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Model-based learning of local image features for
unsupervised texture segmentation
Martin Kiechle, Martin Storath, Andreas Weinmann, Martin Kleinsteuber

Abstract—Features that capture well the textural patterns of a
certain class of images are crucial for the performance of texture
segmentation methods. The manual selection of features or
designing new ones can be a tedious task. Therefore, it is desirable
to automatically adapt the features to a certain image or class of
images. Typically, this requires a large set of training images with
similar textures and ground truth segmentation. In this work, we
propose a framework to learn features for texture segmentation
when no such training data is available. The cost function
for our learning process is constructed to match a commonly
used segmentation model, the piecewise constant Mumford-Shah
model. This means that the features are learned such that they
provide an approximately piecewise constant feature image with
a small jump set. Based on this idea, we develop a two-stage
algorithm which first learns suitable convolutional features and
then performs a segmentation. We note that the features can be
learned from a small set of images, from a single image, or even
from image patches. The proposed method achieves a competitive
rank in the Prague texture segmentation benchmark, and it is
effective for segmenting histological images.

Index Terms—Texture segmentation, feature vector, geometric
optimization, Mumford-Shah model, unsupervised learning

I. INTRODUCTION

Texture segmentation is a frequently occurring and chal-
lenging problem in image processing and computer vision.
For textured images – such as many natural images [1, 2],
histological images [3], or crystal structures [4] – the seg-
mentation is typically performed in two stages. In the first
stage, a (vector-valued) feature image is derived from the
image. The corresponding features are designed to capture
the local statistical properties or oscillatory patterns of a
texture. Many classical features are based on linear filters
[5], for example Gabor filters [6], wavelet frames [7], win-
dowed Fourier transform [8], followed by a pointwise non-
linearity [9]. Other popular features are based on local spectral
histograms [10], morphological filters [11], local statistical
descriptors [12] or local binary patterns [13]. In the second
stage, the feature image is segmented. Popular choices include
k-means clustering [6, 7] or mean shift algorithms [14]. More
sophisticated (variational) segmentation models additionally
enforce spatial regularity of the segment boundaries: here, a
prominent example is the piecewise constant Mumford-Shah
model (or Potts model) [15, 16]; it has been used for texture
segmentation, for instance in [4, 17–19].
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A. Motivation and related work

Besides the aforementioned works, there is a series of more
recent contributions to unsupervised texture segmentation:
Todorovic and Ahuja create a tessellation of texture super-
pixels (texels) and cluster them by a multiscale segmentation
and a meanshift algorithm [12]. Galun et al. [20] utilize a
multiscale aggregation of filter responses and shape elements.
Haindl and Mikes employ a Gaussian MRF texture model
[21] or a 3D auto regressive model [22], and they perform
segmentation based on a Gaussian mixture model. Scarpa et
al. [23] use features based on Markov chains, and then seg-
ment by recursively merging them according to their mutual
interaction. Yuan et al. [24] use local spectral histograms as
feature vectors and formulate the segmentation problem as a
multivariate linear regression. In a follow-up work [25], non-
negative matrix factorization is used for segmentation. Storath
et al. [19] utilize monogenic curvelets as features and perform
segmentation based on the piecewise constant Mumford-Shah
model. The method of Panagiotakis et al. [26, 27] is based
on voting of blocks, Bayesian flooding and region merging.
Mevenkamp and Berkels [4] use local Fourier features, which
are tailored to images with crystal structures, and segment
using a convex relaxation of the piecewise constant Mumford-
Shah model. McCann et al. [3] utilize features derived from
local histograms, and segment using nonnegative matrix fac-
torization and image deconvolution.

It is a fundamental issue that the performance of the features
depends strongly on the class of images or even on the single
image. For instance, good features for a natural image may
perform poorly on a histological image. Even more, good
features for one natural image may not perform as well
on another natural image. Thus, the design of the features
is a critical task and there are several approaches to this.
A straightforward idea is to simply increase the number of
features hoping that at least some features are well suited for
the texture patterns of the processed image. Unfortunately, the
computational effort for segmenting large feature spaces is
very high in practice, in particular for segmentation methods
which enforce regularity of the boundaries. To circumvent
these problems, a commonly used strategy is to manually
select a subset from the aforementioned larger set of features;
see for example [18, 25]. However, the manual selection
requires human supervision which typically results in an
expensive, time-consuming task. In principle, for each new
class of images one should reevaluate this selection. To avoid
manual design of features for each image or each class
of images, it seems natural to learn them from data. In a
supervised learning setup, where a sufficiently large training
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set of images with similar characteristics and a ground truth
segmentation is available, one can use generic methods; for
example the super-pixelation based method of [28] or more
recent methods based on convolutional neural networks [29].
In the present unsupervised setup, such a training set is
not available. As a consequence, the challenge is to find a
suitable objective function for the learning task, and a practical
numerical procedure to optimize the features accordingly.

B. Contribution

In this work, we develop a method for unsupervised tex-
ture segmentation where the features are learned from non-
annotated data, i.e., from images without ground truth seg-
mentation. The main contributions of this work are (i) a model
for feature learning of image features for texture segmentation
in the absence of annotated training data, and (ii) a practical
algorithm for unsupervised texture segmentation based on that
model.

Regarding the basic model (i), our starting point is the
observation that features are often designed such that the
feature image is approximately constant on a texture segment.
This allows utilizing segmentation algorithms based on a local
homogeneity assumption. The basic idea of our model is to
learn convolutional features in a way that they produce approx-
imately piecewise constant feature images. Besides reasonable
constraints on the filters, such as their norm and mutual
coherence, the objective is to minimize the cost function of
the popular piecewise constant Mumford-Shah segmentation
model, i.e. the total length of the discontinuity set of the
corresponding feature image. Regarding (ii), learning filters
based on the proposed model turns out to be a challenging
optimization problem because it involves a non-smooth and
non-convex cost function on the (non-convex) unit sphere. To
make it computationally tractable, we decompose and relax
this model: we obtain the two stages of filter learning and
of segmentation. For the relaxed learning stage, we employ a
smooth (yet non-convex) approximation of the cost function.
To minimize this cost function, we adapted a geometric
conjugate gradient descent method proposed in [30, 31] such
that it fits with the proposed model. For the segmentation
stage, we employ the Lagrange formulation of the piecewise
constant Mumford-Shah model. In particular, implied by the
model, we consider a data term based on the Mahalanobis
distance. To solve the corresponding problem, we extended
the approach proposed in [32, 33] in order to be able to deal
with the Mahalanobis distance. Finally, a post-processing as
in [25] merges small spurious regions to large ones.

We evaluate our method on different types of textured
images. A standard benchmark for texture-based segmentation
is the Prague texture segmentation benchmark [34]. Here, our
method achieves a top rank. In particular, the proposed method
gives significantly better results than many earlier methods
[12, 20–24], and slightly better results than the more recent
methods proposed in [4, 25]. Further, we are competitive with
the currently leading method PMCFA [26, 27]. Besides, our
approach provides satisfactory segmentation results on the data
set of histological images of [3]. We emphasize that, although

this is a quite different image class, only minor adjustments
have been necessary. This shows in particular the flexibility of
our method, and the potential for segmenting quite different
classes of textured images.

II. A MODEL FOR UNSUPERVISED FILTER LEARNING FOR
TEXTURE SEGMENTATION

As mentioned in the introduction, our goal is to learn
suitable features for texture segmentation when no training
data with ground truth is available. Here, we focus on learn-
ing convolutional features. Convolutional filters are a natural
choice because they describe the class of linear translation-
invariant filters. A feature image is created by applying linear
filtering followed by a (pointwise) nonlinear transform. More
precisely, given an image U ∈ RM×N , we consider K
different convolution filters Φ1, . . . ,ΦK , and the resulting
filtered images, given in Matlab-type notation by

F:,:,1 = Φ1U, . . . , F:,:,K = ΦKU.

In short-hand notation, we write F = ΦU. Then, to each
filter response, the same nonlinear transformation σ is applied
pixel wise. In general, σ is chosen to be symmetric, i.e.
σ(x) = σ(−x). Further, it is required that it has fast decaying
slope for large x in order to be robust towards outliers in
the filter responses. The nonlinear transform has proven to
be beneficial for texture segmentation: according to [9], its
purpose is to translate differences in dispersion characteristics
into differences in mean value. For further details on choosing
σ we refer to [9]. In this paper we use a logarithmic non-
linearity of the form σ(x) := log(1 + µx2) with the free
parameter µ > 0. The nonlinear transform is considered
to be fixed, and we are interested in finding suitable linear
convolution operators Φ1, . . . ,ΦK , which define the features

V = σ(ΦU).

Here, V and ΦU are three dimensional arrays in RM×N×K ,
and σ has to be understood as componentwise application of
its scalar version.

Since we are in an unsupervised setup, we have no training
data (i.e. no ground truth segmentation) for learning the
Φ1, . . . ,ΦK from. In particular, there is no straightforward
way to devise a loss function for the learning process. We
propose to utilize a loss function based on the segmentation
model, which in our case is the piecewise constant Mumford
Shah or Potts model: ideally, the features V are approximately
constant on the texture, and the segment boundaries are
sufficiently regular. The idea is to learn suitable filters Φ in a
way such that their responses (after applying the non-linearity)
on the segments are approximately constant. We propose to
minimize as a cost function the length of the discontinuity set
of V, denoted by ‖∇V‖0. More precisely, we propose as a
model for choosing the convolution kernels Φ1, . . . ,ΦK ,

min
V,Φ
‖∇V‖0 subject to d(V, σ(ΦU)) ≤ ε, (1)

with ε > 0. Here, the minimum is taken with respect to both
Φ,V, where the Φk have unit length, zero mean, and fulfill
an incoherence and a certain center condition. (We elaborate
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on these constraints in Section III-D.) The symbol d denotes
a metric, in our case the Mahalanobis distance as explained
in Section IV. We note that an optimal pair Φ∗,V∗ of Eq. (1)
already consists of an optimal filter bank Φ∗ together with a
corresponding optimal segmentation V∗.

The model Eq. (1) is computationally hard to access. In
particular, the simultaneous optimization w.r.t. both Φ and
V is extremely demanding. As an approximative strategy, we
propose a two stage approach as follows. As a first step, we
optimize the filters Φ using a relaxation of Eq. (1) as described
in Section III. For the second step, we notice, that for fixed
Φ, the Lagrange form of Eq. (1) is the piecewise constant
Mumford-Shah model. Therefore, we perform a piecewise
constant Mumford-Shah segmentation w.r.t. the Mahalanobis
distance (described in Section IV) for the obtained feature
image. We note that even this second step of solving the
piecewise constant Mumford-Shah problem is known to be
an NP hard problem on its own.

For notational brevity, we describe the derivation of our
method on gray-valued images U ∈ RM×N . The derivation
for multi-channel images follows the same basic steps. The
relevant modifications regarding the operators Φ and the jump
penalty are described in Section III-F.

III. LEARNING STAGE

In this section, we discuss how to learn the filters Φ from
a given image. As a first step, we present a near anisotropic
discretization of the jump penalty Eq. (1) in Section III-A.
Then, we relax the model Eq. (1) to obtain a computationally
better accessible surrogate problem to perform the learning
task in Section III-B. Further, we incorporate learning from
patch samples in Section III-C, and explain how to deal
with the constraints imposed on the filters in Section III-D,
respectively. Then, we sum up the simplified learning problem
and discuss its numerics in Section III-E. Finally, we explain
how to generalize the approach for multi-channel images in
Section III-F.

As pointed out, we focus on sets of linear filters. Further,
we assume that each filter has a fixed number of n coefficients
Φk ∈ Rn.

A. Near isotropic discretization

First, we deal with a near isotropic discretization of the
jump penalty ‖∇V‖0. As in [33], we use a finite difference
discretization of the form

‖∇V‖0=

S∑
s=1

ωs‖∇asV‖0. (2)

The vectors as ∈ Z2 \{0} belong to a finite difference system
N with S ≥ 2 elements. For a ∈ Z2, we let

‖∇aV‖0= |{i = (i1, i2) : |Vi,: − Vi+a,:|2 6= 0}|. (3)

where we use the notation Vi,: = (Vi,1, ...,Vi,K) ∈ RK to
denote the data located in the pixel with coordinates i ∈ Z2.
Further, we use the symbol |x|2 to denote the Euclidean

norm |x|2= (
∑
j x

2
j )

1/2. Here we use an eight-connected
neighborhood represented by the finite difference system

N = {(1, 0), (0, 1), (1, 1), (1,−1)}. (4)

with the weights ω1/2 =
√

2 − 1 and ω3/4 = 1 −
√
2
2 . For

details, we refer to [33, 35].

B. Relaxation

Since solving Eq. (1) is computationally extremely hard, we
impose the following simplifications to make it tractable: For
the feature learning part, we propose to replace the strict `0
term in Eq. (3) by the smooth non-convex sparsity promoting
surrogate function

‖∇aV‖0,ν=
∑
i

log(1 + ν|Vi,: − Vi+a,:|22), (5)

which is a good approximation of the jump penalty with
equality in the limit of its parameter ν, cf. [31]. Further, we let
ε = 0 in Eq. (1) which leads to minimizing the (preliminary)
cost function

f(Φ) =

S∑
s=1

ωs‖∇asσ(ΦU)‖0,ν (6)

for learning the filters. We note that the latter assumption frees
us from performing segmentation during learning and thus
allows us to proceed sequentially instead of in an alternating
way. Further, the relaxation of the jump penalty imposes less
penalty for small variations in the data which is due to the
absence of regularization and favorable compared with the
jump term here.

The non-linear transformation σ of the filter responses in
Eq. (6) is realized via σ(x) := log(1 + µx2) with parameter
µ > 0. Note, that σ is smooth and symmetric, and that it
allows to attenuate outliers in the filter responses.

C. Learning from patch samples

We choose the training samples as a subset of image
locations (and not all patches given by the image). This can
be motivated as follows: first, when learning convolutional
filters by minimizing Eq. (6) we evaluate the inner products
of each filter kernel Φk with the pixel neighborhood at
all image locations (i, j) and sum them up w.r.t. i, j. Due
to overlap, calculating the whole sum results in redundant
computations. Secondly, since the data of interest consists of
texture segments, we expect repeating patterns which in turn
makes the full patch set look even more redundant. Based on
this intuition, a randomly sampled subset of patches should
suffice to learn the features from a texture image. Hence, we
only consider a fixed number M of randomly sampled patches
as training set.

Formally, we modify the data in the objective function
Eq. (6) from the jump set over features of the entire image to
the empirical mean of a set of randomly sampled super-patches
Ui and we obtain

f(Φ) =
1

M

M∑
i

S∑
s=1

ωas‖∇asσ(ΦUi)‖0,ν . (7)
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Fig. 1: Illustration of an extracted super patch Ui and its neighboring patches
Uas

i with respect to the utilized finite difference system N .

Here, the super-patches’ support templates are extensions of
the
√
n×
√
n support template of the filters which additionally

take the considered finite difference stencil into account. We
refer to Figure 1 for a detailed visualization. For first order
finite differences, a corresponding one pixel neighborhood
of the considered

√
n ×
√
n template is sufficient. We then

generate different crops from these super-patches according to
the direction of the finite difference discretization and evaluate
the inner products w.r.t. these crops (and apply σ). Finally, we
apply the respective finite difference operator to the obtained
result.

D. Constraints

In order to avoid trivial solutions such as the zero kernel
and redundancies, we impose several constraints on the filters.

1) Norm and coherence constraints: Following [30], we
impose norm and coherence constraints. To prevent the filter
coefficients from shrinking to zero, we require the Euclidean
norm of each filter to equal one, i.e.,

‖Φk‖2=

√√√√ n∑
i=1

(Φk)2i = 1, k = 1, . . . ,K. (8)

Here, n is the number of coefficients in a single filter. For
brevity, we consider 2D filters of quadratic support with size√
n×
√
n. The extension to filters supported on a rectangle is

obvious. Geometrically, the norm constraint implies that each
filter is an element of the (n − 1)-dimensional sphere Sn−1
in Rn, and that the filter set constitutes a product of K such
spheres. This structure is commonly referred to as oblique
manifold, i.e. matrices in Rn×K with normalized columns,
denoted by

Φ> ∈ S×Kn−1.

In addition, we use the coherence penalty, cf. [30],

r(Φ) = −
∑

1≤i≤j≤K

log(1− 〈Φi,Φj〉2) (9)

to well separate these vectors on the sphere. In particular, this
soft constraint avoids pairwise collinear filters. We note that
a minimum of that function is clearly achieved if the filters
are orthogonal to each other, i.e., if the filter set lies in the
corresponding Stiefel manifold. However, in the context of
sparse coding, imposing such orthogonality directly as a hard
constraint has turned out to be too restrictive, see for instance
[30, 31].

(a) (b)

Fig. 2: Effect of the proposed central moment constraint. Two sets of filters
learned from the same gray-scale cartoon image. (Dark and light pixels
represent negative and positive filter coefficients respectively, while neutral
grey indicates coefficients equal or close to zero.) The filters in (a) were
learned with the coherence constraint from Eq. (9) but without the centroid
constraint in Eq. (13). In contrast, the filters in (b) were learned using both
the coherence constraint Eq. (9) and the central moment constraint Eq. (13).
It is clearly visible that the effective support sizes of many filters in (a) are in
fact much smaller than 9×9, and that some shifted versions of the same filter
can be identified among all filters. These undesirable effects are significantly
reduced in (b).

2) Zero-mean constraint: The mean over the patch is a
distinguished feature with special discriminative power. We
consider it a seeded filter in the filter bank and learn the other
filters in its orthogonal complement. This means that we learn
filters with vanishing first order moments, i.e., filters whose
coefficients sum up to zero,

n∑
i=1

Φk,i = 0. (10)

We note that these filters do not see the patch mean which
might vary, for instance, due to small differences in lighting
or contrast. Geometrically, the filters that satisfy Eq. (10) are
contained in the hyperplane which contains the origin and
which is orthogonal to 1n = (1, . . . , 1). Hence, the set of
feasible solutions is a Riemannian manifold as well [31]. We
denote it by

R =
(
Sn−1 ∩ 1⊥n

)×K
(11)

in the following. The Riemannian structure is important for
the optimization procedure used later on.

3) Central moment constraint: It might happen that there
are two minimizers of Eq. (6), which adhere to norm and
coherence constraints, and which are shifted versions of each
other; see Figure 2a. Also note that, there, the effective support
size of many filters is much smaller than the prescribed
maximum 9× 9 filter size.

To avoid learning shifted versions of the same filter, we
propose a constraint on the centroid of the squared filter
coefficients. Intuitively speaking, by penalizing off-centered
centroids of the pointwise squared (real-valued) filters, we
prevent learning filters that are shifted versions of their cen-
tered twin. To be more precise, we consider a filter Φk and
notice that, by the employed normalization, we have Φ̂>k Φ̂k

=
∑
i

∑
j(Φk)2ij = 1 where Φ̂k denotes the vectorized

2D filter Φk. Thus, the pointwise square Ψk defined by
(Ψk)ij = (Φk)2ij can be viewed as a discrete 2D probability
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distribution. Hence, we may compute the components of the
center of mass of this distribution by

c̄k,x = Φ̂>k PxΦ̂k, c̄k,y = Φ̂>k PyΦ̂k. (12)

Here Px is a diagonal matrix realizing the first moment
with respect to the x-direction

∑
ij i(Ψk)ij , and Py is given

analogously. We further employ the normalization ck,x =

(a) (b)

Fig. 3: The coefficients (Φ1)ij of the first filter Φ1 from the learned set
Φ depicted in Figure 2a without the centroid constraint (a) and its mass
distribution (b). The red circle denotes the centroid (c1,x, c1,y).

(c̄k,x −
√
n+1
2 )/

√
n−1
2 ) and the analogous normalization for

ck,y to obtain quantities ck,x, ck,y centered at 0 with range
between −1 and 1. For a filter centered around the origin, we
require ck,x, ck,y to be close to zero. To this end, we here use
the (convex) penalty

h(Φk) =

K∑
k=1

− log[(1− c2k,x)(1− c2k,y)] +
1

2
(ck,x − ck,y)2.

(13)

The effects of the central moment conditions are illustrated in
Figure 2 and in Figure 3.

E. Simplified learning problem and numerical optimization

Summing up the considerations of this section, we propose
the relaxed objective Eq. (7) with the soft coherence constraint
Eq. (9) and the soft shift constraint Eq. (13) which reads

E(Φ) = f(Φ) + λr(Φ) + κh(Φ). (14)

Here λ, κ are positive parameters. The learning objective
Eq. (14) is a smooth non-convex function. The hard constraints
(norm constraints, vanishing first moments) are encoded in the
manifold R defined by Eq. (11). Equipped with this notation,
the learning task reads

Φ? ∈ arg min
Φ>∈R

E(Φ). (15)

In order to solve Eq. (15) numerically, we apply an efficient
scheme that exploits the geometric structure of the manifold
R [30, 31]. For a general introduction to gradient methods on
matrix manifolds, we refer to [36]. The approach of [30, 31]
consists of a geometric variant of the conjugate gradients
method with backtracking line-search and an Armijo step-
size rule. For a detailed explanation, we refer the reader to
the aforementioned references. In our setup, the steps of one
iteration are as follows:

(a) cartoon image (b) Brodatz 4 (c) Brodatz 12

Fig. 4: Filter sets (bottom) learned from different input images (top).

1) compute the Euclidean gradient of the learning function
Eq. (14) at the current estimate (the derivation of the
Euclidean gradient can be found in the appendix);

2) project the Euclidean gradient onto the tangent space of
the manifold at the estimate to obtain the Riemannian
gradient;

3) compute the new descent direction by linear combination
of the Riemannian gradient and the descent direction of
the previous iteration via parallel transport;

4) perform a backtracking line search along the geodesic in
the descent direction emanating from the current estimate
to obtain an optimal step size using the Armijo rule.
That means, we iteratively reduce the step size until the
objective function decreases;

5) update the estimate.
We start the procedure with a random initialization in R and
iterate until the Frobenius norm of the Riemannian gradient
falls below the threshold of 10−5. For illustration purposes,
Figure 4 depicts the learned filter sets for different images.

F. Extension to vector-valued images

So far, we only considered gray-scale texture images
whereas textured images often have multiple channels, for
instance RGB color images. We extend our method for the
case when the image U is vector-valued with L channels, that
is, if Uij ∈ RL. Let Uas

i,l the i-th patch cropped according
to direction as in channel l ∈ 1, . . . , L. Intuitively, different
channels of an image should require different filter sets such
that spatial homogeneity of filter responses can be achieved.
To that end, we first extend the formulation of the patch-based
filter operation

ΦkU
as
i =

Φk,1 0 0

0
. . . 0

0 0 Φk,l


Uas

i,1
...

Uas
i,l

 . (16)

In this work, we consider RGB images as examples of multi-
channel images. Since the red, the green and the blue channels
are in general highly correlated, we assume that the patch
structure within each channel will be similar and set Φk,R =
Φk,G = Φk,B = Φk. Thus, the learned filters act on the
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different channels in the same way. We note that this does not
hinder jumps in a single channel to be detected.

IV. SEGMENTATION STAGE

After relaxing the model Eq. (1) in Section III to determine
suitable filters Φ, we here discuss the segmentation given a set
of filters. To segment the vector-valued feature image σ(F) we
consider the (formal) Lagrangian version of the discretization
of Eq. (1) for fixed Φ to obtain the problem

argmin
V

γ

S∑
s=1

ωs‖∇asV‖0+d(V, σ(F)). (17)

Here, γ > 0 is a parameter for tuning the trade-off between
data fitting and regularity, and F are the filter responses of U,
i.e., F = ΦU.

A. Filter weighting based on the Mahalanobis distance

We recall that all filters were constrained to have unit norm
in the learning stage. As a result, all filter outputs are weighted
equally regardless of their discriminative power. To account for
this, we utilize a data fidelity term based on the Mahalanobis
distance d. Here we use the covariance matrix of all feature
vectors (after applying the non-linearity). With slight abuse of
notation, let

Σ = cov(G)

the K × K covariance matrix of all feature vectors in G =
σ(F). To define the corresponding Mahalanobis distance, we
write ΣG for the action of a K × K matrix Σ on the third
index of the feature image G, i.e., (ΣG)ijk = (ΣGij)k. Then,
the Mahalanobis data fidelity reads

d(V,G) =
∑
ij

|(Σ−1/2(Vij − Gij)|22

= ‖Σ−1/2(V − G)‖22.
(18)

We observed that the results slightly improve when we nor-
malize Σ−1/2 by maxij (Σ−1/2)ij .

B. Variational partitioning of the feature images

By the previous considerations in Section IV-A, we have to
solve the minimization problem Eq. (17) with the Mahalanobis
data term. To that end, we plug V = Σ1/2U into Eq. (17) to
obtain the problem

argmin
U

γ

S∑
s=1

ωs‖∇asΣ1/2U‖0+‖U −Σ−1/2G‖22. (19)

We observe that the `0 prior is invariant to invertible matrices
acting in the third dimension, i.e., ‖∇asΣ1/2U‖0= ‖∇asU‖0.
Therefore, the problem Eq. (19) is equivalent to the problem

U∗ = argmin
U

γ

S∑
s=1

ωs‖∇asU‖0+‖U −Σ−1/2G‖22. (20)

We observe that this constitutes a classical (vector-valued)
piecewise constant Mumford-Shah problem for data Σ−1/2G
with an `2 norm data term. This is a challenging optimization

(a) (b)

Fig. 5: In a postprocessing step, small spurious segments are merged into
their neighboring segments. (a) Raw segmentation; (b) final segmentation after
region merging.

problem in its own, but there are well-working approximate
strategies available. Here, we utilize the ADMM-based method
developed in [32, 33]. Although computationally more de-
manding than other recent approaches [37–39], this method
currently gives the best quality in practice; see the comparison
in [39].

C. Obtaining the label map

The result obtained from treating problem Eq. (18) is a
vector-valued piecewise constant function. To obtain the final
label map (scalar field), we simply utilize the sum of the
vector in a pixel as (real-valued) index for a segment, i.e.,
we sum up the coefficients along the feature vector at every
pixel location. We observe that segment boundaries often
lead to high filter responses which results in small spurious
segments at the boundaries. To remove these, we adopt the
simple post-processing step from [25], where small regions
are merged with neighbors based on their boundary ratios.
Figure 5 depicts the final segmentation before and after the
boundary refinement step.

V. EXPERIMENTAL RESULTS

We implemented the proposed learning and segmentation
method in Matlab. For the segmentation step described in
Section IV-B, we used of the toolbox Pottslab1. In addition,
we utilize the region merging implementation from [25] as
post-processing. The experiments were conducted on a desktop
computer with an Intel i7-3930K processor with 3.2 GHz.

We compare the segmentation results produced by our
method with existing algorithms on two different datasets.
For a quantitative comparison, we use the well-known Prague
texture segmentation dataset which comprises mosaics of color
and grayscale textures. In addition, we show that the same
method is also effective in segmenting the histology images
from [3].

A. Prague texture dataset

The Prague texture segmentation dataset [40] consists of 80
texture mosaics which are synthetically generated from ran-
dom compositions of 114 different textures from 10 thematic

1Available at http://pottslab.de.

http://pottslab.de
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TABLE I: Results on the Prague Color Texture Dataset (ICPR2014 Contest). Each row corresponds to a segmentation quality metric, and the arrow indicates
if high or low values are better. The first rank is marked by boldface, the second rank is marked by an asterisk.

Method TS SWA GMRF AR3D TFR TFR+ RS FSEG PMCFA PCA-MS Proposed

↑ CS 59.13 27.06 31.93 37.24 46.13 51.25 46.02 69.02 75.32* 72.27 77.73
↓ OS 10.89 50.21 53.27 59.53 2.37 5.84* 13.96 17.30 11.95 18.33 15.92
↓ US 18.79 4.53 11.24 8.86 23.99 7.16 30.01 11.85 9.65 9.41 6.31*
↓ ME 10.45 25.76 14.97 12.54 26.70 31.64 12.01 6.28 4.57 4.19* 3.93
↓ NE 9.93 27.50 16.91 13.14 25.23 31.38 11.77 5.66 4.63 3.92 3.92
↓ O 33.01 36.49 35.19 27.00 23.60 35.11 10.79 4.51 7.25* 7.68
↓ C 85.19 12.18 11.85 26.47 22.42 29.91 13.75 8.87* 6.44 24.24
↑ CA 54.84 57.91 59.46 61.32 67.45 58.75 77.50 83.50 81.13 82.80*
↑ CO 60.67 63.51 64.81 73.00 76.40 68.89 84.11 88.16 85.96 86.89*
↑ CC 88.17 89.26 91.79* 68.91 81.12 69.30 86.89 90.73 91.24 93.65
↓ I. 39.33 36.49 35.19 27.00 23.60 31.11 15.89 11.84 14.04 13.11*
↓ II. 2.11 3.14 3.39 8.56 4.09 8.63 2.60 1.47 1.59 1.50*
↑ EA 66.94 68.41 69.60 68.62 75.80 65.87 83.99 88.10 87.08 88.03*
↑ MS 53.71 57.42 58.89 59.76 65.19 55.52 78.25 83.98 81.84 83.98
↓ RM 6.11 4.56 4.66 7.57 6.87 10.96 4.51 3.76* 4.45 3.27
↑ CI 70.32 71.80 73.15 69.73 77.21 67.35 84.71 88.74* 87.81 89.03
↓ GCE 17.27 16.03 12.13 15.52 20.35 11.23 10.82 6.51 8.33 7.40*
↓ LCE 11.49 7.31 6.69 12.03 14.36 7.70 7.51 3.92 5.61* 5.62
↓ dD 18.52 10.13 9.06* 8.57
↓ dM 23.67 6.41 5.88* 5.30
↓ dVI 13.31 15.80 14.54* 14.88

categories. Color (RGB) and grayscale versions of this dataset
are available along with the respective ground truth segment
map and each texture mosaic is of size 512× 512 pixels and
the number of segments varies between 3 and 12. For a quan-
titative comparison, we produce segmentations of the large
color texture dataset – used in the ICPR 2014 contest – and
evaluate them against their ground truth using region-based
metrics correct segmentation (CS), over-segmentation (OS),
under-segmentation (US), missed error (ME), noise error (NE);
pixel-based metrics omission error (O), commission error (C),
class accuracy (CA), recall (CO), precision (CC), type I error
(I.), type II error (II.), mean class accuracy estimate (EA),
mapping score (MS), root mean square proportion estimation
error (RM), comparison index (CI); and consistency-based
metrics global consistency error (GCE) and local consistency
error (LCE). If available, we also report the Mirkin metric
(dM), Van Dongen metric (dD) as well as the variation of
information (dVI). For computing these metrics, we use the
benchmark provided by the authors of the Prague dataset at
[34] and where a detailed definition of above metrics can be
found.

For each of the 80 texture mosaics in the benchmark, we
learn a separate set of filters Φ and compute the segmentation
based on the these filter outputs subsequently. The parameters
for learning the features and performing the Potts segmentation
are set empirically and remain fixed for all instances in the
dataset. The learned filter sets contain K = 41 filters of size
9 × 9 each and are learned from M = 50 000 patches that
are drawn from the mosaic (uniform random sampling). In
principle, the objective function Eq. (1) does not require the
filters Φ1, . . . ,ΦK to be of equal size. For simplicity, we used
filters of identical size, and note that filters of smaller size
are included in the utilized filter set by zero-padding. As is
common practice in patch-based methods (for example [41]),
we weight all pixels in the patch by a Gaussian mask to give
more weight to the central pixel which leads to slightly better
localized segment boundaries. In the learning problem (15) we

set the parameter of the non-linearities to µ = ν = 2000 and
the weights of the coherence and moment-centering penalties
to λ = 10 and κ = 10. In the Potts segmentation that
follows we require the weight that trades data fidelity against
spatial homogeneity of the solution and therefore effectively
influences the degree of over-segmentation. Empirically, we
find γ = 0.03 to provide a good trade-off between over- and
under-segmentation over all benchmark images. The texture
mosaic needed in average 35 min for the learning stage and
9 min for the segmentation stage.

To assess the performance of our approach, we compare
our results to several state-of-the-art algorithms that were
used for segmentation on the Prague texture mosaics such
as the Texel-based Segmentation (TS) [12], Segmentation by
Weighted Aggregation (SWA) [20], Gaussian MRF Model
With EM (GMRF) [21], 3-D Auto Regressive Model With
EM (AR3D) [22], Texture Fragmentation and Reconstruction
(TFR) and (TFR+) [23], Regression-based Segmentation (RS)
[24], Factorization-Based Texture Segmentation (FSEG) [25],
Priority Multi-Class Flooding Algorithm (PMCFA) [26, 27]
and Variational Multi-Phase Segmentation (PCA-MS) [4]. Ta-
ble I provides the segmentation accuracy benchmark results as
reported on the benchmark website [34] and in [25] as well as
in [4]. In addition, Figure 6 depicts some of the segmentations
produced by the four top-performing methods including our
results for visual comparison.

B. Parameter sensitivity

We explore the sensitivity of our method with respect to
the most influential parameters. To that end, we conduct
an evaluation of our method with varying parameters on a
representative subset of images from the Prague benchmark
dataset drawn from the different categories all, bark, flowers,
glass, nature, stone and textile. We examine the filter size, the
number of learned filters K, the weight of the filter coherence
penalty λ, and the parameters µ and ν of the employed non-
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Fig. 6: Exemplary segmentation results on the Prague texture segmentation dataset. From top to bottom: input image, ground truth, FSEG [25], PMCFA
[26, 27], PCA-MS [4] and the proposed method.

linearities. We vary each of them while keeping the others
fixed at the values described in Subsection V-A.

We start with the parameter λ which controls the maximum
coherence between all filter pairs and which is given in
Eq. (15). Table II shows that if λ is close to zero which effec-
tively disables this constraint, segmentation results deteriorate
significantly. For λ larger than 1, we observe only negligible
changes in segmentation results across all quality metrics.
These results underline the importance of the constraint in
our learning objective but also reveal that the choice of its
exact value is not critical as long as it is large enough.

Next, we investigate the influence of the number of filters
K. We conclude from Table III that the segmentation quality
increases for up to 41 filters and deteriorates for larger
numbers. The initial improvement might be explained by the
increased discriminatory power obtained from a larger number
of different filters. The deterioration of the quality for a larger
number of filters might be explained by an over-segmentation
caused by irrelevant features.

We continue by studying the influence of the filter size. The
choice of the filter size should relate to the scale of the texture.
Although the Prague texture mosaics expose a relatively large
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TABLE II: Sensitivity w.r.t. the filter coherence penalty λ

λ 0.1 1 5 10 15 20 50 100

↑ CS 57.38 72.58 70.97 71.59 72.54 65.85 68.56 75.70
↓ OS 9.67 18.64 18.69 18.73 18.63 18.71 18.67 14.81
↓ US 34.65 7.98 3.66 7.78 3.67 14.58 11.72 7.98
↓ ME 2.97 5.19 10.04 9.26 10.04 5.19 5.19 5.19
↓ NE 0.42 5.97 10.42 10.13 10.41 6.14 6.23 5.96
↓ O 26.14 9.44 12.12 12.97 10.04 11.57 11.36 9.34
↓ C 26.22 31.05 31.07 31.19 31.03 31.84 33.88 31.12
↑ CA 68.49 79.52 78.90 79.59 79.75 75.48 77.23 81.27
↑ CO 78.31 83.99 83.13 84.34 84.14 81.47 82.55 85.80
↑ CC 74.22 90.96 91.19 90.45 90.77 86.06 88.20 90.96
↓ I. 21.69 16.01 16.87 15.66 15.86 18.53 17.45 14.20
↓ II. 5.00 1.49 1.38 1.54 1.52 1.99 1.88 1.52
↑ EA 74.10 85.14 84.67 85.41 85.37 81.54 83.22 86.58
↑ MS 69.46 79.69 79.14 79.79 79.78 75.78 77.27 81.47
↓ RM 7.32 3.85 3.83 3.79 3.73 4.71 4.09 3.59
↑ CI 75.11 86.22 85.81 86.33 86.33 82.58 84.23 87.42
↓ GCE 6.34 8.87 8.69 9.86 8.80 9.58 9.78 8.77
↓ LCE 5.31 5.90 5.99 6.83 6.12 5.95 6.05 5.78
↓ dD 12.76 9.99 10.40 10.21 9.93 11.19 10.71 9.06
↓ dM 11.19 5.39 5.48 5.47 5.31 6.10 5.87 4.96
↓ dVI 14.02 15.37 15.50 15.27 15.33 15.15 15.28 15.17

TABLE III: Sensitivity w.r.t. the number of filters K

K 11 21 31 41 61 81 122 162

↑ CS 32.37 52.23 70.25 72.59 59.13 43.36 17.43 0.47
↓ OS 6.93 13.94 15.13 18.73 14.74 16.10 21.06 0.00
↓ US 66.81 28.78 13.65 7.78 8.49 3.65 30.43 46.97
↓ ME 0.15 14.43 11.91 5.19 16.14 35.38 29.49 51.15
↓ NE 0.00 14.29 12.53 6.18 15.99 35.68 27.38 47.06
↓ O 51.79 42.58 14.76 10.17 17.22 27.10 52.82 76.49
↓ C 36.68 31.94 22.52 31.26 31.78 46.46 76.02 64.75
↑ CA 44.39 61.58 75.33 80.02 71.65 63.04 38.22 21.89
↑ CO 59.30 71.38 82.67 84.27 77.58 70.48 49.76 38.53
↑ CC 46.42 68.23 81.84 91.25 88.68 84.58 68.67 42.50
↓ I. 40.70 28.62 17.33 15.73 22.42 29.52 50.24 61.47
↓ II. 14.82 6.25 2.83 1.38 2.16 3.69 9.53 15.08
↑ EA 49.77 67.15 80.61 85.61 78.86 71.84 49.06 31.98
↑ MS 39.39 58.60 75.53 80.28 72.36 62.84 32.61 11.44
↓ RM 17.04 10.77 5.81 3.82 5.27 6.13 14.13 18.71
↑ CI 51.20 68.39 81.38 86.62 80.79 74.35 53.51 35.65
↓ GCE 3.21 7.71 7.75 8.65 12.27 17.57 19.34 25.64
↓ LCE 2.27 5.35 6.46 5.88 7.88 12.06 14.01 17.93
↓ dD 21.09 16.48 11.23 9.80 14.39 19.70 30.97 37.73
↓ dM 38.36 18.27 7.81 5.28 7.77 11.91 31.97 43.74
↓ dVI 11.81 13.52 14.41 15.34 15.85 16.05 15.42 13.46

variety of texture scales, we find that filter sizes of 7 and 9
pixels achieve the best results in average (see Table IV), which
confirms the choice of other works, e.g. [4, 25]. For small
filter sizes, within-texture variations are similar to variations
at texture boundaries which leads to undersegmentation in the
segmentation stage. For our method, we also observe that large
filters lead to a decreased localization of texture boundaries,
and to larger spurious segments at texture boundaries as
depicted in Figure 5. Now we consider the non-linearity
parameter ν which we used for relaxation of the `0 jump
penalty for filter learning in Eq. (5). We recall that for large
ν the surrogate function approximates the original sparsifying
function well [41, 42]. Table V lists segmentation results over
a large range of ν. The segmentation fails for small values of
ν and improves when increasing it. Due to the decreasing
slope of the surrogate function for large values of ν, the
learning algorithm converges more slowly. Our choice in the
experiments reflects a trade-off between convergence speed

and approximation accuracy.
Finally, we investigate the sensitivity of the corresponding

parameter µ in the non-linearity σ of Eq. (6) in Table VI.
We find that the overall segmentation results are robust over
a large range of choices of µ and segmentation quality only
starts suffering for very large values of µ where the shape of
σ degenerates.

C. Histology dataset
We apply our method to the histology dataset used in

[3]. The dataset contains 36 color images of size 128 × 128
pixels of stained tissue along with segmentations by an expert.
Instead of the adaptive color quantization used in [3], we
simply convert the image to gray-scale prior to processing.
Since the images are considerably smaller than the Prague
texture mosaics, we reduce the filter size to 5× 5, learn only
13 filters and therefore adjust the trade-off parameter in the
segmentation stage to a fixed γ = 0.8 but otherwise use the
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TABLE IV: Sensitivity w.r.t. the filter size

filter size 5 7 9 11 13

↑ CS 55.23 69.74 71.59 59.68 54.99
↓ OS 9.22 14.05 18.73 13.06 8.56
↓ US 39.69 14.28 7.78 16.11 9.31
↓ ME 6.63 8.39 9.26 17.14 25.10
↓ NE 5.93 7.22 10.13 17.95 25.22
↓ O 38.39 6.18 12.97 12.81 21.91
↓ C 21.64 16.97 31.19 33.25 32.46
↑ CA 62.27 78.59 79.59 71.45 66.58
↑ CO 73.21 84.33 84.34 78.28 74.54
↑ CC 64.40 87.46 90.45 86.10 81.01
↓ I. 26.79 15.67 15.66 21.72 25.46
↓ II. 8.39 1.66 1.54 2.30 3.55
↑ EA 66.87 83.50 85.41 78.82 74.44
↑ MS 60.30 78.59 79.79 72.27 66.01
↓ RM 10.50 5.42 3.79 5.64 6.31
↑ CI 67.78 84.57 86.33 80.37 76.00
↓ GCE 4.07 7.60 9.86 12.27 15.64
↓ LCE 3.59 4.80 6.83 8.01 11.30
↓ dD 14.56 9.97 10.21 14.00 17.09
↓ dM 21.38 5.96 5.47 7.75 10.35
↓ dVI 12.90 14.79 15.27 15.58 15.51

TABLE V: Sensitivity w.r.t. the non-linearity parameter ν

ν 100 500 1000 2000 3000

↑ CS 0.00 29.57 49.31 71.56 69.02
↓ OS 0.00 0.00 6.83 18.71 23.61
↓ US 99.93 69.31 47.39 7.69 7.99
↓ ME 0.00 0.00 0.00 10.04 3.10
↓ NE 0.00 0.00 0.00 10.42 3.86
↓ O 100.00 58.36 44.93 10.50 13.68
↓ C 71.63 40.48 46.06 31.09 32.54
↑ CA 8.43 38.42 53.34 78.44 77.09
↑ CO 28.05 54.02 64.42 83.80 81.35
↑ CC 8.44 39.29 57.00 87.97 91.25
↓ I. 71.95 45.98 35.58 16.20 18.65
↓ II. 24.62 16.39 13.10 2.65 1.40
↑ EA 12.80 43.06 57.62 84.16 83.57
↑ MS −7.92 31.03 47.78 78.78 77.82
↓ RM 30.45 19.14 15.15 4.40 4.36
↑ CI 15.25 44.71 59.04 84.97 84.86
↓ GCE 0.14 2.16 3.13 8.58 9.00
↓ LCE 0.14 1.78 2.55 6.04 6.20
↓ dD 36.01 23.55 18.61 10.04 11.23
↓ dM 75.36 43.91 35.86 7.01 5.93
↓ dVI 9.14 11.20 12.43 15.02 15.74

TABLE VI: Sensitivity w.r.t. non-linearity parameter µ

µ 10 100 2000 5000 10000

↑ CS 74.69 71.79 72.59 65.99 24.30
↓ OS 18.44 22.18 18.73 15.33 6.80
↓ US 7.97 7.89 7.78 6.89 36.01
↓ ME 0.00 0.00 5.19 16.82 29.83
↓ NE 0.66 0.75 6.18 16.76 29.64
↓ O 13.33 13.96 10.17 15.18 59.31
↓ C 31.08 31.16 31.26 30.92 51.44
↑ CA 79.50 79.04 80.02 72.85 41.24
↑ CO 83.65 82.92 84.27 79.35 53.97
↑ CC 91.40 91.46 91.25 84.99 60.72
↓ I. 16.35 17.08 15.73 20.65 46.03
↓ II. 1.43 1.39 1.38 2.73 10.29
↑ EA 84.96 84.83 85.61 78.93 49.49
↑ MS 80.21 79.55 80.28 72.51 36.61
↓ RM 2.95 3.79 3.82 5.22 14.07
↑ CI 86.12 85.93 86.62 80.42 52.84
↓ GCE 8.22 8.12 8.65 13.34 15.58
↓ LCE 5.60 5.83 5.88 8.56 12.02
↓ dD 9.85 10.19 9.80 13.50 27.86
↓ dM 5.31 5.41 5.28 8.21 29.43
↓ dVI 15.59 15.57 15.34 15.26 14.53

same setup as in the Prague texture experiment. We point
out that switching to this quite different class of images only
required the adjustment of these few parameters. The learning
stage requires approximately 2 minutes and the segmentation
stage around 3 seconds. Some of the results are given in
Figure 7.

D. Discussion

From Table I we observe that the proposed method signifi-
cantly improves upon most existing approaches in the Prague
texture segmentation benchmark. Moreover, the segmentations
obtained by the proposed method are competitive with the
previously best performing method PMCFA. PMCFA and the
proposed method yield a comparable number of first and
second ranks. The segmentation examples in Figure 6 indicate
that our method gives very satisfactory results for segments
with clear repeated texture patterns, as for instance in the first
three examples. Erroneous segmentations appear mostly when
quite different patterns such as the red blossoms on green
background in the fifth image are present in a segment. A
possible cause for this is that the blossoms are interpreted
as a texture on its own on a smaller scale. Qualitatively, we
observe that our method tends to a slight oversegmentation
when large color contrasts are present. This is not the case for
PMCFA. Compared to PMCFA, the proposed method produces
smoother boundaries.

In addition to the Prague texture segmentation benchmark,
the algorithm produces useful segmentations of the tissue
images of [3]. It is mostly very close to the expert annotations.
We stress that we only had to adapt the maximum number
of filters K, their maximum size and the segmentation hy-
perparameter γ to obtain the presented results. This indicates
the potential of the proposed method for segmenting different
classes of images.

The main trade-off of our method is a relatively long
processing time per image. In contrast to most other methods
where a fixed set of features is used for segmentation, we here
run the learning stage prior to segmentation, which increases
the overall running time. The computational complexity of the
learning stage is primarily determined by size and number
of the filters as well as the number of patches and their
channels that are used for learning. A speed-up could be
achieved by reducing the number of training samples. We
observed that reducing the number of samples for training
from 50K to 10K only slightly decreased the segmentation
quality. Also, filter learning is so far started with a random
initialization. In practical applications, the filter set can be
initialized with prelearned filters which could bring down the
required number of iterations during learning and therefore
significantly decrease the overall running time. A further
speed-up might be obtained by an optimized implementation.

VI. CONCLUSION

We have developed a method for unsupervised texture
segmentation where the features are learned from images
without ground truth segmentation. Our first main contribution
was the development of a corresponding model based on local
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Fig. 7: Segmentation results on the histology dataset from [3]. From top to bottom: input image, ground truth, ORTSEG [3], and the proposed method.

homogeneity assumptions. We learn convolutional features in
a way that they produce approximately piecewise constant
feature images and combine this with the piecewise constant
Mumford-Shah model. Our second main contribution was the
development of a practical algorithm for unsupervised texture
segmentation based on that model. To make the problem
computationally tractable, we relaxed it and we decomposed
it into a filter learning stage and a segmentation stage. In
the filter learning stage, we employed a geometric conjugate
gradient descent method, whereas in the segmentation stage,
we used the Lagrange formulation of the piecewise constant
Mumford-Shah model which we proposed to augment with a
Mahalanobis distance as data term. The proposed algorithm
yields competitive results on the standard benchmark dataset
for unsupervised texture segmentation. Furthermore, switching
to the quite different class of histological images only required
the adjustment of a few parameters. The improved segmenta-
tion quality underpins the idea of learning features adapted to
the image under consideration. The proposed approach may be
especially valuable in situations where creating large training
sets of accurate ground truth segmentations or hand-crafting
features is expensive.

Topics of future research include speeding-up the proposed
method as explained in the discussion section as well as
approaching the proposed non-smooth model more directly,
that is, employing fewer relaxation steps.

APPENDIX

We derive the Euclidean gradient required in the numer-
ical optimization of the filter learning problem described in
Eq. (14).

The cost function to minimize in the learning stage consists
of three terms, one each for the approximated cost of the jump
set f(Φ), the centroid penalty r(Φ) and the coherence penalty
h(Φ).

Sparsity objective: First, we provide the derivative of the
approximated cost of the jump set. Explicitly, let Φk ∈ Rn
a vectorized 2D filter of size

√
n ×
√
n that is applied on a

set of M vectorized 2D image patches U ∈ Rn×M by taking
their standard inner product Φ>k U ∈ R1×M and for a set of
filters we get ΦU ∈ RK×M accordingly. By denoting Das =
∇asσ(ΦU) shorthand for the difference of features along as
and using � for the Hadamard product, we obtain

∂

∂Φ
f(Φ)

= 4νµ
∑
s=1

ωas

[(
Das

1 + ν‖Das‖2
� ΦUas

1 + µ(ΦUas)2

)
U>as

−
(

Das

1 + ν‖Das‖2
� ΦU0

1 + µ(ΦU0)2

)
U>0

]
(21)

for the derivative of f . Here, Uas is the n × M data
matrix containing vectorized patches Uas

i cropped from the M
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sampled super-patches in direction as according to Figure 1.

Centroid penalty: Second, we require the derivative of the
centroid constraint Eq. (13). This constraint acts on each filter
independently. For the individual filter, we get

∂

∂Φk
h(Φ) =

4

w−

[
ck,xPx

1− c2k,x
+

ck,yPy

1− c2k,y
+

1

2
(ck,x − ck,y)(Px −Py)

]
Φk

by using w− =
√
n−1
2 as a shorthand notation for the half

width of the filter. By stacking the individual derivatives we
can then write the derivative of h with respect to the entire
filter set as

∂

∂Φ
h(Φ) =

[
∂

∂Φ1
h(Φ), . . . ,

∂

∂ΦK
h(Φ)

]>
. (22)

Coherence penalty: Last, the gradient of the coherence
penalty Eq. (9) is given in [30] and reads as

∂

∂Φ
r(Φ) =

 ∑
1≤i<j≤k

2Φ>i Φj

1−
(
Φ>i Φj

)2 (Eij + Eji)

Φ. (23)

Here Eij is a matrix with a one in component ij and zero
elsewhere.

Finally, we obtain the gradient of the cost function Eq. (14)
by combining Eq. (21), Eq. (22) and Eq. (23)

∇E(Φ) =
∂

∂Φ
f(Φ) + λ

∂

∂Φ
r(Φ) + κ

∂

∂Φ
h(Φ).
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