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HIGHLIGHTS 

▪ We analyzed associations of residential long-term air pollution and the inflammatory marker CRP 

measured by a high-sensitivity (hs) assay. 

▪ Air pollutants including UFP (measured as PNC) were modeled by land-use regression. 

▪ PNC and PM10 showed a positive association with hs-CRP in single-pollutant models.                     

▪ PNC and PM10 were significantly associated with hs-CRP after adjustment for PM2.5. 

▪ Never smokers, non-obese and non-diabetic participants indicated higher effect estimates.   
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ABSTRACT 

BACKGROUND. Long-term exposure to ambient air pollution contributes to the global burden of 

disease by particularly affecting cardiovascular (CV) causes of death. We investigated the association 

between particle number concentration (PNC), a marker for ultrafine particles, and other air pollutants 

and high sensitivity C-reactive protein (hs-CRP) as a potential link between air pollution and CV disease. 

METHODS. We cross-sectionally analysed data from the second follow up (2013 and 2014) of the 

German KORA baseline survey which was conducted in 1999 to 2001. Residential long-term exposure 

to PNC and various other size fractions of particulate matter (PM10 with size of < 10 µm in aerodynamic 

diameter, PMcoarse 2.5-10 µm or PM2.5 < 2.5 µm, respectively), soot (PM2.5abs: absorbance of PM2.5), 

nitrogen oxides (nitrogen dioxide NO2 or oxides NOx, respectively) and ozone (O3) were estimated by 

land-use regression models. Associations between annual air pollution concentrations and hs-CRP were 

modeled in 2,252 participants using linear regression models adjusted for several confounders. Potential 

effect-modifiers were examined by interaction terms and two-pollutant models were calculated for 

pollutants with Spearman inter-correlation <0.70. 

RESULTS. Single pollutant models for PNC, PM10, PMcoarse, PM2.5abs, NO2 and NOx showed positive 

but non-significant associations with hs-CRP. For PNC, an interquartile range (2,000 particles/cm3) 

increase was associated with a 3.6% (95% CI: -0.9%, 8.3%) increase in hs-CRP. A null association was 

found for PM2.5. Effect estimates were higher for women, non-obese participants, for participants 

without diabetes and without a history of cardiovascular disease whereas ex-smokers showed lower 

estimates compared to smokers or non-smokers. For O3, the dose-response function suggested a non-

linear relationship. In two-pollutant models, adjustment for PM2.5 strengthened the effect estimates for 

PNC and PM10 (6.3% increase per 2,000 particles/cm3 [95% CI: 0.4%; 12.5%] and 7.3% per 16.5 µg/m3 

[95% CI: 0.4%; 14.8%], respectively). 

CONCLUSION. This study adds to a scarce but growing body of literature showing associations 

between long-term exposure to ultrafine particles and hs-CRP, one of the most intensely studied blood 

biomarkers for cardiovascular health. Our results highlight the role of ultrafine particles within the 

complex mixture of ambient air pollution and their inflammatory potential.  
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INTRODUCTION 

According to the WHO, ambient air pollution contributed to 3.7 million premature deaths in 2012 

worldwide including 280,000 in high-income countries of Europe and is therefore the largest 

environmental contributor to the burden of disease (1). This risk factor particularly affects 

cardiovascular and cerebrovascular causes of death since these account for 80% of mortality attributable 

to ambient air pollution (2, 3). Previous studies provide consistent evidence that long-term exposure to 

particulate matter (PM) air pollution is associated with cardiovascular morbidity and mortality (4, 5). 

Although the exact mechanisms behind these effects are still unclear, an inflammatory response has 

been hypothesized to play an important role which is also supported by several animal studies (6, 7). 

C-reactive protein (CRP) is a reliable measure indicating systemic inflammation and high 

sensitivity (hs) CRP has also been reported to be a predictor for an increased risk of cardiovascular 

diseases (CVD) (8). 

Several epidemiological studies have reported associations of long-term exposure to air pollution with 

an increased level of CRP (9-11) while others did not see an association (12, 13). A recent review on 

PM and hs-CRP did not find conclusive evidence yet (14). However, previous studies mainly focused 

on larger particles like PM2.5 or PM10 (particulate matter with a size of < 2.5 µm in aerodynamic diameter 

or < 10 µm, respectively) whereas ultrafine particles (< 100 nm) came into focus only recently. They 

are hypothesized to be more harmful than other particles (15). Due to their small size they might even 

translocate from the lungs into the circulation which could directly lead to systemic inflammation (16). 

Furthermore, their large surface may provide a mechanism for delivering much more potentially toxic 

absorbed organic material (17). The California Teachers Study by Ostro et al. (18) was the first study 

which investigated long-term effects of ultrafine particles on health and it prospectively included  more 

than 100,000 participants. They reported a significant association of long-term exposure to ultrafine 

particles with all-cause and cardiovascular mortality. So far, only two studies have examined the 

association between long-term exposure to particle number concentration (PNC), as a proxy for ultrafine 

particles, and hs-CRP. Viehmann et al. (19) examined a population based prospective cohort study 

incorporating approximately 4,800 participants finding a non-significant association whereas Lane et al. 

(20) investigated 409 participants with regard to long-term exposure of near-highway ultrafine particle 

exposure in a cross-sectional design. The study rom the U.S. (20) also found a positive but non-

significant association among all participants which even reached significance when including only the 

white non-Hispanic population.  

To date, reliable data of chronic exposure to ultrafine particles are still lacking which in turn leads to the 

fact that no air quality standards are established regarding this air pollution metric. In terms of filling 

this gap, we examined the association of long-term exposure to air pollution and the inflammatory 

marker hs-CRP. We focused on ultrafine particles, but also other PM metrics, soot, nitrogen oxides and 
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ozone were of interest. We hypothesized that long-term exposure to ambient air pollution would be 

positively associated with hs-CRP with ultrafine particles comprising higher toxicity.  
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METHODS 

Study population 

This cross-sectional analysis is part of the KORA (Cooperative Health Research in the Region of 

Augsburg) study, a population-based, prospective cohort study conducted in southern Germany. Study 

participants were selected randomly from population registries in the city of Augsburg and two adjacent 

counties. A total of 4,261 participants were examined at baseline (1999 to 2001) and 2,279 of these 

participants took part in the second follow-up conducted from 2013 to 2014. The latter served as the 

data base for the current analyses. The survey consisted of a computer-assisted personal interview and 

a self-administered questionnaire. All individuals were physically examined and blood samples were 

taken. The study design, sampling method and data collection have been described in detail elsewhere 

(21, 22). All participants gave written informed consent to the study, which was approved by the ethics 

committee of the Bavarian Medical Association. 

Outcome definition 

As a marker of inflammation hs-CRP (mg/L) was assayed in serum on a BN II nephelometer (Siemens 

Healthcare Diagnostics Product GmbH, Marburg, Germany) with intra-assay coefficient of variation of 

2.13%. Samples were kept at 4°C after blood draw, until further processing within a maximum of six 

hours and aliquots were then stored at -80°C. Samples were measured by the collaborating Biomarker 

Laboratory at the University of Ulm, Germany. Measurements below the limit of detection of 0.175 

mg/L were set to its half, 0.09 mg/L.  

Air pollution exposure 

Residential exposure to ambient air pollution was estimated within the framework of the ULTRA 3 

project (Environmental Nanoparticles and Health: Exposure, Modeling and Epidemiology of 

Nanoparticles and their Composition) for all KORA participants. By the use of land-use regression 

(LUR) models, long-term exposure was assigned individually to the study participants’ home addresses 

and estimated as mean annual concentration. In order to characterize spatial variation, LUR models were 

built on the basis of annual average measurements and predictors like traffic, land-use, population and 

building density (23). Measurements and modeling strategy were based on the standardized ESCAPE 

(European Study of Cohorts for Air Pollution Effects) approach (24, 25). Data on air pollutants were 

collected at 20 monitoring sites in the city and region of Augsburg and comprised traffic, urban 

background and rural background sites. The sampling time comprised three periods of two weeks in the 

cold, warm and intermediate (spring or autumn) season between March 2014 and April 2015 (23). In 

order to adjust for temporal variation, a reference site was operated continuously throughout the whole 

measurement period. The following air pollutants were modeled: PNC; PM10; PM2.5; coarse particulate 

matter (PMcoarse, 2.5-10 µm); absorbance of PM2.5 (PM2.5 abs); nitrogen dioxide (NO2); nitrogen 

oxide (NOx) and ozone (O3). By measuring the absorbance of PM2.5 the content of soot could be 
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determined. PNC was measured by four GRIMM ultrafine particle counters (model EDM 465 UFPC, 

GRIMM aerosol, Ainring, Germany) measuring total PNC with a cut-off at 7 nm and one NanoScan 

SMPS Nanoparticle Sizer (model 3910, TSI, Shoreview, MN, USA) measuring PNC in 13 size channels 

in the size range from 10 to 420 nm. A diffusion dryer was used in the sheath air loop of the Nanoscan-

SPMS in order to minimize the influence of particle growth under conditions of high relative humidity. 

At the reference site, PNC was measured in the size range from 3 nm to 10 µm by use of a combination 

of custom-made Twin Differential Mobility Particle Spectrometry (TDMPS) based on Birmili et al 

(26)and an aerodynamic particle sizer (APS, Model 3321, TSI Inc., U.S.). Comparisons of all 

instruments were conducted every two weeks and correction factors were applied if necessary. The LUR 

model for PNC indicated a very good fit with an adjusted model explained variance (R²) of 0.89 (cross-

validation adjusted R² = 0.81) and included as predictors building footprints and traffic in the close 

vicinity (25m and 50m), seminatural and industrial areas in a 100m and 300m buffer, respectively, and 

green area within 500m. A more detailed description of the measurement techniques, predictors, model 

building, quality and validation can be found elsewhere (23). 

Covariates 

Potential confounding factors including demographic, socioeconomic, lifestyle and clinical 

characteristics as well as medical history and medication intake are summarized in Table 1. Socio-

economic status (SES) was measured by the Helmert-Index (27) and neighborhood SES by area level 

household income (percentage of households with low income < 1.250 € in 5000 m² grid cell). 

Cumulative smoking exposure was assessed for current and ex-smokers as pack-years (packages per 

day*years of smoking). CVD was defined as history of myocardial infarction, angina pectoris or 

hypertension whereas the diagnosis of hypertension was defined by either blood pressure above 140/90 

mmHg or treatment of known hypertension (28). Socio-demographic covariates and lifestyle 

characteristics were based on self-reported information. The diagnosis of diabetes mellitus (type 1 and 

2) was validated either by an oral glucose tolerance test (OGTT) for participants with unknown diabetes, 

or by the physician’s diagnosis or the current intake of glucose-lowering agents for previously diagnosed 

diabetes. Pre-diabetes was defined as impaired fasting glucose (IFG) and/or impaired glucose tolerance 

(IGT). Current intake of CRP-lowering drugs like anti-inflammatory drugs (NSAID: non-steroidal anti-

inflammatory drugs), or lipid-lowering (including statins) was classified according to the Anatomical 

Therapeutic Chemical Classification Index (29). Statins have been shown to reduce CRP levels 

independent of the reduction of LDL-cholesterol (referenz Arevalo-Lorido) and might therefore 

attenuate possible associations between air pollution and CRP. Clinical measurements were assayed by 

standard enzymatic procedures. Long-term road traffic noise was assessed by maximum annual A-

weighted equivalent day-evening-night (Lden, 24-h) and night time (Lnight , 22.00-06.00 h) continuous 

sound pressure levels (dB(A)), estimated for the home address of each participant by the company 

ACCON GmbH (DIN ENISO14001:2009 certified), an environmental and engineering consultancy for 
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sound and vibration technology, air pollution control and environmental planning. For further details 

we refer to Pitchika et al. 2017 (30). 

 

Statistical Analyses  

Multiple linear regression models were conducted for each pollutant separately to examine the 

association between air pollutants and hs-CRP. Hs-CRP was log-transformed to approximate normal 

distribution of the residuals and to stabilize variance. We restricted our analysis to the study population 

with complete information on hs-CRP measurements, exposures and main covariates. We adjusted for 

several socio-economic and individual-level demographic characteristics as well as clinical variables. 

First, we defined the minimum model with a-priori chosen covariates: age, sex, body mass index (BMI), 

smoking status and month of blood draw. Based on minimizing the Schwarz Bayesian criterion, a 

supervised stepwise forward selection was then applied separately on three variable blocks in the given 

order: (I) socio-economic covariates (marital status, education, occupational status, income, SES, 

neighborhood SES), (II) lifestyle-related covariates (waist circumference, waist-hip ratio, physical 

activity, cumulative smoking exposure, alcohol consumption) and (III) clinical parameters (total 

cholesterol, high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, 

triglycerides). As environmental tobacco smoke (ETS) exposure contained more than 10% of missing 

values (N = 433) this variable was not considered in the selection process. The final main model 

comprised the following covariates: age, sex, BMI, smoking status, month of blood draw, waist-hip ratio 

and HDL cholesterol. Effect estimates are presented as percent change of the geometric mean of hs-

CRP and the corresponding 95% confidence interval (95% CI) for an interquartile range (IQR) increase 

in each air pollutant.  

We examined possible effect modifiers by including interaction terms in the main model. We 

investigated age (≥ 65 years vs. < 65 years), sex, obesity (BMI ≥ 30 kg/m2 vs. < 30 kg/m2), smoking 

status (current vs. ex- vs. non-smokers), diabetes (diabetes vs. pre-diabetes vs. no diabetes), having a 

history of CVD, the intake of CRP-lowering drugs and occupational status (employed vs. not employed). 

Statins have been shown to reduce CRP levels independent of the reduction of LDL-cholesterol (31) 

and might therefore attenuate possible associations between air pollution and CRP.” 

A number of sensitivity analyses were conducted to evaluate the robustness of our results. We 

investigated outliers by visual inspection of residual plots. The linearity of the dose-response function 

was examined by including the air pollutants as penalized splines in a generalized additive model. 

Smoothing parameters were estimated by optimizing the generalized cross-validation criterion. We 

examined independent effects of particle metrics by the use of two-pollutant models with the restriction 

that Spearman inter-correlation between pollutants was below 0.70. Furthermore, quantile regression 

was performed as an alternative method being less sensitive to outliers. In terms of evaluating the clinical 
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relevance of the results, we applied a logistic regression on the binary outcome hs-CRP > 3 mg/L vs. ≤ 

3 mg/L as this cut-off point denotes an increased cardiovascular risk (32).  We additionally adjusted for 

educational level and physical activity in an extended model to account for our strict variables selection 

process. Furthermore we additionally adjusted for ETS or traffic noise in separate regression models. 

Since an underlying systemic inflammation due to an acute infection might change CRP concentrations, 

we excluded measurements of hs-CRP ≥ 10 mg/L (32). Hs-CRP values smaller than the limit of 

detection were excluded in a further step. Moreover, potential exposure misclassification was analyzed 

by excluding the subgroup of participants who changed residence between first and second follow-up.  

To assess statistical significance p < 0.05 was used.  All statistical analyses were performed using R 

Statistical Software Version 3.3.2. (The R Foundation for Statistical Computing, Vienna, Austria). 

RESULTS 

Study population 

Characteristics of the study population are presented in Table 1. In total, 2,279 subjects participated in 

the study of which 25 had to be excluded due to missing data in either the outcome (N = 19), the exposure 

(N = 1) or the covariates (N = 5) of the main model. Two outliers were excluded after the inspection of 

residual plots and thus 2,252 participants remained for our analyses. The study population available for 

analyses did not show systematic differences regarding outcome, exposure or covariates compared to 

the study population without exclusions (N=2,279; data not shown). Study participants were on average 

60 years old and had a mean BMI of 27.8 kg/m2. With 325 and 765 subjects having diabetes or pre-

diabetes, respectively, only about 50% of the study population showed no history of diabetes. In total, 

996 participants had a history of CVD of which the majority (879) was hypertensive. The geometric 

mean of hs-CRP concentration was 1.26 mg/L and hs-CRP concentrations exceeded 3 mg/L in 22% of 

participants.  
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Table 1. Descriptive statistics of the study population (N = 2,252). 

 Mean ± SD or N (%)a Missing N (%) 

Personal characteristics   

Age (years) 60.3 ± 12.3 - 
Sex (male) 1,091 (48.4) - 
Socio-economic covariates    
Marital status  - 

Single  153 (6.8)  
Married or living with partner 1,655 (73.5)  
Divorced or separated 240 (10.7)  
Widowed 204 (9.0)  

Education (years) 11.9 ± 2.6 5 (0.1) 
Occupational status  1 (0.1) 

Employed, self-employed or in training 1,124 (49.9)  
Unemployed 31 (1.4)  
Homemaker 162 (7.2)  
Retired 934 (41.5)  

Income, per capita (Euro) 1,321.0 ± 659.6 117 (5.2) 
SES (points, Helmert) 15.0 ± 5.1 8 (0.1) 
Neighborhood SES (%) 27.7 ± 17.8 - 
Lifestyle covariates   
BMI (kg/m2) 27.8 ± 5.0 - 
Waist circumference (cm) 96.9 ± 14.2 - 
Waist–hip ratio 0.9 ± 0.1 - 
Physical activity  - 

Low (none) 640 (28.4)  
Medium (~1 h/week) 1,027(45.6)  
High (>2 h/week) 585 (26.0)  

Smoking status  - 
Non-smoker 938 (41.6)  
Ex-smoker 965 (42.9)  
Smoker 349 (15.5)  

Cumulative smoking exposure (pack-years) 12.3 ± 19.7 55 (2.4) 
Alcohol consumption (g/d) 14.7 ± 20.0 1 (0.1) 
Clinical characteristics   

Hs-CRP (mg/L; arithmetic mean) 2.5 ± 4.1 - 
Total cholesterol (mg/dL) 216.0 ± 39.4 - 
HDL cholesterol (mg/dL) 65.6 ± 18.8 - 
LDL cholesterol (mg/dL) 134.3 ± 35.2 - 
Triglycerides (mg/dL) 121.5 ± 72.0 - 
Medical history and medication   
Diabetes status  83 (3.7) 

No diabetes 1,079 (49.7)  
Pre-diabetes 765 (35.3)  
Diabetes 325 (15.0)  

Cardiovascular diseaseb 996 (44.2) - 
Intake of medication affecting CRP c 944 (42.0) 4 (0.1) 

BMI: body mass index; HDL: high density lipoprotein; hs-CRP: high sensitivity C-reactive protein; 
KORA: Cooperative Health Research in the Region of Augsburg; LDL: low density lipoprotein;  
N: total number; SD: standard deviation; SES: socio-economic status. 

a Percentages are calculated based on observations with available information. 
b History of myocardial infarction, angina pectoris or hypertension. 
c Intake of non-steroidal anti-inflammatory drugs, lipid-lowering drugs (including statins). 
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Air pollutants 

The descriptive statistics of annual average concentrations of air pollutants at participants’ residences 

are presented in Table 2. Modelled long-term exposure to PNC was on average 7,200 particles/cm3. The 

maximum concentrations of PM10, PM2.5 and NO2 in the study area in 2014/2015 did not exceed the EU 

limits (Directive 2008/50/EC) but were higher than the WHO recommendations for PM2.5 and PM10 

(33). No annual EU limits or WHO guidelines are established for the other pollutants. Spearman 

correlations between air pollutants were strong or very strong. NOx was very highly correlated with PNC 

(rs = 0.90), as well as with NO2 (rs = 0.83). Only PM2.5 and O3 showed lower or no correlation with the 

other air pollutants.  

Table 2. Descriptive statistics of residential air pollutants exposure as annual average concentrations 
(March 2014 - April 2015) and corresponding Spearman correlation coefficients (N = 2,252). 

Pollutant (unit) Mean± SD Min Q1 Median Q3 Max  Spearman correlation coefficient 

        PNC PM10 PMcoarse PM2.5 PM2.5abs NO2 NOx 

PNC (103/cm³) 7.2 ± 1.8 3.2 6.1 7.2 8.1 15.0         

PM10 (µg/m3) 16.5 ± 1.5 12.7 15.4 16.2 18.0 22.3  0.80       

PMcoarse (µg/m3) 4.9 ± 1.0 2.4 4.2 4.9 5.6 8.6  0.75 0.79      

PM2.5 (µg/m3) 11.8 ± 1.0 8.3 11.1 11.8 12.5 14.2  0.65 0.52 0.56     

PM2.5abs (10-5/m) 1.2 ± 0.2 0.8 1.1 1.2 1.3 1.8  0.77 0.79 0.80 0.61    

NO2 (µg/m3) 14.0 ± 4.4 6.9 10.4 13.5 17.2 27.5  0.78 0.73 0.83 0.72 0.86   

NOx (µg/m3) 21.7 ± 7.3 4.0 17.2 22.5 25.9 50.5  0.90 0.73 0.74 0.76 0.72 0.83  

O3 (µg/m3) 39.1 ± 2.4 31.5 37.4 39.2 40.9 45.8  -0.03 0.06 0.17 -0.18 -0.08 -0.14 -0.07 

Max: maximum; Min: minimum; N: total number; NO2: nitrogen dioxide; NOx: nitrogen oxides; O3: ozone; PM10, PMcoarse, 
PM2.5: particulate matter with aerodynamic diameter < 10 µm, 2.5-10 µm and < 2.5 µm, respectively; PM2.5abs: absorbance of 
PM2.5; PNC: particle number concentration; Q1, Q3: first and third quartile, respectively; SD: standard deviation. 

Regression Analyses 

Effect estimates of the association between long-term residential exposure to air pollutants and hs-CRP 

adjusted with the minimum and main confounder model are reported in Table 3.Effect estimates for O3 

are not shown since the dose-response function suggested non-linearity and thus, a linear model seemed 

not to be adequate. For the other exposures, an IQR increase in air pollutant concentration was positively 

associated with an increase in hs-CRP but the associations were not significant. Our strongest finding 

was seen for PM10. In comparison with the minimum adjusted model, the effect sizes decreased only 

marginally when applying the main adjustment model except for the PM2.5 estimate which changed into 

a very weak negative association.  
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Table 3.  Effect estimates and 95% CI of the association between long-term exposure 
to air pollution and hs-CRP, per IQR in air pollutant for the minimum and main 
confounder model. 

Pollutant (unit) IQR  Percent change per IQR (95% CI) 

   Minimum modela Main modelb 

PNC (103/cm³) 2.0  3.87 (-0.68, 8.62) (*) 3.63 (-0.86, 8.33) 

PM10 (µg/m3) 2.1  5.27 (-0.63, 11.52) (*) 5.15 (-0.69, 11.33) (*) 
PMcoarse (µg/m3) 1.4  4.32 (-1.53, 10.52) 4.45 (-1.36, 10.59) 
PM2.5 (µg/m3) 1.4  0.16 (-5.38, 6.02) -0.29 (-5.75, 5.49) 

PM2.5abs (10-5/m) 0.3  3.10 (-3.08, 9.67) 2.80 (-3.31, 9.29) 
NO2 (µg/m3) 6.8  1.37 (-4.92, 8.08) 1.19 (-5.03, 7.83) 
NOx (µg/m3) 8.7  3.62 (-1.36, 8.85) 3.45 (-1.48, 8.61) 

CI: confidence interval; hs-CRP: high sensitivity C-reactive protein; IQR: interquartile range;  
NO2: nitrogen dioxide; NOx: nitrogen oxides; PM10, PMcoarse, PM2.5: particulate matter with 
aerodynamic diameter < 10 µm, 2.5-10 µm and < 2.5 µm, respectively; PM2.5abs: absorbance of PM2.5; 
PNC: particle number concentration. 

a Adjusted for age, sex, body mass index (BMI), smoking status and month of blood draw.  
b Adjusted for age, sex, BMI, smoking status, month of blood draw, waist–hip ratio and high density 
lipoprotein (HDL) cholesterol. 

(*) Effect estimates with p-values < 0.1. 

Effect Modification 

Selected effect modifications of the associations between an IQR increase in exposure for each air 

pollutant and hs-CRP are shown in Figure 1. We observed significant interactions for sex (Supplemental 

Table A 1), obesity, smoking status, diabetes and CVD. As NOx was highly correlated with PNC, the 

pattern was very similar with regard to directionality, magnitude and strength of association (data not 

shown). Effect estimates were higher across all air pollutants for non-obese participants, participants 

free of diabetes or CVD. Also, women showed larger effect sizes although confidence intervals were 

wide and the interactions significant (data not shown). With regard to PNC, PM10, PM2.5abs and NO2, 

participants without diabetes showed significant effect estimates per IQR increase in air pollutant with 

the highest one for PM10 of 14.71% (per 16.5 µg/m3; 95% CI: 5.47%; 24.77%). No clear pattern could 

be detected for participants with pre-diabetes or by smoking status though ex-smokers indicated lower 

estimates compared to smokers or non-smokers. Moreover, age, medication intake affecting CRP- levels 

or occupational status did not significantly modify the association. However, effect estimates for 

occupational status were found to be higher for persons who were not employed (Supplemental Table 

A 2)  
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Figure 1. Effect modification by obesity, smoking status, diabetes and CVD of the association between 
air pollutants and high sensitivity C-reactive protein (hs-CRP) adjusting for main covariates.  

BMI: body mass index in kg/m2; CI: confidence interval; CVD: cardiovascular diseases; IQR: interquartile range; NO2: 
nitrogen dioxide; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic diameter < 10 µm, 2.5-10 µm and < 2.5 µm 
respectively; PM2.5abs: absorbance of PM2.5; PNC: particle number concentration. 

* p-value of interaction < 0.05. 
(*) p-value of interaction < 0.10.  



14 
 

Sensitivity Analyses 

Whereas most air pollutants showed a linear dose-response function, linearity could not be confirmed 

for O3 (Figure 2). Therefore, this association could not be adequately estimated using a linear regression 

model.  

 
Figure 2. Smooth association between ozone (O3) and high sensitivity C-reactive protein 
(hs-CRP) adjusted for main covariates. Grey shades indicate the 95% confidence interval. 
Adjusted for the main confounder model. 

Two-pollutant models with O3 incorporated as a smooth function showed comparable estimates for the 

other pollutants as in the single pollutant models. In contrast, adjustment for PM2.5 strengthened the 

effect estimates for PNC, PM10, PMcoarse and PM2.5abs. Associations of PNC and PM10 even became 

significant with percent changes of 6.31% (per 2.0 103/cm3; 95% CI: 0.42%; 12.53%) and 7.34% (per 

2.1 µg/m3; 95% CI: 0.40%; 14.77%), respectively (Figure 3).  

 

Figure 3. Single-pollutant and two-pollutant models of the association between air 
pollutants and high sensitivity C-reactive protein (hs-CRP) adjusting for main covariates.  

adj: adjusted for the respective air pollutant, CI: confidence interval, IQR: interquartile range, PM10, 
PMcoarse, PM2.5: particulate matter with aerodynamic diameter < 10 µm, 2.5-10 µm and <2.5 µm 
respectively, PM2.5abs: absorbance of PM2.5, PNC: particle number concentration. 
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The quantile regression indicated heterogeneity of the association between long-term exposure to air 

pollution and hs-CRP across quantiles (Supplemental Figure A. 1). We observed stronger associations 

in the upper deciles of the hs-CRP distribution, though standard errors increased considerably. Among 

participants with hs-CRP below 0.37 mg/L (10th percentile), an IQR increase in PNC exposure was 

associated with a 0.01 mg/L (95% CI: -0.04, 0.04) increase in hs-CRP while among subjects with 

hs-CRP levels close to 5.83 mg/L (90th percentile), the same exposure was related to a 0.29 mg/L  

(95% CI: -0.28, 0.85) increase in hs-CRP. The logistic regression analysis examined the effect of long-

term exposure to air pollutants on the probability of having an hs-CRP concentration greater than  

3 mg/L (N = 491). In conformity to the linear regression, the logistic regression did not yield significant 

results (Supplemental Table A 3). Our results remained robust when additionally adjusted for 

educational level and physical activity, ETS or noise (Supplemental Table A. 4-6), and after the 

exclusion of participants having hs-CRP values greater than 10 mg/L (N = 82) or smaller than the limit 

of detection (N = 79) (data not shown). Associations were affected only marginally by the exclusion of 

participants who changed their residence between the two follow-up studies (N = 269, Supplemental 

Table A 7). Analyses for the study population without change of residence (n=1,866) were slightly 

smaller for PNC, PM10 and PMcoarse while the negative association for PM2.5 disappeared. Overall, the 

CI stayed fairly similar.  

DISCUSSION 

Summary 

This cross-sectional study conducted in the city and the region of Augsburg in Germany investigated 

the association between long-term exposure to ultrafine particles and further ambient air pollutants and 

the inflammatory marker hs-CRP. Although we did not find statistically significant associations the 

results showed a trend to a positive association for PNC, PM10, PMcoarse, PM2.5abs, NO2 and NOx. No 

association was seen for PM2.5. The effect estimates were enhanced for females, non-obese participants, 

for participants without diabetes and without a history of CVD whereas smoking status showed no clear 

effect modifying pattern. For O3, the dose-response function suggested a non-linear relationship twining 

around the null. In two-pollutant models, the adjustment for PM2.5 strengthened the effects of the other 

air pollutants.  

Biologic Mechanisms 

Biological pathways linking the inhalation of air pollution to adverse cardiovascular effects are still not 

fully elucidated but inflammation has been suggested to play an important role (4). One possible 

mechanism is that particles depositing in the alveoli could activate an innate immune system response 

with macrophages to express toll-like receptors (TLRs) and evoke oxidative stress initiated by the 

formation of reactive oxygen species (4). A local and finally a systemic inflammation which is then no 
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more limited to the pulmonary system could be promoted by the release of proinflammatory mediators 

and vasculoactive molecules from lung-based cells. The systemic inflammation results in an increase in 

various inflammatory markers or acute phase reactants like CRP. Hs-CRP has been shown to be a 

reliable measure for systemic inflammation and a predictor for future myocardial infarction or for an 

increased risk of CVD (8).  The cardiovascular risk may be increased as a consequence of endothelial 

dysfunction or an induced pro-coagulatory state leading to the progression and destabilization of 

atherosclerotic plaques and finally myocardial ischemia (4, 34).  

However, toxicological studies reported that ultrafine particles might act through mechanisms that are 

not shared with larger particles (16). Ultrafine particles show a different deposition pattern than larger 

particles. Due to their small size they can penetrate deeper into the lungs and their large surface may 

provide a mechanism for delivering potentially toxic absorbed organic material (17). Moreover, ultrafine 

particles might have the ability to migrate from the lungs into the systemic circulation, which can have 

a direct effect on any organ and e.g. trigger acute cardiovascular events or an indirect effect via systemic 

inflammation processes (16, 34-36). 

Comparison of Findings 

Most of the studies linking CVD with air pollution have focused on particle mass but it is still not clear 

if PM is the best metric for quantifying adverse health outcomes. Although ultrafine particles are 

included in PM, they only represent a minor fraction of the mass but dominate particle numbers (5). So 

far, only two studies have examined the effect of long-term exposure to PNC and the inflammatory 

marker CRP (19, 20). Our findings are in line with a study from the U.S. (20), which also found a 

positive but non-significant association of annual exposure to PNC and hs-CRP among all participants 

which even reached significance when including only the white non-Hispanic population (32.7% per 

104/cm3; 95% CI: 3.7%, 67.2%). Generally, this population is comparable to ours regarding e.g. age or 

BMI. However, the exposure assessments differed since Lane et al. (20) conducted PNC measurements 

by mobile monitoring and used a spatial-temporal model adjusted for individual time-activity patterns. 

Higher exposure values were found in this study compared to our exposures which might be the reason 

for our smaller effect estimate for PNC (19.5% per 104/cm3; 95% CI: -4.2%, 49.2%). The second study 

was conducted in the highly industrialized Ruhr district (Germany) and found a positive, non-significant 

association of 1.4% (95% CI: -0.2%, 3.0%) per 104/cm3 increase in annual exposure to PNC (19). 

Viehmann et al. (19) modeled exposures with a residential exposure assessment approach as we did, but 

used a chemistry transport and dispersion model which however could not be calibrated with 

measurements from the study region. As substantially higher median PNC exposure levels (75,000 

particles/cm3) compared to our study (7,220 particles/cm3) were reported, it is questionable how well 

this model can be compared to our LUR-model approach.  
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We studied multiple air pollutants assessing the associations between an increase in hs-CRP and an IQR 

increase per pollutant to be able to directly compare the effect estimates. Our highest effect estimate was 

seen for PM10, which was positive but only borderline significant (5.15% per 2.1 µg/m3; 95% CI: -

0.69%, 11.33%). This trend is in concordance with previous studies which reported a positive significant 

(10) or non-significant association (19, 37, 38) of long-term exposure to PM10 and CRP. PM10 and PM2.5 

are the most frequently investigated particulate size ranges in the context of inflammatory markers. We 

found a null association between PM2.5 and hs-CRP but several previous studies reported differently. 

For PM2.5, a significant positive association was found in a longitudinal cohort study from the Ruhr area, 

Germany (10) which observed an association of 4.5% (95% CI: 2.8%, 6.3%) for a 1 µg/m3 increment. 

After re-examination of this cohort with a refined exposure grid, the findings remained mainly the same 

(19). This finding is strengthened by further long-term exposure studies with either significant (9) or 

non-significant results (37, 39). However, Hoffmann et al. (11) only found a positive association in men 

whereas females showed a null association and one study from the U.S. reported a small negative, non-

significant association (12). One reason for our null findings for PM2.5 might be the small spatial 

exposure contrast of PM2.5 (23). In two-pollutant models, the PM2.5 estimate even got negative whereas 

the positive effect estimates of PMcoarse, PM2.5abs, PM10 and PNC strengthened with the latter two 

becoming significant. In specific, the effect estimates increased from 3.63 (-0.86, 8.33) to 6.31 (0.42, 

12.53) for PNC and from 5.15 (-0.69, 11.33) to 7.34 (0.4, 14.77) for PM10 per IQR increase when 

adjusting for PM2.5. In contrast, PM2.5 estimates decreased and CI widened from 0.16 (-5.38, 6.02) to -

6.97 (-15.93, 2.94) or -5.61 (-14.34, 4.02) when adjusting for PNC or PM10, respectively. Thus, our 

results suggest non-independent effects of PM2.5 and the mentioned air pollutants on hs-CRP and might 

strengthen the importance of PNC and PM10 as traffic related air pollutants given the exponential decay 

pattern for UFPs and greater heterogeneity of exposure levels across the study area for both pollutants 

than PM2.5.  

The association between hs-CRP and air pollutants has already been examined previously in our study 

population at baseline (1999 to 2001) (32) and at the first follow up (2006 to 2008) (37, 40). In both 

analyses, PM2.5 showed the highest effect size. This discrepancy to our study might be explained by 

differences in exposure classification. The earlier two studies used an identical exposure model which 

was based on measurements in a much larger region (including the Augsburg and Munich area) 

conducted in 2008-2009 (24, 25). Our LUR model, is a refined version on the basis of new air pollution 

measurements in only the Augsburg region. The adjusted R²s were similar or higher for the new models 

compared to the former ones with the exception of PMcoarse(23).  

Next to ultrafine particles, NO2, NOX and PM2.5abs are common constituents from motor vehicles 

combustion and are considered as indicators for near-road traffic-related emissions. We did not find 

significant associations for these air pollutants and our analysis did not reveal a certain pollutant to be 

more influential than the other. However, the clearest result was seen for NOx. In the literature, NO2 has 
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been intensively investigated with positive, but non-significant associations (37, 38, 41) or even no 

association (13, 39). 

In addition to these primary pollutants, we also examined the secondary pollutant O3 which is primarily 

formed by photochemical reactions of naturally occurring and man-made precursor pollutants such as 

volatile organic compounds and NOx in the presence of solar ultraviolet radiation. As ozone can be 

reduced by nitric oxide in fresh motor vehicle exhaust, but can also be regenerated during transport, 

ozone concentrations are usually higher in suburban and rural areas downwind of the sources than in 

urban areas (42). In our analysis, the dose-response function of O3 suggested a non-linear relationship. 

Previous studies examining long-term exposure to O3 and CRP reported negative, non-significant effect 

estimates (38, 43). Both associations were modeled linearly but the authors did not report if they tested 

the linearity assumption of their dose-response function. If O3 has been modeled linearly in our study, 

the effect estimate would have been negative as well (-1.84% per 3.5 µg/m3; 95% CI -7.69%, 4.39%).  

Effect Modification 

Along with variations in the composition of air pollution and the intensity of exposures, susceptibility 

of a population also plays an important role in inflammatory responses. Participants with metabolic 

syndrome or the elderly were suggested to be especially susceptible to air pollution (44, 45). A 

systematic review on the effects of air pollution on CRP did not find consistent results among subgroups 

with chronic inflammatory conditions such as CVD, diabetes and obesity (14). However, with regard to 

long-term exposure to air pollution and CRP, several studies reported that participants with diabetes 

showed stronger associations (9, 11, 12). In a large, prospective cohort study in the U.S. (12), an effect 

estimate of 36.9% (95% CI: 0.1%, 87.2%) per 10 µg/m3 increase in annual average exposure to PM2.5 

in participants with diabetes was reported. In the first follow-up of our cohort, the highest effect size 

was seen for pre-diabetic participants (40) which could, however, not be confirmed in our analysis since 

we found the highest associations for participants without diabetes (40). We do not have a 

straightforward explanation but possible reasons might be a differential loss to follow-up, the ageing of 

the study population or the refined exposure assessment. One further explanation could be that our 

subgroup of participants with diabetes showed the highest medication intake affecting hs-CRP and had 

the greatest proportion of participants with a history of CVD compared to participants with pre-diabetes 

or without diabetes (Supplemental Table A 8). Evidence for obese participants or participants with a 

history of CVD is less clear as only no effect modifications (9, 10, 19, 20) and also negative, but non-

significant associations were reported (12). However, diagnosed diabetic or obese participants and 

subjects with CVD appeared less susceptible to air pollution exposure in our analyses. It has to be 

mentioned that a clear distinction between these subgroups is not possible as obese participants and 

participants with a history of CVD were predominantly found to be pre-diabetic or diabetic. 
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We found no clear effect modifying pattern of smoking status across all air pollutants. Positive 

associations were found for both, smokers and non-smokers depending on the examined air pollutant. 

However, generalization might be restricted with the fact that smokers tended to be younger and 

healthier (less histories of diabetes or CVD percentage-wise) compared to ex- or non-smokers 

(Supplemental Table A 9). Generally, smokers have higher levels of inflammatory markers due to 

tobacco smoke inhalation and they are thus hypothesized to show less effect to further air pollution 

exposure (41, 46). Previous studies of long-term exposure to air pollution and CRP strengthened this 

hypothesis (11-13). 

Strengths and Limitations 

A major strength of this study is the population-based design of a well-examined large population. Thus, 

a wide range of information on patient characteristics was available that allowed for a broad control for 

confounders and the investigation of potential effect modifying factors. Furthermore, our results were 

consistent in several sensitivity analyses which showed the robustness of our results. Our air pollutant 

exposure models were based on a considerable number of measurement periods and monitoring sites 

directly located in the study region.  

Potential limitations of this study should be taken into account when interpreting the results. The cross-

sectional design of our study is limiting the determination of causal evidence as the population is only 

captured and analyzed at a single time point. Furthermore, the study population is probably highly 

selected due to the 14 years between the baseline survey and the second follow-up leading to drop-outs 

in sick participants rather than in healthier ones. The long-term air pollution concentrations were 

measured up to two years after our study was conducted which could infer exposure misclassification. 

However, it has been shown that spatial contrasts of air pollution were stable for periods up to ten years 

and longer (47-49). The estimation of ambient air pollution exposure was based on a LUR model and 

although it is an established method the exposure allocation is associated with some degree of 

uncertainty and model performance variations among different air pollution components. Furthermore, 

our air pollution model provided relatively small exposure contrast for PM2.5 limiting the power to detect 

effects with increased air pollution exposures (23). A further cause for a potential exposure 

misclassification might be the change of residence of some participants in the study period so that no 

clear exposure allocation can be ensured. Beyond residential movement patterns of the study participants 

their air pollution exposure at work could lead to exposure misclassification, however the respective 

data was unfortunately not available for this study. Our study results are possibly impacted by residual 

confounding because the analysis lacked individual factors like the personal exposure or environmental 

tobacco smoke that might influence the exposure to air pollution. We did not adjust for traffic noise 

exposure or short-term exposure to air pollution. However, neither traffic noise nor short-term exposure 

to air pollution seem to affect the estimates as shown by Hennig et al. (10) and Viehmann et al. (19), 

respectively. 



20 
 

CONCLUSION 

Single-pollutant models showed a positive yet statistically non-significant association of long-term 

exposure to ultrafine particles and several other air pollutants with elevated levels of the inflammatory 

marker hs-CRP but no association for PM2.5 or O3. After adjustment for PM2.5, effect estimates increased 

for PNC and PM10 and reached significance. Our results highlight the role of ultrafine particles within 

the complex mixture of ambient air pollution and their inflammatory potential and might help filling a 

research gap since studies on chronic exposure to ultrafine particles are still scarce. 
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SUPPLEMENTARY DATA 
 
Supplemental Table A 1. Effect Modification by sex examined by interaction terms in the main 
confounder model: effect estimates and 95% CI for the association of air pollutants and hs-CRP, 
presented as percent change of hs-CRP scaled per IQR of air pollutant.  

Pollutant (unit) IQR  Percent change per IQR (95% CI) 

   Female Male 

PNC (103/cm³) 2.0  7.38 (1.05, 14.11) -0.45 (-6.68, 6.19) 
PM10 (µg/m3) 2.1  11.49 (3.1, 20.55) -1.59 (-9.45, 6.94) 
PMcoarse (µg/m3) 1.4  10.79 (2.33, 19.95) -1.84 (-9.52, 6.50) 
PM2.5 (µg/m3) 1.4  4.77 (-3.08, 13.24) -5.47 (-12.8, 2.49) 
PM2.5abs (10-5/m) 0.3  11.26 (2.28, 21.03) -5.8 (-13.76, 2.91) 
NO2 (µg/m3) 6.8  9.34 (0.2, 19.32) -7.06 (-15.18, 1.84) 
NOx (µg/m3) 8.7  6.88 (-0.03, 14.27) -0.28 (-7.09, 7.04) 

CI: confidence interval; hs-CRP: high sensitivity C-reactive protein; IQR: interquartile range;  
NO2: nitrogen dioxide; NOx: nitrogen oxides; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic diameter 
< 10 µm, 2.5-10 µm and < 2.5 µm, respectively; PM2.5abs: absorbance of PM2.5; PNC: particle number 
concentration. 

 (*) Effect estimates with p-values < 0.1. 

  

Supplemental Table A 2. Effect Modification by occupational status examined by interaction terms 
in the main confounder model: effect estimates and 95% CI for the association of air pollutants and hs-
CRP, presented as percent change of hs-CRP scaled per IQR of air pollutant. 

Pollutant (unit) IQR  Percent change per IQR (95% CI) 
   Employed a Not employed a 

PNC (103/cm³) 2.0  3.61 (-2.56, 10.17) 3.13 (-3.23, 9.9) 

PM10 (µg/m3) 2.1  3.51 (-4.65, 12.36) 6.25 (-1.82, 14.99) 

PMcoarse (µg/m3) 1.4  4.01 (-4.1, 12.81) 5.09 (-2.94, 13.79) 

PM2.5 (µg/m3) 1.4  -5.18 (-12.36, 2.59) 4.19 (-3.78, 12.83) 

PM2.5abs (10-5/m) 0.3  1.36 (-7.08, 10.57) 4.09 (-4.47, 13.43) 

NO2 (µg/m3) 6.8  -1.85 (-10.26, 7.36) 3.85 (-5.03, 13.56) 

NOx (µg/m3) 8.7  1.77 (-4.89, 8.89) 4.45 (-2.57, 11.97) 
CI: confidence interval; hs-CRP: high sensitivity C-reactive protein; IQR: interquartile range;  
NO2: nitrogen dioxide; NOx: nitrogen oxides; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic 
diameter < 10 µm, 2.5-10 µm and < 2.5 µm, respectively; PM2.5abs: absorbance of PM2.5; PNC: particle 
number concentration 
a Adjusted for age, sex, BMI, smoking status, month of blood draw, waist–hip ratio and high density lipoprotein 
(HDL) cholesterol. 
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Supplemental Table A 3. Logistic regression results: Odds Ratio and 95% 
CI for hs-CRP > 3 mg/L (N = 487) versus hs-CRP ≤ 3 mg/L per IQR 
increase in air pollutants (N = 1,765). 

Pollutant 
 IQR Odds Ratio (95% CI)a 

PNC  2.0 1.10  (0.98, 1.24) 

PM10  2.1 1.15 (0.99, 1.33) (*) 

PMcoarse  1.4 1.06  (0.91, 1.23) 

PM2.5  1.4 1.02  (0.88, 1.19) 

PM2.5abs  0.3 1.02  (0.86, 1.20) 

NO2  6.8 1.03  (0.88, 1.22) 

NOx  8.7 1.13 (0.99, 1.29) (*) 

CI: confidence interval; hs-CRP: high sensitivity C-reactive protein; IQR: interquartile 
range; N: total number; NO2: nitrogen dioxide; NOx: nitrogen oxides; PM10, PMcoarse, PM2.5: 
particulate matter with aerodynamic diameter < 10 µm, 2.5-10 µm and < 2.5 µm, 
respectively; PM2.5abs: absorbance of PM2.5; PNC: particle number concentration. 

a Adjusted for age, sex, body mass index (BMI), smoking status, month of blood draw, 
waist–hip ratio and high density lipoprotein (HDL) cholesterol. 
 

(*) Effect estimates with p-values < 0.1. 
 
Supplemental Table A 4. Sensitivity Analysis on an extended model including educational level and 
physical activity as further covariates to the main confounder model: effect estimates and 95% CI for 
the association of air pollutants and hs-CRP, presented as percent change of hs-CRP scaled per IQR of 
air pollutant. 

Pollutant (unit) IQR  Percent change per IQR (95% CI) 

   Main modela Extended Modelb 

PNC (103/cm³) 2.0  3.63 (-0.86, 8.33) 3.78 (-0.72, 8.49) 
PM10 (µg/m3) 2.1  5.15 (-0.69, 11.33) (*) 5.35 (-0.50, 11.55) (*) 
PMcoarse (µg/m3) 1.4  4.45 (-1.36, 10.59) 4.90 (-0.95, 11.09) 
PM2.5 (µg/m3) 1.4  -0.29 (-5.75, 5.49) -0.29 (-5.75, 5.49) 
PM2.5abs (10-5/m) 0.3  2.80 (-3.31, 9.29) 2.96 (-3.15, 9.47) 
NO2 (µg/m3) 6.8  1.19 (-5.03, 7.83) 1.29 (-4.95, 7.93) 
NOx (µg/m3) 8.7  3.45 (-1.48, 8.61) 3.59 (-1.34, 8.76) 

CI: confidence interval; hs-CRP: high sensitivity C-reactive protein; IQR: interquartile range;  
NO2: nitrogen dioxide; NOx: nitrogen oxides; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic diameter 
< 10 µm, 2.5-10 µm and < 2.5 µm, respectively; PM2.5abs: absorbance of PM2.5; PNC: particle number 
concentration. 

a Adjusted for age, sex, BMI, smoking status, month of blood draw, waist–hip ratio and high density lipoprotein 
(HDL) cholesterol. 

b Adjusted for age, sex, BMI, smoking status, month of blood draw, waist–hip ratio, high density lipoprotein 
(HDL) cholesterol, educational level and physical activity. 

(*) Effect estimates with p-values < 0.1. 
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Supplemental Table A 5. Sensitivity Analysis on an extended model including environmental 
tobacco smoke (ETS) exposure as a further covariate to the main confounder model: effect estimates 
and 95% CI for the association of air pollutants and hs-CRP, presented as percent change of hs-CRP 
scaled per IQR of air pollutant. Participants incorporating a missing value for ETS were excluded for 
both regression model (N=1,866). 

Pollutant (unit) IQR  Percent change per IQR (95% CI) 

   Main modela Extended Modelb 

PNC (103/cm³) 2.0  4.50 (-0.45, 9.69) 4.21 (-0.72, 9.38) 
PM10 (µg/m3) 2.1  5.55 (-0.88, 12.41) (*) 5.48 (-0.94, 12.31) (*) 
PMcoarse (µg/m3) 1.4  4.58 (-1.78, 11.35) 4.78 (-1.57, 11.55) 
PM2.5 (µg/m3) 1.4  -0.62 (-6.60, 5.73) -0.38 (-6.35, 5.97) 
PM2.5abs (10-5/m) 0.3  1.90 (-4.77, 9.04) 2.16 (-4.52, 9.29) 
NO2 (µg/m3) 6.8  0.15 (-6.67, 7.46) 0.50 (-6.32, 7.83) 
NOx (µg/m3) 8.7  3.04 (-2.34, 8.71) 2.95 (-2.41, 8.59) 

CI: confidence interval; hs-CRP: high sensitivity C-reactive protein; IQR: interquartile range;  
NO2: nitrogen dioxide; NOx: nitrogen oxides; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic diameter 
< 10 µm, 2.5-10 µm and < 2.5 µm, respectively; PM2.5abs: absorbance of PM2.5; PNC: particle number 
concentration. 

a Adjusted for age, sex, BMI, smoking status, month of blood draw, waist–hip ratio and high density lipoprotein 
(HDL) cholesterol. 

b Adjusted for age, sex, BMI, smoking status, month of blood draw, waist–hip ratio, high density lipoprotein 
(HDL) cholesterol and environmental tobacco smoke (ETS). 

(*) Effect estimates with p-values < 0.1. 

Supplemental Table A 6. Sensitivity Analysis on an extended model including noise as a further 
covariate to the main confounder model: effect estimates and 95% CI for the association of air 
pollutants and hs-CRP, presented as percent change of hs-CRP scaled per IQR of air pollutant. 
Participants incorporating a missing value for ETS were excluded for both regression model 
(N=2,001). 

Pollutant (unit) IQR  Percent change per IQR (95% CI) 

   Main modela Extended Modelb 

PNC (103/cm³) 2.0  3.62 (-1.1, 8.57) 3.42 (-2.02, 9.16) 
PM10 (µg/m3) 2.1  4.52 (-1.54, 10.97) 4.53 (-2.83, 12.45) 
PMcoarse (µg/m3) 1.4  3.85 (-2.17, 10.24) 2.63 (-4.49, 10.27) 
PM2.5 (µg/m3) 1.4  0.59 (-5.19, 6.72) -0.17 (-6.34, 6.39) 
PM2.5abs (10-5/m) 0.3  3.58 (-2.87, 10.46) 2.35 (-5.01, 10.28) 
NO2 (µg/m3) 6.8  2.22 (-4.32, 9.22) 1.07 (-6.6, 9.37) 
NOx (µg/m3) 8.7  3.77 (-1.38, 9.19) 3.68 (-2.27, 10) 

CI: confidence interval; hs-CRP: high sensitivity C-reactive protein; IQR: interquartile range;  
NO2: nitrogen dioxide; NOx: nitrogen oxides; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic diameter 
< 10 µm, 2.5-10 µm and < 2.5 µm, respectively; PM2.5abs: absorbance of PM2.5; PNC: particle number 
concentration. 

a Adjusted for age, sex, BMI, smoking status, month of blood draw, waist–hip ratio and high density lipoprotein 
(HDL) cholesterol. 
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b Adjusted for age, sex, BMI, smoking status, month of blood draw, waist–hip ratio, high density lipoprotein 
(HDL) cholesterol and noise. 

 
Supplemental Table A 7. Sensitivity Analysis on participants who did not change residence: effect 
estimates and 95% CI for the association of air pollutants and hs-CRP, presented as percent change of 
hs-CRP scaled per IQR of air pollutant for the full analysis population and the subpopulation without 
participants who moved within the recent 5 to 8 years 

Pollutant (unit) IQR  Percent change per IQR (95% CI) 

   Study population (N=2,252) a Subpopulation of non-
movers (N=1,866) a 

PNC (103/cm³) 2.0  3.63 (-0.86, 8.33) 3.28 (-1.55, 8.35) 
PM10 (µg/m3) 2.1  5.15(*) (-0.69, 11.33) 4.44 (-1.75, 11.03) 
PMcoarse (µg/m3) 1.4  4.45 (-1.36, 10.59) 3.59 (-2.58, 10.15) 

PM2.5 (µg/m3) 1.4  -0.29 (-5.75, 5.49) 0.84 (-5.09, 7.15) 
PM2.5abs (10-5/m) 0.3  2.80 (-3.31, 9.29) 4.02 (-2.58, 11.07) 
NO2 (µg/m3) 6.8  1.19 (-5.03, 7.83) 2.48 (-4.23, 9.65) 

NOx (µg/m3) 8.7  3.45 (-1.48, 8.61) 3.49 (-1.78, 9.03) 

CI: confidence interval; hs-CRP: high sensitivity C-reactive protein; IQR: interquartile range;  
NO2: nitrogen dioxide; NOx: nitrogen oxides; PM10, PMcoarse, PM2.5: particulate matter with aerodynamic diameter 
< 10 µm, 2.5-10 µm and < 2.5 µm, respectively; PM2.5abs: absorbance of PM2.5; PNC: particle number 
concentration. 

a Adjusted for age, sex, body mass index (BMI), smoking status, month of blood draw, waist–hip ratio and high 
density lipoprotein (HDL) cholesterol. 

(*) Effect estimates with p-values < 0.1. 
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Supplemental Table A 8. Descriptive statistics of the study population (N = 2,252) stratified by 
diabetes status. 

 No diabetesa 
(N = 1079) 

Pre-diabetesa 
(N = 765) 

Diabetesa 
(N = 325) 

Personal characteristics    

Age (years) 55.7 ± 11.3 62.9 ± 11.6 69.3 ± 10.1 
Sex (male) 409 (37.9) 464 (60.7) 188 (57.8) 
Socio-economic covariates     

Marital status    
Single  71 (6.6) 59 (7.7) 19 (5.8) 
Married or living with partner 812 (75.3) 561 (73.3) 228 (70.2) 
Divorced or separated 124 (11.5) 78 (10.2) 28 (8.6) 
Widowed 72 (6.7) 67 (8.8) 50 (15.4) 

Education (years) 12.2 ± 2.6 11.8 ± 2.7 11.4 ± 2.4 
Occupational status    

Employed, self-employed or in training 696 (64.6) 329 (43.0) 66 (20.3) 
Unemployed 13 (1.2) 11 (1.4) 5 (1.5) 
Homemaker 88 (8.2) 56 (7.3) 10 (3.1) 
Retired 281 (26.1) 369 (48.2) 244 (75.1) 

Income, per capita (Euro) 1353.9 ± 688.6 1322.7 ± 637.6 1216.6 ± 598.6 
SES (points, Helmert) 15.5 ± 5.0 14.7 ± 5.3 13.9 ± 4.9 
Neighborhood SES (%) 26.3 ± 17.9 28.3 ± 18.0 30.2 ± 16.9 
Lifestyle covariates    

BMI (kg/m2) 26.2 ± 4.4 28.9 ± 4.7 31.1 ± 5.3 
Waist circumference (cm) 91.0 ± 12.7 101.0 ± 12.6 107.2 ± 12.8 
Waist–hip ratio 0.9 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 
Physical activity    

Low (none) 243 (22.5) 222 (29.0) 146 (44.9) 
Medium (~1 h/week) 506 (46.9) 367 (48.0) 121 (37.2) 
High (>2 h/week) 330 (30.6) 176 (23.0) 58 (17.8) 

Smoking status    
Non-smoker 456 (42.3) 308 (40.3) 141 (43.4) 
Ex-smoker 433 (40.1) 342 (44.7) 157 (48.3) 
Smoker 190 (17.6) 115 (15.0) 27 (8.3) 

Cumulative smoking exposure (pack-years) 13 ± 17.4 17.2 ± 21.5 15.5 ± 24.3 
Alcohol consumption (g/d) 3.1 ± 0.9 3.0 ± 0.8 3.0 ± 0.8 
Clinical characteristics    
Hs-CRP (mg/L; arithmetic mean) 1.8 ± 2.8 2.9 ± 5.0 3.4 ± 4.8 
Total cholesterol (mg/dL) 216.6 ± 37.5 220.2 ± 40.3 205.4 ± 40.8 
HDL cholesterol (mg/dL) 70.0 ± 18.9 62.1 ± 17.5 57.8 ± 16.5 
LDL cholesterol (mg/dL) 133.5 ± 34.1 139.3 ± 35.1 126.8 ± 36.8 
Triglycerides (mg/dL) 104.3 ± 61.1 132.9 ± 73.2 155.3 ± 84.1 
Medical history and medication    
Cardiovascular diseaseb 315 (29.2) 393 (51.4) 250 (76.9) 
Intake of medication affecting CRPc 287 (26.6) 372 (48.6) 252 (77.8) 

BMI: body mass index; HDL: high density lipoprotein; hs-CRP: high sensitivity C-reactive protein; KORA: Cooperative Health 
Research in the Region of Augsburg; LDL: low density lipoprotein; N: total number; SD: standard deviation; SES: socio-
economic status. 

a Mean ± SD or N (%). Percentages are calculated based on observations with available information. 
b History of myocardial infarction, angina pectoris or hypertension. 
c Intake of non-steroidal anti-inflammatory drugs, lipid-lowering drugs (including statins). 
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Supplemental Table A 9. Descriptive statistics of the study population (N = 2,252) stratified by 
smoking status. 

 Non-smokera 
(N = 938) 

Ex-smokera 
(N = 965) 

Smokera 
(N = 349) 

Personal characteristics    

Age (years) 61.5 ± 12.8 61.1 ± 12.3 54.8 ± 9.5 
Sex (male) 358 (38.2) 551 (57.1) 182 (52.1) 
Socio-economic covariates     
Marital status    

Single  63 (6.7) 54 (5.6) 36 (10.3) 
Married or living with partner 679 (72.4) 744 (77.1) 232 (66.5) 
Divorced or separated 80 (8.5) 98 (10.2) 62 (17.8) 
Widowed 116 (12.4) 69 (7.2) 19 (5.4) 

Education (years) 11.9 ± 2.8 12.0 ± 2.6 11.7 ± 2.4 
Occupational status    

Employed, self-employed or in training 436 (46.5) 451 (46.8) 237 (67.9) 
Unemployed 9 (1.0) 12 (1.2) 10 (2.9) 
Homemaker 79 (8.4) 57 (5.9) 26 (7.4) 
Retired 414 (44.1) 444 (46.1) 76 (21.8) 

Income, per capita (Euro) 1302.3 ± 665.9 1336.4 ± 646.7 1328.7 ± 678.6 
SES (points, Helmert) 14.9 ± 5.2 15.2 ± 5.2 14.7 ± 4.7 
Neighborhood SES (%) 29.6 ± 18.1 27.8 ± 17.5 26.8 ± 18.0 
Lifestyle covariates    
BMI (kg/m2) 27.7 ± 4.8 28.3 ± 5.3 26.9 ± 4.7 
Waist circumference (cm) 95.2 ± 13.3 99.2 ± 15.1 95.0 ± 13.3 
Waist–hip ratio 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 
Physical activity    

Low (none) 258 (27.5) 263 (27.3) 119 (34.1) 
Medium (~1 h/week) 453 (48.3) 425 (44.0) 149 (42.7) 
High (>2 h/week) 227 (24.2) 277 (28.7) 81 (23.2) 

Cumulative smoking exposure (pack-years) 0 ± 0 18.7 ± 22.0 28.8 ± 20.2 
Alcohol consumption (g/d) 11.9 ± 16.1 16.7 ± 21.8 16.7 ± 23.1 
Clinical characteristics    
Hs-CRP (mg/L; arithmetic mean) 2.3 ± 3.6 2.5 ± 4.5 2.7 ± 4.1 
Total cholesterol (mg/dL) 219.6 ± 40.5 212.9 ± 38.3 214.9 ± 38.6 
HDL cholesterol (mg/dL) 68.0 ± 18.8 65.0 ± 18.4 60.9 ± 19.0 
LDL cholesterol (mg/dL) 136.7 ± 35.6 131.5 ± 34.7 135.4 ± 35.3 
Triglycerides (mg/dL) 115.5 ± 64.2 125.3 ± 74.3 127.2 ± 83.7 
Medical history and medication    
Diabetes     

No diabetes 456 (50.4) 433 (46.5) 190 (57.2) 
Pre-diabetes 308 (34.0) 342 (36.7) 115 (34.6) 
Diabetes 141 (15.6) 157 (16.8) 27 (8.1) 

Cardiovascular diseaseb 417 (44.5) 471 (48.8) 108 (30.9) 
Intake of medication affecting CRPc 399 (42.6) 448 (46.5) 97 (27.9) 

BMI: body mass index; HDL: high density lipoprotein; hs-CRP: high sensitivity C-reactive protein; KORA: Cooperative Health 
Research in the Region of Augsburg; LDL: low density lipoprotein; N: total number; SD: standard deviation; SES: socio-
economic status. 

a Mean ± SD or N (%). Percentages are calculated based on observations with available information. 
b History of myocardial infarction, angina pectoris or hypertension. 
c Intake of non-steroidal anti-inflammatory drugs, lipid-lowering drugs (including statins). 
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Supplemental Figure A. 1. Quantile regression results: associations between air pollutants and 
quantiles of high sensitivity C-reactive protein (hs-CRP) presented as difference (95% CI) of hs-CRP 
per IQR increase in air pollutant. The numbers above each confidence interval indicate the deciles. 
Adjusted for the main confounder model. 

CI: confidence interval; IQR: interquartile range; NO2: nitrogen dioxide; PM10, PMcoarse, PM2.5: particulate matter with 
aerodynamic diameter < 10 µm, 2.5-10 µm and < 2.5 µm respectively; PM2.5abs: absorbance of PM2.5; PNC: particle number 
concentration. 
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