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Abstract
Epigenetic regulation of cellular function provides a mechanism for rapid organismal adaptation to changes in health,
lifestyle and environment. Associations of cytosine-guanine di-nucleotide (CpG) methylation with clinical endpoints that
overlap with metabolic phenotypes suggest a regulatory role for these CpG sites in the body’s response to disease or environ-
mental stress. We previously identified 20 CpG sites in an epigenome-wide association study (EWAS) with metabolomics that
were also associated in recent EWASs with diabetes-, obesity-, and smoking-related endpoints. To elucidate the molecular
pathways that connect these potentially regulatory CpG sites to the associated disease or lifestyle factors, we conducted a
multi-omics association study including 2474 mass-spectrometry-based metabolites in plasma, urine and saliva, 225 NMR-
based lipid and metabolite measures in blood, 1124 blood-circulating proteins using aptamer technology, 113 plasma protein
N-glycans and 60 IgG-glyans, using 359 samples from the multi-ethnic Qatar Metabolomics Study on Diabetes (QMDiab). We
report 138 multi-omics associations at these CpG sites, including diabetes biomarkers at the diabetes-associated TXNIP locus,
and smoking-specific metabolites and proteins at multiple smoking-associated loci, including AHRR. Mendelian randomiza-
tion suggests a causal effect of metabolite levels on methylation of obesity-associated CpG sites, i.e. of glycerophospholipid
PC(O-36: 5), glycine and a very low-density lipoprotein (VLDL-A) on the methylation of the obesity-associated CpG loci
DHCR24, MYO5C and CPT1A, respectively. Taken together, our study suggests that multi-omics-associated CpG methylation
can provide functional read-outs for the underlying regulatory response mechanisms to disease or environmental insults.

Introduction
Complex disorders including cancer, cardiovascular disease and
diabetes, as well as exposure to environmental insults can lead to
adjustments of the expression of corresponding enzymes, trans-
porters and metabolic regulators (1). The organismal response
to these challenges can be reflected by changes in DNA methyla-
tion (2). Individual differences in health, lifestyle and environmen-
tal exposure therefore leave their imprint on the individual’s
epigenome (2). This has been documented in numerous recent
epigenome-wide association studies (EWASs) with type 2 diabetes
(T2D) (3–5), smoking (6–15), obesity (16–22), blood pressure (23) and
protein markers of liver function (24). Methylation of CpG sites that
associate with disease or lifestyle factors often also associates with
changes in intermediate molecular phenotypes, in particular blood
circulating metabolites, as we have previously shown (25).

Methylation of CpG cg05575921 at the aryl hydrocarbon receptor
repressor (AHRR) gene locus was associated with tobacco smoking
in numerous studies (6–9,11–14,26). Smoking during pregnancy
also affected methylation at the same CpG site in newborns (15).
We reported an association of this CpG site with blood circulating
4-vinylphenol, supporting the function of AHRR as a mediator of
dioxin toxicity (25). Similarly, the robustly replicated associations
of diabetes and obesity with differential CpG methylation near the
genes that encode TXNIP (cg19693031), ABCG1 (cg06500161) and
CPT1A (cg00574958) (3–5,17) likely reflect a gene regulatory response
to diabetes and obesity induced metabolic dysregulations. TXNIP,
for instance, plays an important role in glucose regulation by
directly suppressing glucose uptake through binding to the glucose
transporter GLUT1 (27). This idea is supported by our previously
reported association of these three CpG sites with a diabetes-
specific metabolic phenotype (metabotype), including changes in
the well-established T2D biomarkers alpha-hydroxybutyrate (AHB),
3-methyl-2-oxovalerate, glycine and several diabetes-associated
lipids (5,25). A recent obesity Mendelian randomization (MR) study
by Wahl et al. (22) showed that adiposity was causal for changes in
methylation of multiple CpG sites near obesity-related genes.
Interestingly, several of the CpG sites identified in that study were
also within a set of 20 CpG sites that we previously identified in an
EWAS with blood metabolites (25) (Table 1).

These observations clearly indicated a role of DNA methyla-
tion in the regulation of the cellular response to disease and

environmental stress. We therefore hypothesized that the molec-
ular pathways that constitute these organismal responses can be
revealed by assessing the relationships between changes in inter-
mediate molecular phenotypes and changes in gene regulation,
in particular by studying their association with the DNA methyl-
ome (Fig. 1). As our study cohort is relatively small, but otherwise
exceptionally deeply phenotyped at a multi-omics level, we
focused on 20 CpG sites that we previously identified in our
EWAS with metabolomics (25). Indeed, a review of recently pub-
lished EWAS revealed that actually most of these 20 CpG sites
were also associated with complex disease phenotypes including
obesity, diabetes, blood pressure, and liver function, and or smok-
ing (Table 1). As our previous EWAS with metabolomics did not
contain a formal replication, we start by replicating the associa-
tion of these CpG sites in a similar panel of blood metabolites in
the QMDiab study, a diabetes cohort including Arab and South
Asian ethnicities. We then focus our investigation on associa-
tions of these 20 CpG sites with a diverse set of almost 4000 deep
molecular phenotypes, including blood, urinary and salivary
metabolomics, lipidomics, proteomics and glycomics. We further
replicate the newly discovered protein and glycan associations in
independent studies. Finally, we use MR to evaluate the causal
direction of selected CpG-metabolite associations.

Results
Deep molecular phenotyping of 3996 multi-omics
parameters in an Arab–Asian cohort

We determined 2251 metabolic traits (758 from plasma, 891
from urine and 602 from saliva) using a non-targeted metabolo-
mics platform (Metabolon Inc., Durham, NC), 163 metabolites
using a targeted metabolomics kit (Biocrates Life Sciences AG,
Innsbruck, Austria), 60 urinary metabolite concentrations
(Chenomx Inc., Edmonton, CA), 225 mostly lipid-related blood
traits (Nightingale Ltd, Helsinki, Finland) based on 1H NMR
measurements, 1124 blood circulating proteins using an
aptamer-based technology (Somalogic Inc., Boulder, USA), 113
blood N-glycans using UPLC, 60 IgG-glycopeptides by liquid
chromatography mass spectrometry lycol-profiling (Genos Ltd.,
Zagreb, Croatia) and methylation at 470 776 CpG sites using the
Illumina Infinium HumanMethylation450 BeadChip platform
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(28) (see Materials and Methods), in up to 359 individuals from
the QMDiab study (Table 2) (29). The methylation data over-
lapped with at least one type of proteomics, lipidomics,
glycomics or metabolomics data in this study (Fig. 2). This
diabetes case-control study comprises 50.7% individuals with
diabetes and 17.3% individuals who are smokers. Taken
together, we obtained a maximum of 3996 molecular pheno-
types in saliva, blood and urine samples of up to 359 individuals
(Supplementary Material, Table S1).

Replication of a previous metabolomics EWAS

The first EWAS with metabolic traits assessed 649 blood
metabolic traits from 1805 samples from the KORA study with

methylation measurements for 457 004 CpG sites (25). The asso-
ciations from this study have not been replicated. We therefore
started by replicating the metabolomics–methylation associa-
tions reported in that study. We could replicate 10 out of the
20 lead methylation associations with metabolites at Bonferroni
significance (P< 0.05/20) and found nominal significance
(P< 0.05) for a further seven of them (Supplementary Material,
Table S2).

Discovery of novel phenome-wide associations with
CpG methylation

We then tested the 20 CpG sites for association with all avail-
able 2474 metabolites, 225 lipids, 1124 proteins and 173 glycan
traits, requiring a Bonferroni level of significance that accounted
for the respective number of tested molecular phenotypes and
20 CpG loci (see Materials and Methods). Loci were annotated
following (25), using the most likely regulated gene, CpG identi-
fier and phenotype (diabetes, smoking, obesity, steroids, other).
We identified 138 associations between methylation and other
phenotypes including numerous hits at the TXNIP-diabetes and
at the AHRR-smoking loci (Table 3). Of the 138 associations, 12
involved proteins, 19 involved lipids, 91 involved metabolites
and 16 involved glycans. We found multiple associations at the
DHCR24 and ABCG1 obesity loci with various LDL lipid sub-
classes, consistent with previous studies (30,31). We also linked
the kidney function marker myo-inositol (32), measured here in
urine, to changes in methylation of the obesity locus ABCG1.
Further highlights include the association of a new, yet uniden-
tified metabolite (X-19141) with cg09189601 methylation at the
UGT2B15 locus, of specific IgG glycopeptides with cg06192883
methylation at the MYO5C obesity locus, and of the blood circu-
lating protein levels of Tumor necrosis factor ligand superfamily
member 4 (TNFSF4) with cg00574958 at the diabetes and obesity
locus CPT1A. Many of the CpG–blood metabolite associations
previously reported in the supplement of the Petersen et al.
study were also replicated here using different metabolomics
technologies. We further observed for the first time associations
of the same metabolites in urine and saliva, sometimes stronger
than the associations in plasma. The complete set of significant
associations is in Supplementary Material, Table S3.

Replication of novel CpG-protein and CpG-glycan
associations in independent studies

Next, we attempted replication of the novel protein–methylation
associations in the KORA study (N¼ 997) and of the novel glycan–
methylation associations in the TwinsUK study (N¼ 165). Six of
the twelve protein–methylation associations replicated in KORA
at a Bonferroni level of significance (P< 0.0041¼ 0.05/12). All repli-
cated associations showed the same direction of effect (Table 4).
Of the 16 glycan–methylation associations, two were not meas-
ured in the TwinsUK study and could not be tested, four dis-
played nominal significance (P< 0.05) and one replicated at
Bonferroni significance (P< 0.0035¼ 0.05/14). All glycan–methyla-
tion associations showed concordant directions between the two
studies (Table 5).

Multi-omics associations of the TXNIP-diabetes locus

Methylation of CpG cg19693031 at the TXNIP locus showed
54 associations with metabolites, proteins and glycan traits
(complete list in Supplementary Material, Table S3). TXNIP

Figure 1. Hypothesis tested in this study. Exposure to physiological challenges,

such as an increased BMI, smoking or dysregulated glycemic control leads physio-

logical changes that translate into changes in intermediate molecular phenotypes,

such as metabolite levels that are detectable in different body fluids, blood circu-

lating lipids, proteins and protein glycosylation. These then further induce

changes in DNA methylation at specific regulatory sites of genes that are required

to counter this insult. Note that this view does not exclude that changes in the

expression of certain genes may not also result in further changes in molecular

phenotypes. Hence, despite the fact that we found here three cases of causality

from metabolite to CpG, cases with reverse directionality are also likely to exist.

Table 2. General characteristics of the QMDiab study participantsa

Age (years) 46.8612.8 (mean 6 s.d.)
Sex 177 (49.3%) female

182 (50.7%) male
Body mass index (kg/m2) 29.666.0 (mean 6 s.d.)
Ethnicityb 189 (52.6%) Arab

106 (29.5%) South Asian
34 (9.5%) Filipino
13 (3.6%) other/mixed
17 (4.7%) missing

T2D status 182 (50.7%) having diabetes
176 (49.0%) no diabetes
1 (0.03%) missing

Smoking statusc 62 (17.3%) smokers
280 (78.0%) non-smokers
17 (4.7%) missing

aThe QMDiab study has been described previously and comprises 388 study par-

ticipants from Arab and Asian ethnicities (29). The statistics here are reported

for the 359 samples with methylation data overlapping with at least one type of

proteomics, lipidomics, glycomics, or metabolomics measurement.
bArab ethnicity includes participants from Bahrain, Egypt, Iraq, Jordan, Kuwait,

Lebanon, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria,

Tunisia, United Arab Emirates and Yemen. South Asian ethnicity includes par-

ticipants from Bangladesh, India, Nepal, Pakistan, and Sri Lanka.
cSmoking status was determined based on the detection of cotinine in blood at

the time of blood collection.
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methylation was also associated with T2D as an endpoint in our
study (P¼ 6.80� 10�12), replicating previous reports (5). The
most significant metabolic trait association with TXNIP methyl-
ation was with 1,5-anhydroglucitol (1,5-AG) in plasma
(P¼ 7.56� 10�21), which also showed a moderate association sig-
nal in saliva (P¼ 3.17� 10�3). Cg19693031 further strongly asso-
ciated with AHB (P¼ 2.52� 10�14 in urine, P¼ 2.46� 10�9 in
plasma) and with glucose in urine (P¼ 1.17� 10�14). Cg19693031
also associated with blood levels of several proteins, including
transmembrane glycoprotein NMB (GPNMB) (P¼ 1.30� 10�8), amino-
acylase-1 (ACY1) (P¼ 2.59� 10�7), sex hormone binding globulin
(SHBG) (P¼ 4.65� 10�7) and melanoma-derived growth regulatory
(MIA) protein (P¼ 6.88� 10�7), and with different complex N-gly-
can traits (PGP26 and PGP34). These glycans were recently
reported to be associated with T2D (33). Sumer-Bayraktar et al.
(34) reported that SHBG in serum is N-glycosylated by a glycan
that corresponds to PGP18 in QMDiab. In QMDiab, PGP18 glycans
associated with SHBG protein levels (P¼ 7.19� 10�4), and meth-
ylation of cg19693031 was nominally associated with PGP18
(P¼ 0.011).

Multi-omics associations of the smoking loci

We found 17 Bonferroni-significant multi-omics associations at
the AHRR smoking locus (Table 3 and Supplementary Material,
Table S3). AHRR methylation was also associated with smoking
in the QMDiab study (P¼ 1.89� 10�25). AHRR (cg05575921) and
several of the other smoking associated CpG sites (ALPPL2—
cg21566642, F2RL2—cg03636183, cg06126421, RARA—cg19572487
and GFI1—cg09935388) associated with o-cresol sulfate in urine

(P¼ 2.66� 10�27–3.29� 10�7). The strongest CpG–protein associa-
tion for smoking loci was for the polymeric immunoglobulin recep-
tor (PIGR) and CpG sites cg05575921 (AHRR), cg03636183 (F2RL2)
and cg06126421 (P¼ 2.03� 10�11–3.36� 10�7). Methylation of
cg01965508 at the PIGR locus showed a nominally significant
negative association with smoking (P¼ 0.016). CpG cg01965508
lies in a promotor region less than 1500 bp upstream of the tran-
scription start site of PIGR. PIGR is known to be a heavily N-gly-
cosylated protein (35). The plasma N-glycome is known to
associate with smoking (36) and we also found several nominal
associations of the PIGR protein levels with numerous N-glycans
(PGP4, PGP5, PGP10, PGP13, PGP16, PGP20, PGP23, PGP26, PGP31,
PGP32, PGP34 and PGP35; p< 0.05). Finally, we found a CpG–pro-
tein association at the cg19572487 (RARA) smoking locus with
the actin-regulatory protein Gelsolin (P¼ 1.89� 10�6).

Mendelian randomization

To determine whether changes in metabolite levels are causal
for changes in CpG methylation, we conducted an MR study (see
Materials and Methods). As the QMDiab study was too small to
obtain meaningful results, we used the KORA study instead. To
limit the multiple testing burden, we limited our MR analysis
to the top CpG–metabolite associations previously reported by
Petersen et al. (25). We further required that the SNP-metabolite
(mQTL) and the SNP-methylation (meQTL) associations be
reported previously in mGWAS and meGWAS (see Materials
and Methods). We identified three suitable SNP-CpG-metabolite
trios and verified that the genetic instruments were valid in the
causal direction from the metabolite to the CpG methylation:

Figure 2. Multi-omics dataset and study design. A total of 388 individuals participated in the initial QMDiab study. A total of 359 samples had DNA methylation data

and at least one other deep-molecular trait.
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Table 3. Multi-omics associations with CpG methylation in QMDiab

Locus Group Trait Trend P-Value

UGT2B15
cg09189601
chr4: 69514031
Other

Metabolites X-19141 [plasma] # 6.21 �10�23

TXNIP
cg19693031
chr1: 145441552
Diabetes

Metabolites 1, 5-anhydroglucitol (1, 5-AG) [plasma]a " 7.56 � 10�21

Glucose [NMR] # 1.17 � 10�14

2-hydroxybutyrate (AHB) [urine] # 2.52 � 10�14

3-hydroxybutyrate (BHBA) [urine] # 5.87 � 10�13

glucose [plasma]a # 3.15 � 10�12

. . . (list truncated)
Lipids L-VLDL-CE_% " 1.01 � 10�8

XL-VLDL-CE_% " 2.05 � 10�8

M-VLDL-CE_% " 4.42 � 10�6

XL-VLDL-C_% " 5.66 � 10�6

. . . (list truncated)
Proteins Transmembrane glycoprotein NMB (GPNMB) # 1.30 � 10�8

Aminoacylase-1 (ACY1) # 2.59 � 10�7

Sex hormone-binding globulin (SHBG) " 4.65 � 10�7

Melanoma-derived growth regulatory protein
(MIA)

" 6.88 � 10�7

Glycans PGP23 # 2.75 � 10�8

PGP31 # 9.31 � 10�8

PGP29 # 7.61 � 10�6

PGP28 # 8.42 � 10�6

DHCR24
cg17901584
chr1: 55353706
Obesity

Lipids M-VLDL-C_% " 6.62 � 10�9

M-VLDL-TG_% # 7.14 � 10�9

M-VLDL-CE_% " 1.87 � 10�8

S-VLDL-TG_% # 1.36 � 10�6

. . . (list truncated)
MYO5C
cg06192883
chr15: 52554171
Obesity

Glycans PGP58 " 8.31 � 10�9

PGP70 " 6.91 � 10�8

PGP1 " 3.67 � 10�7

PGP17 # 8.34 � 10�7

PGP99 " 1.23 � 10�6

. . . (list truncated)
IgG1_G0F " 9.46 � 10�7

IgG4_G2FN # 1.79 � 10�5

ABCG1
cg06500161
chr21: 43656587
Diabetes and obesity

Metabolites Myo-inositol [urine] " 7.21 � 10�7

Lipids L-VLDL-CE_% # 1.03 � 10�8

M-VLDL-CE_% # 2.19 � 10�7

M-VLDL-C_% # 2.26 � 10�7

XXL-VLDL-CE_% # 8.73 � 10�7

. . . (list truncated)
CPT1A
cg00574958
chr11: 68607622
Diabetes and obesity

Proteins Tumor necrosis factor ligand superfamily
member 4 (TNFSF4)

" 1.61 � 10�6

SLC7A11
cg06690548
chr4: 139162808
Obesity

Metabolites Serine [plasma] " 3.05 � 10�7

AHRR
cg05575921
chr5: 373378
Smoking

Metabolites o-cresol sulfate [urine] # 2.66 � 10�27

3-ethylphenylsulfate* [urine] # 1.08 � 10�17

X-17185 [urine]b

X-17185 [plasma]
#
#

2.42 � 10�16,
1.52 � 10�7

X-12161 [urine] # 5.17 � 10�13

X-17398 [urine] # 1.36 � 10�12

. . . (list truncated)
Proteins Polymeric immunoglobulin receptor (PIGR) # 2.03 � 10�11

(Continued)

1111Human Molecular Genetics, 2018, Vol. 27, No. 6 |

Downloaded from https://academic.oup.com/hmg/article-abstract/27/6/1106/4793001
by Helmholtz Zentrum Muenchen user
on 09 March 2018



SNP rs174547 at FADS1 was an mQTL for the metabolite PC(O-
36: 5) (a glycerophospholipid) and a meQTL for cg17901584 at
DHCR24, SNP rs715 at the CPS1 locus associated with glycine
and cg06192883 methylation at the MYO5C locus, and SNP
rs964184 at the APO cluster gene locus associated with VLDL-A
(very low-density lipoprotein A) and cg00574958 methylation of
the CPT1A locus (Fig. 3; Table 6). Since complete summary sta-
tistics were not available for all associations from these GWASs,
we could not use a two-sample MR approach and used the
KORA data instead. In all three cases, we observed a significant
(P< 0.05/3) causal effect of metabolite levels on CpG methyla-
tion (Table 6). We found no valid instrument that would have
allowed testing of the reverse causal direction, from methyla-
tion to metabolite.

Discussion
To the best of our knowledge, this is the first study to analyze
such a large number of multi-omics phenotypes with CpG

methylation in a single study, providing a deeper insight into
the molecules that may be involved of the underlying mecha-
nisms of the organismal response to disease and environmental
insult. Our study emphasizes the power of linking the methyl-
ome to the phenome (smoking, diabetes or obesity) by deep
molecular phenotyping of multiple body fluids in a multi-omics
approach. We replicated and uncovered novel associations of
a wide range of metabolite, protein and glycan traits with
smoking-, diabetes- and obesity-associated CpG loci in a novel
multi-ethnic cohort. Many of the multi-omics associations
showed strong biological evidence to be linked to pathways
involved in both diabetes and smoking.

For instance, 1,5-AG associated with CpG methylation at the
TXNIP locus, is an established marker of glycemic control in
patients with diabetes (37) and is utilized in the FDA-approved
GlycoMarkTM test (GlycoMark Inc., New York, NY). AHB, also asso-
ciated with methylation at the TXNIP locus, is a key biomarker of
pre-diabetes and is utilized in the QuantoseTM test (Metabolon,
Morrisville, NC) for pre-diabetes monitoring. Most of the other

Table 3. (Continued)

Locus Group Trait Trend P-Value

ALPPL2
cg21566642
chr2: 233284661
Smoking

Metabolites o-Cresol sulfate [urine] # 7.43 � 10�16

3-ethylphenylsulfate* [urine] # 4.45 � 10�9

X-17185 [plasma]b

X-17185 [urine]
#
#

6.32 � 10�8,
1.15 � 10�6

X-17398 [urine] # 6.35 � 10�8

2-ethylphenylsulfate [urine] # 4.54 � 10�7

F2RL3
cg03636183
chr19: 17000585
Smoking

Metabolites o-Cresol sulfate [urine] # 4.93 � 10�13

3-ethylphenylsulfate* [urine] # 1.09 � 10�9

X-17398 [urine] # 1.41 � 10�8

X-17185 [urine] # 9.18 � 10�7

Proteins Polymeric immunoglobulin receptor (PIGR) # 9.02 � 10�7

cg06126421
chr6: 30720080
Smoking

Metabolites X-17185 [urine]b

X-17185 [plasma]
#
#

2.99 � 10�10,
6.23 � 10�7

o-Cresol sulfate [urine] # 2.23 � 10�9

X-17398 [urine] # 2.49 � 10�7

3-ethylphenylsulfate* [urine] # 5.37 � 10�7

X-17320 [urine] # 5.47 � 10�7

3-methyl catechol sulfate 1 [urine] # 5.53 � 10�7

Proteins Polymeric immunoglobulin receptor (PIGR) # 3.36 � 10�7

RARA
cg19572487
chr17: 38476024
Smoking

Metabolites o-Cresol sulfate [urine] # 3.29 � 10�7

Proteins Gelsolin (GSN) " 1.89 � 10�6

GFI1
cg09935388
chr1: 92947588
Smoking

Metabolites o-Cresol sulfate [urine] # 2.90 � 10�7

cg23079012
chr2: 8343710
Smoking

Metabolites o-Cresol sulfate [urine] # 4.51 � 10�8

Proteins X-linked interleukin-1 receptor accessory
protein-like 2 (IL1RAPL2)

# 4.35 � 10�9

Vascular endothelial growth factor A (VEGFA) # 1.42 � 10�6

NudC domain-containing protein 3 (NUDCD3) # 1.55 � 10�6

Association data for 14 of the 20 CpG loci reported by Petersen et al. (25). P-values are for the reported phenotypes in linear regression models with the respective cova-

riates (Fig. 2). Associations were required to reach a Bonferroni level of significance of pmetabolite <1.01� 10�6, plipid <1.11�10�5, pprotein<2.22� 10�6, and

pglycan<2.21�10�5 for metabolites, lipids, proteins, and glycan traits, respectively. Genomic coordinates are based on human genome build 37. A positive association

with methylation levels is indicated by ("), while a negative is indicated by (#). Full summary statistics are in Supplementary Material, Table S3.
aThis metabolite was already reported in Petersen et al.
bThis metabolite was measured on different platforms or in different fluids in QMDiab (indicated in square brackets).

Note: We only present the five most significant associations for each category in this table. For a more comprehensive list, see Supplementary Material, Table S3.
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metabolites associated with cg19693031 at the TXNIP locus were
also directly associated with multiple diabetes phenotypes in our
previous analysis of this dataset (38). The presence of glucose in
urine (glucosuria) is also a common characteristic of diabetes.

Similarly, o-cresol sulfate, a metabolite associated with methyl-
ation of multiple smoking associated CpG sites, is a known bio-
marker for smoking and also associated with colorectal cancer (39).
The protein associations at the AHRR locus included blood circulat-
ing levels of the PIGR protein. PIGR facilitates the secretion of
soluble polymeric isoforms of immunoglobulins A and M. PIGR

transcription was previously reported up-regulated in smokers (40).
Another CpG–protein association of interest at a smoking locus
is the actin-regulatory protein Gelsolin with cg19572487 (RARA).
Gelsolin expression is down-regulated in heavy smokers (41).
Gelsolin controls the length of actin polymers and mediates multi-
ple cellular functions including cell motility, morphogenesis and

actin cytoskeletal remodeling. It also regulates signal transduction
through the integrin and small GTPase (Rac-Rac)-mediated path-
ways (42). Gelsolin was also differentially expressed in patients
with heart failure (42) and in several types of cancers (43).

Table 4. Replication of novel proteome-methylation associations in the KORA study

QMDiab KORA

Locus Protein P-value Beta P-value Beta

TXNIP Transmembrane glycoprotein NMB 1.30 � 10�8 �0.006 0.841 �0.002
cg19693031 Aminoacylase-1 2.59 � 1027 �0.002 2.58 � 1027 �0.028

Sex hormone-binding globulin 4.65 � 1027 0.002 0.002 0.019
Melanoma-derived growth regulatory protein 6.88 � 10�7 0.006 0.106 0.021

CPT1A cg00574958 Tumor necrosis factor ligand superfamily member 4 1.61 � 10�6 0.002 0.204 0.003
AHRR cg05575921 Polymeric immunoglobulin receptor 2.03 � 10211 �0.004 3.30 � 10227 �0.153
F2RL3 cg03636183 Polymeric immunoglobulin receptor 9.02 � 1027 �0.002 5.82 � 10219 �0.075
cg06126421 Polymeric immunoglobulin receptor 3.36 � 1027 �0.003 8.29 � 10211 �0.065
RARA cg19572487 Gelsolin 1.89 � 1026 0.004 0.001 0.059
cg23079012 X-linked interleukin-1 receptor accessory protein-like 2 4.35 � 10�9 �0.001 0.756 �0.001

Vascular endothelial growth factor A 1.42 � 10�6 �0.002 0.600 �0.004
NudC domain-containing protein 3 1.55 � 10�6 �0.001 0.338 0.003

Six out of twelve protein-methylation associations were replicated in KORA (N¼997) at Bonferroni significance p<0.0041 (0.05/12). All but one association showed con-

cordant directions in the two studies.

Table 5. Replication of novel N-glycan-methylation associations in
the TwinsUK study

QMDiab TwinsUK

Locus Glycan P-value Beta P-value Beta

TXNIP PGP23 2.75 � 10�8 �0.023 0.115 �0.007
cg19693031 PGP31 9.31 � 10�8 �0.025 0.035 �0.009

PGP29 7.61 � 10�6 �0.019 0.135 �0.007
PGP28 8.42 � 1026 �0.020 0.002 �0.014

MYO5C PGP58 8.31 � 10�9 0.013 0.064 0.009
cg06192883 PGP70 6.91 � 10�8 0.013 0.060 0.010

PGP1 3.67 � 10�7 0.011 0.016 0.011
PGP17 8.34 � 10�7 �0.011 0.175 �0.006
PGP99 1.23 � 10�6 0.010 0.012 0.012
PGP77 4.00 � 10�6 0.009 0.073 0.008
PGP81 4.00 � 10�6 �0.009 0.073 �0.008
PGP64 6.88 � 10�6 �0.009 0.266 �0.005
PGP73 1.61 � 10�5 0.009 0.132 0.006
PGP72 1.72 � 10�5 �0.010 0.030 �0.013

Four of the glycan-methylation associations displayed nominal significance

P<0.05 in the TwinsUK study (N¼165) and one was replicated at Bonferroni

significance P<0.0035 (0.05/14). All associations had the same direction of

effect as in QMDiab. Glycan annotations are provided in Supplementary

Material, Table S1.

Figure 3. Evidence supporting the hypothesis that genetically induced changes in

metabolite levels are causal to the associated changes in methylation levels. The

instrumental variables here were identified using the BIOS server (75) and SNiPA

(76). The three-way associations were evaluated using the KORA dataset (N�1800).

The P-values (PIVW) shown are associated with the estimate (Wald test). In all three

cases presented here (see Table 6 for details), the associations between SNP and

CpG methylation can be fully explained via the metabolite. This suggests that the

metabolic trait is causal to the association between metabolite and CpG.
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Associations between SHBG, MIA and different complex
N-glycan traits (PGP26 and PGP34), in addition to the same glycans
being recently reported to be associated with T2D (44) support the
potential involvement of glycans in defining the posttranslational
modifications that alter or enrich the function of the involved
proteins. Likewise, the smoking associated PIGR protein being a
heavily N-glycosylated protein (35) and smoking being associated
with the plasma N-glycome (36) are consistent with this.

CpG methylation involvement with other phenotypes such
as protein markers of liver function and blood pressure has also
been documented. Liver enzyme levels, for example, gamma-
glutamyl transferase (GGT), may alter epigenetic mechanisms
involved in genes that regulate liver function and enzyme levels
leading to differential methylation at the PHGDH locus (24).
Also, DNA methylation in inflammatory genes with known vas-
cular function, or previously related to cardiovascular disease
may be driven by mechanisms involved in blood pressure regu-
lation (23). Association studies alone cannot conclude on cau-
sality and may not provide a final answer here. However, they
are an important hypothesis-generating tool that can direct fur-
ther investigation by dedicated experimentation and support
from existing literature, as exemplified here in the cases of the
TXNIP diabetes and the AHRR–smoking associations.

In an attempt to conclude on causality in a few sufficiently
powered examples, we used MR to determine directionality
between some obesity-associated metabolites and methylation
sites. The direction of association we found between the meth-
ylation of the obesity-associated locus CPT1A with VLDL-A is
consistent with the Dekkers et al. study (30) and goes from
metabolite to methylation. Similarly, the direction of the associ-
ations between the methylation of DHCR24 with PC(O-36: 5), and
of MYO5C with glycine also go from metabolite to methylation,
both of which are obesity-associated loci and metabolites,
respectively. Still, these results should be interpreted with

caution since the validity of MR analyses is based on assump-
tions and has several limitations as outlined in a recent review
(45).

We are aware of some limitations to this study. Correction
for cell proportions, ethnicity and cell abuse have all been taken
into consideration (see Materials and Methods). Medication
was not accounted for in the statistical analysis and may poten-
tially confound some of the associations. In addition, as the par-
ticipants of QMDiab were not fasting prior to sample collection
as in KORA and TwinsUK, decreased replicability power may
be implied. However, as we have shown in previous work using
the same data (38), this increased variability is random
and does not tend to bias the associations. Thus non-
replication in QMDiab does not suggest that the association in
Petersen et al. was a false positive. The replication of many
previously reported CpG-metabolite, CpG-diabetes and CpG-
smoking associations supports the robustness and hence
biological relevance of these signals. Finally, although we repli-
cated the majority of our novel protein–methylation associa-
tions in KORA, only some of the novel glycan-methylation
associations were replicated in TwinsUK due to the smaller
sample size.

Conclusion
With over 2700 studies published to date, genome-wide associa-
tion studies (GWASs) with clinical endpoints and intermediate
risk factors have reached maturity (46). The field of EWAS, how-
ever, is just emerging and only recently started to generate rele-
vant biomedical results. In contrast to GWAS, where the causal
direction of the association is always from the genetic variant
(SNP) to the phenotype, causality cannot be inferred directly
from an EWAS, and the determination of causality is vulnerable
to potential confounding and reverse causation (47).

Table 6. Causality analysis using Mendelian randomization

Triangle associations MR (IVW method)

Metabolite�SNP
(instrument)

CpG�SNP CpG�Metabolite
(observed)

CpG�Metabolite
(predicted)

CPT1A
(cg00574958) P ¼ 3.48� 10�9 P ¼ 0.00589 P ¼ 5.89� 10�14 PMR ¼ 0.006
APO-cluster b ¼ 0.254 b¼ �0.124 b ¼ �0.186 b¼ �0.489
(rs964184) SE ¼ 0.0427 SE ¼ 0.0450 SE ¼ 0.0246 SE ¼ 0.177
VLDL-A CI95 ¼ [0.170, 0.338] CI95 ¼ [�0.212, �0.0358]

PIV ¼ 0.080
CI95 ¼ [�0.234, �0.138] CI95 ¼ [�0.837,-0.141]

DHCR24
(cg17901584) P ¼ 1.63 � 1 0�23 P ¼ 0.0103 P ¼ 3.43 � 10�18 PMR ¼ 0.010
FADS1 b ¼ �0.344 b ¼ �0.0886 b ¼ 0.202 b ¼ 0.258
(rs174547) SE ¼ 0.0339 SE ¼ 0.0345 SE ¼ 0.023 SE ¼ 0.100
PC.ae.C36.5 CI95 ¼ [�0.411, �0.277] CI95 ¼ [�0.156, �0.0209]

PIV ¼ 0.563
CI95 ¼ [0.157, 0.248] CI95 ¼ [0.061, 0.454]

MYO5C
(cg06192883) P ¼ 4.45 � 10�42 P ¼ 0.00318 P ¼ 7.69 � 10�15 PMR ¼ 0.003
CPS1 b ¼ 0.455 b ¼ �0.107 b¼ �0.199 b ¼ �0.235
(rs715) SE ¼ 0.0325 SE ¼ 0.0361 SE ¼ 0.0254 SE ¼ 0.079
glycine CI95 ¼ [0.391, 0.519] CI95 ¼ [�0.178, 0.00359]

PIV ¼ 0.633
CI95 ¼ [�0.249,-0.149] CI95 ¼ [�0.390,-0.079]

KORA data (N�1800) was used for MR analysis using the inverse-variance weighted method. All three MR analyses suggest that changes in metabolites are causal for

the observed changes in CpG methylation with Bonferroni significance PMR < 0.017 (0.05/3).

Abbreviations: b ¼ effect size (units: s.d./s.d. or s.d./minor allele copy), SE¼ standard error, P¼P-value, CI95 ¼95% confidence intervals, PIV ¼ the P-value for the associa-

tion of the CpG to the metabolite conditioned on the SNP; this association must not be significant for a valid instrument.
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Taken together, our study supports the view that changes in
health, lifestyle and environment can lead to differential regula-
tion of a plethora of molecular phenotypes. A holistic multi-
omics view of the organism’s response to environmental and
disease-induced stress then emerges. Using MR approaches,
causal networks connecting environmental insults and lifestyle
factors to disease end points through multi-omics read-outs
can now be delineated. This information can generate new
insights into the affected pathways suggesting that multi-
omics-associated CpG methylation is a consequence of the
underlying disease pathway or an environmental insult.

Materials and Methods
Study population

QMDiab is a cross-sectional case-control study that was con-
ducted in 2012 at the Dermatology Department in Hamad
Medical Corporation (HMC Doha, Qatar). This study has been
described previously and comprises 388 study participants from
Arab and Asian ethnicities (29) (Table 1 contains the statistics for
the subset of 359 samples that were selected for this study). The
initial study was approved by the Institutional Review Boards of
HMC and Weill Cornell Medicine—Qatar (WCM-Q) under research
protocol number 11131/11). All study participants provided writ-
ten informed consent. In addition to the 374 study participants
reported in (29), we included 14 additional samples from individ-
uals who were not sent to metabolomics analysis, bringing the
total participant number in QMDiab to 388. Data used in this
study was then limited to individuals who agreed to have their
data and samples used for research beyond the initial scope of
QMDiab, and for whom there was still sufficient material avail-
able for further analysis. For smoke exposure, the cotinine meas-
urement (a major metabolite of nicotine from tobacco smoke
observed in blood, urine or saliva) was used as a more objective
indicator than self-reported smoking (48). Cotinine-derived
smoking status highly overlaps with self-reported smoking status
(Spearman correlation coefficient of 0.92) (49).

Sample collection

Non-fasting saliva, urine and plasma samples were collected
and processed using standardized protocols. Saliva was
obtained using the Salivette system following the manufac-
turer’s recommendations. Identical protocols, instruments and
study personnel were used to randomly collect cases and con-
trols as they appeared at the clinic. After collection, the samples
were stored in ice for transportation to WCM-Q. Within 6 h of
sample collection, all samples were centrifuged at 2500g for 10
min, aliquoted, and stored at �80�C until analysis.

DNA extraction and quantification

Blood samples were thawed at 37�C in a water bath for 5–10
min. Samples were then left to cool down to room temperature
and 400 ul of blood was transferred to a 2 ml cryotubes. A total
of 400 ul of phosphate buffered saline (PBS) was added to the
blood and mixed by pipetting back and forth. The mixture was
transferred to a 2 ml Sarstedt 72.694 tube and loaded to the QIA
Symphony for DNA extraction. The QUBIT kit was then used for
DNA quantification.

DNA methylation

Genome-wide DNA methylation profiling was performed using
the Illumina Infinium HumanMethylation450 (450K) BeadChip
array (28) for interrogating over 485 000 methylation sites per
sample. DNA methylation was determined for 359 samples
which all passed initial quality assessment of assay perform-
ance using the Genome Studio software integrated controls
dashboard. A total of 500 ng genomic DNA from each sample
was bisulfite-converted using the EZ DNA Methylation
Kit (Zymo Research, catalog No. D5002) according to the
manufacturer’s procedure, with the recommended incubation
conditions when using the Infinium Methylation Assay.
DNA methylation was assessed following the Infinium HD
Methylation protocol. This consisted of a whole-genome ampli-
fication step using 4 ul of each bisulfite-converted sample, fol-
lowed by enzymatic fragmentation and application of the
samples to BeadChips. The arrays were fluorescently stained
and scanned with the Illumina iScan system. Genome Studio
(version 2011.1) with methylation module (version 1.9.0) was
used to process the raw image data generated by the BeadArray
Reader. Initial quality assessment of the assay performance
was conducted using the Genome Studio software integrated
controls dashboard. All 359 samples were processed with
Genome Studio (background subtraction and control normaliza-
tion). Beta-values, raw signals and detection P-values were
extracted also using Genome Studio.

Initial quality checks were performed on the methylation
data to confirm data integrity. Sex checks were first performed
by verifying the distribution of CpG methylation on the X-
chromosome and matching against the sex specification in the
manifest. Females had a characteristic peak in the distribution
around a b-value of 0.5 while males had two peaks at b-values 0
and 1, which is attributed to the X-chromosome in-activation
property. Next, the overall beta distribution and intensity distri-
butions were visually inspected for any abnormalities in all sub-
jects. Two individuals had a slightly left-skewed intensity plot
and their beta distributions showed a slight shift in the fully
methylated peak toward 0.6–0.8 as opposed to the common
case where the peak is around 0.8–0.9 but were not eliminated
from the study. Measurements from non-CpG probes and the 65
probes targeting SNPs (as identified in the Illumina manifest)
were excluded, leaving methylation readouts from 482 421
probes. Further filtering included methylation sites whose
detection P-values were greater than 0.01 in more than 5% of
the samples (121 probes) and non-autosomal probes (11 135 on
the X-chromosome and 416 on the Y-chromosome). This left
470 776 methylation sites for data analysis. Normalization was
carried out on data from these probes using the Lumi: BMIQ
pipeline, which includes color bias adjustment, QN (quantile
normalization), and BMIQ (beta mixture quantile dilation).
Normalization matched the centers and peaks of the methyla-
tion profiles no longer necessitating the elimination of any sam-
ples from the study. The corrected b-values ranged from
9.663� 10�4 to 0.9997. White blood cell fractions (granulocytes,
monocytes, B-cells, NK-cells, CD8þ-T-cells and CD4þ-T-cells)
were estimated from the methylation data using the method
described by Houseman et al. (50). Computation of the white
blood cell Houseman coefficients included batch adjustment by
modeling the batch number as a random effect. Thus technical
variation was accounted for through the white blood cell
percentages.
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Non-targeted metabolomics

The semi-quantitative non-targeted UPLC-MS/MS and GC-MS
platform from Metabolon Inc. was used, yielding measurements
of 2251 metabolic traits (758 from plasma, 891 from urine and
602 from saliva). The platform has been described in detail pre-
viously (51,52). Briefly, non-targeted metabolic profiling at
Metabolon was achieved in 330 saliva, 358 in blood plasma and
360 urine samples using ultrahigh-performance liquid-phase
chromatography and gas chromatography separation, coupled
with tandem MS using established procedures (51). Osmolality
in saliva and urine were measured and used for normalization.
The median process variability in saliva was 15.3%, in plasma
was 15.8% and in urine was 9.8%, which was determined by
repeated measurements of pooled samples.

Targeted metabolomics

A total of 26 quantified and 137 semi-quantified metabolites
(due to lack of standards) were measured in 356 plasma samples
using a commercially available FIA-MS metabolomics kit
(AbsoluteIDQTM kit p150, Biocrates Life Sciences AG, Innsbruck,
Austria). The kit was run on the metabolomics platform of the
Helmholtz Center Munich. Assay procedures and the full bio-
chemical names have been described in detail in our previous
work (53).

NMR urine metabolomics
1H-NMR spectra were acquired for 353 urine samples on a
Bruker DRX-400 NMR spectrometer (Bruker BioSpin GmbH,
Rheinstetten, Germany) operating at 400.13 MHz 1H frequency.
Samples were measured at 300 K. The Fourier-transformed and
baseline-corrected NMR spectra were manually annotated by
spectral pattern matching using the Chenomx Worksuite 7.0 by
Chenomx, Inc. (Edmonton, Canada) to deduce absolute urinary
metabolite concentrations for 60 compounds as described
previously.

Lipid-omics

Metabolite concentrations for 338 individuals were quantified
from plasma samples using a high-throughput NMR metabolo-
mics platform (Nightingale Ltd, Helsinki, Finland) (54,55). The
experimental protocol, sample preparation, NMR spectroscopy
and metabolite identification details are described previously in
(54,56). A total of 225 metabolites were measured out of which
148 were directly measured and 77 were derived. The 148
metabolites include 14 lipoprotein subclasses (98 measure-
ments), three sizes of lipoprotein particles, two apolipoproteins,
eight fatty acids, eight glycerides and phospholipids, nine cho-
lesterols, nine amino acids, one inflammatory marker and ten
small molecules involved in glycolysis, citric acid cycle and urea
cycle. The subclasses for the lipoproteins are categorized
according to size following this classification: chylomicrons and
extremely large VLDL particles (average particle diameter at
least 75 nm); five VLDL subclasses—very large VLDL (average
particle diameter of 64.0 nm), large VLDL (53.6 nm), medium
VLDL (44.5 nm), small VLDL (36.8 nm) and very small VLDL (31.3
nm); intermediate-density lipoprotein (IDL; 28.6 nm); three LDL
subclasses—large LDL (25.5 nm), medium LDL (23.0 nm) and
small LDL (18.7 nm); and four HDL subclasses—very large HDL
(14.3 nm), large HDL (12.1 nm), medium HDL (10.9 nm) and small

HDL (8.7 nm). Measurements were log10 transformed and
z-scored.

Proteomics

The SOMAscan platform was used to quantify a total of 1124
protein measurements in 356 plasma samples. Details of the
SOMAscan platform have been described elsewhere (57–63). In
brief, undepleted EDTA-plasma was diluted into three dilution
bins (0.05%, 1% and 40%) and incubated with bin-specific collec-
tions of bead-coupled SOMAmers in a 96-well plate format.
Subsequent to washing steps, bead-bound proteins were bioti-
nylated and complexes comprising biotinylated target proteins
and fluorescence-labeled SOMAmers were photo-cleaved off the
bead support and pooled. Following recapture on streptavidin
beads and further washing steps, SOMAmers were eluted and
quantified as a proxy to protein concentration by hybridization
to custom arrays of SOMAmer-complementary oligonucleoti-
des. Based on standard samples included on each plate, the
resulting raw intensities were processed using a data analysis
work flow including hybridization normalization, median signal
normalization and signal calibration to control for inter-plate
differences. The 356 samples from QMDiab were analyzed at the
WCM-Q proteomics core (64).

Glycomics

Unthawed aliquots of 356 samples were sent to Genos Ltd.
(Zagreb, Croatia) for analysis of total plasma N-glycosylation
using UPLC and IgG Fc N-glycosylation using liquid chromatog-
raphy mass spectrometry glyco-profiling. Quantification of 113
N-glycan traits in 333 samples and 60 IgG-glycopeptides in 341
samples was achieved on this platform as follows.

Total plasma N-glycan release and labeling
Glycans were released from total plasma proteins and labeled
as previously described (65). In brief, 10 ml of plasma was dena-
tured by adding 20 ml 2% (w/v) SDS (Invitrogen, USA) and the N-
glycans were released by adding 1.2 U of PNGase F (Promega,
USA). The released N-glycans were labeled with 2-aminobenza-
mide (Sigma-Aldrich, USA). Hydrophilic interaction liquid chro-
matography solid-phase extraction was used to remove free
labels and the reducing agent from the samples. In the station-
ary phase, 0.2 mm 96-well GHP filter-plates (Pall Corporation,
USA) were used. After a short incubation and washing five times
with cold 90% ACN, the samples were loaded into the wells.
After 15 min of shaking at room temperature, glycans were
eluted with 2� 90 ml of ultrapure water and then the combined
eluates were stored at �20�C until usage.

Total plasma N-glycome UPLC analysis
Total plasma N-glycans were analyzed by hydrophilic interac-
tion ultra-performance liquid chromatography (HILIC-UPLC) as
described previously (65). In brief, excitation and emission
wavelengths of 250 and 428 nm, respectively, were used to sepa-
rate fluorescently labeled N-glycans on an Acquity UPLC instru-
ment (Waters, USA). The labeled N-glycans were separated on a
Waters BEH Glycan chromatography column, 150� 2.1 mm i.d.,
1.7 mm BEH particles, with 100 mM ammonium formate having
pH 4.4 as solvent A and acetonitrile (ACN) (Fluka, USA) as sol-
vent B. The separation method works by using a linear gradient
of 30–47% solvent A at a flow rate of 0.56 ml/min during a
23-min analytical run.
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IgG isolation from plasma
IgG was isolated using protein G monolithic plates (BIA
Separations, Slovenia) as described previously (66). In brief,
approximately 70–100 ml of plasma was diluted 8� with 1� PBS
having pH 7.4, applied to the protein G plate and instantly
washed with 1� PBS having pH 7.4 to remove unbound proteins.
IgG was then eluted with 1 ml of 0.1 M formic acid (Merck,
Germany) and neutralized with 1 M ammonium bicarbonate
(Merck, Germany).

IgG enzymatic cleavage and purification
A total of 25 mg of IgG was digested overnight at 37�C with 200
ng trypsin (Worthington, USA). Then Chromabond C18 ec beads
(Macherey-Nagel, Germany) were used to purify IgG tryptic gly-
copeptides by reverse phase solid-phase extraction. C18 beads
were activated with 80% ACN that contains 0.1% trifluoroacetic
acid (TFA; Sigma-Aldich, USA) and conditioned with 0.1% TFA.
Tryptic digests were diluted 10�with 0.1% TFA, loaded onto C18
beads, and washed with 0.1% TFA. Glycopeptides were eluted
with 20% ACN containing 0.1% TFA. Eluates were dried by vac-
uum centrifugation and dissolved in 20 ml of ultrapure water.

Subclass-specific Fc IgG N-glycome liquid chromatography mass
spectrometry (LC-MS) analysis
Tryptic digests were analyzed on a nanoACQUITY UPLC system
(Waters, USA) coupled to micrOTOF-Q mass spectrometer
(Bruker Daltonics, Germany). A total of 9 ml of glycopeptides was
loaded into an Acclaim PepMap100 C8 (5 mm� 300 mm i.d.) trap
column and washed for 1 min with 0.1% TFA (solvent A) at a
flow rate of 40 ml/min. Separation was achieved on a Halo C18
nano-LC column (150 mm� 75 mm i.d., 2.7 mm HALO fused core
particles; Advanced Materials Technology, USA) using a 3.5 min
gradient at a flow rate of 1 ml/min from 18% to 25% solvent B
(80% ACN). Column temperature was 30�C. Mass spectra were
recorded from m/z 200 to 1900 with 2 averages at a frequency of
0.5 Hz. Quadrupole ion energy and collision energy of the MS
were set to 4 eV. NanoACQUITY UPLC system and the Bruker
microOTOF-Q were operated under HyStar software version 3.2.
The same software was used for data extraction.

Glycan data was first normalized (total area normalization)
and then batch corrected using Combat. Batch correction was
performed on the log-transformed normalized data. After batch
correction, the data was inverse transformed so all values were
between 0 and 100. Finally the data was z-scored. Glycan struc-
tural features are given in terms of number of galactoses (G0, G1
and G2), fucose (F), bisecting N-acetylglucosamine (N) and N-
acetylneuraminic acid (S).

Statistical analysis

Linear models were computed using the R function lm (67) with
DNA methylation (B-values) as the dependent variable and the
z-scored metabolite, lipid, protein or glycan levels as independ-
ent variables. After excluding metabolites with fewer than 50
valid detections (many of which were xenobiotics related to
medication) for the 359 samples for which methylation data
was available, 2474 metabolites were used for the analyses. Sex,
BMI, age and Houseman-based white blood cell coefficients
were used as covariates. DNA methylation can be cell-type
dependent. As we only obtained DNA from blood cells, we may
have missed organ-specific association signals. Furthermore,
methylation profiles have been shown to vary with blood cell
type (50). To account for cell type variability, we used the

Houseman method (50) to determine white blood cell distribu-
tion using our 450K DNA methylation data. Also, the first three
principle components of the genotyping data (GeneticPCs) were
added as covariates, as they represent ethnicity more accurately
than self-reported information. Mixed ethnicity in the QMDiab
study may lead to population-specific stratification and result
in inflated P-values. We have previously shown that the self-
reported ethnicity of our study is well captured by the first three
principal components (PCs) of the genotype variants (64).
Details of genotyping data for QMDiab and the computed PCs
that were used to account for ethnicity have been described
previously (64).

For associations including proteins, the first three principle
components of the proteomics data were also included
(somaPC1, somaPC2 and soma PC3) to account for a moderate

level of observed cell lysis. Although visual inspection of the
blood plasma samples did not show any signs of hemolysis,
principal component analysis of the protein data still suggested
a moderate degree of cell lysis. This approach was shown to
yield highly reproducible associations between the QMDiab
study and KORA (64).

The multiple-testing Bonferroni corrected level of signifi-
cance for metabolites was Pmetabolite ¼1.01� 10�6 (0.05/2474/20),
accounting for the number of metabolic traits (N¼ 2474) and the
number of tested DNA methylation sites (N¼ 20). Similarly, for
lipids (N¼ 225) the required Bonferroni level of significance was
Plipids¼ 1.11� 10�5 (0.05/225/20), for proteins (N¼ 1124) it was
Pprotein¼ 2.22� 10�6 (0.05/1124/20) and for glycan traits (N¼ 113)
it was Pglycan¼ 2.21� 10�5 (0.05/113/20).

Replication of CpG-glycan associations in the TwinsUK
study

The TwinsUK study was established in 1992 to recruit monozy-
gotic and dizygotic twins without selecting for particular dis-
eases or traits (68). It has been used in many epidemiological
studies and is representative of the general U.K. population for
a wide range of diseases and traits (69). DNA methylation
was measured for 808 individuals of European ancestry ran-
domly selected from the TwinsUK cohort. The Infinium

HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA,
USA) was used to measure DNA methylation. Details of experi-
mental approaches have been previously described (70) and
normalization was carried out using the ‘minfi’ R package (71).
Blood cell-type coefficients were estimated from the methyla-
tion data using the method described by Houseman et al. (50).
Total plasma glycans were prepared as described previously
(72). Glycans were normalized, and all measurements were
adjusted for age, sex and technical confounders. Total plasma
proteins glycans were available for 2752 individuals of European
ancestry, of whom 165 had also DNA methylation data. The
TwinsUK dataset included 152 females and 13 males, whose
median age was 58.30 (mean¼ 56.71, SD¼ 12.34). All individuals
were of European ancestry. Association studies were conducted
for individual CpG sites and glycans using a linear mixed model
as implemented in the lme4 R packages (73), in order to keep
into account the non-independence of twin data, and adjusting
for BMI, age, sex, Houseman-based white blood cell coefficients
and technical confounders. Outliers (measurements more than
three standard deviations from the mean) were excluded from
the analysis.
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Replication of CpG-protein associations and MR in the
KORA study

The KORA F4 study is a population-based cohort of 3080 sub-
jects living in southern Germany, who were recruited between
2006 and 2008. The DNA methylation dataset from KORA, which
was determined using the Infinium HumanMethylation450
BeadChip platform, was described in detail previously (25) and
comprises 1805 samples. The 1805 samples consisted of 880
males and 925 females whose median age was 61 (mean¼ 60.92,
SD¼ 8.87). For replication of the novel methylation–proteomics
associations, we used protein traits that were measured using
the SOMAscan platform. Of the 1805 methylation samples, only
997 had the matching proteomics measurements available. The
proteomics dataset has been described in detail previously (64).
For the MR analysis, we used all 1805 methylation samples and
their matching genotyping data for the selected instruments,
and their matching metabolomics data for the selected metabo-
lites. The KORA genotyping data was described previously in
detail (64), and the metabolomics dataset was also described
previously (25).

Mendelian randomization

We used the inverse-variance weighted method (74) as imple-
mented in the R function ‘mr_ivw: MendelianRandomization’ to
conduct MR on the original 20 CpG-metabolite associations
reported in the Petersen et al. study (25), using inverse-normal
scaled metabolite and CpG methylation data from the KORA
study (N�1800). To reduce the multiple-testing burden and
avoid testing weak associations we only selected SNPs as
instruments that showed an association with both, CpG methyl-
ation and metabolite levels. We used the BIOS QTL browser
(http://genenetwork.nl/biosqtlbrowser; date last accessed May
10, 2017) (75) to retrieve all methylation-QTLs for the 20 CpGs
investigated here. We then used the SNiPA server (http://snipa.
org) (76) to identify all overlapping metabolite-QTLs on match-
ing CpG-metabolite pairs. When multiple correlated SNPs were
available (R2 > 0.8) we selected the one with strongest
association.

Supplementary Material
Supplementary Material is available at HMG online.
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