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Abstract

We analyze existence and asymptotic behavior of a system of semilin-

ear diffusion-reaction equations that arises in the modeling of the mito-

chondorial swelling process. The model itself expands previous work in

which the mitochondria were assumed to be stationary, whereas now their

movement is modeled by linear diffusion. While in the previous model

certain formal structural conditions were required for the rate functions

describing the swelling process, we show that these are not required in

the extended model. Numerical simulations are included to visualise the

solutions of the new model and to compare them with the solutions of the

previous model.
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1 Introduction1

Mitochondria are double-membrane enclosed organelles in eukaryotic cells. They2

play an important role in the death of mammalian cells by activating apopto-3

sis. This involves the permeabilization of the inner mitochondrial membrane,4

resulting in the swelling of the mitochondrial matrix. Mitochondrial permeabil-5

ity transition is caused by the opening of pores in the inner membrane, e.g .,6

under pathological conditions such as high Ca2+ concentrations. The increased7

permeability leads to an influx of solutes and water into the mitochondrial ma-8

trix. This causes swelling of the mitochondrion. Eventually the outer membrane9

ruptures. This is a critical event, because apoptosis is irreversibly triggered by10

the release of several proapoptotic factors from the intermembrane space [9].11

Intact mitochondria store calcium in their matrix. This calcium is released if12

swelling is induced [9]. Consequently the remaining mitochondria experience13

higher calcium concentrations, which accelerates the process.14

In this paper, we further develop the model for mitochondria swelling that15

we introduced in [4, 5, 7] and take into account spatial effects. More precisely,16

two spatial effects directly influence the process of mitochondria swelling: on17

the one hand, the extent of mitochondrial damage due to calcium is highly18

dependent on the position of the particular mitochondrion and the local calcium19

ion concentration there. On the other hand, at a high fractions of swollen20

mitochondria the effect of positive feedback becomes relevant as the residual21

mitochondria are confronted with a higher calcium ion load [9].22

In accordance with theoretical [8] and experimental [16] findings, we con-23
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sider three subpopulations of mitochondria with different corresponding vol-24

umes: N1(x, t) describes the density of intact, unswollen mitochondria, N2(x, t)25

is the density of mitochondria that are in the swelling process but not com-26

pletely swollen, and N3(x, t) is the density of completely swollen mitochondria.27

The swelling process is controlled by, and affects, the local Ca2+ concentration,28

which is denoted by u(x, t), and subject to Fickian diffusion.29

The transition of intact mitochondria over swelling to completely swollen30

ones proceeds in dependence on the local calcium ion concentration. In [4,31

5, 7] we assumed that mitochondria do not move in any direction and hence32

spatial effects are only introduced by the calcium evolution. In this case, the33

evolution of the mitochondrial subpopulations is modeled by a system of ODEs34

(see (1.2)-(1.4) below), that depends on the space variable x via the calcium ion35

concentration.36

In [4, 5, 7], we analyzed the swelling of mitochondria on a bounded domain37

Ω ⊂ R
n with n = 2, 3. This domain could either be a test tube or the whole cell.38

The initial calcium concentration u(x, 0) describes the added amount of Ca2+39

to induce the swelling process. This leads to the following coupled PDE-ODE40

system determined by the non-negative model functions f and g:41

∂tu = d1∆xu+ d2g(u)N2 (1.1)

∂tN1 = −f(u)N1 (1.2)

∂tN2 = f(u)N1 − g(u)N2 (1.3)

∂tN3 = g(u)N2 (1.4)
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with diffusion constant d1 > 0 and feedback parameter d2 > 0. Equations

(1.1)-(1.4) were complemented by inhomogeneous Robin boundary conditions

(containing as a particular cases the Neumann and Dirichlet boundary condi-

tions), as well as the initial conditions

u(x, 0) = u0(x), N1(x, 0) = N1,0(x), N2(x, 0) = N2,0(x), N3(x, 0) = N3,0(x).

Note that by virtue of (1.2)-(1.4) the total mitochondrial population

N̄(x, t) := N1(x, t) +N2(x, t) +N3(x, t)

does not change in time, that is, ∂tN̄(x, t) = 0, and is given by the sum of the

initial data:

N̄(x, t) = N̄(x) := N1,0(x) +N2,0(x) +N3,0(x) ∀t ≥ 0 ∀x ∈ Ω.

For the convenience of the reader we recall below the role of model functions42

f and g (see also [4, 5, 6, 7]).43

Model function f . The process of mitochondrial permeability transition is44

dependent on the calcium ion concentration. If the local concentration of Ca2+45

is sufficiently high, the pores open and mitochondrial swelling is initiated. This46

incident is mathematically described by the transition of mitochondria from47

N1 to N2. The corresponding transition function f(u) is zero up to a certain48

threshold C−, denoting the calcium ion concentration which is needed to start49

the whole process. Whenever this threshold is reached, the local transition at50

this point from N1 to N3 over N2 is inevitably triggered. According to [12], this51

process is calcium ion dependent with higher concentrations leading to faster52

pore opening. Hence the function f(u) is increasing in u.53
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The transfer from unswollen to swelling mitochondria is related to pore open-54

ing, hence we also postulate that there is some saturation rate f∗ displaying the55

maximal transition rate. This is biologically explained by a bounded rate of56

pore opening with increasing calcium ion concentrations.57

Remark 1. The initiation threshold C− of f is crucial for the whole swelling58

procedure. Dependent on the amount and location of added calcium ions, it59

can happen that in the beginning the local concentration was enough to induce60

swelling in this region, but after some time due to diffusion the concentration61

drops below C−. If this depletion occurs before all mitochondria are engaged in62

swelling, we only have partial swelling and eventually there can still be intact63

mitochondria left.64

Model function g. The mitochondrial population N2 changes due to initiation65

of swelling (N1 → N2, a source) and due to mitochondria swelling completely66

(N2 → N3, a sink). The transition from N2 to N3 is modeled by the transition67

function g(u). In contrast to the function f , there is no initiation threshold68

and the transition takes place in wherever calcium ions are present, u > 0. This69

property is based on a biophysical mechanism. The permeabilization of the inner70

membrane due to pore opening leads to water influx and hence unstoppable71

swelling of the mitochondrial matrix. Due to a limited pore size, this effect also72

has its restriction and, thus, we have saturation at level g∗.73

The third population N3 of completely swollen mitochondria grows continu-74

ously due to the unstoppable transition from N2 to N3. All mitochondria that75

started to swell will be completely swollen in the end.76
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Calcium evolution. The model consists of spatial developments in terms of77

diffusing calcium ions. In addition to the diffusion term, the equation for the78

calcium concentration contains a production term dependent on N2, which is79

justified by the following: in an earlier study [8], it was shown that it is essential80

to include a positive feedback mechanism. This accelerating effect is induced by81

stored calcium inside the mitochondria, which is additionally released once the82

mitochondrion is completely swollen. Due to a fixed amount of stored Ca2+,83

we assume that the additionally released calcium amount is proportional to the84

newly completely swollen mitochondria only, i.e., those mitochondria leaving N285

and entering N3. Here, the feedback parameter d2 is the rate at which stored86

calcium is released.87

The outline of the paper is as follows. In Section 2 we state the govern-88

ing equations which take into account the assumption that mitochondria move89

within a cell under certain circumstances. Under this assumption we prove in90

Section 2 well-posedness for the corresponding initial boundary value problem.91

Section 3 deals with asymptotic behaviour of solutions. Section 4 contains some92

numerical simulations which illustrate the analytical results.93

2 A PDE-PDE model and its well-posedness94

We especially emphasise that in the previous studies [4, 5, 7] we made the95

assumption that mitochondria do not diffuse within cell walls, leading to a96

PDE-ODE coupling (system (1.1)-(1.4)). However, there are indications that97

mitochondria do move under certain circumstances depending, e.g., on the cell98
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cycle [10]. This means that mitochondrial subpopulations Ni(t, x), in contrast99

to what we had in the previous papers, obey now partial instead of ordinary100

differential equations. We have the following PDE-PDE system:101

∂t







u

N1

N2

N3







+







d1∆u

d3∆N1

d4∆N2

d5∆N3







+







−d2g(u)N2

f(u)N1

−f(u)N1 + g(u)N2

−g(u)N2







= 0. (2.1)

We denote H := (L2(Ω))4 and

v =







u

N1

N2

N3







, Av := −







d1∆u

d3∆N1

d4∆N2

d5∆N3







, Bv :=







−d2g(u)N2

f(u)N1

−f(u)N1 + g(u)N2

−g(u)N2







.

We impose the initial condition:102

v|t=0 = v0(x) =







u0(x)
N1,0(x)
N2,0(x)
N3,0(x)







(2.2)

as well as Neumann boundary condition for N = (N1, N2, N3)
T :103

∂N

∂n

∣
∣
∣
∣
∂Ω

=





∂N1

∂n
∂N2

∂n
∂N3

∂n





∣
∣
∣
∣
∂Ω

= 0 (2.3)

and three types boundary conditions for u:104

(N) Neumann BC: ∂u
∂n = 0.105

(R) Robin BC: − ∂u
∂n = a(x) (u(x) − α), where α is nonnegative constant and106

a ∈ C1(∂Ω), a(x) ≥ 0, a(·) 6≡ 0.107

(D) Dirichlet BC: u(x) = 0.108

In the Robin BC case, in order to reduce the problem to the semi-linear setting,109

we set u = u− α, then u satisfies the linear boundary condition110

−∂νu = a(x) u on ∂Ω (2.4)
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and equation (2.1) with u, f(·), g(·) are replaced by u, f(v) = f(v + α) and111

g(v) = g(v + α) respectively. In what follows, we designate u, f(·) and g(·)112

again by u, f(·) and g(·), if no confusion arises. Here we note that f and g also113

satisfy Condition 1 which will be introduced later.114

We introduce the following functionals on L2(Ω):115

ϕa(u) :=







1

2

∫

Ω

|∇u|2 dx+
1

2

∫

∂Ω

a(x) |u|2 dS if u ∈ H1(Ω),

+∞ if u ∈ L2(Ω) \H1(Ω),

ϕD(u) :=







1

2

∫

Ω

|∇u|2 dx if u ∈ H1
0 (Ω),

+∞ if u ∈ L2(Ω) \H1
0 (Ω).

Then ϕa(·) and ϕD(·) become lower semi-continuous functions from L2(Ω) into116

[0,+∞] and their subdifferentials are given by117

∂ϕa(u) = ∂ϕD(u) = −∆u,

D(∂ϕ0) = { u ∈ H2(Ω) ; − ∂u
∂n = 0 on ∂Ω } : Neumann BC,

D(∂ϕa) = {u ∈ H2(Ω) ; − ∂u
∂n = a(x)u(x) on ∂Ω } : Robin BC,

D(∂ϕD) = {u ∈ H2(Ω) ; u ∈ H1
0 (Ω) } : Dirichlet BC.

According to the boundary conditions posed on u, we set

D(A) =

{

v ∈ (H2(Ω))4 ;
∂N

∂n

∣
∣
∣
∣
∂Ω

= 0,
∂u

∂n
= 0 or − ∂u

∂n
= a u or u = 0 on ∂Ω

}

,

for Neumann, Robin or Dirichlet boundary condition respectively.118

System (2.1)-(2.2) with boundary conditions (N), (R) and (D) can then be

rewritten as







∂tv +Av +Bv = 0, (2.5)

v(0, x) = v0(x). (2.6)
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Moreover set119

ϕ(v) = d1 ϕ1(u) +
d2

2

∫

Ω

|∇N1|2dx+
d3

2

∫

Ω

|∇N2|2dx+
d4

2

∫

Ω

|∇N3|2dx,

ϕ1(u) = ϕ0(u), ϕa(u) or ϕD(u).

Then ϕ(·) becomes a lower semi-continuous convex function on H and it holds120

that (see [2, 3])121

A(v) = ∂ϕ(v) ∀v ∈ D(A) = D(∂ϕ), (2.7)

D(A1/2) = D(ϕ) = {v ; ϕ(v) < +∞}, ‖A1/2v‖2 = 2ϕ(v). (2.8)

We here give precise conditions on model functions f, g as explained in the122

Introduction.123

Condition 1. The model functions f : R → R and g : R → R have the following124

properties:125

(i) Non-negativity:

f(s) ≥ 0 ∀s ∈ R,

g(s) ≥ 0 ∀s ∈ R.

(ii) Boundedness:

f(s) ≤ f∗ < ∞ ∀s ∈ R,

g(s) ≤ g∗ < ∞ ∀s ∈ R with f∗, g∗ > 0.

(iii) Lipschitz continuity:

|f(s1)− f(s2)| ≤ Lf |s1 − s2| ∀s1, s2 ∈ R,
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|g(s1)− g(s2)| ≤ Lg |s1 − s2| ∀s1, s2 ∈ R

with Lf , Lg ≥ 0.126

Theorem 2. Let f and g satisfy Condition 1. Then for any v0 = (u0, N1,0, N2,0, N3,0) ∈127

H there exists a unique solution of (2.5)-(2.6) such that128

{
v ∈ C([0,∞), H),

√
t ∂tv,

√
tAv ∈ L2(0, T,H),

ϕ(v) ∈ L1(0, T ), t ϕ(v) ∈ L∞(0, T ) for any T > 0.

Proof. Note that, due to Condition 1 we obtain

|Bv|2H ≤ d22(g
∗)2|N2|2L2 + 2(f∗)2|N1|2L2 + 2(g∗)2|N3|2L2 ≤ C|v|2H ,

which assures conditions (A5) and (A6) in Theorems III and IV from [11],129

respectively, and as a result local and global existence of solutions to (2.5)-130

(2.6)). Thus, applying to (2.5)-(2.6) the results from [11], we obtain existence of131

solutions to (2.5)-(2.6). Next we prove uniqueness. Let vi = (ui, N1,i, N2,i, N3,i)132

for i = 1, 2 be two solutions of the system. Then133

∂t(v1 − v2) + Ã(v1 − v2) + B̃v1 − B̃v2 = 0, Ãv = Av+ v, B̃v = Bv− v.

(2.9)

Multiplying both sides of (2.9) by δv = v1 − v2 and integrating over Ω, we134

obtain135

1

2

d

dt
‖δv(t)‖2H + ‖Ã1/2δv‖2H ≤ ‖B̃v1 − B̃v2‖H‖δv‖H , (2.10)

and136

‖B̃v1 − B̃v2‖H ≤ (d2 + 2)
(

‖g(u1)N2,1 − g(u2)N2,2‖L2

+ ‖f(u1)N1,1 − f(u2)N1,2‖L2

)

+ ‖δv‖H .
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Note that137

‖g(u1)N2,1 − g(u2)N2,2‖L2 ≤ ‖g(u1) δN2‖L2 + ‖(g(u1)− g(u2))N2,2‖L2

≤ g∗‖δN2‖L2 + Lg‖δu‖H1‖N2,2‖H1 . (2.11)

Analogously, we obtain138

‖f(u1)N1,1 − f(u2)N1,2‖L2 ≤ f∗‖δN1‖L2 + Lf‖δu‖H1‖N1,2‖H1 . (2.12)

Hence, since ‖Ã1/2δv‖H is equivalent to the H1-norm of v, from (2.10), (2.11)139

and (2.12) it follows that there exists a constant C such that140

1

2

d

dt
‖δv‖2H + ‖Ã1/2δv‖2H

≤ (d2 + 2)
(

g∗‖δN2‖L2 + Lg‖δu‖H1‖N2,2‖H1

+f∗‖δN1‖L2 + Lf‖δu‖H1‖N1,2‖H1

)

‖δv‖H + ‖δv‖2H

≤ (d2 + 2)(g∗ + f∗ + 1)‖δv‖2H

+(d2 + 2) (Lg‖N2,2‖H1 + LfN1,2‖H1) ‖δv‖H1‖δv‖H

≤ (d2 + 2)
(

(g∗ + f∗ + 1) + C (Lg‖N2,2‖H1 + Lf‖N1,2‖H1)
2
)

‖δv‖2H

+
1

2
‖Ã1/2δv‖2H .

Hence141

1

2

d

dt
‖δv‖2H +

1

2
‖Ã1/2δv‖2H

≤ (d2 + 2)
(

(g∗ + f∗ + 1) + C (Lg‖N2,2‖H1 + Lf‖N1,2‖H1)2
)

‖δv‖2H

=: C2(t) ‖δv‖2H . (2.13)

Integrating (2.13) over [0, T ], noting the fact that ϕ(v2) ∈ L1(0, T ) implies142
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C2 ∈ L1(0, T ) and using the Gronwall inequality, we obtain143

‖δv(t)‖2H ≤ e
∫

t

0
2C2(σ) dσ‖δv(0)‖2H . (2.14)

Since v1 and v2 are the solutions of (2.5)-(2.6) with the same initial conditions,144

estimate (2.14) leads to uniqueness of solutions to (2.5)-(2.6). Thus the well-145

posedness is proved.146

Our next step is to prove non-negativity of our spatial evolution mitochon-147

dria model, which is an important necessary biological property.148

Proposition 3. Let u0(x) ≥ 0, Ni,0(x) ≥ 0, i = 1, 2, 3. Then any solution of

(2.5)-(2.6) satisfies

u(x, t) ≥ 0, Ni(x, t) ≥ 0 for any t ≥ 0, a.e. x ∈ Ω, i = 1, 2, 3.

Proof. Consider first

∂tN1 − d1∆N1 = −f(u)N1

and multiply it by N−
1 (x, t) := max(−N1, 0) and integrate over domain Ω. Then

we obtain

−1

2

d

dt
‖N−

1 (t)‖2L2 − d3‖∇N−
1 (t)‖2L2 =

∫

Ω

f(u)|N−
1 (x, t)|2dx.

Hence

d

dt
‖N−

1 (t)‖2L2 + d3‖∇N−
1 (t)‖2L2 = −

∫

Ω

f(u)|N−
1 (x, t)|2dx ≤ 0.

Integrating the last inequality over [0, t], t > 0, we have

‖N−
1 (t)‖2L2 ≤ ‖N−

1 (0)‖2L2 = 0 =⇒ N−
1 (x, t) ≡ 0 a.e. x ∈ Ω.
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To prove the same property for N2 we act in the same way, namely we multiply

∂tN2 + d4∆N2 = f(u)N1(t, x)− g(u)N2(t, x).

by N−
2 (t, x) and integrate over Ω to obtain

−1

2

d

dt
‖N−

2 (t)‖2L2 − d4‖∇N−
2 (t)‖2L2 =

∫

Ω

f(u)N1N
−
2 dx

︸ ︷︷ ︸

≥0

+

∫

Ω

g(u)|N−
2 (x, t)|2dx,

so that149

1

2

d

dt
‖N−

2 (t)‖2L2 + d4‖∇N−
2 (t)‖2L2 ≤ −

∫

Ω

g(u)|N−
2 (x, t)|2dx ≤ 0. (2.15)

Integrating (2.15) over [0, t] and using the Gronwall inequality, we haveN−
2 (x, t) =150

0, ∀t > 0 and a.e. x ∈ Ω. Hence, N2(x, t) ≥ 0 for any t > 0 and a.e. x ∈ Ω. For151

N3(x, t) we act in the same way. For completeness we will present a proof for152

N3(x, t) ≥ 0 as well as u(x, t) ≥ 0. Indeed, let N3(x, t) be a solution of153

∂tN3 − d5∆N3 = g(u)N2(x, t). (2.16)

Multiplying (2.16) by N−
3 (t, x) and integrating over Ω, we get154

−1

2

d

dt
‖N−

3 (t)‖2L2 − d5‖∇N−
3 (t)‖2L2 =

∫

Ω

g(u)N2N
−
3 dx. (2.17)

Since N2(x, t) ≥ 0, then from (2.17) it follows that155

d

dt
‖N−

3 (t)‖2L2 + 2d5‖∇N−
3 (t)‖2L2 = −2

∫

Ω

g(u)N2N
−
3 dx ≤ 0. (2.18)

Integrating (2.18) over [0, t] for any t > 0, we obtain156

‖N−
3 (t)‖2L2 ≤ ‖N−

3 (0)‖2L2 .

Hence N−
3 (x, t) ≡ 0 and as a result, N3(x, t) ≥ 0 for any t > 0 and a.e. x ∈ Ω.157
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Analogously multiplying

∂tu− d1∆u = d2g(u)N2

by u−(x, t) and integrating over Ω and taking into account that N2(x, t) ≥ 0 for158

a.e. x ∈ Ω and t > 0, we obtain159

−1

2

d

dt
‖u−(t)‖2L2 − d1‖∇u−(t)‖2L2 = d2

∫

Ω

g(u)N2(x, t)u
−dx

︸ ︷︷ ︸

≥0

. (2.19)

Consequently integrating (2.19) over [0, t], we have

‖u−(t)‖L2 ≤ ‖u−(0)‖L2

which leads to u(x, t) ≥ 0 for all t > 0 and a.e. x ∈ Ω.160

3 Asymptotic behaviour of solutions161

Having established well-posedness of (2.5)-(2.6), our next task is to study the162

asymptotic behaviour of solutions as time goes to infinity. First we study the163

asymptotics of subpopulations Ni(x, t). Recall that they satisfy164







∂tN1 = d3∆N1 − f(u)N1,

∂tN2 = d4∆N2 + f(u)N1 − g(u)N2,

∂tN3 = d5∆N2 + g(u)N2

(3.1)

with ∂Ni

∂n |∂Ω = 0 and Ni(x, 0) = Ni,0(x). Integrating (3.1) over Ω, we obtain165







d

dt

∫

Ω

N1(x, t) dx = −
∫

Ω

f(u)N1(x, t) dx,

d

dt

∫

Ω

N2(x, t) dx =

∫

Ω

f(u)N1(x, t) dx−
∫

Ω

g(u)N2(x, t) dx,

d

dt

∫

Ω

N3(x, t) dx =

∫

Ω

g(u)N2(x, t) dx.

(3.2)

Let αi(t) :=
∫

Ω Ni(x, t) dx. Obviously αi(t) ≥ 0 for all t > 0. We define

α(t) := α1(t) + α2(t) + α3(t). Then by (3.2), we get

d

dt
α(t) = 0.
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Thus, α(t) ≡ α(0) =
∫

Ω
[N1,0(x) +N2,0(x) +N3,0(x)] dx, ∀t ≥ 0.166

From the first equation of (3.2) we obtain α1(t) is non-increasing in t and

α1(t) is bounded below by 0. This yields the convergence

α1(t)
t→∞−→ α∞

1 ≥ 0.

From the last equation of (3.2) we obtain α3(t) is non-decreasing in t and

bounded above by α(0). Hence

α3(t)
t→∞−→ α∞

3 ≥ 0.

Since α2(t) = α(0) − α1(t) − α3(t), we obtain α2(t) convergence to α∞
2 =167

α(0)− α∞
1 − α∞

3 . Integrating (3.2) over [0,∞) with respect to t, we obtain168







∫ ∞

0

(∫

Ω

f(u)N1(x, t) dx

)

dt ≤ C0,
∫ ∞

0

(∫

Ω

g(u)N2(x, t) dx

)

dt ≤ C0,

(3.3)

where C0 is some positive constant.169

Multiplying the first equation of (3.1) by N1(x, t) and integrating over Ω,

we get

1

2

d

dt
‖N1(t)‖2L2(Ω) + d3‖∇xN1(t)‖2L2(Ω) = −

∫

Ω

f(u)|N1(x, t)|2 dx ≤ 0.

Integrating this inequality over t, we conclude that

sup
t>0

‖N1(t)‖L2(Ω) ≤ ‖N1,0‖L2(Ω),

as well as

∫ ∞

0

∫

Ω

f(u(x, t))N2
1 (x, t) dxdt ≤ C∗ and

∫ ∞

0

∫

Ω

|∇N1(x, t)|2 dxdt ≤ C∗,

15



where C∗ is some positive constant. Consequently, due to Condition 1 we obtain170

∫ ∞

0

∫

Ω

|f(u(x, t))N1(x, t)|2 dxdt ≤ f∗C∗. (3.4)

Based on estimates (3.4), we shall study the asymptotic behaviour of subpop-171

ulations Ni(x, t), i = 1, 2, 3 first. We start with N1(x, t). To this end, we172

decompose173

N1(x, t) = n1(t) +N⊥
1 (x, t), where N1(x, t) ∈ H⊥;

H⊥ :=

{

w ∈ L2(Ω) |
∫

Ω

w(x)dx = 0

}

.

Then for any t > 0174

∫

Ω

N1(x, t)x =

∫

Ω

n1(t) dx = n1(t) |Ω|,

where |Ω| is denotes by the volume of bounded domain Ω ⊂ R
n.175

Hence, n1(t) =
1
|Ω|α1(t). Therefore as t → ∞, we have176

n1(t)
t→∞−→ n∞

1 :=
1

|Ω|α
∞
1 . (3.5)

Next we study asymptotics as t → ∞ of N⊥
1 (x, t). To this end, we multiply first177

equation of (3.1) by −∆N1 and integrate over Ω. Then we get178

1

2

d

dt
‖∇N1(t)‖2L2 + d3‖∆N1(t)‖2L2 ≤ ‖f(u)N1‖L2 · ‖∆N1‖L2

≤ d3

2
‖∆N1(t)‖2L2 +

1

2d3
‖f(u)N1‖2L2 .(3.6)

Therefore we have

1

2

d

dt
‖∇N1(t)‖2L2 +

d3

2
‖∆N1(t)‖2L2 ≤ 1

2d3
‖f(u)N1‖2L2 .

16



By Wirtinger’s inequality, we have179

‖∇N1(t)‖L2 = ‖∇N⊥
1 (t)‖L2 ≤ CW ‖∆N⊥

1 (t)‖L2 = CW ‖∆N1(t)‖L2 . (3.7)

Then from (3.6) and (3.7), we get

d

dt
‖∇N1(t)‖2L2 +

d3

CW
‖∇N1(t)‖2L2 ≤ 1

d3
‖f(u)N1(t)‖2L2 .

Since (3.4) implies ‖f(u)N1(t)‖2L2 ∈ L1(0,∞), we conclude with Proposition 4180

in [6] that181

‖∇N⊥
1 (t)‖L2 = ‖∇N1(t)‖L2 → 0 as t → ∞. (3.8)

Thus, by (3.5) and (3.8) we get

N1(x, t) → n∞
1 as t → ∞

strongly in H1(Ω).182

Next we study the asymptotics of N2(x, t). To this end, we decompose

N2(x, t) = n2(t) +N⊥
2 (x, t),

where N⊥
2 (x, t) ∈ H⊥. In the same manner as we did for N1(x, t), we obtain

n2(t) =
1

|Ω|α2(t), α2(t) :=

∫

Ω

N2(x, t) dx

as well as183

n2(t) → n∞
2 :=

1

|Ω|α
∞
2 as t → ∞. (3.9)

To study the asymptotics of N2(x, t) as t → ∞, it remains to study N⊥
2 (x, t) as184

t → ∞. For this purpose, we multiply the second equation of (3.1) by N⊥
2 (x, t)185

and integrate over Ω. This yields186

1

2

d

dt
‖N⊥

2 (t)‖2L2 + d4‖∇N⊥
2 (t)‖2L2

17



≤ ε‖N⊥
2 (t)‖2L2 +

1

4ε
‖f(u)N1‖2L2 −

∫

Ω

g(u)N2(x, t)(N2(x, t)− n2(t)) dx.

(3.10)

From (3.10) it follows that187

1

2

d

dt
‖N⊥

2 (t)‖2L2 !+
d4

2
‖∇N⊥

2 (t)‖2L2 +

(
d4

2C2
W

− ε

)

‖N⊥
2 (t)‖2L2 +

∫

Ω

g(u)N2
2 (x, t) dx

≤
∫

Ω

g(u)n2(t)N2(x, t) dx+
1

4ε
‖f(u)N1‖2L2 . (3.11)

By virtue of (3.9), we get

sup
t>0

‖n2(t)‖L∞ ≤ C0.

Then by (3.3), we obtain

∫ ∞

0

∫

Ω

g(u)n2(t)N2(t, x)dxdt ≤
∫ ∞

0

‖n2(t)‖L∞ · ‖g(u)N2(t)‖L1 dt ≤ C̃0,

where C̃0 is a general constant independent of t. By virtue of Proposition 4 in188

[6] based on the last inequality and (3.4), we obtain189

‖N⊥
2 (t)‖L2 → 0 as t → ∞. (3.12)

Furthermore, integrating (3.11) over [0,∞), we have190

∫ ∞

0

∫

Ω

g(u)N2
2 (x, t) dxdt ≤ C̃0, hence

∫ ∞

0

‖g(u)N2(t)‖2L2 dt ≤ C̃0. (3.13)

Our next step is to obtain convergence of N2(x, t) as t → +∞ strongly inH1(Ω).191

To this end, we multiply the second equation of (3.1) by −∆N2. Then we get192

1

2

d

dt
‖∇N2(t)‖2L2 + d4‖∆N2(t)‖2L2

≤ d4

2
‖∆N2(t)‖2L2 +

1

2d4

(
‖f(u)N1(t)‖2L2 + ‖g(u)N2(t)‖2L2

)
.

18



Hence by Wirtinger’s inequality (see [6]) and taking into account ∇xN2(x, t) =193

∇xN
⊥
2 (x, t) we have194

d

dt
‖∇N2(t)‖2L2 +

d4

2C2
W

‖∇N2(t)‖2L2 +
d4

2
‖∆N2(t)‖2L2

≤ 2

d4

(
‖f(u)N1(t)‖2L2 + ‖g(u)N2(t)‖2L2

)
.

Therefore in view of (3.4) and (3.13), we deduce from Proposition 4 in [6] that195

‖∇N2(t)‖2L2 = ‖∇N⊥
2 (t)‖2L2 → 0 as t → ∞ (3.14)

as well as
∫ ∞

0

‖∆N2(t)‖2L2dt ≤ C̃0.

Thus, (3.9), (3.12) and (3.14) imply that

N2(x, t) → n∞
2 as t → ∞ strongly in H1(Ω).

In the same manner, we can study asymptotic behavior of N3(x, t) as t →

+∞. Indeed, let

N3(x, t) = n3(t) +N⊥
3 (x, t)

where N⊥
3 (x, t) ∈ H⊥. Then one can easily see that

n3(t) → n∞
3 :=

1

|Ω|α
∞
3 as t → +∞.

Multiplying the last equation of (3.1) by −∆N3, we get

d

dt
‖N3(t)‖2L2 +

d5

2C2
W

‖∇N3(t)‖2L2 +
d5

2
‖∆N3(t)‖2L2 ≤ 1

d5
‖g(u)N2(t)‖2L2 .

Using exactly the same arguments as we did for N1(x, t) and N2(x, t), we obtain

N3(x, t) → n∞
3 strongly in H1(Ω) as t → ∞

19



and
∫ ∞

0

‖∆N3(t)‖2L2dt ≤ C̃0.

It remains to obtain asymptotic behaviour of calcium evolution u(x, t).196

Neumann BC case: We begin with the Neumann BC case, i.e., u satisfies197







∂tu = d1∆u+ d2g(u)N2(x, t), x ∈ Ω, t > 0,
∂u

∂n

∣
∣
∣
∣
∂Ω

= 0, u|t=0 = u0(x).
(3.15)

Integrating (3.15) over Ω, we get

∂

∂t

∫

Ω

u(x, t) dx = d2

∫

Ω

g(u)N2(x, t) dx.

Hence, by (3.2), we obtain198

∫

Ω

u(x, t) dx =

∫

Ω

u0(x) dx+ d2

∫ t

0

(∫

Ω

g(u)N2(x, t) dx

)

dt

=

∫

Ω

u0(x) dx+ d2(α3(t)− α3(0)).

Let

u(x, t) = a(t) + ϕ⊥(x, t),

where ϕ⊥ ∈ H⊥. Then since α3(t) → α∞
3 as t → ∞, we easily find that199

a(t) :=

∫

Ω

u(x, t) dx → ã∞ :=

∫

Ω

u0(x) dx+ d2(α
∞
3 − α3(0)) as t → ∞.

(3.16)

Multiplying (3.15) by −∆u, we have

1

2

d

dt
‖∇u(t)‖2L2 + d1‖∆u(t)‖2L2 ≤ d1

2
‖∆u(t)‖2L2 +

d22
2d1

‖g(u)N2(t)‖2L2 .

Hence by Wirtinger’s inequality we get

d

dt
‖∇u(t)‖2L2 +

d1

4
‖∆u(t)‖2L2 +

d1

4C2
W

‖∇u(t)‖2L2 ≤ d22
d1

‖g(u)N2(t)‖2L2 .
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Taking into account that ‖g(u)N2(t)‖2L2 ∈ L1(0,∞) and using Proposition 4 in200

[6], we obtain201

‖∇u(t)‖L2 = ‖∇ϕ⊥(t)‖L2 → 0 as t → ∞. (3.17)

Thus, in view of (3.16) and (3.17), we conclude that

u(x, t) → ã∞ strongly in H1(Ω) as t → ∞.

Uniform convergence. Furthermore, since we already obtained a priori

bound for ‖∇N2(t)‖L2 (see (3.14)), following the arguments in the proof of

Theorem 7 in [7], we can derive the boundedness of

sup
t≥δ

‖∆ϕ⊥(t)‖L2 = sup
t≥δ

‖∆u(t)‖L2 ≤ Cδ,

where Cδ is a constant depending on δ > 0. Thus, by the Sobolev embedding202

theorem and the standard interpolation inequality, see [15], we find that there203

exist α, θ ∈ (0, 1) and Cθ such that204

‖u(t)− ã∞‖Cα(Ω) ≤ Cθ‖∆(u(t)− ã∞)‖1−θ
L2 ‖∇(u(t)− ã∞)‖θL2

≤ Cθ‖∆ϕ⊥(t)‖1−θ
L2 ‖∇ϕ⊥(t)‖θL2 .

Hence from the boundedness of ∆ϕ⊥(t), it follows that

‖u(t)− ã∞‖Cα(Ω) ≤ C̃1−θ
δ Cθ‖∇ϕ⊥‖θL2(Ω) ∀t ≥ δ,

whence follows205

‖u(t)− ã∞‖Cα(Ω) → 0 as t → ∞. (3.18)
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Robin BC case: Multiplying (3.15) with Robin BC by −∆u = ∂ϕa(u), we206

have207

d

dt
ϕa(u(t)) + d1‖∆u(t)‖2L2 ≤ d1

2
‖∆u(t)‖2L2 +

d22
2d1

‖g(u)N2‖2L2 . (3.19)



Hence, from Proposition 4 of [7], we derive

u(x, t) → 0 strongly in H1(Ω) as t → ∞.

Thus, as before we conclude that211

‖u(t)‖Cα(Ω) → 0 as t → ∞. (3.23)

Remark 4. Due to the presence of the Laplacian in the equations of subpopu-212

lations Ni(t, x), we could obtain (3.18) without any structural assumptions on213

f, g such as required in [6] (PDE-ODE coupling).214

Remark 5. As it was shown in Proposition 3 of [6] and Proposition 2 of [5],

for Neumann BC and Robin BC with α > 0, one can show that there exists

t0 > 0 and ρ > 0 such that

u(x, t) ≥ ρ for all t ≥ t0, a.e. x ∈ Ω.

Assume that mins≥ρ g(s) = gρ > 0. Then multiplying the second equation of215

(3.1) by N2(t, x), we get216

1

2

d

dt
‖N2(t)‖2L2 + d4‖∇N2(t)‖2L2 +

∫

Ω

g(u)(N2(x, t))
2dx ≤

∫

Ω

f(u)N1N2dx.

(3.24)

It follows from (3.24) that

1

2

d

dt
‖N2(t)‖2L2 + gρ‖N2(t)‖2L2 ≤ gρ

2
‖N2(t)‖2L2 +

1

2gρ
‖f(u)N1‖2L2.

Since ‖f(u)N1(t)‖L2 ∈ L1(0,∞), then by Proposition 4 in [6], we obtain

‖N2(t)‖L2(Ω) → 0 as t → ∞

and consequently n∞
2 = 0.217
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Remark 6. As for the case for Dirichlet BC and Robin BC with α = 0, under218

suitable condition on g, one can show that n∞
2 6= 0 (see Theorem 4.4 of [4] and219

Theorem 5.2 of [5]).220

Remark 7. Analogously to the PDE-ODE case (cf. [4, 5, 6], one can classify221

the asymptotic behavior of solution into two categories, i.e., partial swelling and222

complete swelling in terms of relation between α,C−, ã∞:223

(N) Neumann BC case:224

(i) If 0 ≤ ã∞ < C−, then partial swelling occurs, i.e., there exists225

Tp ∈ (0,∞) such that α1(t) ≡ α1(Tp) > 0 for all t ≥ Tp.226

(ii) If C− < ã∞, then complete swelling occurs, i.e., α∞
1 = 0.227

(R) Robin BC case:228

(i) If 0 ≤ α < C−, then partial swelling occurs.229

(ii) If C− < α, then complete swelling occurs.230

(D) Dirichlet BC case: The partial swelling always occurs.231

4 Numerical illustrations232

We illustrate the previous results on longtime behaviour with numerical simu-233

lations in 1D (for easier visualisation), over the interval x ∈ (0, 1). For this, we234

have to specify appropriate functions f(u) and g(u). Following [4, 5, 6, 7] we235

choose236

f(u) =







0, 0 ≤ u ≤ C−,
f∗

2

(

1− cos (u−C−)π
C+−C−

)

, C− ≤ u ≤ C+,

f∗, u > C+,
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and237

g(u) =

{
g∗

2

(
1− cos uπ

C+

)
, 0 ≤ u ≤ C+,

g∗, u > C+.

The model parameters used are summarized in Table 1. They have been taken238

from our previous studies [4, 5, 6, 7] and chosen primarily to support, demon-239

strate, and emphasize the mathematical results, not for quantitative prediction.240

We assume here that the diffusion coefficients are the same for all three classes241

of mitochondria, and that motility of mitochondria is smaller than diffusion of242

calcium ions.243

The initial data for the calcium ion concentration are chosen such that at

x = 0 the concentration is higher than C+ and at x = 1 it is lower than C−,

connected by a cosine wave.

u(x, 0) = Ĉ · (1 + cos(xπ)), x ∈ (0, 1), Ĉ = 250

and

N1(x, 0) = 1, N2(x, 0) = 0, N3(x, 0) = 0, x ∈ Ω,

i.e. we assume that initially swelling has not yet been initiated.244

All our simulations show non-negativity of u,N1, N2, N3 and that the so-

lution converges to a spatially homogeneous steady state as t → ∞. More

specifically we find N1 → 0 N2 → 0, N3 → 1. With our assumption that the

the mitochondrial fractions have the same diffusion coefficients, we obtain from

the model equations that N := N1 +N2 +N3 satisfies the heat equation

∂tN = dm∆N.
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Table 1: Default parameter values, cf also [4, 6, 7, 5]

parameter symbol value remark
lower (initiation) swelling threshold C− 20
upper (maximum) swelling threshold C+ 200
maximum transition rate for N1 → N2 f∗ 1
maximim transition rate for N2 → N3 g∗ 1
feedback parameter d 30
diffusion coefficient of calcium ions d1 0.2
diffusion coefficient of mitochondria dm = d2,3,4 (varied)

Which, under our initial and boundary conditions, has the solution N(x, t) ≡ 1.245

Our numerical simulations satisfy this with at least 6 digits (data not shown).246

In Figure 1 we visualise the results of a typical simulation, where we choose247

for the diffusion coefficients of the mitochondria dm = d2,3,4 = 0.02 < d1. The248

evolution of the calcium ion concentration is initially dominated by diffusion,249

leading to an obliteration of the spatial gradients that were introduced by the250

initial conditions. At about t = 2.4 it appears stratified, from where on the evo-251

lution is dominated by slight growth until steady state is reached. The calcium252

ion concentration gradients in the initial data lead immediately to gradients253

in the mitochondria distribution. The mitochondria fraction N1 starts imme-254

diately declining, whereas N2 and N3 immediately increase. The rates that255

determine the swelling process depend on the calcium ion concentration which256

introduces gradients in the mitochondrial fractions. In the initial phase, where257

u is highest, N1 is lowest and N2 and N3 are highest. The calcium ion concen-258

tration stratifies quickly, which induces also stratification of the mitochondrial259

populations, however, at a slower pace. Noteworthy is that between t = 1.2 and260
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Figure 1: Snapshot of model simulation at different time instances. Shown are
the spatial profiles of the calcium ion concentration u (symbols), and of the
mitochondrial fractions N1, N2, N3 (solid lines).
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Figure 3: Comparison of the solutions of the PDE-PDE model with diffusion of
mitochondria with the results of the PDE-ODE model without mitochondrial
movement. Plotted are the spatial profiles at times t = 0.4, 1.2, 2.0.
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gate the effect that this has we repeat the above simulation with dm = d3,4,5 = 0,275

i.e. the case of the PDE-ODE coupled system of [4, 6, 7, 5]. In Figure 3 we276

show for selected time instances the solutions of the model with mitochondria277

diffusion vis-a-vis the corresponding solutions of the model without. The differ-278

ences between both solutions are only minor. In the mitochondrial fractions, the279

differences in N1 and N3 are largest. In these cases the mitochondria gradients280

are slightly higher in the case of the PDE-ODE model than in the case of the281

PDE-PDE model, as a consequence of Fickian diffusion obliterating gradients.282

In the case of the calcium ion concentrations the differences are close to plot-283

ting accuracy. This suggests that (for the parameters tested here), the spatial284

gradients in the mitochondrial populations do not affect the spatial calcium ion285

distribution. In Figure 3, the solutions of the PDE-ODE model are (slightly)286

larger in some places and (slightly) smaller in other places than the solutions of287

the PDE-PDE model. This suggests that the differences neutralize each other288

when the spatial averages of the dependent variables are taken. We verified289

this by comparing the average data as functions of time and found negligible290

differences between both models (data not shown).291
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[8] S. Eisenhofer, F. Toókos, B. A. Hense, S. Schulz, F. Filbir, and H. Zischka,316

A mathe-matical model of mitochondrial swelling, BMC Research Notes 3317

(2010), no. 1, 67.318

[9] G. Kroemer, L. Galluzzi, and C. Brenner, Mitochondrial membrane perme-319

abilization in cell death, Physiological Reviews 87 (2007), no. 1, 99–163.320

[10] K. Mitra, C. Wunder, B. Roysam, G. Lin, and J. Lippincott-Schwartz, A321

hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup322

and entry into S phase. Proc. Natl. Acad. Sci., 106(29):11960-11965323
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