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Purpose: The purpose of this study is to investigate whether machine learning with
dosiomic, radiomic, and demographic features allows for xerostomia risk assessment
more precise than normal tissue complication probability (NTCP) models based on the
mean radiation dose to parotid glands.

Material and methods: A cohort of 153 head-and-neck cancer patients was used to
model xerostomia at 0-6 months (early), 6-15 months (late), 15-24 months (long-term),
and at any time (a longitudinal model) after radiotherapy. Predictive power of the features
was evaluated by the area under the receiver operating characteristic curve (AUC) of
univariate logistic regression models. The multivariate NTCP models were tuned and
tested with single and nested cross-validation, respectively. We compared predictive
performance of seven classification algorithms, six feature selection methods, and ten
data cleaning/class balancing techniques using the Friedman test and the Nemenyi
post hoc analysis.

Results: NTCP models based on the parotid mean dose failed to predict xerostomia
(AUCs < 0.60). The most informative predictors were found for late and long-term
xerostomia. Late xerostomia correlated with the contralateral dose gradient in the ante-
rior—posterior (AUC = 0.72) and the right-left (AUC = 0.68) direction, whereas long-term
xerostomia was associated with parotid volumes (AUCs > 0.85), dose gradients in the
right-left (AUCs > 0.78), and the anterior—posterior (AUCs > 0.72) direction. Multivariate
models of long-term xerostomia were typically based on the parotid volume, the parotid
eccentricity, and the dose—volume histogram (DVH) spread with the generalization AUCs
ranging from 0.74 to 0.88. On average, support vector machines and extra-trees were
the top performing classifiers, whereas the algorithms based on logistic regression were
the best choice for feature selection. We found no advantage in using data cleaning or
class balancing methods.
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Conclusion: We demonstrated that incorporation of organ- and dose-shape descriptors
is beneficial for xerostomia prediction in highly conformal radiotherapy treatments. Due
to strong reliance on patient-specific, dose-independent factors, our results underscore
the need for development of personalized data-driven risk profiles for NTCP models of
xerostomia. The facilitated machine learning pipeline is described in detail and can serve
as a valuable reference for future work in radiomic and dosiomic NTCP modeling.

Keywords: radiotherapy, IMRT, NTCP, xerostomia, head and neck, machine learning, radiomics, dosiomics

1. INTRODUCTION

Radiotherapy is the main treatment for head-and-neck tumors.
Incidental irradiation of salivary glands often impairs their func-
tion, causing dryness in the mouth (xerostomia). Xerostomia
significantly reduces patients’ quality of life, leading to dental
health deterioration, oral infections, and difficulties in speaking,
chewing, and swallowing.

The Quantitative Analyses of Normal Tissue Effects in the
Clinic (QUANTEC) group recommended sparing at least one
parotid gland to a mean dose <20 Gy or both parotid glands to
amean dose <25 Gy (1). Large-cohort studies confirmed that the
mean dose is a good predictor of xerostomia (2, 3). However, it
has also been observed that the mean dose failed to recognize
patients at risk in cohorts where the majority of patients had met
the QUANTEC guidelines, although the prevalence of xerostomia
was reduced (4-6).

In recent years, a number of studies have investigated various
patient- and therapy-related factors in hope of more precise xeros-
tomia predictions. These included the mean dose to submandibu-
lar glands and the oral cavity (5, 7-9), sparing of the parotid stem
cells region (10), three-dimensional dose moments (4), CT image
features (11, 12), patients’ T stage, age, financial status, education,
smoking, etc. (4, 5, 8).

Moreover, there has been growing interest in the adoption of
machine learning classifiers in NTCP modeling (13-15). Buettner
et al. used Bayesian logistic regression together with dose-shape
features to predict xerostomia in head-and-neck cancer patients
(4). Support vector machines were employed to model radiation-
induced pneumonitis (16). Ospina et al. predicted rectal toxicity
following prostate cancer radiotherapy using random forests (17).

Nevertheless, despite the growing interest in data-driven meth-
ods, there have been no published studies so far systematically
evaluating how different machine learning techniques can be
used to address the challenges specific to NTCP modeling. These
include class imbalance due to low prevalence rates, heteroge-
neous and noisy data, large feature spaces, irregular follow-up
times, etc. A comparable work has already been presented in the
fields of bioinformatics (18, 19) and radiomics (20). Such anal-
ysis is missing for NTCP modeling, although it seems especially
relevant.

In this context, we examined associations between xerosto-
mia and various features describing parotid shape (radiomics),
dose shape (dosiomics), and demographic characteristics. Besides
investigating the individual predictive power of the features,
we comprehensively evaluated the suitability of seven machine

learning classifiers, six feature selection methods, and ten data
cleaning/class balancing algorithms for multivariate NTCP mod-
eling. The obtained results were compared to mean-dose models
and the morphological model proposed by Buettner et al. (4).
Furthermore, we proposed a longitudinal approach for NTCP
modeling that includes the time after treatment as a model covari-
ate. Doing so, rather than binning the data around a certain time
point, better reflects the underlying data due to often irregular
follow-up times.

2. MATERIALS AND METHODS
2.1. Patients

The retrospective patient cohort collected for this study comprised
head-and-neck cancer patients treated with radiotherapy at Hei-
delberg University Hospital in years 2010-2015. After excluding
patients with nonzero baseline xerostomia, replanning during the
treatment, tumor in the parotid gland, second irradiation, second
chemotherapy, or ion beam boost, the cohort consisted of 153
patients. Patient and tumor characteristics are listed in Table 1.
The study was approved by the Ethics Committee of Heidelberg
University.

2.2. End Points

For this study, we analyzed 693 xerostomia toxicity follow-
up reports. We aimed to model moderate-to-severe xerostomia
defined as grade 2 or higher according to Common Terminol-
ogy Criteria for Adverse Effects (CTCAE) v4.03 (21). In 74% of
cases, either CTCAE v3.0 or v4.03 grading scale was used. Dry
mouth (xerostomia) definitions were the same in both versions
so no inconsistency in grading was introduced. In case no score
was provided but descriptive toxicity information was available,
appropriate scores were assigned together with Heidelberg Uni-
versity Hospital clinicians. To minimize intra- and interobserver
variability in this process, a set of rules in the form of a dictionary
was introduced.

The follow-up reports were collected, on average, at 3-month
intervals (Figure 1). The number of toxicity evaluations and
the length of the follow-up varied from patient to patient.
Due to the time-characteristic and the irregularity of the
follow-up, two approaches were taken to model xerostomia:
a time-specific approach and a longitudinal approach. In the
time-specific approach, three time intervals were defined: 0-6,
6-15, and 15-24 months, to investigate early, late, and long-term
xerostomia, respectively. In case there were multiple follow-up
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TABLE 1 | Patients and tumor characteristics.

All 0-6 months 6-15months 15-24 months
Grade 0 Grade 1 Grade 2 Grade 0 Grade 1 Grade 2 Grade 0 Grade 1 Grade 2

Total patients 153 17 87 30 19 99 13 15 53 9
Age

Median 61 60 60 62 60 61 61 61 61 61

Q1-Q3 55-66 54-66 54-64 53-69 57-63 53-66 54-68 55-68 52-66 54-68

Range 29-82 44-78 29-82 43-80 49-75 29-82 43-74 47-80 39-78 41-80
Sex

Female 37 5 19 7 6 24 2 2 9 4

Male 116 12 68 23 13 75 11 13 44 5
Tumor site

Hypopharynx/larynx 37 7 20 7 7 20 2 3 15 0

Nasopharynx 12 0 8 2 2 8 1 0 5 0

Oropharynx 99 9 57 20 10 69 9 iR 32 9

Other 5 1 2 1 0 2 1 1 1 0
Radiation modality

IMRT 37 2 25 5 1 29 2 2 18 1

Tomotherapy 116 15 62 25 18 70 11 13 35 8
Ipsi parotid dose (Gy)

Median 24.3 22.9 25.0 23.0 19.5 24.8 25.9 22.9 23.8 24.5

Q1-Q3 20.6-27.6 185246 21.4-29.0 21.4-254 16.8-24.3 21.8-28.7 21.8-27.2 18.5-31.5 20.8-26.4  21.6-26.2

Range 0.4-63.4 0.4-36.0 7.4-61.4 4.6-59.0 0.4-32.9 4.6-61.4 17.3-63.4 0.4-51.4 4.6-46.0 17.3-63.4
Contra parotid dose (Gy)

Median 19.9 19.4 20.3 19.6 15.6 20.5 20.4 12.7 19.7 20.1

Q1-Q3 15.4-23.1 13.1-21.8 152-23.8 16.5-22.0 10.3-20.7 16.3-23.8  19.8-23.1 5.2-17.9 16.3-23.7  16.4-22.3

Range 0.3-30.9 0.3-24.9 4.1-28.6 4.2-26.2 0.3-27.9 4.1-30.9 156.1-26.2 0.3-27.9 4.1-27.2 15.1-26.0

The total number of patients differs among the groups due to the follow-up availability.
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FIGURE 1 | Frequency of the follow-up reports collection.

reports available for individual patients, the final toxicity score
was calculated as the arithmetic mean rounded to the nearest
integer number with x.5 being rounded up. In the longitudinal
approach, no time-intervals were defined and no toxicity grades
were averaged. Instead, each patient evaluation served as a
separate observation and the time after treatment was included
as a covariate in the model.

2.3. Features
The candidate xerostomia predictors comprised demographic,
radiomic, and dosiomic features (Table 2). The radiomic and the

TABLE 2 | Feature sets before and after the removal of highly correlated pairs

(Kendall's || > 0.5).

Feature group Initial feature set

Final feature set

Demographics Age, sex

Parotid shape Volume, area, sphericity, eccentricity,

compactness, A7, A2, A3

Dose-volume Mean, spread, skewness, D2, D98,

Age, sex

Volume, sphericity,
eccentricity

Mean, spread,

histogram D10, D20, D30, D40, D50, D60, D70, skewness

D80, D90, V10, V15, V20, V25, V30,

V35, V40, V45, entropy, uniformity
Subvolume s1,82,83,8), 82,80, 51,52, 52
mean dose
Spatial dose Gradienty, gradienty, gradient, Gradienty,
gradient gradienty, gradient,
Spatial dose 7200, 71020, 7002 712005 11020, 7002
spread
Spatial dose 7110, 7101, M011 7110, 7101, 011
correlation
Spatial dose 7300, 1030, 7003 71300, 1030, 1003
skewness
Spatial dose 1012, M021, 17120, M102, 1210, 7201 7012, M021, 7120,
coskewness 7102, 711210, 1201

Feature definitions are provided in Appendix A.

dosiomic features were extracted from the CT- and the dose-cubes
read from treatment planning DICOM files. In a preprocessing
step, all the cubes were linearly interpolated to an isotropic 1 mm
resolution. Moreover, we wanted to analyze the features in terms
of ipsi- and contralateral rather than left and right parotid glands.
This would, however, mean that certain spatial features would
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have either positive or negative value, depending on the tumor
location (left or right). In order to solve that issue, the cubes
were flipped through the sagittal plane for cases with the mean
dose to the right parotid gland higher than the mean dose to
the left parotid gland. All feature definitions were based on the
LPS coordinate system, that is (right to left, anterior to posterior,
inferior to superior). The detailed definitions of the features are
provided in Appendix A.

To reduce feature redundancy, the Kendall rank correlation
coefficient was calculated for all feature pairs. Kendall’s 7 allows
to measure ordinal association between two features, that is agree-
ment in ranks assigned to the observations. It can be interpreted
as a difference between the probability that both features rank a
random pair of observations in the same way and the probability
that they rank these observations in a different way (22). We
considered feature pairs with |7| > 0.5 in both glands as highly
correlated and suitable for rejection from the feature set. This
arbitrarily chosen threshold corresponds to a 75% probability that
the two features rank a random pair of observations in the same
way. Whenever a pair of features was found highly correlated, we
decided to keep the feature that was conceptually and computa-
tionally simpler, e.g., mean dose over Dx, parotid volume over
parotid compactness, etc.

2.4. Previously Proposed NTCP Models

Logit and probit NTCP models based on the mean dose to parotid
glands have been extensively used in modeling xerostomia (2, 3,
23, 24). We have tested four different mean-dose models to evalu-
ate predictive power of the mean dose in our cohort: three univari-
ate logistic regression models based on the ipsilateral mean dose,
the contralateral mean dose, and the mean dose to both parotid
glands, as well as one bivariate logistic regression model based on
the mean dose to contralateral and to ipsilateral parotid glands.

As an alternative to the mean-dose models, Buettner et al.
(4) proposed a multivariate logistic regression model based on
three-dimensional dose moments to predict xerostomia. The
model was retrained and tested on our data set.

2.5. Univariate Analysis

The univariate analysis was performed to investigate associations
of single features with the outcome at different time intervals.
First, all features were normalized via Z-score normalization
to zero mean and unit variance. Next, for each feature, the
Mann-Whitney U statistic was calculated. The area under the
receiver operating characteristic curve (AUC) is directly related
to the U statistic and follows from the formula AUC = n}']w’
where n_ and n, are the size of the negative and the size of
the positive class, respectively (25). For all AUCs, 95% confi-
dence intervals were estimated by bias-corrected and accelerated
(BCa) bootstrap (26). The number of type I errors, that is falsely
rejected null hypotheses, was controlled with the false discovery
rate (FDR). The FDR is defined as the expected proportion of true
null hypotheses in the set of all the rejected hypotheses (27). We
applied the Gavrilov-Benjamini-Sarkar procedure to bound the
FDR < 0.05 (28). Additionally, for each feature, univariate logistic
regression models were fitted and tolerance values correspond-
ing to 20% (TV20), 10% (TV10), and 5% (TV5) complication
probability were calculated.

2.6. Multivariate Analysis

The multivariate analysis allowed to examine interactions between
the features and their relative relevancy and redundancy. It was
a multi-step process comprising feature-group selection, feature
scaling, sampling (data cleaning and/or class balancing), fea-
ture selection, and classification. The workflow is presented in
Figure 2.

2.6.1. Workflow

The first step of the workflow was a random selection of the
feature-groups (Table 2) used for model training. It allowed for
an initial, unsupervised dimensionality reduction of the feature
space, which typically translates into an improved predictive
performance and a more straightforward interpretation of the
models. The selection was realized by performing a Bernoulli
trial for every feature group with a 50% chance of success. If

1. Feature-group selection [ 2. Feature scaling | 3. Sampling 4. Feature selection 5. Classification
Demographics | Z-score l None None LR-L1
Parotid shape ROS UFS-F LR-L2
Dose-volume histogram SMOTE UFS-MI LR-EN
Spatial dose gradient ADASYN RFE-LR kNN
Spatial dose spread 0SS RFE-ET SVM
Spatial dose correlation TL MB-LR ET
Spatial dose skewness ENN MB-ET GTB
Spatial dose coskewness NCL
SMOTE+TL
SMOTE+ENN
FIGURE 2 | The workflow of a multivariate five-step model building comprising, in this order, feature-group selection, feature scaling, sampling, feature selection, and
classification.
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TABLE 3 | Predictive performance of the mean-dose models and the morphological
model proposed by Buettner et al. (4), that is logistic regression with 1}, 78, 150,

I C
and 71710

End point Model AUC
Early Mean' 0.58 (0.56-0.60)
Mean® 0.42 (0.41-0.44)
MeanP 0.50 (0.48-0.53)
Mean', mean® 0.49 (0.48-0.51)
Morphological 0.42 (0.40-0.44)
Late Mean' 0.48 (0.44-0.51)
Mean® 0.58 (0.55-0.61)
Mean® 0.55 (0.52-0.58)
Mean', mean® 0.54 (0.51-0.57)
Morphological 0.59 (0.56-0.62)
Long-term Mean' 0.40 (0.37-0.44)
Mean® 0.58 (0.55-0.61)
Mean® 0.56 (0.52-0.60)
Mean', mean® 0.47 (0.44-0.50)
Morphological 0.64 (0.60-0.67)
Longitudinal Mean' 0.51 (0.45-0.56)
Mean® 0.57 (0.51-0.62)
Mean® 0.50 (0.44-0.55)
Mean', mean® 0.52 (0.46-0.58)
Morphological 0.55 (0.49-0.60)

i, ipsilateral gland; c, contralateral gland; b, both glands.

a given group was selected, all features belonging to this group
were accepted for further analysis. If no group was selected after
performing all Bernoulli trials, the procedure was repeated for all
feature groups.

In the second step, all features were scaled via Z-score normal-
ization. Normalization of the features often improves stability and
speed of optimization algorithms.

The third step served the purpose of class balancing and
data cleaning. A class imbalance, noise, and a small size of
the minority class can negatively affect the performance of a
predictive model (29, 30). We investigated whether sampling
methods designed to reduce noise and improve definitions of
class clusters could enhance model performance. Ten algorithms
were examined: random oversampling (ROS), synthetic minority
oversampling (SMOTE), adaptive synthetic sampling (ADASYN),
one-sided selection (OSS), Tomek links (TL), the Wilson’s edited
nearest neighbor rule (ENN), the neighborhood cleaning rule
(NCL), synthetic minority oversampling followed by the Wilson’s
edited nearest neighbor rule (SMOTE + ENN), and synthetic
minority oversampling followed by Tomek links (SMOTE + TL).
The detailed description of the sampling algorithms is given in
Appendix B.

The fourth step of the analysis was feature selection. The
rationale for feature selection is a reduction of model complex-
ity, which facilitates understanding of the relations between the
predictors and the modeled outcome (here: xerostomia) (31). In
this study, we tested six feature selection algorithms: univariate
feature selection by F-score (UFS-F), univariate feature selection
by mutual information (UFS-MI), recursive feature elimination
by logistic regression (RFE-LR), recursive feature elimination by
extra-trees (RFE-ET), model-based feature selection by logistic

regression (MB-LR), and model-based feature selection by extra-
trees (MB-ET). The details on the feature selection algorithms are
provided in Appendix C.

The last step of the workflow was classification. We compared
seven classification algorithms: logistic regression with L1 penalty
(LR-L1), logistic regression with L2 penalty (LR-L2), logistic
regression with elastic net penalty (LR-EN), k-nearest neighbors
(kNN), support vector machines (SVM), extra-trees (ET), and
gradient tree boosting (GTB). A more detailed description of the
classification algorithms is given in Appendix D.

The models were build for every combination of the classifi-
cation, feature selection, and sampling algorithms. This resulted
in 490 models per end point or 1,960 models in total. A given
classifier or a feature selection algorithm was involved in 210 time-
specific and 70 longitudinal models. Every sampling method was
part of 147 time-specific and 49 longitudinal models.

2.6.2. Model Tuning

In the process of model building every model was tuned, that is
its hyperparameters were optimized to maximize the prediction
performance. The type and the range of the hyperparameters were
based on previously reported values that worked well in various
machine learning tasks (Appendices B, C, and D).

For each model, the hyperparameter optimization was real-
ized by a random search (32). First, 300 random samples were
selected from the hyperparameter space. Secondly, for each hyper-
parameter sample, the model performance was evaluated using
cross-validation. Lastly, the model was retrained using all data
with the hyperparameter configuration that maximized the cross-
validated AUC.

In the time-specific models, the cross-validation was done by
the stratified Monte Carlo cross-validation (MCCV) (33) with 300
splits and 10% of observations held out for testing at each split. For
the longitudinal models, we used modified leave-pair-out cross-
validation (LPOCV) (34, 35). In our LPOCV implementation,
all the training observations sharing patient ID with the test
fold observations were removed at each split. This decision was
motivated by the fact that the observations sharing patient ID
differ only in the time of the follow-up evaluation; not remov-
ing them from the training fold would lead to overoptimistic
performance scores. Additionally, instead of all possible posi-
tive—negative pairs, as in typical LPOCYV, only a random subset of
300 positive-negative pairs was used. This allowed for a reduction
of the computation time. Confidence intervals for the model
tuning AUC estimates were calculated with BCa bootstrap.

2.6.3. Comparison of Machine Learning Algorithms
In order to compare the algorithms in terms of their influence
on the average predictive performance of the model, we looked at
the classifiers, the feature selection algorithms, and the sampling
methods separately. Additionally, the analysis was performed
independently for the time-specific and the longitudinal models.
The statistical significance of the differences between the
algorithms was evaluated by the Friedman test followed by the
Nemenyi post hoc analysis. The Friedman test computes average
performance ranks of the algorithms and tests whether they have
the same influence on the AUC score of the model. If the null

Frontiers in Oncology | www.frontiersin.org

March 2018 | Volume 8 | Article 35


http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive

Gabrys et al.

Machine Learning for NTCP Modeling of Xerostomia

Ipsilateral gland Contralateral gland
I
age
g g
5
sex — — a
volume | . 4 F 1%
-y — 53
ici o
eccentricity — — = g
o
sphericity I_J F——I
0]
mean EE
S ©
[e) —
spread —— >3
| | 22
skewness 8 <
=
gradienty | = J—| 1%
=
m—— p— 238
i N ® 38T
gradient, | = SR
Vo5
gradient, |—4 _—I
Mo N |j—
w0
on o - £33
SRR
n w0
No11 h
N200 c
— O
C o g
< n ©
No20 F :-;.-8 g
o
- L gy S :
]
N210 — —
N201
= !
No21 0 T g o
®°83
oo g
7]
Ni20 I_| §
No12
N102
N300 rd h "
T oo
i 5 wn C
Nozo Il Early xerostomia Eg S
I Late xerostomia neyg
Noo3 [ Long-term xerostomia o
1 1 1 1 I 1 1 1
0.9 0.8 0.7 0.6 0.5 0. 0.6 0.7 0.8 0.9
AUC AUC
FIGURE 3 | Predictive power of individual features in the time-specific models measured with the area under the receiver operating characteristic curve (AUC). The
left-hand side vertical axis lists the features, the right-hand side vertical axis lists the feature groups. The AUCs were calculated from the corresponding
Mann-Whitney U statistic. Bars marked with * are significant at the false discovery rate (FDR) < 0.05.

Frontiers in Oncology | www.frontiersin.org

o

March 2018 | Volume 8 | Article 35


http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive

Gabrys et al.

Machine Learning for NTCP Modeling of Xerostomia

hypothesis was rejected, we proceeded with the post hoc analysis.
With the Nemenyi post hoc test, we calculated the critical differ-
ence at a significance level of 0.05. When the average performance
ranks of two algorithms differed by at least the critical difference,
they were significantly different.

As mentioned before, this analysis was repeated six times to test
the classifiers, the feature selection algorithms, and the sampling
methods separately in the time-specific and the longitudinal mod-
els. Therefore, the Holm-Bonferroni method was used to control
the family-wise error rate (FWER) of the Friedman tests, that is
the probability of making at least one incorrect rejection of a true
null hypothesis in any of the comparisons (36). The significance
level for the FWER was set to 0.05.

2.6.4. Generalization Performance

Hyperparameter optimization comes at a cost. On the one hand,
it allows to tune the model so it fits well the underlying data.
On the other hand, the performance of the tuned model may be
overoptimistic due to a favorable selection of hyperparameters. In
order to estimate the generalization performance of a model, that
is its performance on new, unseen data, the data used for model
tuning must be separate from the data used for model testing. Due
to the modest size of our data set, instead of dividing the data to
training, validation, and test folds, we decided to test the models
using nested-cross validation (37).

Nested cross-validation is essentially cross validation within
cross validation. Part of the data is set aside for testing and the rest
is used for model tuning (as described in the previous section).
Next, the tuned model is tested on the part of data previously set
aside for testing. Then, the procedure is repeated, that is another
randomly selected part of the data is set aside for testing and the
rest is used for model tuning. This is repeated until the desired
number of iterations is achieved.

Unfortunately, due to high computation cost, it was not fea-
sible to calculate the expected generalization performance of
all 1,960 models. Therefore, the models were first stratified by
end point and classifier, and then nested cross-validation was
conducted for the best performing models. The inner loops of

the nested cross-validation, which were responsible for model
tuning, were the same as described in Section 2.6.2. The outer
loops were realized by the MCCV with 100 splits and a 10% test
fold (time-specific models) or the modified LPOCV (longitudinal
models). Confidence intervals for the generalization AUCs were
calculated with BCa bootstrap.

2.7. Software

The MATLAB code used for DICOM import, processing, and
feature extraction was made publicly available on GitHub (https://
github.com/hubertgabrys/DicomToolboxMatlab). For visualiza-
tion, statistical analysis, model building, and model testing, the
following open-source Python packages were used: imbalanced-
learn (38), Matplotlib (39), NumPy & SciPy (40), Orange (41),
Pandas (42), scikit-learn (43), scikits-bootstrap, and XGBoost
(44).

3. RESULTS

3.1. Feature Correlations

After removing the features correlated with the mean dose, the
skewness of the dose-volume histogram, and the parotid volume,
there were no highly correlated feature pairs left. The remaining
features are listed in Table 2.

3.2. Mean-Dose and Morphological Models
The predictive performance scores of the mean-dose models and
the morphological model are presented in Table 3. The mean-
dose models failed to predict xerostomia (AUC < 0.60) at all time-
intervals as well as in the longitudinal approach. The morpho-
logical model achieved fair performance (AUC =0.64) only in
predicting long-term xerostomia.

3.3. Univariate Analysis

The results of the univariate analysis are presented in Figure 3.
There was little association between single predictors and xeros-
tomia within the first six months after treatment. Late xerostomia
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FIGURE 4 | The mean dose and the absolute right-left dose gradient distribution in our patient cohort.
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correlated with individual features slightly better. The most
informative were contralateral dose gradients in the right-left
direction (AUC=10.68 (0.53-0.82)) and the anterior—posterior
direction (AUC=0.72 (0.58-0.84)). Nevertheless, the AUCs
were too low to be statistically significant at the FDR <0.05.
Long-term xerostomia was predicted well by parotid volumes,
right-left dose gradients, and anterior-posterior dose gradients.
Three models were statistically significant at the FDR < 0.05:
the ipsilateral parotid volume (AUC=0.87 (0.75-0.95),
TV20=9,894mm?, TV10=15,681 mm>, TV5=21,014mm?),
the contralateral parotid volume (AUC=0.85 (0.66-0.98),
TV20=9,169mm>, TV10= 14,533 mm>, TV5=19,475mm?),
and the contralateral gradient in the right-left direction
(AUC=0.84 (0.71-0.93), TV20=149Gy/mm, TV10=
1.29Gy/mm, TV5=1.10Gy/mm). Statistical significance
of three tests at the FDR <0.05 translates into a 85.7% and

a 99.3% lower bound on the probability that all three tests
are truly positive or that at most one test is falsely positive,
respectively.

Neither the mean dose to the contralateral nor the mean dose to
the ipsilateral parotid gland discriminated well between patients
with and without xerostomia in the time-specific and the longi-
tudinal approach. Figure 4 shows the comparison between the
mean dose and the absolute right-left dose gradient values for the
patients with long-term xerostomia.

3.4. Comparison of Classification, Feature

Selection, and Sampling Algorithms

There was a clear difference in the average performance
between early (AUC = 0.60), late (AUC~0.70), and long-term
(AUC ~0.90) xerostomia models (Figure 5). After applying the
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TABLE 4 | Expected generalization performance of selected models evaluated by nested cross-validation.

End point Classifier Feature selection Sampling AUC tuning AUC testing
Early LR-L1 RFE-ET NCL 0.62 (0.60-0.64) 0.56 (0.53-0.60)
LR-L2 RFE-LR NCL 0.62 (0.60-0.64) 0.46 (0.42-0.49)
LR-EN MB-ET NCL 0.62 (0.60-0.64) 0.54 (0.50-0.57)
kNN UFS-F SMOTE + ENN 0.68 (0.66-0.70) 0.65 (0.62-0.68)
SVM UFS-F None 0.70 (0.68-0.72) 0.57 (0.53-0.61)
ET MB-LR NCL 0.63 (0.61-0.65) 0.44 (0.41-0.47)
GTB UFS-F None 0.66 (0.64-0.68) 0.55 (0.51-0.59)
Late LR-L1 RFE-LR NCL 0.78 (0.75-0.80) 0.63 (0.56-0.69)
LR-L2 RFE-LR NCL 0.76 (0.73-0.78) 0.60 (0.53-0.66)
LR-EN MB-LR SMOTE+TL 0.73 (0.70-0.76) 0.56 (0.51-0.62)
kNN MB-LR NCL 0.78 (0.76-0.80) 0.62 (0.57-0.67)
SVM UFS-F TL 0.80 (0.77-0.82) 0.52 (0.46-0.58)
ET RFE-ET NCL 0.78 (0.75-0.80) 0.55 (0.50-0.61)
GTB MB-LR 0SS 0.77 (0.75-0.79) 0.65 (0.59-0.70)
Long-term LR-L1 MB-LR ROS 0.95 (0.94-0.96) 0.86 (0.80-0.90)
LR-L2 MB-LR None 0.96 (0.95-0.97) 0.86 (0.81-0.90)
LR-EN MB-LR SMOTE + ENN 0.92 (0.90-0.93) 0.83 (0.76-0.88)
kNN UFS-MI TL 0.88 (0.86-0.90) 0.74 (0.68-0.80)
SVM RFE-LR ENN 0.94 (0.92-0.96) 0.79 (0.73-0.85)
ET MB-LR ENN 0.93 (0.92-0.94) 0.88 (0.84-0.91)*
GTB UFS-F ROS 0.89 (0.86-0.91) 0.77 (0.71-0.83)
Longitudinal LR-L1 UFS-MI None 0.63 (0.57-0.68) 0.52 (0.41-0.61)
LR-L2 RFE-LR NCL 0.60 (0.55-0.66) 0.39 (0.29-0.48)
LR-EN UFS-MI TL 0.62 (0.57-0.68) 0.52 (0.42-0.60)
kNN UFS-MI NCL 0.65 (0.61-0.69) 0.58 (0.49-0.66)
SVM UFS-MI 0SS 0.66 (0.60-0.71) 0.57 (0.46-0.66)
ET UFS-MI TL 0.66 (0.61-0.71) 0.51 (0.40-0.60)
GTB RFE-LR ROS 0.68 (0.62-0.72) 0.63 (0.52-0.71)*

aBest performing models at a given end point.

Holm-Bonferroni correction, all the Friedman tests were signifi-
cant at the FWER < 0.05. Therefore, classification, feature selec-
tion, and sampling algorithms were compared for both the time-
specific and the longitudinal models.

In the time-specific models, the support vector machine was by
far the best scoring classifier, outperforming the other classifiers in
over 70% of cases (Figure 6), whereas gradient tree boosting was
on average the worst performing classifier (Figure 7). Conversely,
gradient tree boosting together with support vector machines and
extra-trees predicted xerostomia significantly better than all the
other classifiers in the longitudinal approach.

The logistic regression-based algorithms performed signifi-
cantly better than the feature selection methods based on extra-
trees, in both the time-specific and the longitudinal models.
Interestingly, while univariate feature selection by mutual infor-
mation was the worst performing feature selection method in the
time-specific models, it was one of the best in the longitudinal
approach. Not performing feature selection was not disadvanta-
geous in terms of predictive performance.

In both the time-specific and the longitudinal approach, no
sampling algorithm gave a significant advantage over no sam-
pling at all. In the time-specific models, Tomek links and the
neighborhood cleaning rule performed significantly better than
any oversampling algorithm. In the longitudinal models, Tomek
links performed significantly better than random oversampling or
ADASYN.

3.5. Generalization Performance

The best performing models stratified by end point and classifier
are listed in Table 4. These models were retested by nested cross-
validation to estimate their generalization performance. Early
xerostomia (0-6 months after treatment) was predicted fairly well
only by the k-nearest neighbors classifier (AUC = 0.65). The mod-
els of late xerostomia (6-15 months after treatment) generalized
slightly better with logistic regression, k-nearest neighbors, and
gradient tree boosting scoring AUC > 0.60. For long-term xeros-
tomia (15-24 months after treatment), the models generalized
best with the AUC ranging from 0.74 (k-nearest neighbors) to 0.88
(extra-trees). The longitudinal models failed to generalize except
the gradient tree boosting classifier, which achieved AUC = 0.63.
Generalization AUCs were on average 0.10 lower than tuning
AUCG:s for all the analyzed end points.

3.6. Model Interpretation

Only the models predicting long-term xerostomia achieved high
generalization scores, that is AUC > 0.70. For that reason, model
interpretation was performed only for this end point. The mul-
tivariate models of long-term xerostomia relied mostly on the
parotid gland volume, the spread of the contralateral dose-volume
histogram, and the parotid gland eccentricity (Figure 8). The con-
tralateral dose gradient in the right-left direction, despite good
univariate predictive power, was included in only one model.
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FIGURE 8 | Features underlying the multivariate models of long-term xerostomia. i, ipsilateral gland; c, contralateral gland.
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4. DISCUSSION

The univariate analysis showed that parotid- and dose-shape fea-
tures can be highly predictive of xerostomia. Patients with small
parotid glands (median parotid volume in the positive group 9,557
vs. 14,374 mm? in the negative group) and steep dose gradients in
the patient’s right-left direction (median gradient in the positive
group 1.7 vs. 1.2 Gy/mm in the negative group) were significantly
more likely to develop long-term xerostomia. A possible explana-
tion of this finding could be the fact that parotid glands typically
shrink and move toward the medial direction during the course
of radiotherapy. As a result, for patients with small parotid glands,
the gradient is a proxy for the change of any dose-related metric
subject to motion. As such, this might be an indicator of neglected
motion and deformation effects during the modeling process.

Nevertheless, good discriminative power of the dose gradients
and poor performance of the mean dose should be put into
perspective of the previous studies validating mean-dose mod-
els. In cohorts where patients received a high radiation dose to
parotid glands, the mean dose allowed achieving AUC above 0.80
(2, 3). It seems that inclusion of patients with less conformal
treatment plans and a higher dosage to parotids would result in
a cluster of patients with complications in the high-dose region
of Figure 4. Therefore, for relatively high doses, the mean dose
alone is a good xerostomia predictor irrespective of the dose
gradient, whereas in the low-dose regime of modern radiotherapy
treatments dose gradients are more informative and the mean
dose is less predictive.

In the multivariate analysis, we did not find a model that would
achieve generalization AUC above 0.65 for early or late-effects,
even though a few univariate models of late xerostomia exceeded
that value. Similarly, the multivariate models of long-term xeros-
tomia, despite their good generalization scores (AUCpax = 0.88),
performed on a par with the univariate models based on the
parotid volume or the contralateral dose gradient in the patient’s
right-left direction. Comparable performance of the univariate
and the multivariate models could be caused by the small sam-
ple size, especially the small minority class. In such setting, the
distribution of model covariates can nonnegligibly differ between
training and testing folds, hindering model training and reducing
performance of the model.

The analysis of the multivariate models highlighted the
importance of personalized treatment planning in radiotherapy.
The models were strongly based on patient-specific and dose-
independent features, such as parotid volume, parotid eccentric-
ity, and the patient’s sex. Females with small, elongated parotid
glands were at higher risk of long-term xerostomia than males
with large and rather round parotids. Interestingly, the dose gradi-
ent, despite relatively high predictive power, was included in only
one model. Instead, the most common dosiomic feature was the
spread of the contralateral dose-volume histogram quantifying
the SD of the dose within a parotid gland. Nevertheless, due to
the geometry of the problem, the DVH spread and spatial dose
gradients measured a similar characteristic of the dose distribu-

In the time-specific models, the support vector machine was
most commonly the best classifier. The other classifiers performed
similarly to one another. The unexceptional performance of the
ensemble methods (extra-trees and gradient tree boosting) could
stem from the fact that complex models need more training
samples to correctly learn the decision boundary. Among the
longitudinal models, we saw a more commonly observed classifier
“ranking,” that is GTB > ET >SVM > LR > kNN (19). Feature
selection did not give a clear advantage over no feature selection
in terms of the predictive performance. Nonetheless, feature selec-
tion allowed for a reduction of model complexity and made model
interpretation easier. The best results were achieved with the logis-
tic regression-based algorithms and feature selection by mutual
information (only in the longitudinal models). We have not found
evidence that sampling methods improve accuracy of predictions.
Moreover, we observed that certain kinds of sampling, especially
random oversampling, can significantly decrease predictive per-
formance of the models.

Nested cross-validation proved to be an important step in the
analysis. On average, the generalization AUCs were significantly
lower than the AUCs achieved in model tuning. Our findings
confirm the notion that single cross-validation can lead to overop-
timistic performance estimates when hyperparameter tuning is
involved in model building.

5. CONCLUSION

We demonstrated that in a highly conformal regime of mod-
ern radiotherapy, use of organ- and dose-shape features can be
advantageous for modeling of treatment outcomes. Moreover,
due to strong dependence on patient-specific factors, such as the
parotid shape or the patient’s sex, our results highlight the need
for development of personalized data-driven risk profiles in future
NTCP models of xerostomia.

Our results show that the choice of a classifier and a feature
selection algorithm can significantly influence predictive perfor-
mance of the NTCP model. Moreover, in relatively small clin-
ical data sets, simple logistic regression can perform as well as
top-ranking machine learning algorithms, such as extra-trees or
support vector machines. We saw no significant advantage in
using data cleaning or reducing the class imbalance. Our study
confirms the need for significantly larger patient cohorts to benefit
from advanced classification methods, such as gradient tree boost-
ing. We showed that single cross-validation can lead to overopti-
mistic performance estimates when hyperparameter optimization
is involved; either nested cross-validation or an independent test
set should be used to estimate the generalization performance of
amodel.

LIST OF NON-STANDARD
ABBREVIATIONS

Classification

LR-L1 Logistic regression with L1 penalty
tion. That is, a large spread of the DVH was present when part of  LR-L2 Logistic regression with L2 penalty
the parotid gland received high dose, whereas another part was  LR-EN Logistic regression with elastic net penalty
spared. (Continued)
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kNN k-Nearest neighbors

SVM Support vector machine

ET Extra-trees

GTB Gradient tree boosting

Feature selection

UFS-F Univariate feature selection by F-score

UFS-MI Univariate feature selection by mutual
information

RFE-LR Recursive feature elimination by logistic
regression

RFE-ET Recursive feature elimination by extra-trees

MB-LR Model-based feature selection by logistic
regression

MB-ET Model-based feature selection by extra-trees

Sampling

ROS Random oversampling

SMOTE Synthetic minority
oversampling

ADASYN Adaptive synthetic sampling

0SS One-sided selection

TL Tomek links

ENN Wilson’s edited nearest
neighbor rule

NCL Neighborhood cleaning rule

SMOTE + ENN SMOTE followed by the ENN

SMOTE + TL SMOTE followed by TL
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