 2015) (Figures 1D and 1E). In

contrast, we found no significant difference in the lymphoid-

biased MPP4 (Flt3+CD48+CD150�LSK) subset (Pietras et al.,

2015) (Figures 1D and 1E). Moreover, b-glucan induced an

increase in the frequency of CD41+ LT-HSCs (Figures 1F and

1G), which are considered the myeloid-biased LT-HSC subpop-

ulation (Gekas and Graf, 2013), although the overall absolute

numbers of LT-HSCs remained unaltered (Figure 1B).

Seven days after b-glucan injection, we observed increased

LSK, MPP, and LT-HSC cell numbers (Figure 2A), with an

elevated frequency of myeloid-biased MPP3 cells, a corre-

sponding decrease in the frequency of lymphoid-biased

MPP4 cells (Figure 2B), and increased frequency of CD41+LT-

HSCs (Figure 2C), as compared to findings with the injection

of PBS. Analysis of myeloid progenitors (MyPs; Lin�cKit+Sca1�)
at the 7-day time point revealed that b-glucan resulted in

enhanced granulocyte macrophage progenitor (GMP; Lin�c-
Kit+Sca1�CD16/32+CD34+) numbers and in an increased

proportion of GMPs within the MyP population, accompanied

by a corresponding reduction in the relative abundance of

common myeloid progenitors (CMPs; Lin�c-Kit+Sca1�CD16/
32�CD34+), as compared to control mice (Figures 2D–2F).

Innate immune training has a long-term adaptive effect on

myeloid cells (Netea et al., 2016). We thus investigated whether

the effects of b-glucan on hematopoiesis were sustained over a

longer period. Although, 28 days after administration of

b-glucan, the numbers of LSKs and LT-HSCs were not affected

(Figure 2G), b-glucan induced a significant decrease in the fre-

quency of lymphoid-biased MPP4 cells (Figure 2H) without

altering the frequency of MPP3 cells (data not shown). In addi-

tion, a significant increase in the numbers of GMPs was

observed (Figure 2I). To expand on these findings, we tested

the b-glucan-induced effects on HSPCs through a transplanta-

tion experiment using the CD45.1/CD45.2 congenic system (Fig-

ure 2J). To this end, LT-HSCswere isolated frommice at 28 days

after b-glucan or PBS administration and transferred to lethally

irradiated recipient mice. Lineage output of donor-derived cells

was studied 12 weeks post-transplantation. Peripheral blood

analysis demonstrated that LT-HSCs from b-glucan-injected

mice gave rise to an increased proportion of Gr1+CD11b+

myeloid cells with a corresponding reduction in the proportion

of CD19+ B cells, as compared to LT-HSCs transplanted from

PBS-treatedmice (Figure 2K). No difference was observed in pe-

ripheral chimerism between LT-HSCs from PBS and b-glucan-

injected mice, suggesting that the altered lineage output of the

cells from the b-glucan group was not due to differences in

reconstitution potential (Figure S2). Together, b-glucan induces

a sustained increase in myelopoiesis.



Figure 1. Administration of b-Glucan Drives Expansion of HSPC Subpopulations
WT mice were injected with b-glucan or PBS, and BM analysis was performed after 24 hr.

(A) Representative fluorescence-activated cell sorting (FACS) plots for the identification of hematopoietic progenitor cells. After gating for Lin� cells, LSK cells

were characterized as cKit+Sca1+ cells. LSK cells subpopulations were further characterized as MPP (CD48+CD150�LSK), ST-HSC (CD48�CD150�LSK), and
LT-HSC (CD48�CD150+LSK).
(B and C) Cell numbers of LSKs, MPPs, ST-HSCs, and LT-HSCs (B) and cell percentages of the same populations in total BM cells (C) of mice at 24 hr after the

administration of PBS or b-glucan (ns = 11 and 12 mice).

(D) Representative FACS plots for the identification of MPP subpopulations. After gating for LSK cells, MPP4 cells are characterized as CD48+Flt3+CD150�LSK,
MPP3 cells are characterized as CD48+Flt3�CD150�LSK, and MPP2 cells are characterized as CD48+Flt3�CD150+LSK.
(E) Frequency of MPP subpopulations in LSK cells in the BM of mice at 24 hr after the administration of PBS or b-glucan (n = 5 mice per group).

(F and G) Representative FACS plots for the identification of CD41+ LT-HSCs (F) and frequency of CD41+ LT-HSCs (in total LT-HSCs) (G) in the BM of mice

at 24 hr after the administration of PBS or b-glucan (n = 5 mice per group).

Data are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

See also Figure S1.
To dissect the effects of b-glucan, LT-HSCs isolated

from mice 24 hr after b-glucan injection were analyzed by

single-cell qPCR in terms of expression of genes linked to
HSC maintenance, cell cycle, and differentiation. Hierarchical

clustering analysis revealed that LT-HSCs clustered in three

subpopulations, in accordance to previously published data
Cell 172, 147–161, January 11, 2018 149



Figure 2. Sustained Increase in Myelopoiesis upon b-Glucan Administration

(A–F) WT mice were injected with b-glucan or PBS, and BM analysis was performed after 7 days.

(A) LSK, MPP and LT-HSC cell numbers in the BM of mice on day 7 after administration of PBS or b-glucan (n = 6 mice per group).

(B) Frequency of MPP subpopulations in the LSK cells 7 days after b-glucan or PBS administration (n = 5 mice per group).

(C) Frequency of CD41+ LT-HSCs (in total LT-HSCs) on day 7 after the administration of PBS or b-glucan (n = 5 mice per group).

(D) Representative FACS plots for the identification of MyP subpopulations.

(E and F) GMP cell numbers (E) and frequency within the MyP pool of GMPs (Lin�c-Kit+Sca1�CD16/32+CD34+) and CMPs (Lin�c-Kit+Sca1�CD16/32�CD34+)
(F) in the BM of mice on day 7 after the administration of PBS or b-glucan (n = 6 mice per group).

(G–I) WT mice were injected with b-glucan or PBS, and BM analysis was performed after 28 days.

(G) LSK and LT-HSC cell numbers (n = 5 mice per group).

(H and I) Frequency of MPP4 cells in total BM cells (H) and GMP cell numbers in the BM (I) of mice on day 28 after the administration of PBS or b-glucan

(n = 5 mice per group).

(J and K) Transplantation.

(J) LT-HSCs (CD45.2+) were sorted 28 days after b-glucan or PBS administration and transplanted to lethally irradiated SJL/BL6 (CD45.1+) mice. CD45.1+ BM

cells were co-transplanted in order to ensure the survival of recipients.

(K) Lineage output of donor LT-HSCs (CD45.2+) in peripheral blood of recipients at week 12 post-transplant (n = 10 recipient mice per group).

Data are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

See also Figure S2.
(Yang et al., 2017). Relative to LT-HSCs from PBS-treated

mice, LT-HSCs from b-glucan-treated mice showed higher

association with a subpopulation (cluster #2; Figures 3A and

3B) that displayed an activated cell-cycle program, as indi-

cated by enhanced expression of Mki67; the S/G2/M

cyclins Ccna2, Ccnb2, and Cdc20; and the cyclin-dependent

kinases Cdk2 and Cdk6 (Passegué et al., 2005; Yamada
150 Cell 172, 147–161, January 11, 2018
et al., 2013) (Figures 3A–3C). Moreover, cluster #2 showed

increased expression of Itga2b (Cd41), which identifies

myeloid-biased LT-HSCs (Gekas and Graf, 2013), and of the

differentiation markers Cd34 and Cd48 (Wilson et al., 2008),

while it showed decreased Gata3 expression, which regulates

T cell-lineage development (Frelin et al., 2013; Hosoya et al.,

2009) (Figures 3A–3C).



Figure 3. Single-Cell Transcriptional Analysis in LT-HSCs upon b-Glucan Administration

(A–C) Single-cell qPCR in LT-HSCs isolated from mice at 24 hr after administration of PBS or b-glucan (n = 42 cells per condition).

(A and B) Hierarchical clustering analysis (A) and distribution of LT-HSCs in the three identified clusters (B) at 24 hr after the administration of PBS or b-glucan.

(C) Violin plots indicating genes with significantly altered expression between clusters 1 and 2. The y axis represents gene expression. The horizontal width of the

plot shows the density of the data along the y axis. Color key represents the percentage of cells that express the specific gene.

(D and E) Single-cell qPCR was performed in CD41� and CD41+ LT-HSCs isolated from mice at 24 hr after the administration of PBS or b-glucan.

Hierarchical clustering analysis (D) and violin plots indicating genes with significantly altered expression between CD41+ LT-HSCs from PBS and b-glucan-

treated mice (E).
We next sorted CD41� and CD41+ LT-HSCs isolated from

mice 24 hr after b-glucan or PBS injection and performed sin-

gle-cell qPCR analysis. We found that the expression of the

cell-cycle-associated genes Cdc20, Ccnb2, and Cdkn2d; of

the TFsMeis1,Gata1,Gfi1b, andGata2; and of the differentiation

markers Itga2b, Cd34, and Cd48 was enhanced in CD41+ LT-

HSCs (but not in CD41� LT-HSCs) from b-glucan-treated mice,

as compared to CD41+ LT-HSCs from PBS control-treated

mice (Figures 3D and 3E). These data suggest that b-glucan

acts predominantly on myeloid-biased CD41+ LT-HSCs.
Training with b-Glucan Mediates a Favorable Response
to Secondary Challenge and Protects from
Chemotherapy-Induced Myelosuppression
We next continued to test whether training with b-glucan could

improve the response of hematopoietic progenitors to a second-

ary stimulus that induces emergency myelopoiesis. LPS-medi-

ated systemic inflammation induces hematopoietic progenitor

expansion, which facilitates the restoration of BM cellularity

and compensates for the increased need for mature myeloid

cells (Mitroulis et al., 2017; Nagai et al., 2006; Takizawa et al.,
Cell 172, 147–161, January 11, 2018 151



Figure 4. Training with b-Glucan Promotes a Beneficial Response to a Secondary Challenge

(A) WT mice were injected with b-glucan or PBS, and after 28 days, they received a secondary challenge with LPS.

(B and C) LSK, MPP, and LT-HSC cell numbers (B) and frequency of the same cells in total BM cells (C) at 24 hr after LPS injection (n = 10 mice per group).

(D) Representative FACS plots and frequency of g-H2AX-positive LT-HSCs at 24 hr after LPS injection (n = 10 mice per group, right plots and gray background).

The frequency of g-H2AX-positive LT-HSCs at 28 days after b-glucan administration in mice not injected with LPS (—) is also shown; ns = 4 and 5, left plots and

white background.

(E) Experimental protocol for the effect of b-glucan on the recovery of granulopoiesis after cyclophosphamide administration (4 rounds).

(F and G) Total white blood cell (WBC) (F) and granulocyte (Gr1+CD11b+) (G) counts in the peripheral blood (n = 10 mice per group).

(H) Experimental protocol for 5-FU administration.

(I) Survival curves of 5-FU-treated mice treated with b-glucan or PBS control (n = 16 mice per group). Comparison of survival curves was performed by log-rank

(Mantel-Cox) test, and p value is shown.

(J and K) Mice were injected with b-glucan or PBS, and 7 days later, a single dose of 5-FU was administered.

(J) Neutrophil numbers in peripheral blood at different time points after the administration of 5-FU (n = 5 mice per group).

(K) Frequency of g-H2AX-positive LT-HSCs 14 days after 5-FU administration (n = 10 mice per group).

Data are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
2017). Therefore, mice were injected with a single dose of LPS

28 days after b-glucan or PBS administration, and BM analysis

was performed after another 24 hr. Priming with b-glucan

resulted in a more favorable response to the secondary LPS

challenge 28 days later, as shown by more pronounced expan-

sion of the LSK and MPP pools (Figures 4A–4C). Administration

of LPS induces DNA damage in HSPCs due to replication stress,

thereby leading to their functional decline (Takizawa et al., 2017).

To address whether priming with b-glucan protects against

replication stress induced by the secondary LPS challenge, we

stained for phosphorylated H2AX (g-H2AX), a marker of the

DNA-damage response. Indeed, the frequency of g-H2AX+ LT-

HSCs at 24 hr after the secondary LPS challenge was signifi-

cantly decreased in mice trained with b-glucan, as compared

to mice that received PBS (Figure 4D). No difference in the

frequency of g-H2AX+ LT-HSCs was observed prior to the

secondary LPS challenge in mice treated with b-glucan or PBS
152 Cell 172, 147–161, January 11, 2018
at 28 days after treatment (Figure 4D). Thus, b-glucan pre-treat-

ment mediated a long-term protective response that mitigated

DNA damage in LT-HSCs induced by the secondary acute LPS

challenge 28 days after initial b-glucan administration.

We subsequently studied the effects of b-glucan on the recov-

ery of hematopoiesis in two models of chemotherapy-induced

myeloablation (Trumpp et al., 2010; Wilson et al., 2008).

Upon repeated rounds of cyclophosphamide administration,

we observed that training with b-glucan resulted in increased

numbers of white blood cells and, especially, Gr1+CD11b+ gran-

ulocytes in peripheral blood on day 4 after each cyclophospha-

mide round (Figures 4E–4G). Additionally, we used a 5-fluoracil

(5-FU) suicide assay to study whether b-glucan can promote

host survival upon cytotoxic stress (Figure 4H). Notably,

b-glucan significantly enhanced mouse survival to repeated

rounds of 5-FU administration (Figure 4I), suggesting that

b-glucan improved chemoresistance of HSPCs. Moreover,



Figure 5. b-Glucan-Induced Alterations in LT-HSC Metabolic Pathways Revealed by Transcriptomic Analysis

(A–F) Transcriptome analysis in LT-HSCs sorted from mice on day 7 after b-glucan or PBS administration (n = 4 mice, PBS group; n = 3 mice, b-glucan group).

(A) Differential gene expression in LT-HSCs from b-glucan-treated mice as compared to PBS-treated mice. Volcano plot showing the distribution of the adjusted

p values (�log(P-adj.)) and the fold changes (log2 fold change). Significant changes are indicated in red (FDR = 0.05).

(B) Top overrepresented canonical pathways showing upregulated (red) or downregulated (blue) genes in LT-HSCs from b-glucan-treated mice, as compared to

PBS-treated mice.

(C) Heatmap of myeloid- and lymphoid-lineage-related genes.

(D) Heatmap depicting the differential gene expression of transcription regulators. Log2 fold change in cells derived from b-glucan-treated mice, as compared to

PBS-treated mice, is indicated.

(E) GSEA for glycolytic genes and genes related to cholesterol homeostasis. NES, normalized enrichment score.

(F) Heatmap of genes involved in glycolysis and pentose phosphate pathway (PPP) and cholesterol homeostasis in LT-HSCs from b-glucan-treated mice

compared to PBS-treated mice.

(G) Bioenergetic extracellular flux analysis (Seahorse) in Lin�cKit+ BMprogenitors sorted frommice 24 hr after b-glucan or PBS administration (n = 5mice per group).

Basal and maximal ECARs (after oligomycin) (left) and glycolytic reserve (right), calculated as the difference between basal and maximal ECARs, are indicated.

(H) Glycolytic gene expression in LSKs from mice 24 hr after b-glucan or PBS administration using qPCR (ns = 4 and 5 mice).

(I) Bioenergetic extracellular fluxanalysisof Lin�cKit+ cells sorted frommiceat 7daysafterb-glucanadministration;glycolytic reserve is shown (n=5micepergroup).

Data are presented as mean ± SEM in (G)–(I). *p < 0.05; **p < 0.01; ***p < 0.001.

See also Figures S3 and S5.
training with b-glucan 7 days before administration of a single

dose of 5-FU improved the recovery of neutrophil numbers in

the circulation (Figure 4J). Furthermore, we found a decrease

in the frequency of g-H2AX+ LT-HSCs at day 14 after a single

dose of 5-FU in mice that were pre-treated with b-glucan (Fig-

ure 4K). Together, b-glucan-induced trained immunity in mice

mediates a protective hematopoiesis response to a secondary

challenge represented by myeloablative chemotherapy.
b-Glucan-Induced Myelopoiesis Is Associated with
Metabolic Changes in Progenitors
We next performed RNA sequencing (RNA-seq) of LT-HSCs

from mice on day 7 after b-glucan or PBS administration. We

identified 1,683 differentially expressed genes (false discovery

rate [FDR = 0.05]) in cells from the b-glucan-injected group,

compared to those from PBS-treated mice (Figure 5A). Ingenuity

pathway analysis (IPA) demonstrated that pathways involved in
Cell 172, 147–161, January 11, 2018 153



innate immune function and pathways of cell metabolism,

including glycolysis, cholesterol biosynthesis, and especially

the mevalonate pathway, were overrepresented in the upregu-

lated genes (Figure 5B). In contrast, pathways involved in

lymphocyte development and function were overrepresented

in the downregulated genes (Figure 5B). Upregulation of myeloid

lineage markers, includingCsf2rb, Elane, andMpo, and downre-

gulation of lymphoid lineage markers, such as Ms4a1, Il7r, Il2ra,

Vpreb1, and Rag1, were also observed in LT-HSCs of b-glucan-

treated mice (Figure 5C). Consistently, TFs promoting myelopoi-

esis (Cebpe, Id1, and Id2) were upregulated in LT-HSCs from

b-glucan-treated mice, while lymphopoiesis-related TFs (Pax5,

Ebf1, Irf4, Spib, and Lef1) were downregulated (Nimmo et al.,

2015; Novershtern et al., 2011; Paul et al., 2015; Rosenbauer

and Tenen, 2007) (Figure 5D). Additionally, genes regulated by

the myeloid-lineage TF Cebpe and the lymphoid-lineage TF

Pax5 were significantly up- and downregulated, respectively, in

LT-HSCs from b-glucan-treated mice compared to LT-HSCs

from PBS-treated mice (Figure S3). The sustained nature of the

b-glucan-induced alterations in LT-HSCs and CD48+CD150�

MPPs was further strengthened by transcriptomic analysis at

28 days post-b-glucan injection (Figure S4). IPA revealed a nega-

tive correlation between b-glucan-dependent transcriptomic al-

terations and lymphoid lineage gene signature in LT-HSCs and in

MPPs (Figures S4A–S4D). Gene expression of the lymphoid cell

markers Il2ra, Rag2, Vpreb1, Blnk, and Ms4a1 was downregu-

lated in both cell populations in b-glucan-treated mice (Figures

S4E and S4F).

Besides typical pathways linked to innate immunity, choles-

terol biosynthesis and glycolysis were among the highest

enriched pathways at 7 days post-b-glucan injection (Figure 5B).

Regarding metabolic pathways, gene set enrichment analysis

(GSEA) using the Molecular Signatures Database (MSigDB)

hallmark gene set collection (Liberzon et al., 2015) showed a

significant positive correlation with glycolysis and cholesterol

homeostasis gene sets in LT-HSCs from b-glucan-treated

mice (Figure 5E; Table S1). Specifically, genes encoding key

regulatory enzymes of the glycolytic pathway (Hk3, Pfkp, and

Pkm) and the rate-limiting enzyme of the pentose phosphate

pathways (G6pdx) were significantly upregulated (Figure 5F).

Concerning cellular cholesterol homeostasis and the mevalo-

nate pathway, there was a significant upregulation in the expres-

sion of several genes (Figure S5), including those encoding the

rate-limiting enzyme of cholesterol biosynthesis HMG-CoA

(coenzyme A) reductase (Hmgcr) and the low-density lipoprotein

(LDL) receptor (Ldlr) that regulates LDL uptake, and a downregu-

lation of the ATP-binding cassette transporter A1 (Abca1),

which mediates cholesterol efflux (Figure 5F). These findings

suggest an increased demand for cell cholesterol and enhanced

cellular cholesterol biosynthesis and retention in LT-HSCs upon

b-glucan treatment.

We next assessed cellular bioenergetics in BMprogenitors.We

sorted cKit+ progenitors (Lin�cKit+), which include HSPCs and

MyPs, from mice at 24 hr after b-glucan or PBS injection and

performed bioenergetic flux analysis. Both under steady-state

conditions and upon metabolic stress induced by the ATP syn-

thase inhibitor oligomycin, we observed increased extracellular

acidification rates (ECARs) in cells from b-glucan-treated mice
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(Figure 5G), thus suggesting the upregulation of glycolysis. These

changes in energymetabolismwere further associatedwith upre-

gulated gene expression of glycolytic enzymes in LSK cells from

b-glucan-treated mice (Figure 5H). The enhanced response of

cKit+ progenitors to metabolic stress, as shown by the cellular

response to oligomycin, was also found at 7 days after b-glucan

administration (Figure 5I). These data suggest that the early pro-

liferative phase after b-glucan administration involves a global

increase in energy metabolism in BM progenitors.

Since cell metabolism in LT-HSCs is linked to LT-HSC mainte-

nance (Ito et al., 2012; Murphy et al., 2011; Takubo et al., 2013;

Wang et al., 2014; Yvan-Charvet et al., 2010), we investigated

whether the b-glucan-induced metabolic changes in LT-HSCs

were sustained also after 5-FU administration, thereby accompa-

nying the beneficial response to chemotherapy-induced hemato-

poietic stress upon b-glucan injection (as shown in Figure 4). To

this end, mice received a single injection of 5-FU on day 7 after

b-glucan or PBS administration, and RNA-seq was performed in

LT-HSCs isolated on day 14 after 5-FU injection. GSEA revealed

apositivecorrelationbetweenLT-HSCs from theb-glucan-trained

group with the glycolysis and cholesterol homeostasis gene sets

and a negative correlation with the OXPHOS gene set (Figure S6;

Table S2). Thus, b-glucan-dependent enhanced glycolysis of

LT-HSCs persists after severe hematopoietic stress.

Trained Immunity Links Innate Immune Signaling to
Metabolic Alterations in Progenitor Cells
We next analyzed in more detail the b-glucan-induced meta-

bolic changes by performing metabolomics and quantitative

shotgun lipidomics of BM progenitor cells. Metabolomic anal-

ysis in cKit+ progenitors derived from mice at 24 hr after

b-glucan injection revealed a reduction in metabolites involved

in linoleic and arachidonic acid metabolism, compared to cells

from the control group (Figures 6A and 6B). These findings,

together with those of the transcriptomic analysis, which indi-

cated alterations in cellular cholesterol biosynthesis pathways,

prompted us to further assess lipid metabolism by lipidomic

analysis in cKit+ progenitor cells from b-glucan- or PBS-treated

mice at the 24-hr time point. The shotgun lipid mass spectrom-

etry detects hundreds of lipid species present in the cells; how-

ever, in the present experimental approach, we did not perform

an analysis of the free fatty acids, which had been covered

by the metabolomic analysis. Principal-component analysis

(PCA) of the lipidomic data suggested significant differences

in the lipidomes of the BM progenitors from b-glucan-trained

mice compared to the PBS group (Figure 6C). Significant differ-

ences were observed in certain lipid classes (Figure 6D).

Whereas cells from b-glucan-trained mice contained substan-

tially more lipids with shorter (34–36 carbon atoms) and more

saturated acyl chains (having none, one, or two double bonds),

cells from the PBS-treated control group contained lipids

with longer acyl chains (38–42 carbon atoms) and increased

levels of polyunsaturated fatty acids (R3 double bonds)

(Figures 6E and 6F). An accumulation of various species of

cholesterol esters (CEs) and a decrease of a number of

species of alkyl-ether-linked phosphatidylcholines (PCs)

and phosphatidylethanolamines (PEs) (PC and PE plasma-

logens; alkyl-ether-linked phosphatidylcholines [PCO]� and
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alkyl-ether-linked phosphatidylethanolamines [PEO]�, respec-

tively), sphingomyelins, phosphatidylinositols, phosphatidyl-

serines, and lysophospatidic acid was observed in cells

from b-glucan-treated mice (Figure 6G). Consistent with the

metabolomics data, we observed a decrease in the majority

of lipids containing arachidonic acid (20:4) in cells from

b-glucan-treated mice (Figure 6H). Therefore, lipid changes

accompany trained-immunity-associated effects on hemato-

poietic progenitors.

Since HSCs do not express the b-glucan receptor Dectin-1

(Yáñez et al., 2011), we sought to determine whether the effects

of b-glucan on HSCs are mediated by cytokines induced in the

BM in response to b-glucan administration. Cytokine analysis

in the BM extracellular fluid at 24 hr following b-glucan adminis-

tration revealed, in addition to an elevated concentration of

G-CSF, enhanced levels of IL-1b, whereas the levels of other

cytokines, such as interferon (IFN)g, IL-6, IL-10, and IL-12p70,

were not altered (Figure 7A). We thus next sought to identify

the potential role of IL-1b-related BM inflammation in the

b-glucan effects on BM progenitor cells.

Pharmacologic inhibition of IL-1 by an IL-1 receptor antago-

nist (IL1RA; anakinra) prevented the increase in cell-cycle

progression of LT-HSCs at 24 hr after the administration of

b-glucan (Figure 7B). IL1RA also inhibited the b-glucan-induced

increase in the frequency of MPP3 cells in the LSK population

and resulted in a corresponding increase in the frequency

of MPP4 cells (Figure 7C). Moreover, IL1RA prevented

the b-glucan-dependent increase in glycolysis (ECAR) at

24 hr following b-glucan injection (Figure 7D). To investigate a

possible direct link between IL-1b production and metabolic

alterations in HSPCs, isolated LSK cells were treated ex vivo

with IL-1b for 24 hr, and bioenergetic analysis was performed.

In accordance with the in vivo findings, IL-1b induced an

increase in ECAR and resulted in enhanced glycolytic reserve

of LSK cells (Figure 7E). These data suggest that, upon

b-glucan administration, IL-1 signaling promotes glycolysis

and HPSC proliferation.
Figure 6. Alterations in Lipid Metabolism in BM Progenitor Cells upon

Lin�cKit+ cells were sorted from mice 24 hr after b-glucan or PBS administrat

(n = 4 mice per group).

(A and B) Not-targeted metabolomics.

(A) Volcano plots depict the comparison of metabolite abundances between ce

involved in linoleate and arachidonic acid pathways (Kyoto Encyclopedia of Gen

(B) Heatmap depicts the abundance of differentially regulated metabolites (q val

(C–H) Lipidomic analysis.

(C) Principal-components analysis shows that the two conditions segregate alon

(D)Mol%abundance of lipid classes (CE, cholesterol esters; Cer, ceramides; CL, c

acid; LPC, lysophopshatidylcholines; LPE, lysophosphatidylethanolamine; LP*, LP

PE, phosphatidylethanolamines; PEO, PE plasmalogens; PG, phosphatidylglyce

Data are presented as mean ± SEM. *p < 0.05.

(E) Difference between the mean abundance of lipid species (excluding CL and c

lipids enriched in cells from b-glucan-treated mice, while orange bars indicate

fatty-acyl chain are highlighted by a gray background.

(F) Difference between themean abundance of lipid species grouped by number o

mice, while orange bars indicate lipids enriched in cells from PBS-treated mice.

(G) Relative abundance of lipid species belonging to PCO�, PEO�, SM, PI, LPA, P

bars represent species that are more abundant in the PBS group, while positive

(H) Lipid species containing arachidonic acid (fatty acid [FA] 20:4) are indicated; n

positive bars indicate species that are more abundant in the b-glucan group.
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To more rigorously implicate IL-1b signaling and glycolysis in

the b-glucan-induced innate immune-metabolic crosstalk within

the BM, we studied the effects of IL1RA or of 2-DG, a pharmaco-

logic inhibitor of the glycolytic enzyme hexokinase, on the

b-glucan-dependent expansion of HSPCs observed on day 7

post-b-glucan injection. Inhibition of either IL-1 signaling or

glycolysis reduced the numbers of HSPCs and GMPs in

b-glucan-trained mice (Figures 7F–7H). Moreover, inhibition of

IL1R or glycolysis in b-glucan-trained mice decreased the

proportion of GMPs among MyPs, as compared to b-glucan

administration alone (Figure 7I).

Previous studies have shown that disruption of cholesterol

efflux drives myeloid cell expansion by increasing the surface

expression of CD131, the common b subunit of the IL-3/GM-

CSF receptor (IL-3Rb) (Murphy et al., 2011; Yvan-Charvet

et al., 2010). Since we observed enhanced cholesterol biosyn-

thesis and reduction in gene expression of factors involved in

cholesterol efflux in hematopoietic progenitors from b-glucan-

trained mice, we next assessed the expression of CD131 in

HSPCs. We detected a significant increase in CD131+ LSKs,

CD131+ MPPs, and CD131+ LT-HSCs 24 hr after b-glucan injec-

tion (Figures 7J and 7K). We further assessed whether the

increased expression of CD131 was associated with enhanced

downstream signaling. Indeed, phosphorylation of STAT5

(pSTAT5) was increased in LSK cells from b-glucan-injected

mice at 24 hr, as compared to control-treated mice (Figure 7L).

Therefore, b-glucan-associated trained immunity causes

changes in lipid metabolism associated with increased fre-

quency of CD131-expressing HSPCs.

We also assessed the role of cholesterol biosynthesis in

b-glucan-dependent effects on HSPCs. Inhibition of 3-hydroxy-

3-methylglutaryl (HMG-CoA) reductase with atorvastatin in

b-glucan-trained mice reduced the numbers of LSKs and MPPs,

as compared to b-glucan administration alone (Figures 7M–7O),

resulting also in decreased frequency of GMPs (Figure 7P). In

line with a role of the GM-CSF/CD131 axis for the b-glucan-

dependent effects on HSPCs, antibody-mediated blockade of
b-Glucan Administration

ion, and non-targeted metabolomic and lipidomic analyses were performed

lls from b-glucan- and PBS-treated mice. Altered metabolites (q value < 0.1)

es and Genomes [KEGG] pathways database) are indicated.

ue < 0.1).

g the first dimension, PC1 (Mann-Whitney U test, p value = 0.028).

ardiolipin; DAG, diacylglycerols; HC, hexosyl ceramide; LPA, lysophosphatidic

C and LPE plasmalogens; PC, phosphatidylcholines; PCO, PC plasmalogens;

rols; PI, phosphatidylinositols; PS, phosphatidylserines; SM, sphingomyelins).

holesterol esters) grouped by the number of carbon atoms: blue bars indicate

lipids enriched in cells from PBS-treated mice. Lysolipids containing a single

f double bonds: blue bars indicate lipids enriched in cells from b-glucan-treated

S, and cholesterol esters. Relative difference of lipid species is shown; negative

bars represent species that are more abundant in the b-glucan group.

egative bars indicate species that are more abundant in the PBS group, while



Figure 7. IL-1b, Glycolysis, Cholesterol Metabolism, and the GM-CSF/CD131 Axis Are Involved in b-Glucan-Dependent Training in the BM

(A) Cytokine and G-CSF concentrations in the BM extracellular fluid of mice at 24 hr after the administration of PBS or b-glucan (n = 10 mice per group).

(B and C) Mice were injected with b-glucan in the absence (vehicle control, Ctrl) or presence of IL1RA, and BM analysis was performed 24 hr later.

(B) Cell-cycle analysis in LT-HSCs.

(C) The frequency of MPP subpopulations in LSK cells in the BM is indicated (n = 5 mice per group).

(D) Bioenergetic extracellular flux analysis in Lin�cKit+ cells sorted frommice 24 hr after b-glucan administration in the absence (vehicle control, Ctrl) or presence

of IL1RA (n = 5 mice per group). Basal and maximal ECAR are indicated.

(E) LSK cells were treated in vitrowith IL-1b or PBS for 24 hr, and Seahorse analysis was performed (n = 5 cultures per group). Basal andmaximal ECARs (left) and

glycolytic reserve (right) are indicated.

(F–I) Mice were injected with b-glucan on day 0.

(F) Glycolysis and IL-1 were blocked by the administration of 2-DG and IL1RA, respectively, on days 0 and 1; PBS served as the vehicle control (Ctrl).

(G) LSK, MPP, and LT-HSC numbers in the BM at day 7 after b-glucan administration (n = 5 mice per group).

(H and I) GMP numbers in the BM (H) and frequency of GMPs within the MyP pool (I) at day 7 after b-glucan administration (n = 5 mice per group).

(J and K) Mice were injected with PBS or b-glucan, and BM analysis was performed 24 hr later; representative FACS plots (J) and frequency of CD131+ LSKs,

CD131+ MPPs, and CD131+ LT-HSCs (K) (n = 5 mice per group) are indicated.

(L) Staining for pSTAT5 in LSK cells 24 hr after PBS or b-glucan administration. Representative FACS plots and median fluorescence intensity (MFI) are shown

(n = 5 mice per group).

(M–P), As indicated in (M), mice were injected with b-glucan on day 0. Cholesterol metabolism was blocked by the administration of atorvastatin on days 0 and 1;

Ctrl represents the vehicle control. (N) LSK, LT-HSC, andMPP cell numbers; (O) frequency of the same cells in total BM cells; and (P) frequency of GMPswithin the

MyP pool at day 7 after b-glucan administration (n = 5 mice per group).

(legend continued on next page)
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GM-CSF in b-glucan-trained mice diminished the numbers of he-

matopoietic progenitors, as compared to b-glucan injection alone

(Figures 7Q–7S). Together, the effects of b-glucan on HSPCs are

associated with IL-1b signaling, key metabolic adaptations, and

enhanced activation of the GM-CSF/CD131 axis.

DISCUSSION

Preservation of immune homeostasis after infection is achieved

not only through containment or eradication of the insulting

pathogen but also through adaptations that limit or repair tissue

damage or dysfunction and prepare the host against a second-

ary challenge. Although the latter property has been hitherto

considered an exclusive hallmark of adaptive immunity, this

dogma has been recently challenged. In this regard, innate

immune training has been shown to cause long-term alterations

in mature innate immune cells, enabling a robust innate host

response to a secondary stimulus (Jensen et al., 2015; Netea

and van Crevel, 2014; Netea et al., 2016). Becausemature innate

immune cells, such as monocytes, have a short lifespan in the

circulation relative to the duration of trained immunity, the ques-

tion arose as to whether trained immunity acts at the level of their

cellular precursors. Herein, we show that b-glucan-induced

trained immunity promotes HSPC expansion and enhances

myelopoiesis, thereby conferring a protective response to a

secondary challenge represented by systemic inflammation or

chemotherapy-induced myeloablation. Thus, not only does

trained immunity affect mature myeloid cells, but its effects

may also be initiated by adaptations in the precursor cells of

the innate immune system in the BM.

Administration of b-glucan increased the frequency of the

myeloid-biased subsets of LT-HSCs and MPPs in the BM. This

finding was in line with transcriptome analysis in LT-HSCs, which

demonstrated enrichment of innate immune-related pathways at

the expense of pathways related to lymphocyte development and

function. The finding that b-glucan treatment induced increased

transcription of cell-cycle-related genes in CD41+ LT-HSCs sug-

gests the selective expansion ofmyeloid-biased cells as the likely

target of trained immunity in the BM. Conceivably, trained immu-

nity could also instruct primitive LT-HSCs toward myeloid differ-

entiation, which is unclear at this point. Identifying the subsets

of HSPCs that are responsive to signals related to innate immune

training requires further investigation. Future studies, including

additional transcriptional and epigenetic approaches at the sin-

gle-cell level, may reveal whether the long-term impact of trained

immunity onmyeloid cells is initiated at the level of primitiveHSCs

or lineage-committed populations.

Additionally, b-glucan-induced trained immunity was asso-

ciated with alterations in metabolic pathways in progenitor

cells, such as glycolysis and cholesterol metabolism, which

also accompany the induction of trained innate immunity in

mature cells and are involved in innate immune cell adaptation
(Q) Mice were injected with b-glucan on day 0. GM-CSF was blocked by specific a

as the control.

(R and S) LSK, LT-HSC, and MPP cell numbers (R) and frequency of the same

(n = 5 mice per group).

Data are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0
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to diverse stimuli (Arts et al., 2016b; Cheng et al., 2014; Mills

and O’Neill, 2016; Norata et al., 2015). LT-HSCs depend on

glycolysis for their maintenance (Simsek et al., 2010; Takubo

et al., 2013; Wang et al., 2014), whereas the activation of

OXPHOS is associated with their functional impairment, loss

of self-renewal potential, and induction of DNA damage

(Suda et al., 2011; Takizawa et al., 2017; Takubo et al.,

2013; Walter et al., 2015). In b-glucan-treated mice, progenitor

cells showed enhanced glycolysis. Importantly, this glycolytic

signature was retained after chemotherapy and was associ-

ated with resistance to DNA damage upon hematopoietic

stress, induced by systemic LPS challenge or chemotherapy.

Hence, the metabolic alterations conferred by trained immu-

nity may contribute to the protection from chemotherapy-

induced myelosuppression.

Trained immunity mediated by b-glucan also induced changes

in lipid metabolism in progenitors, such as increased gene

expression of enzymes involved in cholesterol biosynthesis and

decreased expression of Abca1, a transporter regulating choles-

terol efflux (Yvan-Charvet et al., 2010). Importantly, atorvastatin-

mediated blocking of cholesterol synthesis diminished the

b-glucan-dependent expansion of HSPCs. Similar changes in

lipidmetabolism induced by blocking cholesterol efflux were pre-

viously shown to promote myeloid cell expansion in the BM via

enhanced CD131 surface expression (Murphy et al., 2011;

Yvan-Charvet et al., 2010). Consistently, b-glucan administration

inmice not only upregulatedCD131expression inHSPCsbut also

activated downstream signaling, as revealed by STAT5 phos-

phorylation. The ability of b-glucan to increase the biosynthesis

and retention of cholesteryl esters and substantially decrease

glycerophospholipid-containing arachidonic fatty acid chains re-

flects the capacity of cells to actively remodel their lipidome and,

thus, the physicochemical properties of their membranes. This

adaptive response has direct implications in the lateral organiza-

tionofcellularmembranes (Sezginet al., 2017) and incell signaling

by lipid-protein interactions (CoskunandSimons, 2011). In this re-

gard, alterations in the cholesterol composition of the membrane

can influence the localization and signaling capacity of CD131

(Kaul et al., 2016; Yvan-Charvet et al., 2010).

In emergency myelopoiesis, cell-fate decision already takes

place at the level of non-committed progenitors (Boettcher and

Manz, 2017). Myeloid-lineage priming is regulated by a complex

interplay between myeloid-specific growth factors, cytokines,

and TFs (Boettcher and Manz, 2017; Sarrazin and Sieweke,

2011). IL-1 promotes proliferation and myeloid differentiation in

HSPCs by inducing a PU.1-based myeloid gene program

(Pietras et al., 2016). Herein, we showed that b-glucan injection

resulted in increased levels of IL-1b in the BM, presumably

promoting a microenvironment tailored toward myelopoiesis.

Our finding that b-glucan training promotes myelopoiesis

recovery after chemotherapy is likely dependent on its ability

to elevate IL-1b, whichwas previously associatedwith enhanced
nti-GM-CSF antibody on days 0 and 1. Immunoglobulin G (IgG) isotype served

cells in total BM cells (S) at day 7 after b-glucan administration are indicated

.0001.



restoration of myelopoiesis after myeloablation (van der Meer

et al., 1988; Nakai and Hirai, 1989).

The b-glucan-induced expansion of HSPCs resembles induc-

tion of an emergency myelopoiesis response (Boettcher and

Manz, 2017). However, other types of emergency myelopoiesis,

including LPS-induced inflammation, usually induce LT-HSC

injury and exhaustion and, hence, myelosuppression (Chen

et al., 2010; Takizawa et al., 2017; Zhang et al., 2016). Indeed,

in the context of emergency myelopoiesis, LPS-induced cell

stress inflicts DNA damage in LT-HSCs that is maintained for

more than 14 days (Takizawa et al., 2017). Strikingly, this adverse

effect is significantly reversed by priming with b-glucan as shown

herein. Thus, b-glucan does not cause impairment of HSPC

function and exhaustion but rather mediates a protective effect

on hematopoiesis, which can thereby respond favorably to a

secondary inflammatory challenge or chemotherapy. In conclu-

sion, the actions of trained innate immunity on precursor cells of

the innate immune system in the BM can be therapeutically

exploited to counteract the adverse effects of chemotherapy-

induced myelosuppression.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

T. Chavakis (triantafyllos.chavakis@uniklinikum-dresden.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6-CD45.1 B6.SJL-Ptprca Pepcb/BoyJ (B6/SJL) mice were from Jackson Laboratories. C57BL/6 male mice (from Janvier

Laboratories and Jackson Laboratories) were used at the age of 9-11 weeks. Mice were housed under specific pathogen-free

conditions on a standard 12/12h light/dark cycle. Food and water was provided ad libitum. Animal experiments were

approved by the Landesdirektion Sachsen, Germany and the Institutional Animal Care and Use Committee of the University

of Pennsylvania.

METHOD DETAILS

Mouse experiments
To study the effect of b-glucan administration on hematopoietic progenitor cells, micewere injected intraperitoneally (i.p.) with 1mg of

b-glucan peptide from Trametes versicolor (Invivogen) in 200 mL of PBS; as control, i.p. injections of PBS alone were performed; mice

were euthanized 1, 7 or 28 days later. In other experiments, LPS was used as a secondary challenge. Specifically, LPS from E. coli

O111:B4 (Invivogen; 35 mg per mouse) or PBS as control were injected i.p. into mice pretreated with b-glucan or PBS; mice were

euthanized 24h after the LPS injection.

To assess lineage output of LT-HSC, the CD45.1/CD45.2 congenic system was used. Sorted LT-HSC (50 cells per recipient) iso-

lated from CD45.2+ mice on day 28 post-administration of b-glucan or PBS were retro-orbitally transferred into lethally (9Gy) irradi-

ated B6/SJL (CD45.1) recipients along with 2x105 CD45.1+ carrier cells (to ensure survival). The percentage of different CD45.2+ cell

populations was assessed at 12 weeks post transplantation. Irradiated recipient mice were kept on antibiotic-containing water for

2 weeks after irradiation.

IL-1 inhibition was performed by i.p. administration of recombinant IL-1 receptor antagonist (IL1RA, Anakinra, Amgen GmbH,

100mg/kg body weight per dose) for one or two days (Cutando et al., 2013). Inhibition of glycolysis was performed by i.p. injection

of 2-Deoxy-D-Glucose (2-DG) (Sigma; 500mg/kg body weight per dose) twice for two consecutive days. GM-CSF inhibition was per-

formed by i.p. administration of LEAF purified anti-mouse GM-CSF antibody (Biolegend; cloneMP1-22E9; 100 mg per dose) twice for

two consecutive days. LEAF purified rat IgG2a, kwas used as isotype control (Biolegend; clone RTK2758; 100 mg per dose). Inhibition

of cholesterol pathway was performed by administering atorvastatin (Calbiochem; 125 mg per dose) (Arts et al., 2016b) twice for two

consecutive days.

Chemotherapy-induced myeloablation with 5-Fluoruracil (5-FU) (Sigma; 150 mg/kg body weight) was performed using two

different protocols: (i) PBS or b-glucan were administered i.p. on day�7 and 5-FUwas given once (day 0); blood cell population anal-

ysis was performed on days 4 and 9 post 5-FU injection and mice were euthanized on day 14 post 5-FU injection; peripheral blood

analysis was performed using a Sysmex XT2000 blood analyzer (Sysmex Corporation). (ii) PBS or b-glucan peptide was injected i.p.

once every 20 days starting on day �5. 5-FU was administered on day 0 and every 10 days thereafter for 7 rounds. Mice were

observed every other day.

In the cyclophosphamide-induced myeloablation model, PBS or b-glucan were administered i.p. on day �7 and every 14 days

thereafter and cyclophosphamide (Sigma) was injected at a dose of 200mg/kg bodyweight i.p. on day 0 and every 14 days thereafter

for a total of 4 rounds of injection (Winkler et al., 2012). Peripheral blood analysis was performed on day 4 after each round of cyclo-

phosphamide administration, using a HemaVet automatic cell counter (Drew Scientific) for white blood cell measurement and flow

cytometry for the quantification of Gr1+CD11b+ cells.

Flow cytometry and sorting
Cell analysis was performed by FACSCanto II or FACSCalibur flow cytometer (BD, Heidelberg, Germany). Cell sortingwas performed

using a FACS Aria II cell sorter (BD, Heidelberg, Germany). Enrichment of Lin— cells was performed prior to cell sorting by negative

magnetic selection using MidiMACS Separator (Miltenyi Biotec). For this reason, cells were incubated with a biotin mouse lineage

panel (Biotin-Conjugated Mouse Lineage Panel, BD PharMingen) and subsequently with anti-Biotin MicroBeads (Miltenyi Biotec).

The analysis of BM cellularity was performed with MACSQuant (Miltenyi Biotec). For cell surface phenotype analysis, a lineage cock-

tail (Lin), including anti-CD3e (clone 145-2C11), anti-CD11b (clone M1/70), anti-Gr1 (clone RB6-8C5), anti-B220 (clone RA3-6B2),

and anti-TER119 (clone TER-119), anti-Sca1 (clone E13-161.7), anti-cKit (clone 2B8), anti-CD135 (clone A2F10), anti-CD48 (clone

HM48-1), anti-CD41 (clone MWReg30), anti-CD150 (clone TC15-12F12.2), anti-CD16/CD32 (clone 93), anti-CD34 (clone RAM34),

anti-CD45.1 (clone A20), anti-CD45.2 (clone 104), anti-CD3e (clone 145-2C11), anti-CD19 (clone eBio1D3), anti-CD11b

(clone M1/70), anti-Gr1 (clone RB6-8C5) and anti-CD131 (clone JORO50) were used. Data analysis was performed using FlowJo

(Tree Star) software.
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For cell cycle analysis, cells were stained for cell-surface markers as described in the previous paragraph, fixed and permeabilized

using fixation / permeabilization buffer (Foxp3/TF Buffer Set; eBioscience) and stained with anti–Ki-67 (clone SolA15; eBioscience).

After washing, cells were stained with DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride) (ThermoFisher Scientific) and analyzed

by flow cytometry. For analysis of phospholylated g-H2AX and phospho-STAT5, cells were stained for cell surfacemarkers, fixed and

permeabilized using fixation / permeabilization buffer (Foxp3/TF Buffer Set; eBioscience) and then stained with the respective

antibodies.

Immunoassays
To collect BM extracellular fluid, a femoral bone was flushed with ice cold PBS (500 ml; Life Technologies) and the supernatant was

harvested after pelleting cells by centrifugation at 500g for 5min at 4�C. G-CSF was measured using a mouse G-CSF DuoSet ELISA

(R&D), according to the manufacturer’s instructions. V-PLEX Proinflammatory Panel 1 (mouse) kit was used for cytokine measure-

ment (Meso Scale Discovery) using a Meso QuickPlex SQ 120 instrument (Meso Scale Discovery), according to the manufacturer’s

instructions.

In vitro LSK incubation
Sorted LSK cells were cultured in suspension culture 96 well plates (Greiner Bio-One) in MyeloCult medium supplemented with stem

cell factor (20ng/ml, PeproTech). To study the effect of IL-1b on cell metabolism, LSK cells from untreated mice were incubated with

20 ng/ml IL-1b (Peprotech) for 24h. At the end of cell cultures, Seahorse extracellular flux analysis in LSK cells was performed.

Extracellular flux analysis
Real-time extracellular acidification rate (ECAR) of sorted Lin—cKit+ progenitors frommice treatedwith b-glucan or PBS and of sorted

LSK cells, incubated for 24h as described under ‘‘in vitro LSK incubation,’’ was assessed using a Seahorse XFe96 Analyzer (Agilent

Technologies). After washing with unbuffered Seahorse XF Base Medium (Agilent Technologies), sorted Lin—cKit+ progenitors were

seeded in duplicate in 96-well plates (105 cells per well) for Seahorse pretreated with poly-L-lysine (Sigma). To perform real-time

ECAR analysis in LSK cells, cells were washed with unbuffered Seahorse XF Base Medium (Agilent Technologies), and seeded in

duplicate in 96-well plates (5x104 cells per well) for Seahorse pretreated with poly-L-lysine (Sigma). Basal ECAR was measured dur-

ing three consecutive measurements in unbuffered Seahorse XF Base Medium (Agilent Technologies), containing 5.5 mM glucose

(Sigma), 2 mM L-glutamine (Life Technologies) and 1 mM pyruvate (Life Technologies). After three basal measurements, three

consecutive measurements were taken following the addition of 2 mM oligomycin (Agilent Technologies), to measure maximal

ECAR. Glycolytic reserve was defined as the difference between maximal and basal ECAR. Equal cell numbers in the wells were

assessed by measuring total DNA content using DAPI.

Single-cell qPCR
Gene expression profiles of single cells (cells were pooled from either 3 PBS-treated mice or from 3 b-glucan treated mice) were ob-

tained as previously described (Bonifacio et al., 2015) with somemodifications. cDNAwas synthesizedwithQuanta qScript TMcDNA

Supermix directly on cells. Total cDNA was pre-amplified for 20 cycles (1x 95�C 50, 95�C 45’’, 60�C 1’, 72�C 1.50) and 1x 68�C 10’

using the Multiplex PCR Kit (QIAGEN, Hilden, Germany) in a final volume of 35 ml in the presence of primer pairs for the genes (listed

in Table S3) at 25nM final for each primer. Pre-amplified cDNA (10 ml) was then treated with 1.2 U Exonuclease I and expression

quantified by real time PCR on the BioMark HD System (ª Fluidigm Corporation, CA, USA) using the 96.96 Dynamic Array IFC

and the GE 96x96 Fast PCR+ Melt protocol and SsoFast EvaGreen Supermix with Low ROX (Biorad, CA, USA) and 5 mM primers

for each assay.

RNA isolation and real-time PCR
RNA isolation was performed using RNeasy Plus Micro Kit (QIAGEN), according to manufacturer’s instruction. RNA was reverse-

transcribed with the iScript cDNA Synthesis Kit (Bio-Rad, Munich, Germany). qPCR was performed by using the SsoFast EvaGreen

Supermix (BioRad, Munich, Germany) and gene-specific primers (Table S4) in a CFX384 Real time PCR detection system (BioRad,

Munich, Germany). Relative mRNA expression levels were calculated according to the DDCt method upon normalization to b2 m.

RNA sequencing
RNA isolation was performed using RNeasy Plus Micro Kit (QIAGEN) and RNA was subjected to the amplification workflow of the

SMARTer Ultra HV v2 kit (Takara Bio). Amplified cDNA was successively converted into short read sequencing libraries using the

NEBnext Ultra DNA library preparation chemistry (New England Biolabs). Libraries were equimolarly pooled and sequenced on an

Illumina HiSeq 2500, resulting in �29–45 million single end reads per library.

Metabolomics
For metabolomics, 2x 105 Lin—cKit+ cells per sample were sorted by FACS in 75 mM ammonium carbonate adjusted to pH 7.4

with acetic acid and snap frozen in liquid nitrogen. Metabolite extraction from cells was performed twice using 400 mL extraction

solution (acetonitrile:methanol:water in a 40:40:20 ratio) at �20�C. Untargeted analysis of metabolites was performed by flow
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injection-time-of-flight mass spectrometry on an Agilent 6550 QTOF Instrument operated in negative mode 4 GHz, high resolution in

a mass to charge (m/z) range of 50-1000, as described previously (Fuhrer et al., 2011). Ions were annotated to the ionic derivatives of

the metabolites listed in the KEGG database for Homo sapiens allowing 0.001 atomic mass units tolerance.

Lipidomics
For lipidomics, 2x 105 Lin—cKit+ cells per sample were sorted. Mass spectrometry-based lipid analysis was performed at

Lipotype GmbH (Dresden, Germany) as previously described (Sampaio et al., 2011). Lipids were extracted using a two-step

chloroform/methanol procedure (Ejsing et al., 2009). Samples were spiked with internal lipid standard mixture containing: cardi-

olipin 16:1/15:0/15:0/15:0 (CL), ceramide 18:1;2/17:0 (Cer), diacylglycerol 17:0/17:0 (DAG), hexosylceramide 18:1;2/12:0 (HexCer),

lyso-phosphatidate 17:0 (LPA), lyso-phosphatidylcholine 12:0 (LPC), lysophosphatidylethanolamine 17:1 (LPE), lyso-phosphatidyl-

glycerol 17:1 (LPG), lyso-phosphatidylinositol 17:1 (LPI), lyso-phosphatidylserine 17:1 (LPS), phosphatidate 17:0/17:0 (PA),

phosphatidylcholine 17:0/17:0 (PC), phosphatidylethanolamine 17:0/17:0 (PE), phosphatidylglycerol 17:0/17:0 (PG), phosphatidyl-

inositol 16:0/16:0 (PI), phosphatidylserine 17:0/17:0 (PS), cholesterol ester 20:0 (CE), sphingomyelin 18:1;2/12:0;0 (SM), triacylgly-

cerol 17:0/17:0/17:0 (TAG) and cholesterol D6 (Chol). After extraction, the organic phase was transferred to an infusion plate

and dried in a speed vacuum concentrator. First step dry extract was re-suspended in 7.5 mM ammonium acetate in chloro-

form/methanol/propanol (1:2:4, V:V:V) and second step dry extract in 33% ethanol solution of methylamine in chloroform/methanol

(0.003:5:1; V:V:V). All liquid handling steps were performed using Hamilton Robotics STARlet robotic platform with the Anti Droplet

Control feature for organic solvents pipetting.

Samples were analyzed by direct infusion on a QExactive mass spectrometer (Thermo Scientific) equipped with a TriVersa

NanoMate ion source (Advion Biosciences). Samples were analyzed in both positive and negative ion modes with a resolution of

Rm/z = 200 = 280000 for MS and Rm/z = 200 = 17500 for MSMS experiments, in a single acquisition. MSMS was triggered by an

inclusion list encompassing corresponding MS mass ranges scanned in 1 Da increments (Surma et al., 2015). Both MS and

MSMSdata were combined tomonitor cholesterol esters, DAG and TAG ions as ammonium adducts; PC, PCO-, as acetate adducts;

and CL, PA, PE, PE O-, PG, PI and PS as deprotonated anions. MS only was used to monitor LPA, LPE, LPE O-, LPI and LPS as

deprotonated anions; Cer, HexCer, SM, LPC and LPC O- as acetate adduct and cholesterol as ammonium adduct of an acetylated

derivative (Liebisch et al., 2006).

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell qPCR
Rawdata were analyzed using the FluidigmReal-Time PCR analysis software. Pre-processing and data analysis of single cell expres-

sion profiles was conducted using KNIME 2.11.2 and RStudio Version 0.99.486 (Boston, MA, USA). To model the bi-modal gene

expression, the Hurdle model, a semi-continuous modeling framework, was applied to the pre-processed data (McDavid et al.,

2014). This allowed us to assess the differential expression profiles with respect to the frequency of expression and the positive

expression mean via a likelihood ratio test.

RNA Sequencing Analysis
FastQC (http://www.bioinformatics.babraham.ac.uk/) was used to perform a basic quality control on the resulting reads. As an addi-

tional control, library diversity was assessed by redundancy investigation in the reads. Alignment of the reads to the mouse reference

(mm10) was done with GSNAP (Wu and Nacu, 2010) and Ensembl gene annotation version 81 was used to detect splice sites. The

uniquely aligned reads were counted with featureCounts (Liao et al., 2014) and the same Ensembl annotation. Normalization of

the raw read counts based on the library size and testing for differential expression between conditions was performed with the

DESeq2 R package (Love et al., 2014). Genes, which have an adjusted p value (padj) < 0.05 and counts > 50 were considered as

differentially expressed. Pathway analysis and upstream regulator analysis of gene lists containing significantly differentially ex-

pressed genes (padj < 0.05, log2FC < �0.3 and > 0.3) was done with Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City,

www.qiagen.com/ingenuity). Morpheus software (Broad Institute) was used to generate heatmaps. Top canonical pathways derived

from IPA are shown. To perform gene set enrichment analysis (GSEA), gene sets were ranked by taking the -log10 transform of the

p value and signed as positive or negative based on the direction of fold change. GSEA pre-ranked analysis (1000 permutations, min-

imum term size of 15, maximum term size of 500) was then performed using the GSEA software (Broad Institute) (Musso et al., 2015).

Annotated gene sets fromMolecular Signatures Database (MSigDB) were used as input. Lineage specific geneswere selected based

on IPA analysis (Molecular and Cellular Functions analysis). For generation of heatmaps of genes involved in glycolysis and pentose

phosphate pathway we used the KEGG database.

Metabolomics
Data were processed and analyzed with MATLAB.
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Lipidomics
Data were analyzed with a lipid identification software based on LipidXplorer (Herzog et al., 2011, 2012). Data post-processing and

normalization were performed using an in house developed datamanagement system. Only lipid identifications with a signal-to-noise

ratio > 5, and a signal intensity 5-fold higher than in corresponding blank samples were considered for further data analysis. Principal

Component Analysis (PCA) was computed inMATLAB 9.0 (R2016a) using the Singular Value Decomposition function after transform-

ing raw data to mol% (each quantity was divided by the sum of the lipids in the sample and multiplied by 100). Descriptive statistics

and histograms were generated using base R version 3.3.2 (R Development Core Team, 2016) and packages reshape2 (Wickham,

2007) and ggplot2 (Wickham, 2009). The difference between themeans was calculated species by species on themol-percent trans-

formed dataset. For each lipid feature we calculated the mean in the two groups (PBS and b-glucan), and subtracted the mean of the

treated samples from the mean of the control samples in order to show whether and in which condition lipid species were more

abundant.

Statistical analysis
All data are presented as mean ± SEM. A two-tailed unpaired Student’s t test for parametric variables and a Mann-Whitney U test for

non-parametric variables were used for the comparison of two groups. For comparisons of multiple groups, One-way ANOVA fol-

lowed by Holm-Sidak multiple comparison tests was used. In vitro comparison of matched groups was performed with a paired

two-tailed Student’s t test. Comparison of survival curves was performed by Log-rank (Mantel-Cox) test. All statistical analysis

was performed using GraphPad Prism (GraphPad Inc., La Jolla, CA). Significance was set at p < 0.05.

DATA AND SOFTWARE AVAILABILITY

Data are available upon request to the Lead Contact. Sequencing data are available at the Gene Expression Omnibus database

(http://www.ncbi.nlm.nih.gov/geo/) under the accession number GEO: GSE95617.
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Supplemental Figures

Figure S1. Administration of b-Glucan Promotes Cell Proliferation of LT-HSCs, Related to Figure 1

(A and B) Cell cycle analysis was performed in LT-HSC at 24h after the administration of PBS or b-glucan by staining for Ki67 and DAPI. (A) Representative flow

cytometry plots and (B) frequency of LT-HSC at different phases of the cell cycle (n = 5 mice per group). Data presented as mean ± SEM. *p < 0.05, **p < 0.01.



Figure S2. Peripheral Blood Chimerism in Recipients of LT-HSCs Isolated from b-Glucan-Administered or PBS-Injected Mice, Related to

Figure 2
Briefly, LT-HSCs (CD45.2+) were sorted 28 days after b-glucan or PBS administration and transplanted to lethally irradiated SJL/BL6 (CD45.1+) mice. The

percentage of donor-derived (CD45.2+) cells in peripheral blood of recipient mice at 12 weeks after transplantation is shown (n = 10 recipient mice per group).

Data presented as mean ± SEM.



Figure S3. Transcriptomic Analysis of LT-HSCs on Day 7 after b-Glucan Administration, Related to Figure 5

(A and B) Upstream regulator analysis in transcriptomic data using IPA. Genes regulated by the TFs (A) Cebpe and (B) Pax5. Genes with increased expression in

LT-HSC frommice injectedwith b-glucan (as compared to cells fromPBS-treatedmice) are depicted in red, whereas geneswith decreased expression are shown

in blue.



Figure S4. Transcriptional Alterations in Hematopoietic Progenitors 28 Days after b-Glucan Administration, Related to Figure 5

LT-HSCs and MPPs were sorted from mice on day 28 after b-glucan or PBS administration and RNA sequencing was performed (n = 4 mice per group).

(A and C) Differential gene expression in (A) LT-HSCs and (C) MPPs; volcano plots depicting the distribution of the adjusted p values (-log(P-adj.)) and the fold

changes (log2 Fold Change). Significant changes are colored red (FDR = 0.05).

(B and D) Overrepresented canonical pathways showing genes that were upregulated (red) or downregulated (blue) in (B) LT-HSCs and (D) MPPs from b-glucan–

injected mice, as compared to PBS-treated mice.

(E) Heatmap depicting the expression of lymphoid lineage-related genes in LT-HSCs and MPPs from b-glucan injected mice, as compared to PBS treated mice.

Transcripts that are not significantly altered are shown in gray.

(F) Differentially expressed genes in both LT-HSCs and MPPs. The number of upregulated (red) and downregulated (blue) genes is shown.



Figure S5. Mevalonate Pathway, Related to Figure 5

Schematic depiction of themevalonate pathwaywith genes significantly upregulated in LT-HSC from b-glucan–injectedmice (as compared to PBS-treatedmice)

shown in red.



Figure S6. GSEA in LT-HSC after 5-FU Administration, Related to Figure 5

Mice were injected with b-glucan or PBS and 7 days later a single dose of 5-FU was administered. LT-HSCs were sorted from mice on day 14 after 5-FU

administration and transcriptomic analysis was performed (n = 4 mice per group). GSEA for genes related to glycolysis, OXPHOS and cholesterol biosynthesis.
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