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Abbreviations 

AUC = area under the curve 

AUROC = area under the receiver operating characteristic curve 

FWER = family-wise error rate 

ICP-OES = inductively coupled plasma optical emission spectrometry 

ICP-sf-MS = inductively coupled plasma-sector field mass spectrometry 

LOQ = limit of quantification  

ML = maximum likelihood 

PD = Parkinson’s disease 

PDNMS = Parkinson's disease non-motor symptoms questionnaire 

UPDRS = Unified Parkinson’s Disease Rating Scale 
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Abstract 

 

The diagnosis of Parkinson’s disease (PD) still lacks objective diagnostic markers 

independent of clinical criteria. CSF samples from 36 PD and 42 age-matched control patients 

were subjected to inductively coupled plasma-sector field mass spectrometry and a total of 28 

different elements were quantified. Different machine learning algorithms were applied to the 

dataset to identify a discriminating set of elements yielding a novel biomarker signature. 

Using 19 stably-detected elements, the extreme gradient tree boosting model showed the best 

performance in the discrimination of PD and control patients with high specificity and 

sensitivity (78.6% and 83.3%, respectively), re-classifying the training data to 100%. The 10 

times 10-fold cross validation yielded a good AUROC of 0.83. Arsenic, magnesium and 

selenium all showed significantly higher mean CSF levels in the PD group compared to the 

control group (p = 0.01, p = 0.04 and p = 0.03). Reducing the number of elements to a 

discriminating minimum, we identified an elemental cluster (Se, Fe, As, Ni, Mg, Sr), which 

most importantly contributed to the sample discrimination. Selenium was identified as the 

element with the highest impact within this cluster directly followed by iron. After 

prospective validation, this elemental fingerprint in the CSF could have the potential to be 

used as independent biomarker for the diagnosis of PD. Next to their value as a biomarker, 

this data also argues for a prominent role of these highly discriminating six elements in the 

pathogenesis of PD. 
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Introduction 

 

The diagnosis of idiopathic Parkinson’s disease (PD) is still based on purely clinical criteria, 

which were recently refined by the Movement Disorder Society (Postuma et al., 2015). A 

current meta-analysis on the accuracy of the clinical diagnosis of PD shows that still only 

eight of ten patients are diagnosed correctly (Rizzo et al., 2016). Most studies evaluating the 

value of alpha-synuclein in the CSF as a potential biomarker show that its mean levels are 

lower in PD compared to controls, however, individual alpha-synuclein levels lack 

discrimination power and specificity (Mollenhauer et al., 2011). As an alternative approach 

other features contributing to the pathogenesis of PD could be used as potential biomarkers. 

The levels of several bioelements are shown to be altered in PD patients’ brains. For example, 

an increase in iron content and reduction in copper was demonstrated in the Parkinsonian 

substantia nigra (Davies et al., 2014; Dexter et al., 1989). While the idea of metal-induced 

oxidative stress in neurodegeneration is known for decades, current studies also link alpha-

synuclein pathology and bioelement dysregulation, since alpha-synuclein aggregation can also 

be triggered by iron, copper, zinc, manganese and arsenic (Cholanians et al., 2016; Uversky et 

al., 2001). Alzheimer’s disease as another example also shows bioelemental dysregulations, 

which might be associated with pathological protein aggregation and which are reflected by 

changes in CSF levels of elements like aluminum (Hozumi et al., 2011; Virk and Eslick, 

2015). However, results on bioelements in the CSF of PD patients are often not reproducible 

potentially due to variable detection methods, insufficiently characterized patients and 

insufficiently controlled blood contamination. Whereas the levels of more common elements, 

as iron, copper and manganese, were analyzed by several groups yielding inconclusive results, 

there is insufficient data on less abundant elements (Jiménez-Jiménez et al., 2014). In fact, 

due to the plethora of mechanisms involved in the pathogenesis of PD, it is unlikely that one 

single element will emerge as a diagnostic biomarker. We therefore studied the concentrations 

of up to 28 elements in the CSF of PD patients and age-matched controls. Our data yields an 

elemental fingerprint, which allows differentiating PD from controls with the potential to 

become a novel biomarker signature for PD. 
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Material and methods 

 

Participants 

36 PD patients were consecutively selected from the CSF Biobank of the Department of 

Neurology, University of Goettingen, Germany. Only samples with a sufficiently high amount 

of CSF required for elemental analysis were included. PD patients (based on UK Brain Bank 

criteria, compliant with MDS criteria) were arbitrarily recruited from the available patient 

pool of the out- and in-patient clinics. 

Additional clinical parameters increasing diagnostic accuracy were available (32/36 MRI, 

25/36 DatScan, 20/36 substantia nigra ultrasound). The majority of the patients belong to a 

cohort, which has regular scheduled follow-up assessments in the Parkinson’s disease 

outpatient clinics (follow up 13-40 months). 33 patients were under anti-Parkinsonian 

medication including levodopa, dopamine agonists, amantadine, MAO and COMT inhibitors 

while 3 patients were drug naïve. 

All PD patients underwent a thorough clinical examination and history taking, assessment of 

motor and non-motor symptoms (MDS-UPDRS, PD-NMS) and routine blood work. Disease 

duration was defined as the time span since the awareness of the first motor-symptoms. The 

levodopa equivalent dose was calculated according to Tomlinson et al., 2010. 

In addition, 42 age-matched controls without signs of neurodegenerative, neuroinflammatory 

or acute ischemic central nervous diseases were included, in most cases having a lumbar 

puncture for exclusion diagnosis (e.g. headache, dizziness, functional disorders). No specific 

method of patient randomization was employed. CSF samples were collected in the scope of a 

local monocentric research project. Except for local ethics approval, no specific trial pre-

registration was performed. Sample sizes were chosen in similarity to previously published 

studies (Jiménez-Jiménez et al., 2014). Due to the lack of pre-existing learning curves for our 

machine-learning algorithms, there was no definite sample size predetermination available, 

which would be required to realize more precise sample size considerations for classification 

models (Mukherjee et al., 2003). A permission of the local ethics committee has been 

obtained prior to the initiation of the study (Ethics committee of the University Medicine 

Göttingen, No. 13/11/12). Written consent was provided by all patients or care givers. The 

study conforms with the Code of Ethics of the World Medical Association (Declaration of 

Helsinki). 
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CSF-Procedures 

All patients underwent a lumbar puncture, where 10 ml of CSF were collected in 

polypropylene tubes and treated in a standard procedure. Routine testing included WBC and 

RBC count, protein and lactate levels. CSF was immediately centrifuged (2000 g; 20 min; 

4°C) within 30 minutes of collection and frozen at -80°C until further analysis. Patients were 

non-fasting. Patients with severe hepatic or renal failure, and those taking mineral 

supplements or chelating agents were excluded. Samples with a RBC > 100 / µl in the routine 

testing sample were excluded. 

 

Sample preparation and analysis by ICP-OES and ICP-sf-MS 

Frozen aliquots were transported overnight on dry ice to the Research Unit Analytical 

BioGeoChemistry of the Helmholtz Zentrum, Muenchen for further investigation. The 

samples were thawed slowly at 4°C before being diluted 1:4 with Milli-Q water. The diluted 

samples were directly used for element measurements. An ICP-OES „Spectro Ciros Vision“ 

system (SPECTRO Analytical Instruments GmbH & Co. KG, Kleve, Germany) was used for 

element determination. An ELEMENT 2, Thermo-Electron (Bremen, Germany) ICP-sf-MS 

instrument was employed for determination of elements which were below the LOD from ICP-

OES. The determination method had been validated previously by regular laboratory 

intercomparison studies. Certified single element standards were used after every ten 

measurements (see supplementary methods). Additionally, reference materials were analyzed 

together with the sample batch. The investigators who performed the elemental analysis (ICP-

OES / ICP-sf-MS) were blinded during the entire analytic process and data processing by 

working with pseudonymized samples, which did not permit to draw conclusions about the 

group affiliation. 

 

Sample analysis by ICP-OES 

Sample introduction was carried out using a peristaltic pump connected to a Meinhard 

nebulizer with a cyclonic spray chamber. Measured spectral element lines (nm): Ba: 455.404, 

Ca: 183.801, Fe: 259.941, Li: 670.770, Mg: 279.079, Na: 589.592, P: 177.495, S: 180.731, Si: 

251.612, Sr: 407.771, Zn: 213.856. The RF power was set to 1400 W, the plasma gas was 13 

L Ar /min, whereas the nebulizer gas was approximately 0.6 L Ar/min after daily 

optimization. 
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Sample analysis by ICP-sf-MS 

103Rh was administered to each sample at a concentration of 1 µg/L as internal standard. 

Sample introduction was carried out using a peristaltic pump connected to a Seaspray 

nebulizer with a cyclonic spray chamber. The RF power was set to 1300 W, the plasma gas 

was 15 L Ar /min, whereas the nebulizer gas was approximately 0.9 L Ar/min after daily 

optimization. Measured element isotopes: 27Al, 75As, 114Cd, 140Ce 59Co, 52Cr, 63Cu, 202Hg, 127I, 
55Mn, 98Mo, 60Ni, 208Pb, 77Se, 120Sn, 48Ti, 204Tl, 51V. 

 

Statistical analysis 

Only elements with more than 60 measurements within the collective group of 78 patients 

were considered. Measurements were log transformed and values below the limit of 

quantification were imputed using model-based robust Expectation-Maximization and data 

imputed this way was used for all analyses if not stated otherwise. The concentrations of each 

element were compared using regression by maximum likelihood (ML) estimation for left-

censored data are given, which specifically handles left-censored data (see Supplementary 

Methods). As reference values randomly imputed data were compared using t-tests. Resulting 

p-values were adjusted using Holm’s procedure to control the family-wise error rate (FWER) 

at a 0.05 level. 

A heat map was constructed using correlation as measurement of similarity. Different 

machine learning methods were applied to the data (see Supplementary Methods). The 

performance was assessed via 10 times 10-fold cross validation. The resulting estimates for 

the area under the ROC curve were visualized. The consensus specificity and sensitivity 

across the 10 repeats was calculated according to the Youden Index. Random forest and 

extreme gradient tree boosting models have been trained on all available test data. A shared 

scatter plot was constructed showing the interaction of Se and Fe. 

The AUC results from the 10 times repeated 10-fold cross validation are used as a feature 

selection criterion to determine the optimal set of elements for a good classifier. A step-wise 

procedure removing the least informative element one after the other was applied. To choose 

the final feature set, starting with the last remaining element, a bigger feature set was 
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considered if the AUC increased or if the AUC decreased less than 0.01 for only one bigger 

feature set. The feature importance – measured as information gain – for each element of the 

optimal set was quantified via 10 times 10-fold cross validation of a classifier trained on those 

elements only. The performance of the feature selection proceeded classification was assessed 

by yet another 10 times repeated 10-fold cross validation that included the feature selection. 

Demographical characteristics were compared between control patients and patients with PD 

using t-test and chi-square-test. Correlations between the concentration levels and clinical 

data (disease duration, age, levodopa equivalent dose, MDS-UPDRS part III and sum score, 

MDS-PDNMS) were tested using Pearson product moment after adjusting for multiple testing 

according to Bonferroni. Using a logistic regression model, the grouping (PD vs. control 

patients) was modeled based on the concentration levels of the elements in the final feature set 

as predictors.  Patients were assigned elemental scores using the resulting model 

(Supplementary Figure S1). 

 

Results 

Demographics 

Patients in the PD group were 67 ± 11.0 years old, whereas control patients were 65.5 ± 13.1 

years old (not significantly different p > 0.05). Patients of different disease durations were 

included with a mean disease duration of 5.0 ± 5.5 years. There was no significant difference 

in sex distribution between the two groups (p > 0.05) (Table 1). 

 

 

 

 Control PD 

Number of patients 42 36 

Age, years 65,5 (13.1) 38-93 67 (11.0) 45-87 

Male / female (% female) 24/18 (42.9) 24/12 (50) 

Disease duration, years n.a. 5.0 (5.5) 1-25 

MDS-UPDRS total n.a. 35 (29.8) 15-144 

MDS-UPDRS III n.a. 19 (13.0) 9-53 

MDS-PDNMS n.a. 9 (5.3) 0-24 
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Table 1: Demographical and clinical characteristics of the study population. Data on age, 

disease duration and clinical scores is presented as median, (standard deviation), range. PD = 

Parkinson’s disease. 

 

Detection of the elemental profile in the CSF 

A total of 28 elements were quantified in the CSF samples (Table 2). Ba, Cd, Ce, Hg, Li, Sn, 

Tl, and V had measurements over the limit of quantification (LOQ) for less than 60 patients 

and have been eliminated from the analysis. In addition, iodine was excluded due to 

extremely high spread of measured values, which most likely was attributed to external 

factors, such as unreported dietary supplementation, application of radiographic contrast 

agents or antiseptic agents. 

 

CSF levels of arsenic, magnesium and selenium are significantly higher in Parkinson’s 

disease 

The elements arsenic (control 585 ± 630 ng/l; PD 884 ± 634 ng/l; p = 0.01), magnesium 

(control 21 ± 1.2 mg/l; PD 22 ± 1.3 mg/l; p = 0.04) and selenium (control 5.9 ± 6.6 µg/l; PD 

9.4 ± 7.6 µg/l; p = 0.03) all show significantly higher mean CSF levels in the PD group 

compared with the control group after multiple adjustments (Table2, Figure 1a). 

 

 

 

Element Mean ± sd Median (min; max) p value 

 Control PD Control PD raw adjusted Value 
censored 
MLE 

Value 
censored 
MLE 
adjusted 

Al [ng/l] 2.4 

± 0.34 

2.4 

± 0.33 

2.4 

(1.9; 3.4) 

2.4 

(1.8; 3.4) 

0.69 1.00 0.68 1.00 

As [ng/l] 2.5 

± 0.56 

2.8 

± 0.32 

2.4 

(1.5; 3.3) 

2.9 

(2; 3.5) 

< 0.01 0.01 < 0.01 0.01 

Ba [µg/l] 3.1 

± 0 

3.1 

± 0.011 

3.1 

(3.1; 3.1) 

3.1 

(3.1; 3.2) 

0.90  0.29  

Ca [mg/l] 7.6 

± 0.028 

7.6 

± 0.019 

7.6 

(7.5; 7.7) 

7.6 

(7.5; 7.6) 

0.95 1.00 0.95 1.00 



   

10 

 

Cd [ng/l] 0.92 

± 0.94 

0.3 

± 0.86 

0.63 

(-1.4; 3.1) 

0.2 

(-2.4; 2.4) 

< 0.01  < 0.01  

Ce [ng/l] 0.48 

± 0.18 

0.42 

± 0.02 

0.42 

(0.42; 1.3) 

0.42 

(0.42; 0.54) 

0.64  0.03  

Co [ng/l] 1 

± 0.38 

0.97 

± 0.33 

0.93 

(0.46; 2.1) 

1 

(0.46; 1.6) 

0.53 1.00 0.56 1.00 

Cr [ng/l] 1.7 

± 0.29 

1.7 

± 0.32 

1.7 

(1.1; 2.4) 

1.7 

(1; 2.4) 

0.75 1.00 0.74 1.00 

Cu [µg/l] 4.1 

± 0.098 

4.1 

± 0.1 

4.1 

(3.9; 4.3) 

4.1 

(3.9; 4.3) 

0.17 1.00 0.16 1.00 

Fe [µg/l] 4.1 

± 0.17 

3.9 

± 0.33 

4.1 

(3.6; 4.4) 

4 

(3.1; 4.3) 

0.84 1.00 0.30 1.00 

Hg [ng/l] 0.92 

± 0.63 

0.95 

± 0.68 

0.7 

(0.7; 3) 

0.7 

(0.7; 3.1) 

0.68  0.81  

Li [µg/l] 3.1 

± 0 

3.2 

± 0.51 

3.1 

(3.1; 3.1) 

3.1 

(3.1; 6.2) 

0.02  0.03 0.02 

Mg [mg/l] 7.3 

± 0.024 

7.3 

± 0.026 

7.3 

(7.3; 7.4) 

7.3 

(7.3; 7.4) 

< 0.01 0.05 < 0.01 0.04 

Mn [ng/l] 2.6 

± 0.11 

2.6 

± 0.11 

2.6 

(2.4; 2.8) 

2.6 

(2.5; 2.9) 

0.79 1.00 0.79 1.00 

Na [g/l] 9.6 

± 0.054 

9.6 

± 0.029 

9.6 

(9.4; 9.7) 

9.6 

(9.5; 9.7) 

0.12 1.00 0.12 1.00 

Ni [ng/l] 2.2 

± 0.83 

2.2 

± 0.48 

2.2 

(0.31; 4) 

2.3 

(0.42; 2.8) 

0.97 1.00 0.89 1.00 

P [mg/l] 7.2 

± 0.046 

7.2 

± 0.05 

7.1 

(7.1; 7.3) 

7.2 

(7; 7.3) 

0.54 1.00 0.53 1.00 

Pb [ng/l] 1.3 

± 0.46 

1.3 

± 0.52 

1.3 

(0.46; 2.3) 

1.3 

(0.46; 2.3) 

0.74 1.00 0.69 1.00 

S [mg/l] 7 

± 0.11 

7.1 

± 0.095 

7 

(6.9; 7.4) 

7.1 

(6.9; 7.3) 

0.25 1.00 0.25 1.00 

Se [µg/l] 3.6 

± 0.34 

3.9 

± 0.33 

3.5 

(3.3; 4.5) 

3.8 

(3.3; 4.6) 

< 0.01 0.04 < 0.01 0.03 
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Si [µg/l] 4.8 

± 0.2 

4.7 

± 0.15 

4.8 

(4.1; 5.1) 

4.7 

(4.3; 5) 

0.08 1.00 0.08 1.00 

Sn [ng/l] 0.81 

± 0.42 

1.1 

± 0.45 

0.65 

(0.43; 1.7) 

1.2 

(0.43; 2) 

< 0.01  < 0.01 < 0.01 

Sr [µg/l] 4.5 

± 0.3 

4.4 

± 0.36 

4.5 

(4; 5.1) 

4.3 

(3.9; 5.2) 

0.03 0.43 0.02 0.36 

Ti [ng/l] 1.7 

± 0.24 

1.7 

± 0.32 

1.6 

(1.3; 2.4) 

1.6 

(1.2; 2.9) 

0.78 1.00 0.77 1.00 

Tl [ng/l] 0.48 

± 0.058 

0.48 

± 0.06 

0.46 

(0.46;0.73) 

0.46 

(0.46; 0.78) 

0.19  0.47  

V [ng/l] 0.54 

± 0.19 

0.54 

± 0.15 

0.44 

(0.43; 1.1) 

0.48 

(0.39; 1) 

0.69  0.46  

Zn [µg/l] 3.9 

± 0.36 

3.9 

± 0.16 

3.8 

(3.5; 5.2) 

3.9 

(3.7; 4.6) 

0.50 1.00 0.78 1.00 

 

Table 2: Single element comparison: Comparison of CSF concentrations based on 

regression by maximum likelihood estimation for left-censored data (column ‘Value censored 

MLE’). P values are adjusted using Holm's procedure (column ‘Value censored MLE 

adjusted’). Raw and adjusted p values resulting from t-tests on randomly imputed data are 

given for reference (columns ‘raw’ and ‘adjusted’). PD = Parkinson’s disease. 

 

Hierarchical clustering with correlation as measurement of similarity 

There is evidence for cluster formation, which partially discriminates PD patients and controls 

but also shows pronounced overlaps (Figure 1b). Arsenic and selenium, which present with 

significantly higher CSF levels in the single comparison (Figure 1a) show highly similar 

profiles and thus are represented directly next to each other. Magnesium, which also presents 

with significantly higher CSF levels, is directly encompassed by iron and strontium, two 

elements, which like magnesium itself also contribute to the final discrimination subset of 

elements described below. 
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Random forest and extreme gradient tree boosting differentiate best Parkinson’s disease 

from controls 

The random forest and tree boosting algorithms showed the best overall performance in the 

discrimination of PD and control patients and both have a consensus AUROC over 80% 

(Figure 2a and Figure 2b). The random forest algorithm showed an average AUROC of 

82.7%. Sensitivity and specificity at the Youden index are estimated as 66.7% and 88.1%. 

The tree-boosting algorithm showed the best average AUROC of 83.9%. At the Youden index 

the achieved sensitivity is 83.3% and the achieved specificity is 78.6%. If trained on the 

available data, both models can perfectly re-classify the training data. 
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Selenium, iron, arsenic, nickel, magnesium and strontium are sufficient for classification 

We were seeking to reduce the number of elements to a plausible minimum, which still results 

in a sufficient classification of our samples. This procedure proposed that only six features - 

Se, Fe, As, Ni, Mg, and Sr - are sufficient to achieve good classification performance (cross 

validated AUROC: 0.90, Figure 3a).  

 

Selenium and iron contribute most to sample discrimination 

Based on the six remaining elements from the feature selection analysis, the feature 

importance analysis presents selenium with the highest impact in this model, directly followed 

by iron (Figure 3b). 
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Iron and selenium show a strong interaction within the decision tree 

Unlike selenium, iron levels did not differ significantly regarding the single element 

comparison (Figure 1a). However, iron appears to be a highly informative feature within the 

discrimination models. While the main effect is clearly contributed by selenium, a second 

split induced by iron levels can be visualized (Figure 4). 

 

Clinical parameters do not significantly correlate to elemental levels 

There was no significant correlation between the 28 single elements neither for the motor or 

non-motor symptoms (MDS-UPDRS total score and part III, MDS-PDNMS) nor for the 

disease duration and H&Y stages (p > 0.05). The combined regression model also showed no 

correlations (Supplementary Figure S1). There was also no correlation between the final six 

elements and the parameter age and levodopa equivalent dose (Supplementary Figure S2). 

 

Discussion 

Although several studies on the levels of single elements in the CSF have been published, the 

data is inconclusive due to variable detection methods, inadequately defined patients and 

insufficiently controlled blood contamination impacting elemental composition (Jiménez-

Jiménez et al., 2014; Mariani et al., 2013). Multiple factors influence the levels of single 

elements, i.e. dietary habits, drug intake, competing diseases, geographical factors, which 

makes it highly unlikely that one single element will function as disease marker. To overcome 
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this problem focusing on elemental patterns rather than single elements may increase the 

robustness of results. After quantification of a total of 28 elements, eight were excluded due to 

low detection levels and one due to diet- and medication-dependent variability (iodine). Using 

a total of 19 stably detected elements we were able to create a unique elemental fingerprint, 

which was able to differentiate PD patients from age-matched controls with high specificity 

and sensitivity (78.6% and 83.3%, respectively), perfectly re-classifying the training data. 

Even though our analysis was based purely on the chemical properties of the CSF and did not 

take into account additional clinical features or supportive diagnostics the 10 times 10-fold 

cross validation yielded an AUROC of 0.83. In contrast, CSF alpha-synuclein shows a low 

specificity of ~25% with a corresponding AUROC of 0.69, even when taking age as the 

biggest risk factor for the development of PD into account (Mollenhauer et al., 2011). Since 

the analysis of a large number of elements is not economical and might prevent clinical 

translation, we aimed to reduce the number of required elements to an optimal subset. This 

resulted in the identification of a cluster of six single elements (Se, Fe, As, Ni, Mg, Sr), which 

most importantly contributed to the sample discrimination. 

Within this most determining cluster, selenium was identified as the element with the highest 

impact for the overall score directly followed by iron. The knowledge about selenium in 

neurodegenerative disorders has especially emerged in the last few years. As essential 

bioelement, dietary selenium converted into selenide (Se2-) serves as a donor for the 

incorporation into selenoproteins like the glutathione peroxidases family (GPx) or 

Selenoprotein P (Sepp1), which are expressed in the CNS (Cardoso et al., 2015). Both 

proteins have anti-oxidative activity protecting against ROS-induced cell stress, which is 

known to contribute to dopaminergic neuron damage in PD (Bellinger et al., 2012; Kaur and 

Andersen, 2004). In Parkinson’s disease brains, GPx1-positive microglia are co-localized with 

Lewy bodies (Power and Blumbergs, 2009). GPx4 is also elevated in Parkinson’s disease 

brains and is regulated by DJ-1, a protein deglycase involved in genetic forms of PD 

(PARK7) (Blackinton et al., 2009). Sepp1, a selenium transport protein and antioxidant, also 

co-localizes with the core of the Lewy bodies (Bellinger et al., 2012). This could contribute to 

increased levels of selenium in the CSF, which have been observed in patients with PD 

(Aguilar et al., 1998; Qureshi et al., 2006). Thus, although selenoproteins appear to be 

important in PD pathogenesis, the reason for elevated selenium levels is not fully understood. 

Both, etiologically causative as well as compensatory mechanisms could be involved. 

As the second most important discriminator in our algorithm iron is the most abundant 

bioelement in humans and has been linked to disease mechanisms in PD for almost one 
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century (Lhermitte et al., 1924). Iron catalyzes the formation of reactive oxygen species 

(ROS) through Fenton reactions contributing to neuronal protein, lipid and DNA damage 

(Kaur and Andersen, 2004). Alterations in blood iron levels seem to modulate the risk of 

developing PD as was shown in a Mendelian randomization study (Pichler et al., 2013). 

Despite the importance of iron in the pathogenesis of PD, CSF iron levels alone are not 

sufficient as diagnostic biomarkers. A meta-analysis showed no variation between PD patients 

and healthy controls (Mariani et al., 2013). This is also confirmed by our data showing no 

significant difference in iron levels when considered as single factor. Interestingly, our 

analysis suggests that there is a relevant interaction of iron and selenium, which is underlined 

by the high discriminating impact of both elements in the machine-learning algorithm. This 

underlies the strength of this elemental biomarker signature in contrast to the consideration of 

single elements. Arsenic so far has not been studied in the CSF of PD patients, but a recent 

study demonstrates that this metalloid induces oligomerization of alpha-synuclein (Cholanians 

et al., 2016). As a chemical compound in pesticides it might contribute to the increased risk of 

the development of PD after occupational exposure (Elbaz et al., 2009). There is less evidence 

linking nickel and neurodegeneration. The metal is discussed to contribute to the development 

of extrapyramidal signs in technical dentists by occupational exposition (Fabrizio et al., 

2007). In addition, mutations in ATP13A2, which encodes a lysosomale ATPase protecting 

against manganese and nickel toxicity, cause a genetic form of PD (PARK9) (Covy et al., 

2012). Again, our single element analysis did not reveal significant changes in nickel CSF 

levels, which is coherent with previous results (Alimonti et al., 2007). However, nickel 

significantly contributes to the discrimination algorithm as part of the highly discriminating 

element cluster. 

Magnesium was one of the three elements, which showed significantly increased levels in the 

single element analysis in the CSF of PD patients compared to controls. It has also been 

shown to accelerate alpha-synuclein aggregation and lower levels have been found in the 

cortex, white matter, basal ganglia and brain stem of PD patients (Lowe et al., 2004; Yasui et 

al., 1992). Data for magnesium in the CSF are contradictory but suggest elevated levels: 

whereas a recent study showed increased Mg levels in PD, others detected only a trend for an 

increase and yet two other studies showed no significant changes (Alimonti et al., 2007; Forte 

et al., 2004; Hozumi et al., 2011; Sanyal et al., 2016). Interestingly, there is also an increase in 

CSF magnesium levels in patients with Lewy body dementia (Boström et al., 2009). 
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Our analysis also reveals strontium as non-essential element to contribute to the 

discrimination algorithm. Strontium is mostly present in osseous structures, i.e. bones and 

teeth, and its levels were previously shown to be unchanged in the CSF of PD patients 

compared to controls, matching our results (Alimonti et al., 2007; Peltz-Császma et al., 2005). 

Its function in the CNS is largely unknown, but due to its size, strontium can replace synaptic 

calcium and trigger neurotransmitter release, thus contributing to synaptic transmission and 

plasticity (Xu-Friedman and Regehr, 1999). Interestingly a recent epidemiological study 

reports a significant association between the PD mortality rates and the soil concentrations of 

strontium but also selenium and magnesium in the USA, highlighting three of the six 

elements of the final subset (Sun, 2017). 

Our analysis did not reveal a significant correlation neither between single elemental levels 

nor between an elemental score using the final set of elements and clinical parameters (MDS-

UPDRS part III and sum score, MDS-PDNMS, age, disease duration, Hoehn and Yahr 

stages). There was also no significant correlation between levodopa equivalent doses and the 

six final elements after adjusting for multiple testing. Since our PD cohort includes patients 

with variable disease durations, our trial might not be sufficiently powered to establish 

significant correlations to clinical parameters. 

In conclusion, our study demonstrates that an elemental fingerprint in the CSF can be used as 

novel and independent biomarker for the diagnosis of PD. Our data also argues for a 

prominent role of six highly discriminating elements in the pathogenesis of PD.  
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Figure legends 

 

Figure 1 (a) Distribution of the elements selenium, iron, arsenic, nickel, magnesium and 

strontium. The elements As, Mg, Se are significantly different when compared individually 

between controls and Parkinson’s disease patients on a 0.05 level after multiple adjustment.  

The element levels are presented on a log10 scale. (b) Hierarchical clustering with 

correlation as measurement of similarity. Patients and elements are hierarchically clustered 

so that patients with similar element level profiles as well as elements with similar patterns 

across patients are located close to each other. The one grey coded rectangle represents a 

missing value for sodium (Na). PD = Parkinson’s disease (n = 36), Control (n = 42). 

Figure 2 (a) Performance of different machine-learning algorithms, ROC curves. Nine 

different machine-learning methods were applied to the data. The performance was assessed 

via 10-times 10-fold cross validation. (b) Performance of different machine learning 

algorithms, AUROC. The area under the ROC-curve (AUROC) was estimated in each 10-fold 

cross validation. 

 

Figure 3 (a) Feature selection for determination of a minimal number of elements to 

achieve a good classification performance. The AUC results from the 10 times repeated 10-

fold cross validations were used as a feature selection criterion to determine the optimal set of 

elements for a good classifier. A step-wise procedure removing the least informative (measured 

by AUC) element one after the other was applied. AUC estimates (y axis) for the backward 

selected list of feature sets (x axis) are shown. Highlighted in black is the feature selection path 

starting from the remaining single element including back elements until the AUC decreases 

again. The orange dot shows the final selection. (b) Feature importance showing the impact 

of each element of the final set within the decision tree boosting. The feature importance – 

measured as information gain – for each of these six elements is quantified via 10 times 10-fold 

cross validation of a decision tree boosting classifier trained on these 6 elements only. 
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Figure 4 Interaction of iron and selenium. The abundances of iron and selenium (in log 

(ng/L)) are plotted against each other.  Marginal densities for both elements are plotted at each 

side of the plot. While the main effect is clearly in Se, a second split by Fe seems favorable 

when just assessing the scatter plot visually. PD = Parkinson’s disease (n = 36), Control (n = 

42). 
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