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Abstract  

Epigenetic regulation of cellular function provides a mechanism for rapid organismal adaptation 

to changes in health, lifestyle, and environment. Associations of cytosine-guanine di-nucleotide 

(CpG) methylation with clinical endpoints that overlap with metabolic phenotypes suggest a 

regulatory role for these CpG sites in the body’s response to disease or environmental stress. We 

previously identified 20 CpG sites in an epigenome-wide association study (EWAS) with 

metabolomics that were also associated in recent EWASs with diabetes-, obesity-, and smoking-

related endpoints. To elucidate the molecular pathways that connect these potentially regulatory 

CpG sites to the associated disease or lifestyle factors, we conducted a multi-omics association 

study including 2,474 mass-spectrometry based metabolites in plasma, urine, and saliva, 225 

NMR based lipid and metabolite measures in blood, 1,124 blood-circulating proteins using 

aptamer technology, 113 plasma protein N-glycans and 60 IgG-glyans, using 359 samples from 

the multi-ethnic Qatar Metabolomics Study on Diabetes (QMDiab). We report 138 multi-omics 

associations at these CpG sites, including diabetes biomarkers at the diabetes-associated TXNIP 

locus, and smoking-specific metabolites and proteins at multiple smoking-associated loci, 

including AHRR. Mendelian randomization suggests a causal effect of metabolite levels on 

methylation of obesity associated CpG sites, i.e. of glycerophospholipid PC(O-36:5), glycine, 

and a very low density lipoprotein (VLDL-A) on the methylation of the obesity-associated CpG 

loci DHCR24, MYO5C, and CPT1A, respectively. Taken together, our study suggests that multi-

omics-associated CpG methylation can provide functional read-outs for the underlying 

regulatory response mechanisms to disease or environmental insults. 

Keywords: glycomics / lipidomics / metabolomics / methylation / multi-omics / proteomics / 

Mendelian randomization 
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Introduction 

Complex disorders including cancer, cardiovascular disease and diabetes, as well as 

exposure to environmental insults can lead to adjustments of the expression of corresponding 

enzymes, transporters, and metabolic regulators (1). The organismal response to these challenges 

can be reflected by changes in DNA methylation (2). Individual differences in health, lifestyle 

and environmental exposure therefore leave their imprint on the individual’s epigenome (2). This 

has been documented in numerous recent epigenome-wide association studies (EWASs) with 

type 2 diabetes (T2D) (3-5), smoking (6-15), obesity (16-22), blood pressure  (23) and protein 

markers of liver function (24). Methylation of CpG sites that associate with disease or lifestyle 

factors often also associates with changes in intermediate molecular phenotypes, in particular 

blood circulating metabolites, as we have previously shown (25).  

Methylation of CpG cg05575921 at the aryl hydrocarbon receptor repressor (AHRR) 

gene locus was associated with tobacco smoking in numerous studies (6-9, 11-14, 26). Smoking 

during pregnancy also affected methylation at the same CpG site in newborns (15). We reported 

an association of this CpG site with blood circulating 4-vinylphenol, supporting the function of 

AHRR as a mediator of dioxin toxicity (25). Similarly, the robustly replicated associations of 

diabetes and obesity with differential CpG methylation near the genes that encode TXNIP 

(cg19693031), ABCG1 (cg06500161), and CPT1A (cg00574958) (3-5, 17) likely reflect a gene 

regulatory response to diabetes and obesity induced metabolic dysregulations. TXNIP, for 

instance, plays an important role in glucose regulation by directly suppressing glucose uptake 

through binding to the glucose transporter GLUT1 (27). This idea is supported by our previously 

reported association of these three CpG sites with a diabetes-specific metabolic phenotype 

(metabotype), including changes in the well-established T2D biomarkers alpha-hydroxybutyrate 
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(AHB), 3-methyl-2-oxovalerate, glycine, and several diabetes-associated lipids (5, 25). A recent 

obesity Mendelian randomization (MR) study by Wahl et al. (22) showed that adiposity was 

causal for changes in methylation of multiple CpG sites near obesity-related genes. Interestingly, 

several of the CpG sites identified in that study were also within a set of 20 CpG sites that we 

previously identified in an EWAS with blood metabolites (25) (Table 1).  

These observations clearly indicated a role of DNA methylation in the regulation of the 

cellular response to disease and environmental stress. We therefore hypothesized that the 

molecular pathways that constitute these organismal responses can be revealed by assessing the 

relationships between changes in intermediate molecular phenotypes and changes in gene 

regulation, in particular by studying their association with the DNA methylome (Figure 1). As 

our study cohort is relatively small, but otherwise exceptionally deeply phenotyped at a multi-

omics level, we focused on 20 CpG sites that we previously identified in our EWAS with 

metabolomics (25). Indeed, a review of recently published EWAS revealed that actually most of 

these 20 CpG sites were also associated with complex disease phenotypes including obesity, 

diabetes, blood pressure, and liver function, and or smoking (Table 1). As our previous EWAS 

with metabolomics did not contain a formal replication, we start by replicating the association of 

these CpG sites in a similar panel of blood metabolites in the QMDiab study, a diabetes cohort 

including Arab and South Asian ethnicities. We then focus our investigation on associations of 

these 20 CpG sites with a diverse set of almost 4,000 deep molecular phenotypes, including 

blood, urinary and salivary metabolomics, lipidomics, proteomics, and glycomics. We further 

replicate the newly discovered protein and glycan associations in independent studies. Finally, 

we use MR to evaluate the causal direction of selected CpG-metabolite associations. 
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Results 

Deep molecular phenotyping of 3,996 multi-omics parameters in an Arab-Asian cohort. We 

determined 2,251 metabolic traits (758 from plasma, 891 from urine, and 602 from saliva) using 

a non-targeted metabolomics platform (Metabolon Inc., Durham, USA), 163 metabolites using a 

targeted metabolomics kit (Biocrates Life Sciences AG, Innsbruck, Austria), 60 urinary 

metabolite concentrations (Chenomx Inc., Edmonton, CA), 225 mostly lipid-related blood traits 

(Nightingale Ltd, Helsinki, Finland) based on 
1
H NMR measurements, 1,124 blood circulating 

proteins using an aptamer-based technology (Somalogic Inc., Boulder, USA), 113 blood N-

glycans using UPLC, 60 IgG-glycopeptides by liquid chromatography mass spectrometry glyco-

profiling (Genos Ltd., Zagreb, Croatia), and methylation at 470,776 CpG sites using the Illumina 

Infinium HumanMethylation450 BeadChip platform (28) (see Methods), in up to 359 

individuals from the QMDiab study (Table 2) (29). The methylation data overlapped with at 

least one type of proteomics, lipidomics, glycomics or metabolomics data in this study (Figure 

2). This diabetes case-control study comprises 50.7% individuals with diabetes and 17.3% 

individuals who are smokers. Taken together, we obtained a maximum of 3,996 molecular 

phenotypes in saliva, blood, and urine samples of up to 359 individuals (Supplementary Table 

1).  

Replication of a previous metabolomics EWAS. The first EWAS with metabolic traits 

assessed 649 blood metabolic traits from 1,805 samples from the KORA study with methylation 

measurements for 457,004 CpG sites (25). The associations from this study have not been 

replicated. We therefore started by replicating the metabolomics-methylation associations 

reported in that study. We could replicate 10 out of the 20 lead methylation associations with 
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metabolites at Bonferroni significance (p<0.05/20) and found nominal significance (p<0.05) for 

a further seven of them (Supplementary Table 2).  

Discovery of novel phenome-wide associations with CpG methylation. We then tested the 20 

CpG sites for association with all available 2,474 metabolite, 225 lipid, 1,124 protein and 173 

glycan traits, requiring a Bonferroni level of significance that accounted for the respective 

number of tested molecular phenotypes and 20 CpG loci (see Methods). Loci were annotated 

following (25), using the most likely regulated gene, CpG identifier and phenotype (Diabetes, 

Smoking, Obesity, Steroids, Other). We identified 138 associations between methylation and 

other phenotypes including numerous hits at the TXNIP-diabetes and at the AHRR-smoking loci 

(Table 3). Of the 138 associations, 12 involved proteins, 19 involved lipids, 91 involved 

metabolites, and 16 involved glycans. We found multiple associations at the DHCR24 and 

ABCG1 obesity loci with various LDL lipid subclasses, consistent with previous studies (30) 

(31). We also linked the kidney function marker myo-inositol (32), measured here in urine, to 

changes in methylation of the obesity locus ABCG1. Further highlights include the association of 

a new, yet unidentified metabolite (X-19141) with cg09189601 methylation at the UGT2B15 

locus, of specific IgG glycopeptides with cg06192883 methylation at the MYO5C obesity locus, 

and of the blood circulating protein levels of Tumor necrosis factor ligand superfamily member 4 

(TNFSF4) with cg00574958 at the diabetes and obesity locus CPT1A. Many of the CpG-blood 

metabolite associations previously reported in the supplement of the Petersen et al. study were 

also replicated here using a different metabolomics technologies. We further observed for the 

first time associations of the same metabolites in urine and saliva, sometimes stronger than the 

associations in plasma. The complete set of significant associations is in Supplementary Table 

3.  
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Replication of novel CpG-protein and CpG-glycan associations in independent studies. 

Next, we attempted replication of the novel protein-methylation associations in the KORA study 

(N=997) and of the novel glycan-methylation associations in the TwinsUK study (N=165). Six 

of the twelve protein-methylation associations replicated in KORA at a Bonferroni level of 

significance (p<0.0041 = 0.05/12). All replicated associations showed the same effect direction 

(Table 4). Of the 16 glycan-methylation associations, two were not measured in the TwinsUK 

study and could not be tested, four displayed nominal significance (p<0.05), and one replicated 

at Bonferroni significance (p<0.0035 = 0.05/14). All glycan-methylation associations showed 

concordant directions between the two studies (Table 5).  

 

Multi-omics associations of the TXNIP-diabetes locus. Methylation of CpG cg19693031 at the 

TXNIP locus showed 54 associations with metabolites, proteins, and glycan traits (complete list 

in Supplementary Table 3). TXNIP methylation was also associated with T2D as an endpoint in 

our study (p = 6.80×10
-12

), replicating previous reports (5). The most significant metabolic trait 

association with TXNIP methylation was with 1,5-anhydroglucitol (1,5-AG) in plasma (p = 

7.56×10
-21

) which also showed a moderate association signal in saliva (p = 3.17×10
-3

). 

cg19693031 further strongly associated with AHB (p = 2.52×10
-14

 in urine, p = 2.46×10
-9

 in 

plasma) and with glucose in urine (p = 1.17×10
-14

). cg19693031 also associated with blood 

levels of several proteins, including transmembrane glycoprotein NMB (GPNMB) (p = 1.30×10
-

8
), aminoacylase-1 (ACY1) (p = 2.59×10

-7
), sex hormone binding globulin (SHBG) (p = 4.65×10

-

7
), and melanoma-derived growth regulatory (MIA) protein (p = 6.88×10

-7
), and with different 

complex N-glycan traits (PGP26 and PGP34). These glycans were recently reported to be 

associated with T2D (33). Sumer-Bayraktar et al. (34) reported that SHBG in serum is N-
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glycosylated by a glycan that corresponds to PGP18 in QMDiab. In QMDiab, PGP18 glycans 

associated with SHBG protein levels (p = 7.19×10
-4

), and methylation of cg19693031 was 

nominally associated with PGP18 (p = 0.011). 

 

Multi-omics associations of the smoking loci. We found 17 Bonferroni-significant multi-omics 

associations at the AHRR smoking locus (Table 3 and Supplemental Table 3). AHRR 

methylation was also associated with smoking in the QMDiab study (p = 1.89×10
-25

). AHRR 

(cg05575921) and several of the other smoking associated CpG sites (ALPPL2 – cg21566642, 

F2RL2 – cg03636183, cg06126421, RARA – cg19572487, and GFI1 – cg09935388) associated 

with o-cresol sulfate in urine (p = 2.66×10
-27

 to p = 3.29×10
-7

). The strongest CpG-protein 

association for smoking loci was for the polymeric immunoglobulin receptor (PIGR) and CpG 

sites cg05575921 (AHRR), cg03636183 (F2RL2), and cg06126421 (p = 2.03×10
-11

 to p = 

3.36×10
-7

). Methylation of cg01965508 at the PIGR locus showed a nominally significant 

negative association with smoking (p = 0.016). CpG cg01965508 lies in a promotor region less 

than 1500 bp upstream of the transcription start site of PIGR. PIGR is known to be a heavily N-

glycosylated protein (35). The plasma N-glycome is known to associate with smoking (36) and 

we also found several nominal associations of the PIGR protein levels with numerous N-glycans 

(PGP4, PGP5, PGP10, PGP13, PGP16, PGP20, PGP23, PGP26, PGP31, PGP32, PGP34, and 

PGP35; p < 0.05). Finally, we found a CpG-protein association at the cg19572487 (RARA) 

smoking locus with the actin-regulatory protein Gelsolin (p = 1.89×10
-6

). 

 

Mendelian randomization. To determine whether changes in metabolite levels are causal for 

changes in CpG methylation we conducted a Mendelian Randomization (MR) study (see 
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methods). As the QMDiab study was too small to obtain meaningful results, we used the KORA 

study instead. To limit the multiple testing burden, we limited our MR analysis to the top CpG-

metabolite associations previously reported by Petersen et al.(25). We further required that the 

SNP-metabolite (mQTL) and the SNP-methylation (meQTL) associations be reported in 

previously mGWAS and meGWAS (see Methods). We identified three suitable SNP-CpG-

metabolite trios and verified that the genetic instruments were valid in the causal direction from 

the metabolite to the CpG methylation: SNP rs174547 at FADS1 was an mQTL for the 

metabolite PC(O-36:5) (a glycerophospholipid) and a meQTL for cg17901584 at DHCR24, SNP 

rs715 at the CPS1 locus associated with glycine and cg06192883 methylation at the MYO5C 

locus, and SNP rs964184 at the APO cluster gene locus associated with VLDL-A (very low 

density lipoprotein A) and cg00574958 methylation of the CPT1A locus (Table 6). Since 

complete summary statistics were not available for all associations from these GWAS, we could 

not use a two-sample MR approach and used the KORA data instead. In all three cases we 

observed a significant (p < 0.05/3) causal effect of metabolite levels on CpG methylation (Table 

6). We found no valid instrument that would have allowed testing of the reverse causal direction, 

from methylation to metabolite. 

 

Discussion 

To the best of our knowledge, this is the first study to analyze such a large number of 

multi-omics phenotypes with CpG methylation in a single study, providing a deeper insight into 

the molecules that may be involved of the underlying mechanisms of the organismal response to 

disease and environmental insult. Our study emphasizes the power of linking the methylome to 
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the phenome (smoking, diabetes, or obesity) by deep molecular phenotyping of multiple body-

fluids in a multi-omics approach. We replicated and uncovered novel associations of a wide 

range of metabolite, protein, and glycan traits with smoking-, diabetes-, and obesity-associated 

CpG loci in a novel multi-ethnic cohort. Many of the multi-omics associations showed strong 

biological evidence to be linked to pathways involved in both diabetes and smoking.  

For instance, 1,5-AG associated with CpG methylation at the TXNIP locus, is an 

established marker of glycemic control in patients with diabetes (37) and is utilized in the FDA 

approved GlycoMark
TM

 test (GlycoMark Inc., New York, NY). AHB, also associated with 

methylation at the TXNIP locus, is a key biomarker of pre-diabetes and is utilized in the 

Quantose
TM

 test (Metabolon, Morrisville, NC) for prediabetes monitoring. Most of the other 

metabolites associated with cg19693031 at the TXNIP locus were also directly associated with 

multiple diabetes phenotypes in our previous analysis of this data set (38). The presence of 

glucose in urine (glucosuria) is also a common characteristic of diabetes.  

Similarly, O-cresol sulfate, a metabolite associated with methylation of multiple smoking 

associated CpG sites, is a known biomarker for smoking and also associated with colorectal 

cancer (39). The protein associations at the AHRR locus included blood circulating levels of the 

PIGR protein. PIGR facilitates the secretion of soluble polymeric isoforms of immunoglobulins 

A and M. PIGR transcription was previously reported up-regulated in smokers (40). Another 

CpG-protein association of interest at a smoking locus is the actin-regulatory protein Gelsolin 

with cg19572487 (RARA). Gelsolin expression is down-regulated in heavy smokers (41). 

Gelsolin controls the length of actin polymers and mediates multiple cellular functions including 

cell motility, morphogenesis, and actin cytoskeletal remodeling. It also regulates signal 

transduction through the integrin and small GTPase (Rac-Rac) mediated pathways (42). Gelsolin 
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was also differentially expressed in patients with heart failure (42) and in several types of 

cancers (43).  

Associations between SHBG, MIA, and different complex N-glycan traits (PGP26 and 

PGP34), in addition to the same glycans being recently reported to be associated with T2D (44) 

support the potential involvement of glycans in defining the posttranslational modifications that 

alter or enrich the function of the involved proteins. Likewise, the smoking associated PIGR 

protein being a heavily N-glycosylated protein (35) and smoking being associated with the 

plasma N-glycome (36) are consistent with this.  

CpG methylation involvement with other phenotypes such as protein markers of liver 

function and blood pressure has also been documented. Liver enzyme levels for example, 

gamma-glutamyl transferase (GGT), may alter epigenetic mechanisms involved in genes that 

regulate liver function and enzyme levels leading to differential methylation at the PHGDH 

locus (24). Also, DNA methylation in inflammatory genes with known vascular function, or 

previously related to cardiovascular disease may be driven by mechanisms involved in blood 

pressure regulation (23). Association studies alone cannot conclude on causality and may not 

provide a final answer here.  However, they are an important hypothesis-generating tool that can 

direct further investigation by dedicated experimentation and support from existing literature, as 

exemplified here in the cases of the TXNIP-diabetes and the AHRR-smoking associations. 

In an attempt to conclude on causality in a few sufficiently powered examples, we used 

MR to determine directionality between some obesity-associated metabolites and methylation 

sites. The direction of association we found between the methylation of the obesity-associated 

locus CPT1A with VLDL-A is consistent with the Dekkers et al. study (30) and goes from 

metabolite to methylation. Similarly, the direction of the associations between the methylation of 
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DHCR24 with PC(O-36:5), and of MYO5C with glycine also go from metabolite to methylation, 

both of which are obesity-associated loci and metabolites respectively. Still, these results should 

be interpreted with caution since the validity of MR analyses is based on assumptions and has 

several limitations as outlined in a recent review (45).  

We are aware of some limitations to this study. Correction for cell proportions, ethnicity, 

and cell abuse has all been taken into consideration (see Methods). Medication was not 

accounted for in the statistical analysis and may potentially confound some of the associations. 

In addition, as the participants of QMDiab were not fasting prior to sample collection as in 

KORA and TwinsUK, decreased replicability power may be implied. However, as we have 

shown in previous work using the same data (38), this increased variability is random and does 

not tend to bias the associations. Thus non-replication in QMDiab does not suggest that the 

association in Petersen et al. was a false positive. The replication of many previously reported 

CpG-metabolite, CpG-diabetes, and CpG-smoking associations supports the robustness and 

hence biological relevance of these signals. Finally, although we replicated the majority of our 

novel protein-methylation associations in KORA, only some of the novel glycan-methylation 

associations were replicated in TwinsUK due to the smaller sample size. 

 

Conclusion 

With over 2,700 studies published to date, genome-wide association studies with clinical 

endpoints and intermediate risk factors have reached maturity (46). The field of EWAS, 

however, is just emerging and only recently started to generate relevant biomedical results. In 

contrast to GWAS, where the causal direction of the association is always from the genetic 
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variant (SNP) to the phenotype, causality cannot be inferred directly from an EWAS, and 

determination of causality is vulnerable to potential confounding and reverse causation (47).  

Taken together, our study supports the view that changes in health, lifestyle and 

environment can lead to differential regulation of a plethora of molecular phenotypes. A holistic 

multi-omics view of the organism’s response to environmental and disease induced stress then 

emerges. Using Mendelian randomization approaches, causal networks connecting 

environmental insults and life style factors to disease end points through multi-omics read-outs 

can now be delineated. This information can generate new insights into the affected pathways 

suggesting that multi-omics associated CpG methylation is a consequence of the underlying 

disease pathway or an environmental insult.  
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Materials and Methods 

Study population. QMDiab is a cross-sectional case-control study that was conducted in 2012 at 

the Dermatology Department in Hamad Medical Corporation (HMC Doha, Qatar). This study 

has been described previously and comprises 388 study participants from Arab and Asian 

ethnicities (29) (Table 1 contains the statistics for the subset of 359 samples that were selected 

for this study). The initial study was approved by the Institutional Review Boards of HMC and 

Weill Cornell Medicine – Qatar (WCM-Q) under research protocol number 11131/11). All study 

participants provided written informed consent. In addition to the 374 study participants reported 

in (29), we included 14 additional samples from individuals who were not sent to metabolomics 

analysis, bringing the total participant number in QMDiab to 388. Data used in this study was 

then limited to individuals who agreed to have their data and samples used for research beyond 

the initial scope of QMDiab, and for whom there was still sufficient material available for further 

analysis. For smoke exposure, the cotinine measurement (a major metabolite of nicotine from 

tobacco smoke observed in blood, urine, or saliva) was used as a more objective indicator than 

self-reported smoking (48). Cotinine-derived smoking status highly overlaps with self-reported 

smoking status (Spearman correlation coefficient of 0.92) (49). 

 

Sample Collection. Non-fasting saliva, urine, and plasma samples were collected and processed 

using standardized protocols. Saliva was obtained using the Salivette system following the 

manufacturer’s recommendations. Identical protocols, instruments, and study personnel were 

used to randomly collect cases and controls as they appeared at the clinic. After collection, the 

samples were stored in ice for transportation to WCM-Q. Within six hours of sample collection, 
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all samples were centrifuged at 2,500g for 10 minutes, aliquoted, and stored at -80°C until 

analysis.  

 

DNA extraction and quantification. Blood samples were thawed at 37°C in a water bath for 5-

10 minutes. Samples were then left to cool down to room temperature and 400 uL of blood was 

transferred to a 2 ml cryotubes. 400 uL of PBS (phosphate buffered saline) was added to the 

blood and mixed by pipetting back and forth. The mixture was transferred to a 2 ml Sarstedt 

72.694 tube and loaded to the QIA Symphony for DNA extraction. The QUBIT kit was then 

used for DNA quantification.  

 

DNA methylation. Genome-wide DNA methylation profiling was performed using the Illumina 

Infinium HumanMethylation450 (450K) BeadChip array (28) for interrogating over 485,000 

methylation sites per sample. DNA methylation was determined for 359 samples which all 

passed initial quality assessment of assay performance using the Genome Studio software 

integrated controls dashboard. A total of 500 ng genomic DNA from each sample was bisulfite-

converted using the EZ DNA Methylation Kit (Zymo Research, catalog No. D5002) according to 

the manufacturer’s procedure, with the recommended incubation conditions when using the 

Infinium Methylation Assay.  DNA methylation was assessed following the Infinium HD 

Methylation protocol. This consisted of a whole-genome amplification step using 4 ul of each 

bisulfite-converted sample, followed by enzymatic fragmentation and application of the samples 

to BeadChips. The arrays were fluorescently stained and scanned with the Illumina iScan system. 

Genome Studio (version 2011.1) with methylation module (version 1.9.0) was used to process 

the raw image data generated by the BeadArray Reader. Initial quality assessment of the assay 
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performance was conducted using the Genome Studio software integrated controls dashboard. 

All 359 samples were processed with Genome Studio (background subtraction and control 

normalization). Beta-values, raw signals, and detection p-values were extracted also using 

Genome Studio.  

Initial quality checks were performed on the methylation data to confirm data integrity. 

Sex checks were first performed by verifying the distribution of CpG methylation on the X 

chromosome and matching against the sex specification in the manifest. Females had a 

characteristic peak in the distribution around a b-value of 0.5 while males had 2 peaks at b-

values 0 and 1, which is attributed to the X-chromosome in-activation property. Next, the overall 

beta distribution and intensity distributions were visually inspected for any abnormalities in all 

subjects. Two individuals had a slightly left-skewed intensity plot and their beta distributions 

showed a slight shift in the fully-methylated peak towards 0.6-0.8 as opposed to the common 

case where the peak is around 0.8-0.9 but were not eliminated from the study. Measurements 

from non-CpG probes and the 65 probes targeting SNPs (as identified in the Illumina manifest) 

were excluded, leaving methylation readouts from 482,421 probes. Further filtering included 

methylation sites whose detection p-values were greater than 0.01 in more than 5% of the 

samples (121 probes) and non-autosomal probes (11,135 on the X chromosome and 416 on the Y 

chromosome). This left 470,776 methylation sites for data analysis. Normalization was carried 

out on data from these probes using the Lumi:BMIQ pipeline  which includes color bias 

adjustment, QN (quantile normalization), and BMIQ (beta mixture quantile dilation). 

Normalization matched the centers and peaks of the methylation profiles no longer necessitating 

the elimination of any samples from the study. The corrected b-values ranged from 9.663×10
-4

 to 

0.9997. White blood cell fractions (granulocytes, monocytes, B cells, NK cells, CD8
+
-T-cells, 
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and CD4
+
-T-cells) were estimated from the methylation data using the method described by 

Houseman et al. (50). Computation of the white blood cell Houseman coefficients included batch 

adjustment by modeling the batch number as a random effect. Thus technical variation was 

accounted for through the white blood cell percentages.  

 

Non-targeted metabolomics. The semi-quantitative non-targeted UPLC-MS/MS and GC-MS 

platform from Metabolon Inc. was used, yielding measurements of 2,251 metabolic traits (758 

from plasma, 891 from urine, and 602 from saliva). The platform has been described in detail 

previously (51, 52). Briefly, non-targeted metabolic profiling at Metabolon was achieved in 330 

saliva, 358 in blood plasma, and 360 urine samples using ultrahigh-performance liquid-phase 

chromatography and gas chromatography separation, coupled with tandem MS using established 

procedures (51). Osmolality in saliva and urine were measured and used for normalization. The 

median process variability in saliva was 15.3%, in plasma was 15.8%, and in urine was 9.8%, 

which was determined by repeated measurements of pooled samples.  

 

Targeted metabolomics. A total of 26 quantified and 137 semi-quantified metabolites (due to 

lack of standards) were measured in 356 plasma samples using a commercially available FIA-

MS metabolomics kit (AbsoluteIDQ
TM

 kit p150, Biocrates Life Sciences AG, Innsbruck, 

Austria).  The kit was run on the metabolomics platform of the Helmholtz Center Munich. Assay 

procedures and the full biochemical names have been described in detail in our previous work 

(53). 
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NMR urine metabolomics. 
1
H-NMR spectra were acquired for 353 urine samples on a Bruker 

DRX-400 NMR spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) operating at 

400.13 MHz 1H frequency. Samples were measured at 300 K. The Fourier-transformed and 

baseline-corrected NMR spectra were manually annotated by spectral pattern matching using the 

Chenomx Worksuite 7.0 by Chenomx, Inc. (Edmonton, Canada) to deduce absolute urinary 

metabolite concentrations for 60 compounds as described previously.  

 

Lipid-omics. Metabolite concentrations for 338 individuals were quantified from plasma samples 

using a high-throughput NMR metabolomics platform (Nightingale Ltd, Helsinki, Finland) (54, 

55). The experimental protocol, sample preparation, NMR spectroscopy, and metabolite 

identification details are described previously in (54) (56). A total of 225 metabolites were 

measured out of which 148 were directly measured and 77 were derived. The 148 metabolites 

include 14 lipoprotein subclasses (98 measurements), three sizes of lipoprotein particles, two 

apolipoproteins, eight fatty acids, eight glycerides and phospholipids, nine cholesterols, nine 

amino acids, one inflammatory marker, and ten small molecules involved in glycolysis, citric 

acid cycle, and urea cycle. The subclasses for the lipoproteins are categorized according to size 

following this classification: chylomicrons and extremely large VLDL particles (average particle 

diameter at least 75 nm); five VLDL subclasses – very large VLDL (average particle diameter of 

64.0 nm), large VLDL (53.6 nm), medium VLDL (44.5 nm), small VLDL (36.8 nm), and very 

small VLDL (31.3 nm); intermediate-density lipoprotein (IDL; 28.6 nm); three LDL subclasses – 

large LDL (25.5 nm), medium LDL (23.0 nm), and small LDL (18.7 nm); and four HDL 

subclasses – very large HDL (14.3 nm), large HDL (12.1 nm), medium HDL (10.9 nm), and 

small HDL (8.7 nm). Measurements were log10 transformed and z-scored.  
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Proteomics. The SOMAscan platform was used to quantify a total of 1,124 protein 

measurements in 356 plasma samples. Details of the SOMAscan platform have been described 

elsewhere (57-63). In brief, undepleted EDTA-plasma was diluted into three dilution bins 

(0.05%, 1%, 40%) and incubated with bin-specific collections of bead-coupled SOMAmers in a 

96-well plate format. Subsequent to washing steps, bead-bound proteins were biotinylated and 

complexes comprising biotinylated target proteins and fluorescence-labeled SOMAmers were 

photo-cleaved off the bead support and pooled. Following recapture on streptavidin beads and 

further washing steps, SOMAmers were eluted and quantified as a proxy to protein concentration 

by hybridization to custom arrays of SOMAmer-complementary oligonucleotides. Based on 

standard samples included on each plate, the resulting raw intensities were processed using a 

data analysis work flow including hybridization normalization, median signal normalization and 

signal calibration to control for inter-plate differences. The 356 samples from QMDiab were 

analyzed at the WCM-Q proteomics core (64). 

 

Glycomics. Unthawed aliquots of 356 samples were sent to Genos Ltd. (Zagreb, Croatia) for 

analysis of total plasma N-glycosylation using UPLC and IgG Fc N-glycosylation using liquid 

chromatography mass spectrometry glyco-profiling. Quantification of 113 N-glycan traits in 333 

samples and 60 IgG-glycopeptides in 341 samples was achieved on this platform as follows: 

Total plasma N-glycan release and labeling: Glycans were released from total plasma 

proteins and labeled as previously described (65). In brief, 10 µl of plasma was denatured by 

adding 20 µl 2% (w/v) SDS (Invitrogen, USA) and the N-glycans were released by adding 1.2 U 

of PNGase F (Promega, USA). The released N-glycans were labeled with 2-aminobenzamide 

(Sigma-Aldrich, USA). Hydrophilic interaction liquid chromatography solid-phase extraction 

Downloaded from https://academic.oup.com/hmg/advance-article-abstract/doi/10.1093/hmg/ddy006/4793001
by GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH - Zentralbibliothek user
on 19 January 2018



 

22 

was used to remove free labels and the reducing agent from the samples. In the stationary phase, 

0.2 µm 96-well GHP filter-plates (Pall Corporation, USA) were used. After a short incubation 

and washing 5 times with cold 90% ACN, the samples were loaded into the wells. After 15 

minutes of shaking at room temperatures, glycans were eluted with 2 × 90 µl of ultrapure water 

and then the combined eluates were stored at -20°C until usage.  

Total plasma N-glycome UPLC analysis: Total plasma N-glycans were analyzed by 

hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) as previously 

described (65). In brief, excitation and emission wave lengths of 250 and 428 nm respectively, 

were used to separate fluorescently labeled N-glycans on an Acquity UPLC instrument (Waters, 

USA). The labeled N-glycans were separated on a Waters BEH Glycan chromatography column, 

150 × 2.1 mm i.d., 1.7 µm BEH particles, with 100 mM ammonium formate having pH 4.4 as 

solvent A and acetonitrile (ACN) (Fluka, USA) as solvent B. The separation method works by 

using a linear gradient of 30-47% solvent A at a flow rate of 0.56 ml/min during a 23 minute 

analytical run.  

IgG isolation from plasma: IgG was isolated using protein G monolithic plates (BIA 

Separations, Slovenia) as previously described (66). In brief, approximately 70-100 µl of plasma 

was diluted 8x with 1x PBS having pH 7.4, applied to the protein G plate and instantly washed 

with 1x PBS having pH 7.4 to remove unbound proteins. IgG was then eluted with 1 ml of 0.1 M 

formic acid (Merck, Germany) and neutralized with 1 M ammonium bicarbonate (Merck, 

Germany).  

IgG enzymatic cleavage and purification: 25 µg of IgG was digested overnight at 37°C 

with 200 ng trypsin (Worthington, USA).  Then Chromabond C18 ec beads (Macherey-Nagel, 

Germany) were used to purify IgG tryptic glycopeptides by reverse phase solid phase extraction. 
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C18 beads were activated with 80% ACN that contains 0.1% trifluoroacetic acid (TFA; Sigma-

Aldich, USA) and conditioned with 0.1% TFA. Tryptic digests were diluted 10x with 0.1% TFA, 

loaded onto C18 beads, and washed with 0.1% TFA. Glycopeptides were eluted with 20% ACN 

containing 0.1% TFA. Eluates were dried by vacuum centrifugation and dissolved in 20 µl of 

ultrapure water.  

Subclass specific Fc IgG N-glycome liquid chromatography mass spectrometry (LC-MS) 

analysis: Tryptic digests were analyzed on a nanoACQUITY UPLC system (Waters, USA) 

coupled to micrOTOF-Q mass spectrometer (Bruker Daltonics, Germany). 9 µl of glycopeptides 

was loaded into an Acclaim PepMap100 C8 (5 mm × 300 µm i.d.) trap column and washed for 1 

minute with 0.1% TFA (solvent A) at a flow rate of 40 µl/minute. Separation was achieved on a 

Halo C18 nano-LC column (150 mm × 75 µm i.d., 2.7 µm HALO fused core particles; Advanced 

Materials Technology, USA) using a 3,5 min gradient at a flow rate of 1 µl/min from 18% to 

25% solvent B (80% ACN). Column temperature was 30°C. Mass spectra were recorded from 

m/z 200 to 1900 with 2 averages at a frequency of 0.5 Hz. Quadrupole ion energy and collision 

energy of the MS were set to 4 eV. NanoACQUITY UPLC system and the Bruker microOTOF-

Q were operated under HyStar software version 3.2. The same software was used for data 

extraction.  

Glycan data was first normalized (total area normalization) and then batch corrected 

using Combat. Batch correction was performed on the log-transformed normalized data. After 

batch correction, the data was inverse transformed so all values were between 0 and 100. Finally 

the data was z-scored. Glycan structural features are given in terms of number of galactoses (G0, 

G1, G2), fucose (F), bisecting N-acetylglucosamine (N), and N-acetylneuraminic acid (S).  
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Statistical Analysis. Linear models were computed using the R function lm (67) with DNA 

methylation (B-values) as the dependent variable and the z-scored metabolite, lipid, protein or 

glycan levels as independent variables. After excluding metabolites with fewer than 50 valid 

detections (many of which were xenobiotics related to medication) for the 359 samples for which 

methylation data was available, 2,474 metabolites were used for the analyses. Sex, BMI, age, and 

Houseman-based white blood cell coefficients were used as covariates. DNA methylation can be 

cell-type dependent. As we only obtained DNA from blood cells, we may have missed organ-

specific association signals. Furthermore, methylation profiles have been shown to vary with 

blood cell type (50). To account for cell type variability, we used the Houseman method (50) to 

determine white blood cell distribution using our 450K DNA methylation data. Also, the first 

three principle components of the genotyping data (GeneticPCs) were added as covariates, as 

they represent ethnicity more accurately than self-reported information. Mixed ethnicity in the 

QMDiab study may lead to population-specific stratification and result in inflated p-values. We 

have previously shown that the self-reported ethnicity of our study is well captured by the first 

three principal components (PCs) of the genotype variants (64). Details of genotyping data for 

QMDiab and the computed PCs that were used to account for ethnicity have been described 

previously (64).   

For associations including proteins the first three principle components of the proteomics 

data were also included (somaPC1, somaPC2, and soma PC3) to account for a moderate level of 

observed cell lysis. Although visual inspection of the blood plasma samples did not show any 

signs of hemolysis, principal component analysis of the protein data still suggested a moderate 

degree of cell lysis. This approach was shown to yield highly reproducible associations between 

the QMDiab study and KORA (64).  
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The multiple-testing Bonferroni corrected level of significance for metabolites was 

pmetabolite =1.01×10
-6

 (0.05/2,474/20), accounting for the number of metabolic traits (N=2,474) 

and the number of tested DNA methylation sites (N=20). Similarly, for lipids (N=225) the 

required Bonferroni level of significance was plipids = 1.11×10
-5

 (0.05/225/20), for proteins 

(N=1,124) it was pprotein = 2.22×10
-6

 (0.05/1,124/20), and for glycan traits (N=113) it was pglycan 

= 2.21×10
-5

 (0.05/113/20).  

 

Replication of CpG-glycan associations in the TwinsUK study. The TwinsUK study was 

established in 1992 to recruit monozygotic and dizygotic twins without selecting for particular 

diseases or traits (68). It has been used in many epidemiological studies and is representative of 

the general UK population for a wide range of diseases and traits (69). DNA methylation was 

measured for 808 individuals of European ancestry randomly selected from the TwinsUK cohort. 

The Infinium HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA, USA) was used to 

measure DNA methylation. Details of experimental approaches have been previously described 

(70) and normalization was carried out using the “minfi” R package (71).  Blood cell type 

coefficients were estimated from the methylation data using the method described by Houseman 

et al. (50). Total plasma glycans were prepared as described previously (72).  Glycans were 

normalised, and all measurements were adjusted for age, sex, and technical confounders. Total 

plasma proteins glycans were available for 2,752 individuals of European ancestry, of whom 165 

had also DNA methylation data. The TwinsUK dataset included 152 females and 13 males, 

whose median age was 58.30 (mean=56.71, SD=12.34). All individuals were of European 

ancestry. Association studies were conducted for individual CpG sites and glycans using a linear 

mixed model as implemented in the lme4 R packages (73), in order to keep into account the non-
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independence of twin data, and adjusting for BMI, age, sex, Houseman-based white blood cell 

coefficients, and technical confounders. Outliers (measurements more than three standard 

deviations from the mean) were excluded from the analysis. 

 

Replication of CpG-protein associations and MR in the KORA study. The KORA F4 study 

is a population-based cohort of 3,080 subjects living in southern Germany who were recruited 

between 2006 and 2008. The DNA methylation dataset from KORA, which was determined 

using the Infinium HumanMethylation450 BeadChip platform, was described in detail 

previously (25) and comprises 1,805 samples. The 1,805 samples consisted of 880 males and 925 

females whose median age was 61 (mean=60.92, SD=8.87). For replication of the novel 

methylation-proteomics associations, we used protein traits that were measured using the 

SOMAscan platform. Of the 1,805 methylation samples, only 997 had the matching proteomics 

measurements available. The proteomics data set has been described in detail previously (64). 

For the MR analysis, we used all 1,805 methylation samples and their matching genotyping data 

for the selected instruments, and their matching metabolomics data for the selected metabolites. 

The KORA genotyping data was described previously in detail (64), and the metabolomics 

dataset was also described previously (25).  

Mendelian Randomization. We used the inverse-variance weighted method (74) as 

implemented in R function “mr_ivw:MendelianRandomization” to conduct Mendelian 

Randomization on the original 20 CpG-metabolite associations reported in the Petersen et al. 

study (25), using inverse-normal scaled metabolite and CpG methylation data from the KORA 

study (N~1,800). To reduce the multiple-testing burden and avoid testing weak associations we 
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only selected SNPs as instruments that showed an association with both, CpG methylation and 

metabolite levels. We used the BIOS QTL browser (http://genenetwork.nl/biosqtlbrowser) (75) 

to retrieve all methylation-QTLs for the 20 CpGs investigated here. We then used the SNiPA 

server (http://snipa.org) (76) to identify all overlapping metabolite-QTLs on matching CpG-

metabolite pairs. When multiple correlated SNPs were available (R
2
>0.8) we selected the one 

with strongest association.  
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Legends to Figures 
 

Figure 1. Hypothesis tested in this study. Exposure to physiological challenges, such as an 

increased BMI, smoking, or dysregulated glycemic control leads physiological changes that 

translate into changes in intermediate molecular phenotypes, such as metabolite levels that are 

detectable in different body fluids, blood circulating lipids, proteins, and protein glycosylation. 

These then further induce changes in DNA methylation at specific regulatory sites of genes that 

are required to counter this insult. Note that this view does not exclude that changes in the 

expression of certain genes may not also result in further changes in molecular phenotypes. 

Hence, despite the fact that we found here three cases of causality from metabolite to CpG, cases 

with reverse directionality are also likely to exist. 

 

Figure 2. Multi-omics data set and study design. 388 individuals participated in the initial 

QMDiab study. 359 samples had DNA methylation data and at least one other deep-molecular 

trait. 

 

Figure 3. Evidence supporting the hypothesis that genetically induced changes in 

metabolite levels are causal to the associated changes in methylation levels. The instrumental 

variables here were identified using the BIOS server (75) and SNiPA (76). The three-way 

associations were evaluated using the KORA data set (N~1,800). The p-values (pIVW) shown are 

associated with the estimate (Wald test). In all three cases presented here (see Table 6 for 

details), the associations between SNP and CpG methylation can be fully explained via the 

metabolite. This suggests that the metabolic trait is causal to the association between metabolite 

and CpG. 
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Tables 

Table 1. Summary of CpG - intermediate trait – complex trait associations for the CpG 

sites from the Petersen et al. study.  
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 For the Replication of the Petersen study, 2 ticks indicate Bonferroni significance, and 1 tick indicates nominal 

significance.  
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^
 These associations include a replication in KORA. 

†††† These associations include a replication in TwinsUK.  
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Table 2. General characteristics of the QMDiab study participants
+
. 

 

Age (years) 46.8±12.8 (mean ± s.d.) 

Sex 177 (49.3%) female 

182 (50.7%) male 

Body Mass Index (kg/m
2
)  29.6±6.0(mean ± s.d.) 

Ethnicity 
a
 189 (52.6%) Arab  

106 (29.5%) South Asian  

34 (9.5%) Filipino 

13 (3.6%) other/mixed 

17 (4.7%) missing  

T2D status 182 (50.7%) having diabetes  

176 (49.0%) no diabetes 

1 (0.03%) missing 

Smoking status 
b
 62 (17.3%) smokers  

280 (78.0%) non-smokers 

17 (4.7%) missing 
 

+
 The QMDiab study has been described previously and comprises 388 

study participants from Arab and Asian ethnicities (29). The statistics 

here are reported for the 359 samples with methylation data overlapping 

with at least one type of proteomics, lipidomics, glycomics, or 

metabolomics measurement. 
a
 Arab ethnicity includes participants from Bahrain, Egypt, Iraq, Jordan, 

Kuwait, Lebanon, Morocco, Oman, Palestine, Qatar, Saudi Arabia, 

Somalia, Sudan, Syria, Tunisia, United Arab Emirates, and Yemen. 

South Asian ethnicity includes participants from Bangladesh, India, 

Nepal, Pakistan, and Sri Lanka. 
b
 Smoking status was determined based on the detection of cotinine in 

blood at the time of blood collection. 
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Table 3. Multi-omics associations with CpG methylation in QMDiab. Association data for 14 

of the 20 CpG loci reported by Petersen et al. (25). P-values are for the reported phenotypes in 

linear regression models with the respective covariates (Figure 2). Associations were required to 

reach a Bonferroni level of significance of pmetabolite < 1.01×10
-6

, plipid < 1.11×10
-5

, pprotein < 

2.22×10
-6

, and pglycan < 2.21×10
-5

 for metabolites, lipids, proteins, and glycan traits, respectively. 

Genomic coordinates are based on human genome build 37. A positive association with 

methylation levels is indicated by (↑), while a negative is indicated by (↓). Full summary 

statistics are in Supplemental Table 3. 

 

Locus  Group Trait Trend P-value 

UGT2B15 

cg09189601 

chr4:69514031 

Other 

Metabolites X-19141 [plasma]  ↓ 6.21x10
-23

 

TXNIP 

cg19693031 

chr1:145441552 

Diabetes 

Metabolites 
a
 1,5-anhydroglucitol (1,5-AG) 

[plasma] 

↑ 7.56x10
-21

 

 Glucose [NMR] ↓ 1.17x10
-14

 

 2-hydroxybutyrate (AHB) [urine] ↓ 2.52x10
-14

 

 3-hydroxybutyrate (BHBA) [urine] ↓ 5.87x10
-13

 

 
a
 glucose [plasma] ↓ 3.15x10

-12
 

 … (list truncated)   

Lipids L-VLDL-CE_% ↑ 1.01x10
-8

 

 XL-VLDL-CE_% ↑ 2.05x10
-8

 

 M-VLDL-CE_% ↑ 4.42x10
-6

 

 XL-VLDL-C_% ↑ 5.66x10
-6

 

 … (list truncated)   

Proteins Transmembrane glycoprotein 

NMB (GPNMB) 

↓ 1.30x10
-8

 

 Aminoacylase-1 (ACY1)  ↓ 2.59x10
-7

 

 Sex hormone-binding globulin  

(SHBG) 

↑ 4.65x10
-7

 

  Melanoma-derived growth 

regulatory protein (MIA) 

↑ 6.88x10
-7

 

Glycans PGP23 ↓ 2.75x10
-8

 

 PGP31 ↓ 9.31x10
-8

 

 PGP29 ↓ 7.61x10
-6

 

  PGP28 ↓ 8.42x10
-6
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DHCR24 

cg17901584 

chr1:55353706 

Obesity 

Lipids M-VLDL-C_% ↑ 6.62x10
-9

 

  M-VLDL-TG_% ↓ 7.14x10
-9

 

  M-VLDL-CE_% ↑ 1.87x10
-8

 

  S-VLDL-TG_% ↓ 1.36x10
-6

 

  … (list truncated)   

MYO5C 

cg06192883 

chr15:52554171 

Obesity 

Glycans PGP58 ↑ 8.31x10
-9

 

  PGP70 ↑ 6.91x10
-8

 

  PGP1 ↑ 3.67x10
-7

 

  PGP17 ↓ 8.34x10
-7

 

  PGP99 ↑ 1.23x10
-6

 

  … (list truncated)   

  IgG1_G0F  ↑ 9.46x10
-7

 

   IgG4_G2FN  ↓ 1.79x10
-5

 

ABCG1 

cg06500161 

chr21:43656587 

Diabetes & obesity 

Metabolites myo-inositol [urine]  ↑ 7.21x10
-7

 

 Lipids L-VLDL-CE_% ↓ 1.03x10
-8

 

  M-VLDL-CE_% ↓ 2.19x10
-7

 

  M-VLDL-C_% ↓ 2.26x10
-7

 

  XXL-VLDL-CE_% ↓ 8.73x10
-7

 

  … (list truncated)   

CPT1A 

cg00574958 

chr11: 68607622 

Diabetes & obesity 

Proteins Tumor necrosis factor ligand 

superfamily member 4 (TNFSF4) 

↑ 1.61x10
-6

 

SLC7A11 

cg06690548 

chr4:139162808 

Obesity 

Metabolites serine [plasma]  ↑ 3.05x10
-7

 

AHRR 

cg05575921 

chr5:373378 

Smoking 

Metabolites o-cresol sulfate [urine] ↓ 2.66x10
-27

 

  3-ethylphenylsulfate* [urine] ↓ 1.08x10
-17

 

  
b
 X-17185 [urine] 

 X-17185 [plasma] 

↓ 

↓ 

2.42x10
-16

, 

1.52x10
-7

 

  X-12161 [urine] ↓ 5.17x10
-13

 

  X-17398 [urine] ↓ 1.36x10
-12

 

  … (list truncated)   
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 Proteins Polymeric immunoglobulin 

receptor (PIGR) 

↓ 2.03x10
-11

 

ALPPL2 

cg21566642 

chr2:233284661 

Smoking 

Metabolites o-cresol sulfate [urine] ↓ 7.43x10
-16

 

  3-ethylphenylsulfate* [urine] ↓ 4.45x10
-9

 

  
b
 X-17185 [plasma] 

 X-17185 [urine] 

↓ 

↓ 

6.32x10
-8

, 

1.15x10
-6

 

  X-17398 [urine] ↓ 6.35x10
-8

 

  2-ethylphenylsulfate [urine] ↓ 4.54x10
-7

 

F2RL3 

cg03636183 

chr19:17000585 

Smoking 

Metabolites o-cresol sulfate [urine]  ↓ 4.93x10
-13

 

  3-ethylphenylsulfate* [urine]  ↓ 1.09x10
-9

 

  X-17398 [urine]  ↓ 1.41x10
-8

 

  X-17185 [urine]  ↓ 9.18x10
-7

 

 Proteins Polymeric immunoglobulin 

receptor (PIGR) 

↓ 9.02x10
-7

 

cg06126421 

chr6:30720080 

Smoking 

Metabolites 
b
 X-17185 [urine] 

 X-17185 [plasma] 

↓ 

↓ 

2.99x10
-10

,
 

6.23x10
-7

 

  o-cresol sulfate [urine] ↓ 2.23x10
-9

 

  X-17398 [urine] ↓ 2.49x10
-7

 

  3-ethylphenylsulfate* [urine] ↓ 5.37x10
-7

 

  X-17320 [urine] ↓ 5.47x10
-7

 

  3-methyl catechol sulfate 1 [urine] ↓ 5.53x10
-7

 

 Proteins Polymeric immunoglobulin 

receptor (PIGR) 

↓ 3.36x10
-7

 

RARA 

cg19572487 

chr17:38476024 

Smoking  

Metabolites o-cresol sulfate [urine]  ↓ 3.29x10
-7

 

 Proteins Gelsolin (GSN) ↑ 1.89x10
-6

 

GFI1 

cg09935388 

chr1:92947588 

Smoking 

Metabolites o-cresol sulfate [urine]  ↓ 2.90x10
-7

 

cg23079012 

chr2:8343710 

Smoking 

Metabolites o-cresol sulfate [urine]  ↓ 4.51x10
-8

 

 Proteins X-linked interleukin-1 receptor 

accessory protein-like 2 

(IL1RAPL2) 

↓ 4.35x10
-9

 

  Vascular endothelial growth factor 

A (VEGFA) 

↓ 1.42x10
-6

 

   NudC domain-containing protein 3 ↓ 1.55x10
-6
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(NUDCD3) 
 

a  
This metabolite was already reported in Petersen et al.  

b 
This metabolite was measured on different platforms or in different fluids in QMDiab (indicated in square 

brackets).  

Note: We only present the 5 most significant associations for each category in this Table. For a more comprehensive 

list, see Supplementary Table 3.  
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Table 4. Replication of novel proteome-methylation associations in the KORA study. Six 

out of twelve protein-methylation associations were replicated in KORA (N=997) at Bonferroni 

significance p<0.0041 (0.05/12). All but one association showed concordant directions in the two 

studies. 

QMDiab KORA 

Locus Protein p-value Beta p-value Beta 

TXNIP Transmembrane glycoprotein NMB  1.30 x 10
-8

 -0.006 0.841 -0.002 

cg19693031 Aminoacylase-1   2.59 x 10
-7
 -0.002 2.58 x 10

-7
 -0.028 

 Sex hormone-binding globulin   4.65 x 10
-7
 0.002 0.002 0.019 

 Melanoma-derived growth regulatory protein   6.88 x 10
-7

 0.006 0.106 0.021 

CPT1A 

cg00574958 

Tumor necrosis factor ligand superfamily 

member 4  

1.61 x 10
-6

 0.002 0.204 0.003 

AHRR 

cg05575921 
Polymeric immunoglobulin receptor 2.03 x 10

-11
 -0.004 3.30 x 10

-27
 -0.153 

F2RL3 

cg03636183 
Polymeric immunoglobulin receptor  9.02 x 10

-7
 -0.002 5.82 x 10

-19
 -0.075 

cg06126421 Polymeric immunoglobulin receptor  3.36 x 10
-7
 -0.003 8.29 x 10

-11
 -0.065 

RARA 

cg19572487 
Gelsolin  1.89 x 10

-6
 0.004 0.001 0.059 

cg23079012 X-linked interleukin-1 receptor accessory 

protein-like 2  

4.35 x 10
-9

 -0.001 0.756 -0.001 

 Vascular endothelial growth factor A  1.42 x 10
-6

 -0.002 0.600 -0.004 

  NudC domain-containing protein 3  1.55 x 10
-6

 -0.001 0.338 0.003 
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Table 5. Replication of novel N-glycan-methylation associations in the TwinsUK study. 

Four of the glycan-methylation associations displayed nominal significance p<0.05 in the 

TwinsUK study (N=165) and one was replicated at Bonferroni significance p<0.0035 (0.05/14). 

All associations had the same direction of effect as in QMDiab. Glycan annotations are provided 

in Supplementary Table 1.  

  QMDiab TwinsUK  

Locus glycan p-value beta p-value beta  

TXNIP PGP23 2.75 x 10
-8

 -0.023 0.115 -0.007  

cg19693031 PGP31 9.31 x 10
-8

 -0.025 0.035 -0.009  

 PGP29 7.61 x 10
-6

 -0.019 0.135 -0.007  

 PGP28 8.42 x 10
-6
 -0.020 0.002 -0.014  

MYO5C PGP58 8.31 x 10
-9

 0.013 0.064 0.009  

cg06192883 PGP70 6.91 x 10
-8

 0.013 0.060 0.010  

 PGP1 3.67 x 10
-7

 0.011 0.016 0.011  

 PGP17 8.34 x 10
-7

 -0.011 0.175 -0.006  

 PGP99 1.23 x 10
-6

 0.010 0.012 0.012  

 PGP77 4.00 x 10
-6

 0.009 0.073 0.008  

 PGP81 4.00 x 10
-6

 -0.009 0.073 -0.008  

 PGP64 6.88 x 10
-6

 -0.009 0.266 -0.005  

 PGP73 1.61 x 10
-5

 0.009 0.132 0.006  

 PGP72 1.72 x 10
-5

 -0.010 0.030 -0.013  
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Table 6. Causality analysis using Mendelian Randomization. KORA data (N~1,800) was 

used for MR analysis using the inverse-variance weighted method. All three MR analyses 

suggest that changes in metabolites are causal for the observed changes in CpG methylation with 

Bonferroni significance pMR<0.017 (0.05/3). 

 

 

 

Triangle Associations MR 

(IVW Method) 

Metabolite~SNP 

(instrument) 

CpG~SNP 

 

CpG~Metabolite 

(observed) 

CpG~Metabolite 

(predicted) 

 

CPT1A 

cg00574958   

 

APO-cluster 

rs964184  

 

VLDL-A 

 
 

p = 3.48×10
-9 

� = 0.254 

SE = 0.0427 

CI95 = [0.170,0.338] 

 
 

p = 0.00589
 

�= - 0.124  

SE = 0.0450 

CI95 = [-0.212,-0.0358] 

 

PIV =0.080 

 
 

p = 5.89×10
-14 

� = - 0.186 

SE = 0.0246 

CI95 = [-0.234,-0.138] 

 

 

pMR=0.006
 

�= -0.489 

SE=0.177 

CI95 = [-0.837,-0.141] 

 

DHCR24 

(cg17901584) 

 

FADS1 

(rs174547) 

 

PC.ae.C36.5 

 
 

p = 1.63×10
-23 

�= -0.344 

SE=0.0339 

CI95 =[-0.411,-0.277] 

 
 

p = 0.0103 

� = -0.0886 

SE = 0.0345 

CI95 = [-0.156,-0.0209] 

 

PIV =0.563 

 
 

p=3.43×10
-18 

�=0.202 

SE=0.023 

CI95 = [0.157,0.248] 

 

 

pMR=0.010
 

�=0.258  

SE=0.100 

CI95 = [0.061,0.454] 

 

MYO5C 

cg06192883 

 

CPS1 

(rs715) 

 

glycine 

 

 

p=4.45×10
-42 

�= 0.455 

SE=0.0325 

CI95 = [0.391,0.519] 

 

 

p = 0.00318
 

� = - 0.107 

SE = 0.0361 

CI95 = [-0.178,0.00359] 

 

PIV =0.633 

 

 

p=7.69×10
-15 

�= - 0.199 

SE=0.0254 

CI95 = [-0.249,-0.149] 

 

 

pMR = 0.003
 

� = - 0.235 

SE = 0.079 

CI95 = [-0.390,-0.079] 

Abbreviations: �=effect size (units: s.d./s.d. or s.d./minor allele copy), SE=Standard Error, p=P-value, CI95 = 95% 

confidence intervals, PIV = the p-value for the association of the CpG to the metabolite conditioned on the SNP; this 

association must not be significant for a valid instrument. 
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Abbreviations 

1,5-AG 1,5-anhydroglucitol 

ACN Acetonitrile 

AHB Alpha-hydroxybutyrate 

AHRR Aryl hydrocarbon receptor repressor 

BMI Body mass index 

CpG Cytosine-guanine di-nucleotide 

EWAS Epigenome-wide association study 

GWAS Genome-wide association study 

HILIC-UPLC Hydrophilic interaction ultra-performance liquid chromatography 

HMC Hamad Medical Corporation 

LC-MS Liquid chromatography mass spectrometry 

MR Mendelian Randomization 

MS Mass spectrometry 

NMR Nuclear magnetic resonance spectroscopy 

PC Principal component 

PIGR Polymeric immunoglobulin receptor 

QMDiab Qatar Metabolomics Study on Diabetes 

SNP Single nucleotide polymorphism 

T2D Type 2 diabetes 

TXNIP Thioredoxin-interacting protein 

UPLC Ultra-performance liquid chromatography 

WCM-Q Weill Cornell Medicine – Qatar 
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Figure 1. Hypothesis tested in this study. Exposure to physiological challenges, such as an increased BMI, 
smoking, or dysregulated glycemic control leads physiological changes that translate into changes in 

intermediate molecular phenotypes, such as metabolite levels that are detectable in different body fluids, 

blood circulating lipids, proteins, and protein glycosylation. These then further induce changes in DNA 
methylation at specific regulatory sites of genes that are required to counter this insult. Note that this view 
does not exclude that changes in the expression of certain genes may not also result in further changes in 
molecular phenotypes. Hence, despite the fact that we found here three cases of causality from metabolite 

to CpG, cases with reverse directionality are also likely to exist.  
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Figure 2. 388 individuals participated in the initial QMDiab study. 359 samples had DNA methylation data 

and at least one other deep-molecular trait.  
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Figure 3. Evidence supporting the hypothesis that genetically induced changes in metabolite levels are 
causal to the associated changes in methylation levels. The instrumental variables here were identified using 
the BIOS server (75) and SNiPA (76). The three-way associations were evaluated using the KORA data set 

(N~1,800). The p-values (pIVW) shown are associated with the estimate (Wald test). In all three cases 
presented here (see Table 6 for details), the associations between SNP and CpG methylation can be fully 
explained via the metabolite. This suggests that the metabolic trait is causal to the association between 

metabolite and CpG.  
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