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Physiol 310: F785–F795, 2016. First published January 3, 2016;
doi:10.1152/ajprenal.00488.2015.—Chronic kidney disease (CKD)
research is limited by the lack of convenient inducible models mim-
icking human CKD and its complications in experimental animals.
We demonstrate that a soluble oxalate-rich diet induces stable stages
of CKD in male and female C57BL/6 mice. Renal histology is
characterized by tubular damage, remnant atubular glomeruli, inter-
stitial inflammation, and fibrosis, with the extent of tissue involvement
depending on the duration of oxalate feeding. Expression profiling of
markers and magnetic resonance imaging findings established to
reflect inflammation and fibrosis parallel the histological changes.
Within 3 wk, the mice reproducibly develop normochromic anemia,
metabolic acidosis, hyperkalemia, FGF23 activation, hyperphos-
phatemia, and hyperparathyroidism. In addition, the model is charac-
terized by profound arterial hypertension as well as cardiac fibrosis
that persist following the switch to a control diet. Together, this new
model of inducible CKD overcomes a number of previous experimen-
tal limitations and should serve useful in research related to CKD and
its complications.
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TRANSLATIONAL RESEARCH IN the area of chronic kidney disease
(CKD) requires experimental models that 1) can be induced in
C57BL/6 mice as it represents the most commonly used ge-
netic background for gene manipulations; 2) reliably generate

stable CKD; 3) result in CKD within a relatively short time to
limit the burden for animals and reduce housing costs; and 4)
do not require surgery to minimize animal distress and the use
of anesthetic drugs or pain killers with potentially confounding
effects. In addition, an ideal model should 5) work in male and
female mice with low interindividual variability to allow sex-
based comparisons in response to interventions and minimize
animal use; 6) not reduce renal mass, which limits the tissue
available for analysis; 7) reduce glomerular filtration rate
(GFR) by �50% to allow detection of the changes in the
clinical biomarkers plasma blood urea nitrogen (BUN) and
creatinine; and 8) be associated with typical complications
associated with CKD in humans, such as normochromic ane-
mia, hyperphosphatemia, hyperparathyroidism, hyperkalemia,
acidosis, hypertension, and cardiovascular disease. The present
work reviews the most commonly used murine models of
inducible CKD (1, 3, 12, 16) and contrasts them with a novel
oxalate-induced model of stable CKD.

METHODS

Animal studies and analytic methods. Male and female 8- to
12-wk-old gender-matched C57BL/6 mice were obtained from
Charles River Laboratories (Sulzfeld, Germany) and housed in groups
of five mice in standard housing conditions with unlimited access to
food and water. An oxalate diet was prepared by adding 50 �mol/g
sodium oxalate to a calcium-free standard diet (Ssniff, Soest, Ger-
many) as previously described (15). Removal of calcium from the diet
increases the amount of soluble oxalate available for absorption as
previously shown (15). An oxalate- and calcium-free diet (control
diet) was given for 3 days to eliminate any residual intestinal calcium
before a switch to a high-soluble oxalate diet and used after ending of
the oxalate-feeding period. All experimental procedures were ap-
proved by local government authorities.

Assessment of renal injury. Mice kidney sections of 2 �m were
stained with periodic acid-Schiff (PAS) reagent. Tubular injury was
scored by assessing the percentage of necrotic tubules and presence of
tubular casts. F4/80�ve macrophages and CD3�ve T cells (both
Serotec, Oxford, UK) were identified by immunostaining and were
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counted in 15 high-power fields (hpf) per section using ImageJ
software. A similar approach was also used to quantify Silver stains.
Fibrotic areas were identified by Silver stain, Masson trichrome stain,
and collagen 1a1 and were quantified using ImageJ software. Serial
sections of the kidney were stained with Lotus tetragonolobus lectin
to observe atubular glomeruli. All assessments were performed by an
observer blinded to the experimental condition.

RNA preparation and real-time quantitative PCR. Total RNA was
isolated from kidneys using a Qiagen RNA extraction kit following
the manufacturer’s instructions. After quantification, RNA quality
was assessed using agarose gels. From isolated RNA, cDNA was
prepared using reverse transcriptase (Superscript II). Real-time RT-
PCR was performed using SYBR Green PCR master mix and was
analyzed with a Light Cycler 480 (Roche). All gene expression values
were normalized using 18S RNA as a housekeeping gene. All primers
used for amplification were from Metabion (Martinsried, Germany)
and are listed in Table 1.

Hematological analysis. Hematological analysis was performed
using prefilled Sysmex capillary tubes (Sysmex Deutschland, Norder-
stedt, Germany). An aliquot of 50 �l EDTA-blood was determined by
using a 50-�l end-to-end capillary and was diluted 1:5 in 200 �l
prefilled Sysmex Cellpack buffer. Diluted samples were stored at
room temperature until analysis. Complete peripheral blood counts,
differential leukocyte counts, and reticulocyte counts were deter-
mined with a Sysmex XT2000iV hematology analyzer (Sysmex
Deutschland) in the “capillary blood” mode using the option “CBC
DIFF RET” as described previously (23) with the following param-
eters included: total white blood cell count (WBC), total red blood cell
count, platelet count, hemoglobin concentration, hematocrit, mean
corpuscular volume, mean corpuscular hemoglobin content, mean
corpuscular hemoglobin concentration, red cell distribution width
(RDW)-coefficient of variance, mean platelet volume, platelet distri-
bution width, platelet large cell ratio, plateletcrit, absolute cell counts
and proportions of WBC for lymphocytes, monocytes, as well as
neutrophil, eosinophil, and basophil granulocytes, and absolute cell
counts and proportion of RDW of reticulocytes, including proportions
of reticulocyte maturation states as determined by fluorescence inten-
sity, mature low-fluorescent reticulocytes, less mature medium fluo-
rescent reticulocytes (MFR) and very immature highly fluorescent
reticulocytes (HFR), as well as the sum of MFR and HFR as immature
reticulocyte fraction.

Clinical chemistry analyses. Inorganic phosphate (Pi) was analyzed
using an AU480 Clinical chemistry analyzer (Beckman-Coulter,
Krefeld, Germany) and adapted test kits provided by Beckman
Coulter in either undiluted or 1:2 with deionized water-diluted EDTA-
treated plasma samples as described previously (24). Heparinized
capillaries were filled with 100 �l of whole blood and subjected to
measurement of potassium and pH using a blood-gas analyzer (ABL
835 Flex, Radiometer, Willich, Germany).

Blood pressure measurements. Blood pressure was measured con-
tinuously in male 10- to 12-wk-old C57BL/6 mice using an intra-
arterial telemetric transmitter system as previously described (3). In
brief, under isoflurane anesthesia a transmitter device (PhysioTel
TA11PA-C10; Data Sciences International, St. Paul, MN) was surgi-
cally implanted into the left common carotid artery 1 wk before data
sampling. The transmitter was placed subcutaneously over the abdom-
inal area. All animals were then housed in open cages and allowed to
recover for 2 wk during which mice received unlimited access to
regular chow (Ssniff, Soest, Germany) and tap water. Following
recovery, the diet was changed to a synthetic calcium- and oxalate-
free diet (0% Ca 0% oxalate, TD. 95027, Ssniff) for 1 wk, followed
by high-oxalate diet (0% Ca 0.67% oxalate, TD. 95027, Ssniff) for 8
days and thereafter a control diet for another 10 days. Blood pressure
was detected and recorded continuously for 5 wk by the Dataquest
A.R.T. System (Data Sciences International). Systolic and diastolic
blood pressure values were calculated as an average of the last 24 h of
each diet period by the Dataquest ART 4.1 software (Data Sciences
International). Mean arterial pressure (MAP) was calculated from
diastolic and systolic pressure values using a standard equation.

Transcutaneous measurement of GFR in conscious mice. For GFR
measurement, mice were anesthetized with isoflurane and a miniatur-
ized imager device built from two light-emitting diodes, a photodiode
and a battery (Mannheim Pharma and Diagnostics), was mounted via
double-sided adhesive tape onto the shaved animal’s neck (26). For
the duration of recording (�1.5 h), each animal was conscious and
kept in a single cage. Before the intravenous injection of 150 mg/kg
FITC-sinistrin (Mannheim Pharma and Diagnostics), the skin’s back-
ground signal was recorded for 5 min. After removal of the imager
device, the data were analyzed using MPD Lab software (Mannheim
Pharma and Diagnostics). The GFR (�l/min) was calculated from the
decrease in fluorescence intensity over time (i.e., plasma half-life of
FITC-sinistrin) using a two-compartment model, body weight of the
mouse and an empirical conversion factor (26).

Measurement of intact FGF23, parathyroid hormone (PTH), and
phosphorus. The plasma concentration of intact FGF23 (Kainos Lab-
oratories or Immutopics International) and intact PTH (Immutopics
International) were measured by enzyme-linked immunosorbent as-
says according to the manufacturers’ protocols. Phosphate was mea-
sured by the phosphomolybdate method (9, 10).

MRI. Excised kidneys (n � 12) from C57BL/6 male mice fed either
a high-oxalate (n � 6 kidneys) or control diet (n � 6 kidneys) for 21
days were processed in 2% agarose and placed in a whole body coil
for mice (Bruker, Ettlingen, Germany) of a dedicated small-animal
ultra-high-field MR scanner (ClinScan 7 Tesla, Bruker). Standard
sequences for morphology and mapping of T1, T2, and T2* relaxation
times as well as of the apparent diffusion coefficient (ADC; Siemens,
Erlangen, Germany) were performed in kidneys in a sagittal orienta-
tion (compare Fig. 5). By mapping of relaxation times, specific
magnetic properties of tissues are quantified, which can be performed
in multiple tissues and organs. Thereby, an increase in T1 relaxation
time may be associated with fibrosis, while prolonged T2 relaxation
times are found in inflammation (25). Furthermore, calculation of the
ADC by diffusion-weighted imaging captures the Brownian motion of
water molecules that is locally altered in pathological conditions like
fibrosis, resulting in decreased water diffusion, and thus decreased
ADC values (11). For postprocessing of images, three regions of
interest were placed in the cortex, medulla, and transitional zone,
respectively, to determine T1, T2, and T2* relaxation times as well as

Table 1. Primer sequences

Target Primer Sequence

KIM-1 Forward 5=-TCAGCTCGGGAATGCACAA-3=
Reverse 5=-TGGTTGCCTTCCGTGTCTCT-3=

TIMP-2 Forward 5=-CAGACGTAGTGATCAGAGCCAAA-3=
Reverse 5=-ACTCGATGTCTTTGTCAGGTCC-3=

RANTES Forward 5=-GTGCCCACGTCAAGGAGTAT-3=
Reverse 5=-CCACTTCTTCTCTGGGTTGG-3=

IL-6 Forward 5=-TGATGCACTTGCAGAAAACA-3=
Reverse 5=-ACCAGAGGAAATTTTCAATAGGC-3=

Fibronectin Forward 5=-GGAGTGGCACTGTCAACCTC-3=
Reverse 5=-ACTGGATGGGGTGGGAAT-3=

Collagen 1a1 Forward 5=-ACATGTTCAGCTTTGTGGACC-3=
Reverse 5=-TAGGCCATTGTGTATGCAGC-3=

FSP-1 Forward 5=-CAGCACTTCCTCTCTCTTGG-3=
Reverse 5=-TTTGTGGAAGGTGGACACAA-3=

TNF-� Forward 5=-CCACCACGCTCTTCTGTCTAC-3=
Reverse 5=-AGGGTCTGGGCCATAGAACT-3=

�-SMA Forward 5=-ACTGGGACGACATGGAAAAG-3=
Reverse 5=-GTTCAGTGGTGCCTCTGTCA-3=

iNOS Forward 5=-GAGACAGGGAAGTCTGAAGCAC-3=
Reverse 5=-CCAGCAGTAGTTGCTCCTCTTC-3=

18S RNA Forward 5=-GCAATTATTCCCCATGAACG-3=
Reverse 5=-AGGGCCTCACTAAACCATCC-3=

SMA, smooth muscle actin; iNOS, inducible nitric oxide synthase.
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the ADC (Osirix, open-source software). Furthermore, the volume of
the cortex was determined on morphological, T2-weighted images
(Osirix, open-source software).

Histological examination of cardiac fibrosis. Hearts were excised,
snap frozen in liquid nitrogen, and stored at �80°C until further use.
The lower base of the left ventricle was embedded in Tissue Tec,
whereupon 10-�m-thick cross sections were prepared on a SLEE-
MNT cryostat (Mainz, Germany). Ventricular sections were stained
for fibrotic tissue using Masson’s trichrome staining (Sigma-Aldrich,
Taufkirchen, Germany). Briefly, sections were fixed in 4% parafor-
maldehyde for 1 h at room temperature and refixed overnight in
Bouin’s solution. The next day, slides were washed in distilled water

and incubated for 5 min with hematoxylin. After the slides were
washed in distilled water for 10 min, sections were incubated for 5
min in biebrich scarlet acid fuchsin. Slides were washed three times in
distilled water, after which they were incubated in phosphomolybdic
acid three times each for 3 min. After 5 min of incubation with aniline
blue, which leads to a blue staining of fibrotic tissue, slides were
rinsed in distilled water and dehydrated in isopropanol and xylene,
before they were mounted with roti-histokit (Carl Roth, Karlsruhe,
Germany). Differentiation was performed by incubating the slides for
2 min in ice-cold acetic acid. After a washing step in distilled water,
slides were covered with mounting medium. Microscopic composite
images of the complete cross sections were obtained at 	150 mag-
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Fig. 1. A diet high in soluble oxalate induces progressive or stable chronic kidney disease (CKD). A–C: C57BL/6 male mice were fed either a high-oxalate or
control diet for 21 days and glomerular filtration rate (GFR; A), plasma blood urea nitrogen (BUN; B), and plasma creatinine (C) were measured at baseline and
days 7, 14, and 21. D–F: C57BL/6 male mice received a high-oxalate diet for 0, 7, or 14 days, respectively, and thereafter a control diet for 14 days. GFR (D),
plasma BUN (E), plasma creatinine (F), urine oxalate (G), and plasma oxalate (H) were measured at indicated time points. Values are means 
 SE from 5
mice/group. *P � 0.05, **P � 0.01, and ***P � 0.001 vs. control group.
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nification on a light microscope (Olympus IX70, Hamburg, Germany)
with an inverted CCD-camera (Nikon DXM1200, Düsseldorf, Ger-
many). The blue-stained fibrotic area was manually quantified by an
observer blinded to the experimental condition on three cross sections

per heart using ImageJ software. The endocardium and trabeculae
carnae were excluded from quantification. After determination of the
ventricular area, the mean fibrosis content was calculated by dividing
the area of trichrome-stained fibrotic fibers by total left ventricular
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area. For qualitative electron microscopic investigations of the hearts,
several semithin and ultrathin sections were prepared and stained with
methylene blue or uranyl acetate/lead citrate, respectively. Images of
ultrathin sections were taken with a Zeiss electron microscope LEO
EM 910 (Zeiss, Oberkochen, Germany).

Preparation of femoral bones. Femoral bones were removed,
weighed, and fixed overnight using 1% (wt/vol) PFA buffered with
PBS (pH 7.4). Bones were decalcified in 10% (wt/vol) EDTA solution
(pH 7.4) before they were dehydrated and embedded in paraffin.
Tissues were cut into 2-�m sections and stained with hematoxylin and
eosin (H&E). Images were taken using a BX60 Olympus microscope
equipped with a XC 30 camera (Olympus, Hamburg, Germany).

Statistical analysis. Student’s t-test was used to generate P values.

RESULTS

A diet high in soluble oxalate induces stable CKD. Previous
work from our groups suggests that intraperitoneal (ip) oxalate
can induce acute kidney injury (22), and a high-oxalate diet can
cause progressive renal failure (15). In the present study, we
first examined the effects of the duration of feeding a soluble
oxalate diet on renal function in C57BL/6 mice. Providing an
oxalate diet induced a decline in GFR and an increase in

plasma BUN and creatinine (Fig. 1, A–C). A shorter duration
of oxalate feeding followed by a switch to a control diet
induced less advanced stages of CKD as defined by GFR,
plasma BUN, and creatinine (Fig. 1, D–F). Serial monitoring
documented that these parameters peaked at the end of oxalate
feeding, followed by mild recovery over the following 2-wk
period. Urinary oxalate increased following a switch to a
soluble oxalate compared with a control diet (Fig. 1G), but no
renal or bladder stones were detected (images not shown).
Similarly, we observed a sharp increase in plasma oxalate
levels followed by a reduction in plasma oxalate levels when
mice were switched back to a control diet (Fig. 1H). Therefore,
while a diet high in soluble oxalate was found to induce a
progressive decline in renal function as previously reported
(13), these results show for the first time that it can also be used
to induce stable CKD after dietary oxalate is discontinued.

Renal pathology of oxalate-induced CKD. As progressive
scarring and fibrotic processes are a hallmark of CKD irrespec-
tive of the initiating disease, we next examined renal histology
of mice fed a soluble oxalate diet for various durations. PAS
staining revealed progressive tubular atrophy (Fig. 2A), result-
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ing in remnant atubular glomeruli (Fig. 2B) (2, 17). In addition,
infiltration by macrophages/monocytes and T cells was ob-
served, mainly in areas of interstitial fibrosis (Fig. 3A). Fur-
thermore, progressive renal fibrosis was demonstrated as mea-
sured by collagen I, silver, and trichrome staining, and the

duration of feeding allowed titration of the degree of paren-
chymal loss (Fig. 3A). Expression profiling for markers of
kidney injury, inflammation and fibrosis, were consistent with
progressive kidney atrophy (Fig. 3B). Female C57BL/6 mice
revealed similar findings with very low interindividual vari-
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ability (Fig. 4, A–F). Given the increasing use of diagnostic
imaging modalities to assess changes in renal morphology, we
performed MRI of kidneys from mice. Compared with mice
receiving a control diet, animals receiving an oxalate diet
displayed an increase in kidney cortex volume, T1, T2, and
T2* relaxation times, as well as a reduction in the apparent
diffusion coefficient in the cortex (Fig. 5). These significant
differences in the cortex are known to be associated with
inflammation (increased volume and T2 time) and fibrosis
(increased T1 time and decreased diffusion) and are consistent
with findings from histology and expression profiling (25).
Taken together, these data indicate that a high-oxalate diet
induces CKD in male and female C57BL/6 mice characterized
by progressive kidney atrophy and fibrosis.

Oxalate-induced CKD in C57BL/6 mice demonstrates clas-
sic CKD complications. We next examined whether the mouse
model displays human CKD complications. An oxalate diet in-
duced normochromic anemia (Fig. 6A) without affecting other
blood cell lines (Supplementary Table 1; all supplementary data
are accessible on the journal web site). CKD-related mineral bone
disease (CKD-MBD) was demonstrated by elevated plasma
FGF23 and PTH levels as well as hyperphosphatemia and hyper-
kalemia (Fig. 6, B–E) in addition to metabolic acidosis (Fig. 6F).

Bone marrow of femoral bones demonstrated no oxalate crystal
deposition of mice receiving an oxalate diet (Fig. 6G). Further-
more, an oxalate diet induced arterial hypertension (Fig. 7, A and
B), which persisted after cessation of the oxalate-rich diet (Fig. 7,
C and D). In addition, oxalate feeding induced cardiac fibrosis
(Fig. 7, E and F), another serious cardiovascular complication of
CKD. Electron microscopy demonstrated fibroblast activation in
mice receiving an oxalate diet, as demonstrated by an increase in
size and vacuolization of fibroblasts compared with mice receiv-
ing a control diet (Fig. 7G, white arrows). Similar to our obser-
vation in femoral bones, we could not detect any oxalate crystal
deposition in heart tissue, arguing against systemic oxalosis to
explain the observed phenotype.

Thus this model of oxalate diet-induced CKD presents with
a wide spectrum of clinically established CKD complications.

It is of interest to compare the features of this oxalate-
induced model of CKD with previous models of CKD, as
summarized in Table 2.

DISCUSSION

The model of unilateral ureteral obstruction (UUO) has
become a widely used model for studying CKD and fibrosis
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(3). While the model causes extensive parenchymal damage,
functional compensation by the intact contralateral kidney
prevents a significant change in renal function and the devel-
opment of CKD complications (29). Absence of urine from the
damaged kidney precludes biomarker discovery studies. In
contrast, the oxalate diet-induced CKD model enables study of
renal fibrosis while providing a functional end point of renal
function as changes in GFR, serum BUN, and creatinine can be
measured. It also allows the collection of urine and demon-
strates established CKD complications.

The renal mass reduction models have been a mainstay of CKD
studies (16). Unilateral nephrectomy is followed by either partial
infarction or amputation of the poles of the remaining kidney,
resulting in glomerular and tubule-interstitial injury. A strong
limitation of the model is the need for two surgical interventions
requiring microsurgery training, confounding effects related to
anesthesia as well as surgical procedures, and the model’s repro-
ducibility and variability (16). In addition, performing a 5⁄6 ne-
phrectomy limits the tissue available for analysis. After 16 wk, the
C57BL/6 mice demonstrate increased albuminuria without in-
creased blood pressure and without development of cardiac fibro-
sis unless angiotensin II is administered (18). The oxalate diet-
induced model requires no microsurgery training/intervention,
maintains sufficient renal tissue for analysis, and reliably induces
CKD complications.

The adenine-induced model of CKD, unlike UUO or renal
mass reduction, does not require surgery. It has largely been
established in rats (32) as it is not easily adapted to mice given
their reluctance to consume adenine. Addition of casein ap-
pears to blunt the smell and taste of adenine, to apply the
approach to mice (13). Male mice present a more severe renal
phenotype compared with female mice, presumably secondary
to gender differences in the metabolism of adenine (7, 27). In
addition, the model requires diets of different adenine content
(13) or induction for 6 wk (28). Most strikingly, the mice
develop profound hypotension compared with mice receiving a
control diet (19) In contrast, oxalate is readily eaten by mice;
the amount of dietary intake can be precisely monitored by
measuring urinary oxalate excretion. Additional benefits in-
clude the short time frame of 1–3 wk for the induction of
moderate to advanced CKD, which accelerates scientific work-
flow and reduces housing costs. Most strikingly, the oxalate
model induces reliable and profound hypertension, an estab-
lished complication of CKD in humans.

The aristolochic acid model represents an additional tool for
investigating mechanisms of CKD progression and accessing
potential interventions (6, 12). Aristolochic acid I (AAI) is the

active ingredient implicated in Chinese herb nephropathy.
Injection (ip) of AAI weekly has been shown to lead to
progressive fibrosis and kidney failure that is more severe in
male than female mice (6, 12), similar to observations made in
the adenine model. No significant hypertension ensues (12).
Contrary to the AAI model, the oxalate diet-induced model
avoids direct handling and injections of mice. As the oxalate
model works in male and female mice, it allows examination of
gender differences in response to pharmaceutical interventions
to treat CKD, providing a platform to use both male and female
mice in preclinical studies as requested by the National Insti-
tutes of Health (4). In addition, gender-restricted models pro-
duce excess pups, which are avoided when both males and
females can be used for experimentation, and the low interin-
dividual variability allows smaller group sizes.

The folic acid nephropathy model induces interstitial fibrosis
following ip injection of a high dosage of folic acid. The
advantage of this model compared with the UUO model is that
renal function can be assessed. However, the model requires ip
injections compared with the oxalate feeding model, is some-
what variable, and yet to be characterized in regards to gender
differences and CKD complications (8, 30, 31).

Despite the advantages of the oxalate model over previous
CKD models, a number of limitations have to be considered.
Oxalate crystals primarily induce tubular injury (20–22), while
many forms of human CKD are primarily driven by podocyte
loss (5). The mechanism of crystal-induced progression may
not translate to all forms of CKD. However, the extensively
studied adenine and folic acid models are similarly crystal
induced (19). Similarly, one may argue that UUO, as the
benchmark model of fibrosis associated with an increase in
vascular resistance and a reduced blood flow following sur-
gery, provides a mechanism of fibrosis not mimicking the
pathophysiology of common forms of CKD (14).

Nevertheless, several elements of the oxalate model, includ-
ing tubular atrophy, renal inflammation, and fibrosis, are com-
mon to many forms of CKD. In addition, one of the major
strengths of the model is the reproducibility of CKD compli-
cations, thereby allowing study of the mechanisms of FGF23
activation, hyperphosphatemia, hyperparathyroidism, hyper-
tension, and cardiac fibrosis. Moreover, increasing the number
of CKD models available may help to validate important
findings and improve standards.

In conclusion, feeding a soluble oxalate diet represents a sim-
ple, reproducible, and technically undemanding CKD model pro-
viding functional data in male as well as female C57BL/6 mice.
Moreover, the duration of feeding enables titrated induction of

Table 2. Comparison of murine CKD models

CKD Animal Model 1 2 3 4 5 6 7 8 References

Unilateral ureteral obstruction (UUO) ✓ ✓ ✓ ✓ 3, 29
Surgical renal mass ablation (5⁄6 nephrectomy) ✓ ✓ ✓ ✓ 16, 18
Adenine-induced CKD ✓ ✓ ✓ ✓ ✓ 7, 13, 19, 27, 28, 32
Aristolochic acid-induced CKD ✓ ✓ ✓ ✓ ✓ ✓ 6, 12
Folic acid-induced CKD ✓ ✓ ? ✓ ✓ ? 8, 30, 31
Oxalate-induced CKD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CKD, chronic kidney disease. Criteria: 1, inducible in C57BL/6 mice; 2, reliable induction of stable CKD; 3, requires relatively short time to induce CKD
and thus limits the burden for animals and reduces housing costs; 4, avoids surgical interventions, thus minimizing animal distress and use of painkillers; 5,
inducible in male and female mice with low interindividual variability; 6, avoids reduction in renal mass; 7, reduction in glomerular filtration rate (GFR); 8, CKD
complications such as normochromic anemia, hyperphosphatemia, hyperparathyroidism, hyperkalemia, acidosis, hypertension, and cardiovascular disease.
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various stages of CKD associated with numerous clinically im-
portant CKD complications. Thus the oxalate diet-induced CKD
model offers novel opportunities for CKD research.
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